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Abstract
Diffusion models generate high-quality synthetic
data. They operate by defining a continuous-time
forward process which gradually adds Gaussian
noise to data until fully corrupted. The corre-
sponding reverse process progressively “denoises”
a Gaussian sample into a sample from the data dis-
tribution. However, generating high-quality out-
puts requires many discretization steps to obtain
a faithful approximation of the reverse process.
This is expensive and has motivated the develop-
ment of many acceleration methods. We propose
to speed up sample generation by learning the
posterior distribution of clean data samples given
their noisy versions, instead of only the mean of
this distribution. This allows us to sample from
the probability transitions of the reverse process
on a coarse time scale, significantly accelerating
inference with minimal degradation of the quality
of the output. This is accomplished by replacing
the standard regression loss used to estimate con-
ditional means with a scoring rule. We validate
our method on image and robot trajectory genera-
tion, where we consistently outperform standard
diffusion models at few discretization steps.

1. Introduction
Diffusion models (Ho et al., 2020; Song & Ermon, 2019;
Sohl-Dickstein et al., 2015) have demonstrated remarkable
success in synthesizing high-quality data across various do-
mains, including images (Saharia et al., 2022b), videos (Ho
et al., 2022), and 3D (Poole et al., 2023). These models
proceed as follows: First, a forward diffusion process is
defined where Gaussian noise is progressively introduced
to corrupt the data. This allows us to learn a denoiser at
a continuum of noise levels. Next, to generate new sam-
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ples, we sample from the time-reversed diffusion process,
leveraging the learned denoiser. Despite their impressive
capabilities, diffusion models often require a large number
of steps to faithfully approximate the time-reversal so as
to obtain high-fidelity samples. To overcome this limita-
tion, different solutions have been explored. One approach
focuses on the development of improved numerical inte-
grators (e.g. (Karras et al., 2022; Lu et al., 2022; Zheng
et al., 2023)). Another common strategy involves the use
of distillation techniques (e.g. (Luhman & Luhman, 2021;
Song et al., 2023; Luo, 2023; Salimans et al., 2024)), which
requires training a smaller, more computationally efficient
model to emulate the behavior of a larger, pre-trained diffu-
sion model. Finally, parallel simulation methods have also
been explored (e.g. (Shih et al., 2023; Chen et al., 2024a))
and use more memory to avoid slow sequential processing.

We depart from these earlier approaches in simply propos-
ing to sample from the generative process on a coarser time
scale. However, naively using denoisers obtained from the
training of diffusion models significantly degrades the qual-
ity of the outputs, as these denoisers do not capture the
full posterior distribution of the clean data given its noisy
version, but rather its conditional mean. We review the
relevant background on diffusions and their limitations in
Section 2.1. In earlier works, Xiao et al. (2022); Xu et al.
(2024) proposed to use Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) to learn such conditional
distributions. We show here how to bypass adversarial train-
ing by relying on generalized scoring rules (Gneiting &
Raftery, 2007), which we describe in Section 2.2. This
yields a simple loss which interpolates between the classical
regression loss used in diffusion models and distributional
losses. We present our new class of Distributional Diffu-
sion Models in Section 3, and provide theoretical grounding
for our choice of distributional loss, as well as details of the
interpolation to the regression loss, in Section 4. We review
related work in Section 5.

Experiments in Section 6 demonstrate that our approach
produces high-quality samples with significantly fewer de-
noising steps. We observe substantial benefits across a range
of tasks, including image-generation tasks in both pixel and
latent spaces, and in robotics applications. All proofs are in
the supplementary and a table of notation is in Appendix A.
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2. Background & Motivation
2.1. Diffusion models

We follow the Denoising Diffusion Implicit Models (DDIM)
framework of Song et al. (2021a). Let p0 be a target data
distribution on Rd. Consider Xt0 ∼ p0 and the process
Xt1:tN := (Xt1 , ..., XtN ) distributed according to

p(xt1:tN |xt0) = p(xt1 |xt0)

N−1∏
k=1

p(xtk |xt0 , xtk+1
), (1)

with 0 = t0 < · · · < tN = 1. For 0 ≤ s < t ≤ 1, we
define p(xs|x0, xt) = N (xs;µs,t(x0, xt),Σs,t) to ensure
that for any t ∈ [0, 1],

p(xt|x0) = N (xt;αtx0, σ
2
t Id), (2)

for some schedule αt, σt chosen such that α0 = σ1 = 1 and
α1 = σ0 = 0. This ensures in particular that p(x1|x0) =
N (x1; 0, Id). One possible popular schedule is given by the
flow matching noise schedule (Lipman et al., 2023; Albergo
et al., 2023; Gao et al., 2024), i.e.,

αt = 1− t, σt = t. (3)

The mean and covariance of p(xs|x0, xt) are given by

µs,t(x0, xt) = (ε2r1,2(s, t) + (1− ε2)r0,1)xt

+ αs(1− ε2r2,2(s, t)− (1− ε2)r1,1(s, t))x0,

Σs,t = σ2
s(1− (ε2r1,1(s, t) + (1− ε2))2)Id, (4)

with ri,j(s, t) = (αt/αs)
i (
σ2
s/σ

2
t

)j
; see (Song et al.,

2021a) and Appendix F for a discussion. In (4), ε ∈ [0, 1] is
a churn parameter which interpolates between a determinis-
tic process (ε = 0) and a stochastic one (ε = 1).

We generate data Xt0 ∼ p0 by sampling XtN ∼ N (0, Id)
and Xtk ∼ p(·|Xtk+1

) for k = N − 1, ..., 0, where for
0 ≤ s < t ≤ 1

p(xs|xt) =

∫
Rd

p(xs|x0, xt)p(x0|xt)dx0. (5)

It can be easily checked that this process has the same
marginal distributions, denoted ptk(xtk), as the process de-
fined by p0(xt0)p(xt1:tN |xt0) (see (1)) so that in particular
Xt0 ∼ p0; see e.g. (Shi et al., 2024, Appendix E).

Subsequently, to avoid ambiguity, we write ps|t(xs|xt) for
p(xs|xt) and ps,t(xs, xt) for p(xs, xt) for any 0 ≤ s <
t ≤ 1. Usually p0|t(x0|xt) in (5) is approximated for any t
by δx̂θ(t,xt), where x̂θ(t, xt) ≈ E[X0|Xt = xt] is a neural
network denoiser trained using a regression loss; i.e.

Ldiff(θ) =

∫ 1

0

wtE[||X0 − x̂θ(t,Xt)||2]dt, (6)

for a weighting function wt (Kingma et al., 2021). Approx-
imating p0|t(x0|xt) with a Dirac mass located at x̂θ(t, xt)
seems crude at first. However, as N → ∞ with tk+1 → tk,
the resulting discrete time process converges to a contin-
uous time process which recovers the data distribution if
x̂θ(t,Xt) = E[X0|Xt]; see e.g. Song et al. (2021b).

When performing a coarse time discretization, however, this
result no longer holds, and the Dirac approximation is poor.
We propose here to learn a generative network to sample
approximately from p0|t(x0|xt).

2.2. Scoring rules

We next recall the framework of scoring rules, as reviewed
by Gneiting & Raftery (2007), and then describe the specific
scoring rules used in this work. Consider two probability
distributions p, q. A scoring rule S(p, x) indicates the qual-
ity of a prediction p when the event Y = y is observed. The
expected score is its expectation under q,

S(p, q) := Eq[S(p, Y )]. (7)

A scoring rule is proper when S(q, q) ≥ S(p, q). It is
called strictly proper with respect to a class of distributions
P when the equality holds if and only if p = q, for all
p, q ∈ P . In this work we focus on the class of proper
scoring rules called kernel scores introduced by Gneiting &
Raftery (2007, Section 5.1) which take the form

Sρ(p, y) =
1

2
Ep⊗p[ρ(X,X ′)]− Ep[ρ(X, y)],

where ρ is a continuous negative definite kernel. Following
Bouchacourt et al. (2016, Section 3.2), we will also consider
generalized kernel scores of the form

Sλ,ρ(p, y) =
λ

2
Ep⊗p[ρ(X,X ′)]− Ep[ρ(X, y)], (8)

with λ ∈ [0, 1]. One score of particular interest is the energy
score (Gneiting & Raftery, 2007, eq. 22) denoted Sβ , which
uses ρ(x, x′) = ∥x−x′∥β with β ∈ (0, 2). We denote Sλ,β ,
its generalized version, called the generalized energy score.
We will also employ ρ = −k with k a continuous positive
definite kernel, see e.g. (Berlinet & Thomas-Agnan, 2004)
and Appendix A for a definition. Similarly to (7), we define
the (generalized) expected energy score and (generalized)
expected kernel score.

Positive definite kernels are said to be characteristic to P
when Sρ yields a strictly proper scoring rule on P (Sripe-
rumbudur et al., 2010; 2011). While the exponentiated
quadratic (rbf) kernel satisfies this property, we will also
investigate other kernels such as the inverse multiquadratic
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(imq) kernel and the exponential (exp) kernel,

kimq(x, x
′) = (∥x− x′∥2 + c)−1/2, (9a)

krbf(x, x
′) = exp

[
−∥x− x′∥2/2σ2

]
, (9b)

kexp(x, x
′) = exp [−∥x− x′∥/σ] . (9c)

Any proper scoring rule Sρ defines a divergence

Dρ(p, q) := S(q, q)− S(p, q). (10)

When S = Sρ and ρ(x, x′) = −k(x, x′) with k a pos-
itive definite kernel, we recover the squared Maximum
Mean Discrepancy (MMD2) (Gretton et al., 2012). For
ρ(x, x′) = ∥x−x′∥β , we obtain the energy distance (Rizzo
& Székely, 2016). The relation between these discrepancies
was established by Sejdinovic et al. (2013) where the spe-
cific positive definite kernel family for which the MMD and
energy distance are equivalent is described.

Letting β → 2 for the energy distance, we obtain
Dρ(p, q) = ∥Ep[X] − Eq[X]∥2, resembling the integrand
of (6). Indeed, up to a constant C independent of θ, letting
p = δx̂θ(t,Xt) and q = p0|t(·|Xt), we get

Ept
[Dρ(p, q)] = E[∥X0 − x̂θ(t,Xt)∥2] + C, (11)

see Appendix B for a proof. In the case of ρ = −k with k
given by (9a) or (9b), the relation between Dρ and the diffu-
sion loss (6) is less immediate than for the energy distance.
However the connection becomes apparent by keeping the
leading terms in the Taylor expansions of the kernels, as
shown in Proposition 4.3.

3. Distributional Diffusion Models
We now introduce Distributional Diffusion Models. At
a high level, we replace the regression loss (6), used to
learn approximation of the conditional mean E[X0|Xt] in
diffusion models, with a loss based on scoring rules, to
learn an approximation pθ0|t(x0|xt) of p0|t(x0|xt). This
is achieved by learning a generative network x̂θ(t, xt, ξ)
which aims to produce samples X0 ∼ pθ0|t(·|xt). This
model takes as input a time t ∈ [0, 1], a noisy sample xt

and a Gaussian noise sample ξ ∼ N (0, Id). Sampling from
the noise ξ allows us to sample from this model (as in a
GAN). The model’s objective is to approximate the full
distribution p0|t(x0|xt), i.e., x̂θ(t,Xt, ξ)

d
= X0|Xt, t and

ξ ∼ N (0, Id). Whenever the model x̂θ(t,Xt, ξ) is used, we
refer to such a method as distributional. Using this model
allows us to sample from diffusion models with fewer steps
than classical diffusion models, leveraging (5).

Conditional Generalized Energy Score. We base our
training loss on generalized energy scores as introduced in
Section 2.2. For each t, x0, xt, we consider a conditional

generalized energy score with β ∈ (0, 2] and λ ∈ [0, 1]

Sλ,β(p
θ
0|t(·|xt), x0) =

λ

2
Epθ

0|t(·|xt)⊗pθ
0|t(·|xt)[∥X −X ′∥β ]

− Epθ
0|t(·|xt)[∥X − x0∥β ]. (12)

The conditional energy score was first proposed for train-
ing conditional generative models by Bouchacourt et al.
(2016), and its use in extrapolation and model estimation
was established by Shen & Meinshausen (2024) in the case
λ = β = 1. We emphasize that (12) is conditional, since it
compares the conditional distribution pθ0|t(·|xt) to x0. We
recall that this scoring rule is strictly proper when λ = 1
and β ∈ (0, 2). The hyperparameter λ allows us to control
the trade-off between diversity (first “interaction” term) and
accuracy (second “confinement” term).

Energy diffusion loss. Our final expected loss integrates
the conditional generalized energy score over both the noise
level t ∈ [0, 1], and the samples from the dataset, X0 ∼
p0, together with noisy samples Xt ∼ pt|0(·|X0) so that
(X0, Xt) ∼ p0,t. This gives the energy diffusion loss

L(θ) = −
∫ 1

0

wtEp0,t

[
Sλ,β(p

θ
0|t(·|Xt), X0)

]
dt, (13)

where wt is a user-defined weighting function. The loss (13)
has the following remarkable property: when we set β → 2
and λ → 0, we recover the classical regression diffusion
loss (6). When β ∈ (0, 2) and λ = 1 we obtain an (inte-
grated) strictly proper expected conditional energy score.
By selecting λ ∈ (0, 1) and β ∈ (0, 2], we can interpo-
late between these two cases. Our approach shares with
(Bouchacourt et al., 2016; Gritsenko et al., 2020; Chen et al.,
2024b; Pacchiardi et al., 2024; Shen & Meinshausen, 2024)
the conditional energy score (12), but differs in that these
earlier works learned only a single conditional distribution,
whereas we integrate over many different noise levels.

Empirical energy diffusion loss. For samples
{Xi

0}ni=1
i.i.d.∼ p0 from the training set and correspond-

ing noise levels {ti}ni=1
i.i.d.∼ U [0, 1], we sample noisy

data points Xi
ti |X

i
0, ti ∼ pti|0(·|Xi

0) from the forward
diffusion process (2) with noise schedule (3). Then, for
each pair (Xi

0, X
i
ti), we sample m Gaussian noise sam-

ples ξji ∼ N (0, Id), j ∈ [m] which allows us to compute
x̂θ(ti, Xti , ξ

j
i ). We then obtain the following empirical en-

ergy diffusion loss

Ln,m(θ)=
1

nm

n,m∑
i,j=1

wti

[∥∥∥Xi
0 − x̂θ(ti, Xti , ξ

j
i )
∥∥∥β (14)

−λ

2(m− 1)

m∑
j′ ̸=j,

∥∥∥x̂θ(ti, Xti , ξ
j
i )− x̂θ(ti, Xti , ξ

j′

i )
∥∥∥β ].
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Figure 1. Left: reduction factor f(λ, β) as a function of β ∈ [0, 2]
and λ ∈ [0, 1]. Right: evolution of the covariance during the
sampling of distributional diffusion model for a Gaussian target
p0 = N (0, 4Id) for 20 of N ∈ {5, 10, . . . , 95, 100}, λ = 0.5.
As N increases, the output variance gets closer to 4.

In Section 4, we discuss an alternative training loss using the
joint generalized energy score which would focus on pθ0,t
and show that its empirical version suffers from much higher
variance. See also Appendix D for a longer discussion.

Kernel diffusion loss. Similarly, we can define a kernel
diffusion loss by replacing ∥x− x′∥β with a characteristic
kernel −k(x, x′), such as (9a) or (9b), in (12) and (13). As
for the energy score, we can recover the diffusion loss (6)
for kimq and krbf by identifying the leading terms in the
Taylor expansion of these kernels. We refer the reader to
Section 4.3 for more details.

Architecture and training. Unlike standard diffusion mod-
els, the neural network x̂θ(t, xt, ξ) takes not only t and xt as
input, but also ξ ∼ N (0, Id) to obtain an approximate sam-
ple from p0|t(x0|xt). For simplicity, in image generation,
we concatenate [xt, ξ] along the channel dimension without
modifying the rest of the architecture, see Appendix I for
more details, and Algorithm 1 for the full training algorithm.

Algorithm 1 Distributional Diffusion Model (training)
Require: M training steps, schedule (αt, σt), distribution

p0, weights θ0, batch size n, population size m
for k = 1 : M do

Sample ti ∼ Unif([0, 1]) for i ∈ [n]

Sample Xi
0

i.i.d.∼ p0 for i ∈ [n]
Sample Xi

ti ∼ pti|0(·|Xi
0) for i ∈ [n] using (2)

Sample ξi,j ∼ N (0, Id) for i ∈ [n], j ∈ [m]
Set θk = θk−1 − δ∇Ln,m(θ)|θk−1

using (14)
end for
Return: θM

Once again, we emphasize that setting λ = 0 and β = 2 in
Algorithm 1 recovers the classical diffusion model loss.

Sampling. Once we have trained our model x̂θ, we generate
samples using Algorithm 2. This procedure is very similar
to DDIM (Song et al., 2021a). The only difference is that

x̂θ now outputs an approximate sample from p0|t(x0|xt)
instead of an approximation of E[X0|Xt = xt].

Algorithm 2 Distributional Diffusion Model (sampling)
Require: {tk}Nk=0 with t0 = 0 < · · · < tN = 1, churn

parameter ε
Sample XtN ∼ N (0, Id)
for k ∈ {N − 1, . . . , 0} do

Sample ξ ∼ N (0, Id)
Sample Z ∼ N (0, Id)
Set X̂0 = x̂θ(tk+1, Xtk+1

, ξ)

Compute µtk,tk+1
(X̂0, Xtk+1

), Σ1/2
tk,tk+1

using (4)

Set Xtk = µtk,tk+1
(X̂0, Xtk+1

) + Σ
1/2
tk,tk+1

Z
end for
Return: X0

4. Theoretical analysis
In this section, we provide some theoretical understanding
of the generalized scoring rules introduced in Section 3.

4.1. Gaussian analysis

We shed more light on the two main hyperparameters of the
generalized kernel score introduced in Section 2.2: (i) the
kernel parameter (β in the case of the energy score); (ii) the
trade-off term λ. We focus here on the case of generalized
energy score defined in (8).

Proposition 4.1: Assume that p = N (µ, σ2Id) for µ ∈
Rd and σ > 0. Then, for any λ ∈ [0, 1] and β ∈ [0, 2],
we have that q⋆λ,β = N (µ⋆, σ

2
⋆Id) maximizes Sλ,β(p, q)

defined by (8) among all Gaussian distributions q, with
parameters

µ⋆ = µ, σ2
⋆ = (2λ−2/(2−β) − 1)−1σ2.

A notable outcome of maximizing the generalized energy
score is that µ⋆ = µ no matter the value of λ and β. With
λ = 1 and β < 2, we recover as expected the correct
variance, since Sλ,β is a strictly proper energy score. As
soon as λ < 1, the variance σ2 is underestimated by a factor
f(λ, β) = (2λ−2/(2−β) − 1)−1; see Figure 1.

We now consider the effect of these hyperparameters when
sampling from the corresponding generative model using
Algorithm 2. For simplicity, we let the churn parameter ε =
1 but our analysis also applies to ε ∈ [0, 1). We consider a
Gaussian target p0 = N (µ, σ2Id). In that case, p0|t(x0|xt)
is also Gaussian for any t ∈ [0, 1]. Therefore if this density
were estimated using the generalized energy score, then the
results of Proposition 4.1 apply. In particular, this implies
that the induced estimate of the Gaussian distribution ps|t
obtained by plugging our approximation of p0|t into (5)
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would have the correct mean but an incorrect variance for
λ < 1.

As expected, differences between classical diffusion models
and distributional diffusion models arise when considering
larger discretization stepsizes, where the Dirac approxima-
tion of p0|t(x0|xt) is no longer valid, see Figure 1.

4.2. Joint or conditional scoring rules

Given two unbiased estimators Â and B̂ of A and B, we
say that A is easier to approximate than B if SNR(Â) ≥
SNR(B̂) where, for an unbiased estimate Ĉ, SNR(Ĉ) :=
E[Ĉ]2/Var(Ĉ); i.e. the inverse relative variance of Ĉ. We
investigate here one alternative to the loss (13) and show that
its empirical version exhibits lower SNR than the empirical
version of (13) under the simplifying assumption that θ is
chosen so that pθ0|t = p0|t. While the loss (13) leverages
generalized energy score on the conditional distribution p0|t,
we can instead leverage the generalized energy score on the
joint distribution p0,t to define a new loss

Ljoint(θ) = −
∫ 1

0

wtEp0,t

[
Sλ,β(p

θ
0|tpt, (X0, Xt))

]
dt,

(15)
where pθ0|tpt denotes pθ0|t(x0|xt)pt(xt). In the case of the
conditional loss (13), an empirical interaction estimate is

In,m =

n∑
i=1

m∑
j ̸=j′

λ

2n(m− 1)
∆i,j

where ∆i,j = ∥x̂θ(ti, Xti , ξ
j
i ) − x̂θ(ti, Xti , ξ

j′

i )∥β where
Xti ∼ pti , ξ

j
i ∼ N (0, Id) for all i, j. In the case of the joint

loss (15), an empirical interaction estimate is

In,m,joint =

n∑
i=1

m∑
j ̸=j′

λ

2n(m− 1)

[
∥Xj

ti −Xj′

ti ∥+∆′
i,j

]
,

where ∆′
i,j = ∥x̂θ(ti, X

j
ti , ξ

j
i ) − x̂θ(ti, X

j′

ti , ξ
j′

i )∥β . Here
we have Xj

ti ∼ pti , ξ
j
i ∼ N (0, Id) for all i, j. We then ask

whether SNR(In,m) ≥ SNR(In,m,joint). Unfortunately,
we cannot answer this in the general case. However, if
p0 = N (0, σ2Id), and leveraging results from U-statistics,
we have the following result.

Proposition 4.2: Let U ∼ pU and V ∼ pV where pU ∝
wt/(1 +

α2
tσ

2

σ2
t
)1/2 and pV ∝ wt(σ + (α2

tσ
2 + σ2

t )
1/2)

are two distributions on [0, 1]. Then, we have that

SNR(In) := lim
m→+∞

SNR(In,m) = nSNR(U),

SNR(In,joint) := lim
m→+∞

SNR(In,m,joint) = nSNR(V ).

In practice, we consider the sigmoid weighting scheme
wt = (1 + exp[b − log(α2

t /σ
2
t )])

−1 (Kingma et al., 2021;

Figure 2. SNR(In) (red) and SNR(In,joint) (blue) w.r.t. σ2 (x-
axis) for 3 possible bias levels b ∈ {0, 1, 2} (from dark to
light). Vertically, we plot (σ⋆

b )
2 such that for the bias b, we have

SNR(In) ≥ SNR(In,joint) for σ ≥ σ⋆
b .

Hoogeboom et al., 2023), where b ∈ R is some bias. The
SNR of U, V can easily be computed and we observe that,
across a large range of values of σ and bias values b, we
indeed have SNR(In,m) ≥ SNR(In,m,joint) in the large m
limit, see Figure 2.

4.3. From kernel scores to diffusion losses

We have shown in eq. (11) of Section 2.2 that the energy
diffusion loss (14) recovers the diffusion loss (6) when β →
2. In that case, we say that the scoring rule is diffusion
compatible. A natural question to ask is whether other
scoring rules are diffusion compatible: i.e., given ρc with
c ∈ R a hyperparameter of the kernel, that there exists
c⋆ ∈ [−∞,+∞] and f : R → R such that

lim
c→c⋆

f(c)Dρc
(p, q) = ∥Ep[X]− Eq[X]∥2.

The following result shows that kimq and krbf can also
recover the diffusion loss.

Proposition 4.3: Assume that ρ = −k with k given by
(9a) or (9b). Then the scoring rule is diffusion compatible.

This proposition justifies using scoring rules other than the
energy one, which also allow recovering diffusion models
in the limit. We compare the performance of these different
kernels in Section 6.2. Our experiments suggest that dif-
fusion compatibility, as demonstrated by the energy score,
kimq, and krbf, is sufficient for defining a loss function that
leads to high-quality sample generation when used to train
a model. However, we have identified other kernels, such as
kexp, that do not satisfy the diffusion compatibility require-
ment but still result in models with desirable properties.

5. Related Work
Accelerated diffusion models. Many strategies acceler-
ate diffusion models, broadly classifiable as distillation-
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Figure 3. Left: Squared MMD between target distribution and
sampled data according to different models, x-axis denotes the
number of sampling steps. Right: average standard deviation of
samples X0|Xt produced by either true posterior distribution p0|t
or the models x̂θ(t,Xt, ξ), x-axis is the timestep t.

or sampling-based. Distillation methods (Luhman & Luh-
man, 2021; Salimans & Ho, 2022; Luo, 2023; Salimans
et al., 2024; Dieleman, 2024; Liu et al., 2023; Meng et al.,
2023; Song et al., 2023; Franceschi et al., 2024; Huang
et al., 2024; Sauer et al., 2025) train a student model to
mimic a teacher diffusion model, leveraging consistency
losses (Song et al., 2023), adversarial losses (Franceschi
et al., 2024; Xu et al., 2024; Sauer et al., 2025), or noise
coupling (Huang et al., 2024). See (Dieleman, 2024) for
a detailed discussion. While distillation is prevalent, other
work focuses on improved samplers for larger step sizes
(Jolicoeur-Martineau et al., 2021; Lu et al., 2022; Zheng
et al., 2023). Our work differs from both, neither training a
student nor proposing new samplers.

Discrepancy and diffusion. We modify the diffusion model
training loss to learn the conditional distribution p0|t(x0|xt).
The importance of approximating the covariance of this
distribution was noted by Nichol & Dhariwal (2021) and
exploited in (Ho et al., 2020; Nichol & Dhariwal, 2021;
Bao et al., 2022a;b; Ou et al., 2024). Closest to our ap-
proach is (Xiao et al., 2022), which uses a GAN to learn
p0|t(x0|xt) for fewer sampling steps. While sharing the
same motivation, our method avoids adversarial training
and discriminator training, offering a simple loss modifi-
cation that encompasses standard diffusion models. Other
loss modifications, like using the ℓ1 loss (Chen et al., 2021;
Saharia et al., 2022a), aim to improve output quality, not
reduce sampling steps. Galashov et al. (2025) can be seen as
dual to our work: they learn discriminative kernel features
with a flow at different noise levels, while we focus solely
on learning a generator.

Energy distances, MMD, and generative modeling. The
MMD (Gretton et al., 2012), of which energy distances
(Székely & Rizzo, 2013; Rizzo & Székely, 2016) are a spe-
cial case (Sejdinovic et al., 2013), has been widely used as a
distributional loss in generative modeling. GANs have used
MMDs with fixed kernels as critics to distinguish generated
from reference samples (Li et al., 2015; Dziugaite et al.,
2015; Unterthiner et al., 2018). MMDs (Li et al., 2017;

Figure 4. Samples from true posterior p0|t(·|xt) (light blue) for a
sample xt (black cross) from pt|0(xt|x0) for a specific x0 (orange
cross) and samples x̂θ(t, xt, ξ) ∼ pθ0|t(·|xt) (green dots) for β =
0.1, λ = 1. Top/bottom row: x0 is the mean of the left/right
Gaussian. Samples from x̂θ(t, xt, ξ) (red) with β = 2, λ = 0
concentrate around E[X0|xt] as expected.

Bińkowski et al., 2018) and energy distances (Liu, 2017;
Bellemare et al., 2017; Salimans et al., 2018) have also
been defined on adversarially trained discriminative neu-
ral net features. The conditional generalized energy score
of (12) has been used in learning conditional distributions
by the DISCONet approach of Bouchacourt et al. (2016),
and by the engression approach of Shen & Meinshausen
(2024) (which corresponds to the special case of λ, β = 1).
Recently, energy distances have been applied to speech syn-
thesis (Gritsenko et al., 2020), normalizing flows (Si et al.,
2023), neural SDEs (Issa et al., 2024), and other generative
models (Chen et al., 2024b; Pacchiardi et al., 2024).

To our knowledge, such losses have not previously been
used to train diffusion models. It is possible, however, to
use an adaptation of (Galashov et al., 2025) in combina-
tion with the approach of Bouchacourt et al. (2016); Shen
& Meinshausen (2024), in order to incorporate conditional
GAN-style generation into the reverse process of a diffu-
sion model. This idea was proposed by X. Shen (personal
communication, 6th November 2024) in an open discussion
following a presentation at Google Deepmind, as a future
research direction of interest. The main idea of Galashov
et al. (2025) is retained, namely to use a standard forward
diffusion process, and a distributional loss for the reverse
process: however the adaptive-kernel MMD loss for the
reverse process is replaced with a fixed-kernel energy score;
and this score is used to train a sequence of conditional
GAN generators to approximate p(xtk−1

|xtk), rather than
using particle diffusion directly. The approach indeed rep-
resents a promising line of work (since developed in Shen
et al., 2025) for discretizing the reverse diffusion process, as
distinct from the DDIM-style approach adopted in Section 3.
The approach can further be understood as a non-adversarial
formulation of Cheng et al. (2024), which uses an adaptive
conditional GAN critic in place of the fixed-kernel energy
score.
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6. Experiments
In this section, we validate the performance of our approach
in 2D, image generation, and robotics settings. The main ex-
periments are presented here, while additional experiments
and ablations are given in Appendix K. All the experimen-
tal details are described in Appendix I, while Appendix J
analyzes computational complexity.

6.1. 2D experiments

Consider a target given by a mixture of two Gaussians,
i.e. p0 = 0.5N (µ1, σ

2Id) + 0.5N (µ2, σ
2Id), where µ1 =

(3, 3), µ2 = (−3, 3) and σ = 0.5. We train an unconditional
distributional model x̂θ with β = 0.1 and λ = 1 using Al-
gorithm 1. Additionally, we train a baseline unconditional
diffusion model by optimizing (6) and the model x̂θ with
β = 2 and λ = 0 using Algorithm 1, i.e. a classical diffu-
sion model using the same architecture as the distributional
models. More details are provided in Appendix I.1.

To measure the quality of the samples produced, we use
the MMD squared given by Dρ (10) with ρ(x, x′) =
−krbf(x, x

′) (9b) for σ = 1. In Figure 3 (left), we observe
that with few denoising steps, the distributional variant has a
smaller Dρ compared to other models, and achieves similar
performance as the diffusion model using a large number of
steps. In Figure 3 (right), for each Xi

t , we produce 8 sam-
ples ξ ∼ N (0, Id) and we compute the standard deviation
(std) of x̂θ(t, x

i
t, ξ) over ξ. We then average the std over

all the xi
t. While classical diffusion models cannot model

the variance of the posterior, distributional diffusion models
have std close to that of the true posterior.

To further our analysis, we visualize the samples from the
distributional model in Figure 4. For given xt values, we
sample from the true posterior p0|t(x0|xt) which is available
in closed form. We also sample x̂θ(t, xt, ξ) ∼ pθ0|t(·|X

i
t)

where ξ ∼ N (0, Id) for a model trained using β = 0.1, λ =
1, showing that our generating network is able to learn
a good approximation of the posterior. We also display
samples from x̂θ(t, xt, ξ) trained with β = 2, λ = 0 which
are concentrated around E[X0|xt], as expected.

6.2. Image experiments

Main results. We train conditional pixel-space models
on CIFAR-10 (32x32x3) and on CelebA (64x64x3), as
well as unconditional pixel-space models on LSUN Bed-
rooms (64x64x3). We further use an autoencoder trained on
CelebA-HQ (256x256x3) producing latent codes of shape
64x64x3, which are then used to build latent unconditional
models. For each dataset, we train a diffusion model by op-
timizing (6) as well as a distributional model (Algorithm 1)
for different λ ∈ [0, 1] and β ∈ [0.001, 2]. Models are
evaluated using the FID score (Heusel et al., 2017). See Ap-
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Figure 5. Conditional image generation. x-axis denotes number of
denoising steps, y-axis represents FID. Black dashed line denotes
the performance of diffusion model at 100 steps.

10 30 50 70 90 100

Num diffusion steps
3

4

5

6

7

8

9

10

11

FI
D

LSUN Bedrooms

10 30 50 70 90 100

Num diffusion steps

6

8

10

12

14

16

18

FI
D

Latent CelebA HQ

= 2, = 0 < 2, = 0 < 2, = 0.1 < 2, = 0.5 < 2, = 1 Diffusion

Figure 6. Unconditional image generation. x-axis denotes num-
ber of denoising steps, y-axis represents FID. Black dashed line
denotes the performance of the diffusion model at 100 steps.

pendix I.2 for details.

In Figure 5, we show results of conditional image genera-
tion on CIFAR-10 and CelebA, and in Figure 6 results of
unconditional image generation on LSUN Bedrooms and
latent CelebA-HQ. Whenever we report performance of dis-
tributional model and write β < 2, we select a parameter β
given one fixed λ which minimizes the FID. More detailed
results are given in Appendix K.2, which include FIDs for
different numbers of steps for every combination of (β, λ).

Main takeaways. The results suggest that whenever the
number of diffusion steps is low, then distributional models
with λ = 1, β < 2 achieve better performance than classical
diffusion models. This confirms that the diffusion model
approximation is poor in the ”few steps” regime, and can be
improved with better modeling of p0|t as explained in Sec-
tion 2.1. As the number of diffusion steps increases, the
Dirac approximation becomes more accurate and diffusion
models achieve the best performance. In that scenario, we
observe that distributional models with λ = 1, β < 2 yield
worse performance. Our hypothesis is that since distribu-
tional models x̂θ only approximate the posterior distribu-
tion p0|t, this could lead to an increased amount of noise
at sampling time and consequently to error accumulation.
However, we observe that distributional model variants with
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Figure 7. Parameters λ and β minimizing the FID for a given num-
ber of diffusion steps. x-axis indicates the number of diffusion
steps and legend color indicates the dataset.

λ ∈ (0, 1) still yield good performance as the number of
diffusion steps increases. This highlights the trade-off be-
tween distributional and diffusion models controlled by the
parameter λ. As argued in Section 4.1, λ < 1 leads to
underestimation of the target variance which, for denoising
diffusions, implies that the variance of x̂θ is more concen-
trated around p0|t than would occur for posterior samples.
Remarkably, we also found that using β < 2, λ = 0 led to
comparable or even slightly better performance compared
to classical diffusion models. This suggests that it could be
valuable to train diffusion models using a different loss than
Mean Square Error (MSE) regression.

Conditional vs unconditional generation. We observe
slightly different behavior of distributional models in the
conditional image generation case (Figure 5), and in the un-
conditional case (Figure 6). For a small number of diffusion
steps, we notice that the gap in performance between the
model trained with λ = 1, β < 2 and a diffusion model,
is much smaller in the unconditional case (1.5x) compared
to the conditional one (3x). In Figure 7 we visualize the
best parameters λ, β selected to achieve the lowest FID,
as a function of diffusion steps. More detailed results are
presented in Appendix K.2. We observe that overall λ fol-
lows a downward trend, decreasing as the number of steps
increases. However, β behaves differently in each setting,
increasing monotonically as a function of diffusion steps in
the conditional case, while remaining at a minimal value in
the unconditional case. We hypothesise that this is because
learning unconditional distributions is a much harder task
since the data is spread out more, leading to a much higher
variance in the distribution of x̂θ.

Using different kernels. As discussed in Section 2.2 and
in Section 3, we can also use the kernel diffusion loss. We
train x̂θ with kernels (9a), (9b), (9c), varying kernel parame-
ters and λ ∈ [0, 1]; see Figure 8 for results on conditional im-
age generation for CIFAR-10. We observe similar behavior
to the energy diffusion loss, achieving the best results when
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Figure 8. Conditional generation on CIFAR-10 with different ker-
nels. x-axis is the number of diffusion steps. y-axis is the FID.

λ = 1 for few diffusion steps and better performance with
λ < 1 when number of steps increases; see Appendix K.2
for detailed results.

Comparisons to distillation and numerical solvers. In
Appendix K.3, we compare our approach with the DPM-
solver++ method Lu et al. (2022) and the state-of-the-art,
multi-step distillation method, moment-matching distilla-
tion (Salimans et al., 2024). Overall, our approach achieves
results competitive with multistep distillation (where we
compared different numbers of steps) and outperforms
DPM-solver++ for more than 8 NFEs. The performance of
DPM-solver++ degrades as the number of steps increases,
which is expected due to its numerical instability.

Our approach offers two compelling benefits over multistep
distillation. First, it does not rely on distillation, eliminating
the need to train a large (and slow) teacher model. Second, it
does not require specifying additional sampler hyperparame-
ters during training. Combining our distributional approach
with a modern distillation method is an interesting direction
for future research.

6.3. Robotics experiments

Experimental setup. We demonstrate here the effectiveness
of our distributional diffusion models for robotics applica-
tions. We experiment with diffusion policies on the Libero
(Liu et al., 2024) benchmark, a life-long learning benchmark
that consists of 130 language-conditioned robotic manipu-
lation tasks. In our experiments, we used 4 Libero suites
with 10 tasks in each: Libero-Long, Libero-Goal, Libero-
Object, and Libero-Spatial. Our multi-task diffusion policy
is conditioned on the encoded visual and proprioceptive ob-
servations, and the task descriptions and generates a chunk
of 8 7-dimensional actions to execute; see Appendix I.3 for
additional details on the architecture.

Distributional diffusion model. We train the distributional
diffusion model with Algorithm 1 using the energy diffusion
loss with population size m = 16 and varying β and λ. We
use a diffusion model to model a sequence of 8 actions a =
(a1, . . . , a8), where ai ∈ R7. We use the noise ξ ∈ R8,2

which we concatenate with a on the last dimension. At
sampling time, we follow Algorithm 2 to sample a sequence
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Figure 9. Performance in Libero10 as function of diffusion steps
and λ. We plot the maximum success rate from best checkpoint
during training. λ = 0 works best when more diffusion steps are
used, and λ > 0 gives best results when fewest diffusion steps
are used. λ > 0 also reduces the performance by a little for 50
diffusion steps (see 0.5 vs 0.0).

of actions from a diffusion policy and we execute it. We
sweep over a number {2, 16, 50} of diffusion steps.

Results. For the main result, we focus on Libero-Long,
the most challenging suite with 10 tasks that features long-
horizon tasks with diverse object interactions. Similar to
the results on image experiments, λ = 0 works best when
more diffusion steps (50) are used during evaluation. Using
λ > 0 gives best results when fewer diffusion steps are used
(2, 16). We note that the performance slightly deteriorates
with λ > 0 when the number of diffusion steps is large, see
Figure 9. See Figure 19 for similar results on other Libero
suites.

7. Discussion
We present a novel approach for training diffusion mod-
els, by learning the full conditional distributions p0|t using
scoring rules. This approach achieves good performance
in image generation and robotics tasks, outperforming stan-
dard diffusion models in the ”few-step” regime with mini-
mal degradation of output quality. Our experimental results
further suggest that standard diffusion models can also be
trained with objectives other than classical MSE regression.

So far, our generative networks approximating p0|t incor-
porate the noise ξ only by concatenating it to the xt along
the channel dimension. We believe that other architectures
could significantly improve sample quality, and will ex-
plore this in future work. Another promising direction is
in learning the kernel ρ and the parameter λ to maximize
generative performance in the few-step regime. Combining
our approach with powerful distillation techniques such as

(Salimans et al., 2024) is a further avenue for future work.

Finally kernel scores allow for more general domains
than Rd, by way of characteristic kernels on groups (e.g.
the group SO(3) of 3d rotations) and semigroups (d-
dimensional histograms) (Fukumizu et al., 2008); and
graphs (Vishwanathan et al., 2010). It is thus possible to
extend our methodology to these scenarios.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Organization of the Appendix
The appendix is organized as follows. In Appendix A, we present a notation table, to help the reader. In Appendix B,
we prove that diffusion compatible scoring rules can be linked to diffusion model losses as claimed in Section 2.2. In
Appendix C, we prove the results regarding the minimization of generalized expected energy score in a Gaussian setting
presented in Section 4.1. In Appendix D, we expand on the discussion of Section 4.2 regarding joint or conditional scoring
rules. In Appendix E, we present the results of Section 4.3 regarding diffusion-compatible kernels. In Appendix F, we
present a new perspective on the DDIM updates derived in (Song et al., 2021a). More precisely, we show that these updates
can be recovered using a Stochastic Differential Equation perspective. This justifies the form of the DDIM mean and
covariance updates presented in (4). We present some pseudocode to compute our loss function in Appendix G. Experimental
details are provided in Appendix I. We present a computational complexity analysis in Appendix J. We present an extended
related work in Appendix H. In Appendix K, we present additional experimental results including ablation studies.

A. Notation
We recall that a kernel defined on a space X is a symmetric function k : X×X → R, i.e., for any x, y ∈ X, k(x, y) = k(y, x).
A kernel k is said to be positive semi-definite if for any n ∈ N, {x1, . . . , xn} ∈ Xn and {c1, . . . , cn} ∈ Rn we have

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0. (16)

The kernel k is positive definite if equality in (16) occurs if and only ci = 0 for any i ∈ {1, . . . , n}. We refer the reader to
(Berlinet & Thomas-Agnan, 2004; Steinwart & Christmann, 2008; Gretton, 2013) for an overview on kernel theory.

Name Notation Definition Appeared 1st

· ρ Continuous negative definite kernel Sec 2.2

· k Continuous positive definite kernel Sec 2.2

Scoring rule S(p, y) · Sec 2.2

Expected score S(p, q) S(p, q) = Eq[S(p, Y )] Sec 2.2

Kernel score Sρ(p, y) Sρ(p, y) =
1
2E[ρ(X,X ′)]− E[ρ(X, y)] Sec 2.2

Energy score Sβ(p, y) Sβ(p, y) = Sρ(p, y) with ρ(x, x′) = ∥x− x′∥β Sec 2.2

Expected Kernel score Sρ(p, q) Sρ(p, q) = Eq[Sρ(p, Y )] Sec 2.2

Expected Energy score Sβ(p, q) Sβ(p, q) = Sρ(p, q) with ρ(x, x′) = ∥x− x′∥β Sec 2.2

Generalized (Gen.) Kernel score Sλ,ρ(p, y) Sλ,ρ(p, y) =
λ
2Ep⊗p[ρ(X,X ′)]− E[ρ(X, y)] Sec 2.2

Generalized Energy score Sλ,β(p, y) Sλ,β(p, y) = Sλ,ρ(p, y) with ρ(x, x′) = ∥x− x′∥β Sec 2.2

Expected Gen. Kernel score Sλ,ρ(p, q) Sλ,ρ(p, q) = Eq[Sλ,ρ(p, Y )] Sec 2.2

Expected Gen. Energy score Sλ,β(p, q) Sλ,β(p, q) = Sλ,ρ(p, q) with ρ(x, x′) = ∥x− x′∥β Sec 2.2

Squared MMD Dρ(p, q) Dρ(p, q) = Sρ(q, q)− Sρ(p, q) Sec 2.2

Energy Distance Dβ(p, q) Dβ(p, q) = Dρ(p, q) with ρ(x, x′) = ∥x− x′∥β Sec 2.2

Diffusion Loss Ldiff(θ) Ldiff(θ) =
∫ 1

0
wtEp0,t

[
||X0 − x̂θ(t,Xt)||2

]
dt Sec 2.1

Energy Diffusion Loss L(θ) L(θ) = −
∫ 1

0
wtEp0,t

[
Sλ,β(p

θ
0|t(·|Xt), X0)

]
dt Sec 3

Kernel Diffusion Loss L(θ) L(θ) = −
∫ 1

0
wtEp0,t

[
Sλ,ρ(p

θ
0|t(·|Xt), X0)

]
dt Sec 3

Joint Diffusion Energy Loss Ljoint(θ) Ljoint(θ) = −
∫ 1

0
wtEp0,t

[
Sλ,β(p

θ
0|tpt, (X0, Xt))

]
dt Sec 4.2
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B. Correspondence between Discrepancy and Diffusion Loss
In this section, we demonstrate the connection between diffusion-compatible scoring rules and diffusion model losses, as
stated in Section 2.2. More precisely, we prove the following result.

Proposition B.1: Assume that Dρ(p, q) = ∥Ep[X]− Eq[X]∥2 and that p = δx̂θ(t,Xt) and q = p0|t(·|Xt). Then, we have

Ept
[Dρ(p, q)] = Ep0,t

[∥X0 − x̂θ(t,Xt)∥2]− Ep0,t
[∥X0 − E[X0|Xt]∥2],

where the second term on the r.h.s. is independent of θ.

Proof. First we have

Ept
[Dρ(p, q)] = Ept

[∥x̂θ(t,Xt)− E[X0|Xt]∥2]
= Ep0,t [∥x̂θ(t,Xt)−X0 +X0 − E[X0|Xt]∥2]
= Ep0,t

[∥x̂θ(t,Xt)−X0∥2] + Ep0,t
[∥X0 − E[X0|Xt]∥2] + 2Ep0,t

[⟨x̂θ(t,Xt)−X0, X0 − E[X0|Xt]⟩]
= Ep0,t

[∥x̂θ(t,Xt)−X0∥2] + Ep0,t
[∥X0 − E[X0|Xt]∥2]

+ 2Ep0,t
[⟨x̂θ(t,Xt), X0 − E[X0|Xt]⟩]− 2Ep0,t

[⟨X0, X0 − E[X0|Xt]⟩]
= Ep0,t [∥x̂θ(t,Xt)−X0∥2] + Ep0,t [∥X0 − E[X0|Xt]∥2]
− 2Ep0,t [⟨X0, X0 − E[X0|Xt]⟩]. (17)

In addition, we have
Ep0,t

[∥X0 − E[X0|Xt]∥2] = Ep0
[∥X0∥2]− Ep0

[∥E[X0|Xt]∥2]. (18)

Similarly, we have
Ep0,t [⟨X0, X0 − E[X0|Xt]⟩] = Ep0 [∥X0∥2]− Ep0 [∥E[X0|Xt]∥2]. (19)

Combining (17), (18) and (19), we get

Ept
[Dρ(p, q)] = Ep0,t

[∥X0 − x̂θ(t,Xt)∥2]− Ep0,t
[∥X0 − E[X0|Xt]∥2],

which concludes the proof.

C. Generalized Energy Score for Gaussian Targets
We first investigate the properties of the generalized energy score for a single Gaussian target in Appendix C.1 (Proposi-
tion 4.1) and then apply these results to diffusion models in Appendix C.2

C.1. Learning a Gaussian distribution

For any β ∈ (0, 2] and λ ∈ [0, 1] we recall that Sλ,β is the generalized expected energy score given for any distributions p, q
on Rd with β moments by

Sβ,λ(p, q) = −E(X,Y )∼p⊗q[∥X − Y ∥β ] + λ

2
E(X,X′)∼p⊗p[∥X −X ′∥β ].

We refer the reader to Appendix A for a remainder on the notation used throughout the paper. For any µ ∈ Rd and σ > 0,
let pµ,σ = N (µ, σ2Id) and denote by G the space of Gaussian distributions with scalar covariance, i.e.,

G = {N (ν, γ2Id) , ν ∈ Rd, γ ≥ 0}.

We consider the following minimization problem: for any µ ∈ Rd and σ > 0 solve

pµ⋆,σ⋆
= argmaxq∈GSβ,λ(q, pµ,σ).

When λ = 1 and β ∈ (0, 2), Sλ,β(p, q) is a proper scoring rule (Rizzo & Székely, 2016; Gneiting & Raftery, 2007) so we
have pµ⋆,σ⋆ = pµ,σ . For λ ∈ [0, 1], we have the following result. This is a simple restatement of Proposition 4.1.

14



Distributional Diffusion Models

Proposition C.1: For any β ∈ (0, 2) and λ ∈ (0, 1), we have that pµ⋆,σ⋆ ∈ argmaxq∈GSλ,β(q, pµ,σ) with

µ⋆ = µ, σ⋆ = (2λ−2/(2−β) − 1)−1σ2.

We start with the following lemma.

Lemma C.2: Assume that X ∼ N (0, σ2Id) for σ > 0. Then for any β > 0, we have 0 ∈ argminc∈RdE[∥X − c∥β ].

Proof. For any β > 0, let fβ(c) = E[∥X − c∥β ]. For any β > 0, we have that fβ is continuous, using the dominated
convergence theorem, and coercive, using Fatou’s lemma, hence admits at least one minimizer. If β ≥ 1, then fβ is convex.
Assume that c⋆ is a minimizer. Then −c⋆ is also a minimizer and by convexity, we have that 0 is also a minimizer. If
β ∈ (0, 1) then fβ is strictly concave. Assume that c⋆ is a minimizer. Then −c⋆ is also a minimizer. If 0 is not a minimizer
of fβ , then fβ(0) > fβ(c

⋆). Hence, by strict concavity, we have that limt→+∞ fβ(tc
⋆) = −∞ which is absurd. Hence, 0 is

also a minimizer.

Proof. First, we have that for any q ∈ G with mean µ̃ and covariance σ̃2Id

Sλ,β(q, pµ,σ) = −E[∥µ− µ̃+ (σ2 + σ̃2)1/2Z∥β ] + λ

2
E[∥

√
2σ̃Z∥β ],

where Z ∼ N (0, Id). Maximizing with respect to µ̃ first, we get that µ⋆ = µ thanks to Lemma C.2. In addition, if µ̃ = µ,
we have

Sλ,β(q, pµ,σ) = −E[∥µ− µ̃+ (σ2 + σ̃2)1/2Z∥β ] + λ

2
E[∥

√
2σ̃Z∥β ]

= −(σ2 + σ̃2)β/2E[∥Z∥β ] + λ

2
2β/2σ̃βE[∥Z∥β ]

= −E[∥Z∥β ]((σ2 + σ̃2)β/2 +
λ

2
2β/2σ̃β).

Maximizing with respect to σ̃, we get that

σ2
⋆ = (2λ−2/(2−β) − 1)−1σ2.

So the effect of the introduction of λ < 1 is that σ⋆ underestimates σ, i.e. the model is too concentrated around its mean.
The effect is stronger as β → 2. In what follows, we denote

f(λ, β) = (2λ−2/(2−β) − 1)−1. (20)

C.2. Application to diffusion sampling

Consider a Gaussian target distribution p0. We investigate the effect of using the generalized energy score to learn the
Gaussian conditionals p0|t on the sampling updates used at inference time, i.e. when substituting our approximation of p0|t
within (5) to obtain an approximation of ps|t.

We first recall a few useful lemmas. Using (2), the forward model is given by

Xt = αtX0 + σtZ, (21)

with Z ∼ N (0, Id) and X0 ∼ pµ,σ , the target density. The diffusion (Xt)t∈[0,1] given by

dXt = ftXtdt+ gtdBt, (22)

where (Bt)t∈[0,1] is a d-dimensional Brownian motion has the same marginal distributions as (21) for

ft = ∂t log(αt), g2t = 2αtσt∂t(σt/αt).

15



Distributional Diffusion Models

We refer to Appendix F for a derivation of this fact, see also (Song et al., 2021b).

Lemma C.3: For any t ∈ [0, 1] we have that

(X0,Xt) ∼ N
((

µ
αtµ

)
,

(
σ2Id αtσ

2Id
αtσ

2Id (α2
tσ

2 + σ2
t )Id

))
.

Proof. This is a direct consequence of (21).

In particular, we also have the following lemma.

Lemma C.4: For any t ∈ [0, 1] we have that

X0|Xt ∼ N (r(t)Xt + (1− r(t))µ, σ2(1− r2,2(t))Id),

where

r(t) =
αtσ

2

α2
tσ

2 + σ2
t

, r2,2(t) =
α2
tσ

2

α2
tσ

2 + σ2
t

.

Proof. This is a combination of Lemma C.3 and the formula for computing Gaussian posteriors.

Lemma C.5: For s, t ∈ [0, 1] with t ≥ s we have that

Xt|Xs ∼ N

(
αt

αs
Xs,

(
σ2
t −

(
σsαt

αs

)2
)
Id

)
.

Proof. This is a direct consequence of (22).

Lemma C.6: For s, t ∈ [0, 1] with t ≥ s we have that

Xs|X0,Xt ∼ N
(
r(s, t)Xt + αs(1− r2,2(s, t))X0, σ

2
s(1− r2,2(s, t))Id

)
,

where

r(s, t) =
αtσ

2
s

αsσ2
t

, r2,2(s, t) =
α2
tσ

2
s

α2
sσ

2
t

.

Proof. Using that Xt|Xs is the same as Xt|Xs,X0 by the Markov property, we get the distribution of (Xs,Xt)|X0. We
conclude upon using the formula for computing Gaussian posteriors.

Note that in Appendix F, we will establish Lemma C.6 in a more general setting, i.e., we will introduce a churn parameter ε
and draw further connection with DDIM (Song et al., 2021a). At this stage, Lemma C.6 recovers (Ho et al., 2020) which
corresponds to setting the churn parameter to ε = 1. Now, combining (20), Lemma C.4 and Lemma C.6 we get the following
proposition.
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Proposition C.7: For s, t ∈ [0, 1] with t ≥ s we have that

Xs|Xt = N (µ̂s|t, σ̂
2
s|tId),

with

µ̂s|t = [r(s, t) + αs(1− r2,2(s, t))r(t)]Xt + αs(1− r2,2(s, t))(1− r(t))µ,

σ̂2
s|t = σ2

s(1− r2,2(s, t)) + f(λ, β)σ2α2
s(1− r2,2(s, t))

2(1− r2,2(t)).

In particular, denoting Xt ∼ N (µ̂t, σ̂
2
t Id) we get that

µ̂s = [r(s, t) + αs(1− r2,2(s, t))r(t)]µ̂t + αs(1− r2,2(s, t))(1− αtr(t))µ, (23)

σ̂2
s = σ2

s(1− r2,2(s, t)) + f(λ, β)σ2α2
s(1− r2,2(s, t))

2(1− r2,2(t)) + σ̂2
t [r(s, t) + αs(1− r2,2(s, t))r(t)]

2.

In particular, the update on the mean in (23) is not dependent on λ and β. Therefore we estimate correctly the mean of ps|t
but incorrectly the variance for λ < 1.

The curves presented in Figure 1 are obtained using Proposition C.7.

D. Different learning objectives
First in Appendix D.1 we compare the energy diffusion loss (13) with a similar loss based on Maximum Mean Discrepancy
and show that they only differ by a term which does not depend on θ. In Appendix D.2, we compare the conditional loss
and the joint loss, as discussed in Section 4.2. In Appendix D.3, we consider a third possible option, i.e., we compare
the conditional loss with a marginal loss. We highlight the limitations of the marginal loss in that case. We derive the
empirical versions of the conditional and joint losses in Appendix D.4. Finally in Appendix D.5, we prove the main result of
Section 4.2, i.e., we prove Proposition 4.2 and compare the SNR of the interaction terms of the joint and conditional losses.

D.1. Energy diffusion loss and Maximum Mean Discrepancy diffusion loss

In this section, we first compare the energy diffusion loss (13) and another loss based on Maximum Mean Discrepancy
(MMD), denoted MMD diffusion loss. We show that these two losses are equal up to a constant which does not depend on
the network parameters θ. However, this additional term appearing in the MMD diffusion loss is intractable, even though it
could be potentially estimated using important sampling techniques. We consider the case where the kernel k is given by
k(x, x′) = −∥x−x′∥. While our discussion can be extended to other settings, we also focus on the case where λ = 1, β = 1
and wt = 1 for simplicity.

First, we consider the following MMD diffusion loss

LMMD(θ) =

∫ 1

0

∫
Rd

pt(xt)Dρ(p
θ
0|t, p0|t)dxtdt. (24)

We recall that the squared MMD is given by Dρ(p, q) = Sρ(q, q)− Sρ(p, q) with ρ = −k and

L(θ) = −
∫ 1

0

∫
Rd×Rd

p0,t(x0, xt)Sρ(p
θ
0|t, x0)dx0dxtdt. (25)

First, we highlight the following result which draws a connection between kernel scores and squared MMD.

Proposition D.1: Let x ∈ Rd be such that k(x, x) = 0, then we have Dρ(p, δx) = −Sρ(p, x).

Proof. For any distribution q, we have Sρ(q, q) =
1
2Eq⊗q[k(X,X ′)] and therefore Sρ(δx, δx) =

1
2k(x, x) = 0. Similarly,

we have that

Sρ(p, δx) = −1

2
Ep⊗p[k(X,X ′)] + Ep⊗δx

[k(X,Y )] = −1

2
Ep⊗p[k(X,X ′)] + Ep[k(X,x)] = Sρ(p, x).
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Therefore, we have that

Dρ(p, δx) = Sρ(δx, δx)− Sρ(p, δx) = −Sρ(p, x).

Using Proposition D.1, (25) can be rewritten as

L(θ) =
∫ 1

0

∫
Rd×Rd

p0,t(x0, xt)Dρ(p
θ
0|t, δx0)dx0dxtdt. (26)

Therefore, our energy diffusion loss can be expressed in terms of squared MMD. We observe that both (24) and (26) involve
an integrated version of the squared MMD. However, in (26) we target δx0 while in (24) we target p0|t. In the rest of this
section, we show that these two losses actually only differ by a term which does not depend on the network parameters θ.

Let us start with the energy diffusion loss L given in (25) . We have

L(θ) = −1

2

∫ 1

0

∫
(Rd)4

p0,t(x0, xt)p
θ
0|t(x

1
0|xt)p0|t(x

2
0|xt)∥x1

0 − x2
0∥dx0dx

1
0dx

2
0dxtdt

+

∫ 1

0

∫
(Rd)3

p0,t(x0, xt)p
θ
0|t(x

1
0|xt)∥x0 − x1

0∥dx0dx
1
0dxtdt

= −1

2

∫ 1

0

∫
(Rd)3

pt(xt)p
θ
0|t(x

1
0|xt)p

θ
0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt

+

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x0|xt)p
θ
0|t(x

1
0|xt)∥x0 − x1

0∥dx0dx
1
0dxtdt.

For the MMD diffusion loss (24), we have

LMMD(θ) = −1

2

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x
1
0|xt)p0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt

− 1

2

∫ 1

0

∫
(Rd)3

pt(xt)p
θ
0|t(x

1
0|xt)p

θ
0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt

+

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x0|xt)p
θ
0|t(x

1
0|xt)∥x0 − x1

0∥dx0dx
1
0dxtdt.

To summarize, in this section we have shown that the kernel score losses that we have defined in Section 3 can be expressed in
terms of squared MMD. More precisely, we have shown the following result in the specific case where k(x, x′) = −∥x−x′∥
(but the result remains true for every positive definite kernel).

Proposition D.2: We have that

L(θ) = LMMD(θ) + C,

with C ∈ R a constant independent of θ.

This means that pθ0|t also minimizes L(θ). Note that we could also have derived this result from the properties of the strictly
proper scoring rules.

When optimizing with respect to the parameters of the kernel, here the kernel ρ(x, x′) = ||x− x′|| does not depend on any
parameter, the losses L(θ) and LMMD(θ) differ since now we cannot neglect the additional term appearing in LMMD(θ).
Unfortunately, this term recalled below is computationally problematic∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x0|xt)p0|t(x
1
0|xt)∥x0 − x1

0∥dx0dx
1
0dxtdt.
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Indeed an estimate of this integral requires sampling x1
0 from the conditional distribution p0|t(x0|xt). However this can be

approximated by using the following self-normalized importance sampling approximation of this distribution

p0|t(x0|xt) =
pt|0(xt|x0)p0(x0)

pt(xt)
≈

n∑
i=1

wiδXi
0
(x0), wi ∝ pt|0(xt|Xi

0),

n∑
i=1

wi = 1, (27)

where Xi
0

i.i.d.∼ p0. Such approximation was considered by Xu et al. (2023) to derive low variance regression targets in
diffusion models. However, for t small, the distribution of the weights (wi)

N
i=1 is very degenerate and the approximation of

p0|t(x0|xt) will be poor.

D.2. Joint Diffusion Energy Loss

Now that we have established the connection between MMD diffusion losses and energy diffusion losses in Proposition D.2,
we are going to discuss other possible learning objectives. We recall the joint diffusion energy loss introduced in (15)

Ljoint(θ) = −
∫ 1

0

wtEp0,t

[
Sλ,β(p

θ
0|tpt, (X0, Xt))

]
dt.

and the LMMD,joint loss which is defined using joint distributions as follows

LMMD,joint(θ) =

∫ 1

0

Dρ(ptp
θ
0|t, p0,t)dt.

We emphasize again that Dρ appearing in LMMD,joint is defined over Rd × Rd and not Rd as in LMMD.

Similarly to Proposition D.2, we can show the following result. Recall that we consider wt = 1 to simplify presentation.

Proposition D.3: Let ρ((x0, xt), (x
′
0, x

′
t)) = ρ(x0, x

′
0) + ρ(xt, x

′
t). We have that

Ljoint(θ) = LMMD,joint(θ) + C,

with C ∈ R a constant independent of θ.

Developing LMMD,joint(θ), we obtain

LMMD,joint(θ) = −1

2

∫ 1

0

∫
(Rd)4

pt(x
1
t )p0|t(x

1
0|x1

t )pt(x
2
t )p0|t(x

2
0|x2

t )[∥x1
0 − x2

0∥+ ∥x1
t − x2

t∥]dx1
0dx

2
0dx

1
tdx

2
tdt

− 1

2

∫ 1

0

∫
(Rd)4

pt(x
1
t )p

θ
0|t(x

1
0|x1

t )pt(x
2
t )p

θ
0|t(x

2
0|x2

t )[∥x1
0 − x2

0∥+ ∥x1
t − x2

t∥]dx1
0dx

2
0dx

1
tdx

2
tdt

+

∫ 1

0

∫
(Rd)4

pt(x
1
t )p

θ
0|t(x

1
0|x1

t )pt(x
2
t )p0|t(x

2
0|x2

t )[∥x1
0 − x2

0∥+ ∥x1
t − x2

t∥]dx1
0dx

2
0dx

1
tdx

2
tdt.

We recall that the term which does not depend on θ in LMMD is difficult to approximate, the proposed approximation using
importance sampling (27) is indeed expected to perform poorly. On the contrary, the term which does not depend on θ in
LMMD,joint is very easy to approximate. This suggests that if one would optimize the loss with respect to the parameters of
the kernel, then the choice LMMD,joint is more suitable. However, in the case where the parameters are fixed, as it is the
case in our framework, then we will show in Appendix D.5 that LMMD is more sample efficient.

D.3. Marginal Diffusion Energy Loss

Finally, we introduce a last discrepancy LMMD,marginal given by

LMMD,marginal(θ) =

∫ 1

0

Dρ(p
θ,t
0 , p0)dt,
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where
pθ,t0 (x0) =

∫
Rd

pt(xt)p
θ
0|t(x0|xt)dxt.

After a few simplifications, we obtain

LMMD,marginal(θ) = −1

2

∫ 1

0

∫
(Rd)4

pt(x
1
t )p0|t(x

1
0|x1

t )pt(x
2
t )p0|t(x

2
0|x2

t )∥x1
0 − x2

0∥dx1
0dx

2
0dx

1
tdx

2
tdt

− 1

2

∫ 1

0

∫
(Rd)4

pt(x
1
t )p

θ
0|t(x

1
0|x1

t )pt(x
2
t )p

θ
0|t(x

2
0|x2

t )∥x1
0 − x2

0∥dx1
0dx

2
0dx

1
tdx

2
tdt

+

∫ 1

0

∫
(Rd)4

pt(x
1
t )p

θ
0|t(x

1
0|x1

t )pt(x
2
t )p0|t(x

2
0|x2

t )∥x1
0 − x2

0∥dx1
0dx

2
0dx

1
tdx

2
tdt.

Note that while the minimizers of the conditional and joint losses are unique and given by p0|t, this is not the case for the
marginal loss. Indeed, we simply have that a minimizer of the marginal loss should satisfy

p0(x0) =

∫
Rd

pθ0|t(x0|xt)pt(xt)dxt.

This simply says that we should transport pt to p0 and there is an infinite number of such transports.

D.4. Empirical versions of MMD and MMD Joint diffusion losses

In this section we justify the form of (14), i.e., the empirical version of L given by (13). For completeness, here we present
the empirical version of LMMD which can be expressed as LMMD(θ) = L(θ) + C, where C is a term which does not
depend on θ, according to Proposition D.2

We recall that we have

LMMD(θ) = −1

2

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x
1
0|xt)p0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt

− 1

2

∫ 1

0

∫
(Rd)3

pt(xt)p
θ
0|t(x

1
0|xt)p

θ
0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt

+

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x0|xt)p
θ
0|t(x

1
0|xt)∥x0 − x1

0∥dx0dx
1
0dxtdt

Confinement term. We first focus on the last term of the loss, known as confinement term

C(θ) =
∫ 1

0

∫
(Rd)3

p0,t(x
1
0, x

1
t )p

θ
0|t(x

2
0|x1

t )∥x1
0 − x2

0∥dx1
0dx

2
0dx

1
tdt.

This can be estimated unbiasedly by

Cn,m =
1

n

n∑
i=1

1

m

m∑
j=1

∥X1,i
0 −X2,i,j

0 ∥,

where ti ∼ Unif([0, 1]), (X1,i
0 , Xi

ti) ∼ p0,ti for i ∈ [n] and X2,i,j
0 ∼ pθ0|t(·|X

i
ti) for j ∈ [m].

Prediction Interaction term. We now focus on the prediction interaction term

I =

∫ 1

0

∫
(Rd)3

pt(xt)p
θ
0|t(x

1
0|xt)p

θ
0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt.

This can be approximated unbiasedly by

In,m =
1

n

n∑
i=1

1

m(m− 1)

m∑
j,j′=1

∥Xi,j
0 −Xi,j′

0 ∥.

where ti ∼ Unif([0, 1]), Xi
ti ∼ pti for i ∈ [n] and Xi,j

0 ∼ pθ0|t(·|X
i
ti) for j ∈ [m].
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Target interaction term. We finally focus on the target interaction term. This term is harder to describe and implement.
However, we emphasize that it is not needed in order to optimize L given by (13). It is only needed when computing (24).
We have

It =

∫ 1

0

∫
(Rd)3

pt(xt)p0|t(x
1
0|xt)p0|t(x

2
0|xt)∥x1

0 − x2
0∥dx1

0dx
2
0dxtdt.

As explained before it can also be written as

It =

∫ 1

0

∫
(Rd)3

p0,t(x
1
0, x

1
t )

pt|0(x
1
t |x2

0)p0(x
2
0)∫

Rd pt|0(x
1
t |x3

0)p0(x
3
0)dx

3
0

∥x1
0 − x2

0∥dx1
0dx

2
0dx

1
tdt.

One estimate of this objective is given by

It
n,m =

1

n

n∑
i=1

n∑
j=1,j ̸=i

pti|0(X
i
ti |X

j
0)∑n

k=1,k ̸=i pti|0(X
i
ti |X

k
0 )

∥Xi
0 −Xj

0∥,

where ti ∼ Unif([0, 1]), Xi
0, X

i
ti ∼ p0,ti .

D.5. Sample efficiency

Previous subsections assume wt = 1 for ease of presentation. We consider a general weighting function wt here. Finally, in
this section, we discuss the sample efficiency of the empirical version of the energy diffusion loss (13) and the joint energy
diffusion loss (15). In particular, we prove Proposition 4.2.

U-statistics. We need first to recall a few basic results about U -statistics of order 2. Consider a symmetric function
h : (Rd)2 → R and let

Un =

(
n

2

)−1 ∑
1≤i1<i2≤n

h(Xi1 , Xi2), Xi
i.i.d.∼ p.

We recall Hoeffding’s theorem on the variance of U -statistics, see (Serfling, 2009) for instance.

Proposition D.4 (Hoeffding’s theorem): We have

Var(Un) =
2

n(n− 1)
[2(n− 2)Var(E[h(X1, X2) | X1]) + Var(h(X1, X2))].

This implies that

lim
n→+∞

nVar(Un) = 4Var(E[h(X1, X2) | X1]).

Another classical result is the law of total variance.

Lemma D.5: We have
Var(Y ) = Var(E[Y | X]) + E[Var(Y | X)].

Combining those two results, we obtain the following proposition which is central to the rest of the study.
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Proposition D.6: Let Xi
i.i.d.∼ p for i ∈ {1, ..., n} and n ∈ N. Define also {Ui}ni=1 such that for each i ∈ {1, . . . , n}, Ui is

independent from Xj for j ̸= i, E[Ui|Xi] are i.i.d. and Ui is a U -statistics of order 2 with m samples. We define

U =
1

n

n∑
i=1

Ui.

Then, we have that

Var(U) =
1

n
Var(E[U1 | X1]) +

1

n
E[Var(U1 | X1)].

In particular, we have that

lim
m→+∞

Var(U) =
1

n
Var(E[U1 | X1]).

Conditional and joint interaction terms. We consider two interaction terms. Recall that we assume that we are working
here under the strong assumption that we are at parameter θ such that pθ0|t = p0|t. The first one is given by the empirical
interaction term in the joint energy diffusion loss

In,m,joint =
1

n

n∑
i=1

1

m(m− 1)

m∑
j,j′=1

wti{∥X
i,j
0 −Xi,j′

0 ∥+ ∥Xi,j
ti −Xi,j′

ti ∥},

with ti
i.i.d.∼ Unif([0, 1]), {Xi,j

0 }n,mi,j=1
i.i.d.∼ p0 and Xi,j

ti ∼ pti|0(·|X
i,j
0 ). The second one is given by the empirical interaction

term in the conditional loss:

In,m =
1

n

n∑
i=1

1

m(m− 1)

m∑
j,j′=1

wti{∥X
i,j
0 −Xi,j′

0 ∥},

where ti
i.i.d.∼ Unif([0, 1]) and for any i ∈ [n], Xti ∼ pti . In addition, {Xi,j

0 }n,mi,j=1 are conditionally independent, i.e.
Xi,j

0 ∼ p0|ti(·|Xti).

We start with the following proposition giving the mean of In,m and In,m,joint.

Proposition D.7: We have that

E[In,m,joint] =

∫ 1

0

∫
(Rd)4

wt{∥x0 − x′
0∥+ ∥xt − x′

t∥}p0,t(x0, xt)p0,t(x
′
0, x

′
t)dx0dxtdx

′
0dx

′
tdt.

Similarly, we have that

E[In,m] =

∫ 1

0

∫
(Rd)3

wt∥x0 − x′
0∥pt(xt)p0|t(x0|xt)p0|t(x

′
0|xt)dx0dx

′
0dxtdt.

Next, we can obtain the asymptotic variance of those random variables.

Proposition D.8: We have that

lim
m→+∞

Var(In,m,joint)

=
1

n
Vart∼Unif([0,1])

(∫
(Rd)4

wt{∥x0 − x′
0∥+ ∥xt − x′

t∥}p0,t(x0, xt)p0,t(x
′
0x

′
t)dx0dxtdx

′
0dx

′
t

)
.

Similarly, we have that

lim
m→+∞

Var(In,m) =
1

n
Vart∼Unif([0,1]),Xt∼pt

(∫
(Rd)2

wt∥x0 − x′
0∥p0|t(x0|xt)p0|t(x

′
0|xt)dx0dx

′
0

)
.
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Proof. This is an application of Proposition D.6, with X = t ∼ Unif([0, 1]) in the case of In,m,joint and X = (t,Xt) ∼
Unif([0, 1])⊗ pt in the case of In,m.

In order to compare the sample efficiency of these different terms, we compute their Signal-to-Noise Ratio (SNR). In
particular, we compare

SNR(In,joint) := lim
m→+∞

SNR(In,m,joint) = lim
m→+∞

E[In,m,joint]
2

Var(In,m,joint)
,

SNR(In) := lim
m→+∞

SNR(In,m) = lim
m→+∞

E[In,m]2

Var(In,m)
.

The larger the SNR the better. In particular, if SNR(In) ≥ SNR(In,joint) then we claim that the conditional version
is more sample efficient than the joint version. Note that both SNR(In) and SNR(In,joint) are linear functions of N .
Therefore if SNR(In) ≥ SNR(In,joint) then we can interpret this as one sample used in the conditional version is worth
SNR(In)/SNR(In,joint) used in the joint version.

While the general expression for these SNR can be hard to obtain, we are going to analyze the specific case where the target
is Gaussian. In that case the posterior is known and explicit expressions can be derived.

Gaussian case. We assume that p0 ∼ N (0, σ2Id) and consider pt|0(xt|x0) = N (xt;αtx0, σ
2
t Id). In that case it can be

shown that

p0|t(x0|xt) = N (x0;αtσ
2/(α2

tσ
2 + σ2

t )xt, σ
2(1− α2

tσ
2/(α2

tσ
2 + σ2

t ))Id).

This can be rewritten as

p0|t(x0|xt) = N
(
x0;

xt

1 + ut
,
σ2ut

1 + ut
Id

)
,

where ut = σ2
t /α

2
tσ

2. Note that limt→0 ut = 0 and limt→1 ut = +∞. First, we compute the mean in both cases.

Proposition D.9: We have that

E[In,m,joint] =
√
2E[∥Z∥]

∫ 1

0

wt(σ + (α2
tσ

2 + σ2
t )

1/2)dt.

In addition, we have that

E[In,m] =
√
2σE[∥Z∥]

∫ 1

0

wt

(
ut

1 + ut

)1/2

dt.

Then, we compute the variance terms.

Proposition D.10: We have that

lim
m→+∞

Var(In,m,joint) =
2E[∥Z∥]2

n

[∫ 1

0

w2
t (σ + (α2

tσ
2 + σ2

t )
1/2)2dt−

(∫ 1

0

wt(σ + (α2
tσ

2 + σ2
t )

1/2)dt

)2
]
.

Similarly, we have that

lim
m→+∞

Var(In,m) =
2E[∥Z∥]2σ2

n

∫ 1

0

w2
t

ut

1 + ut
dt−

(∫ 1

0

wt

(
ut

1 + ut

)1/2

dt

)2
 .

Combining Proposition D.9 and Proposition D.10, we get the following result.
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Proposition D.11: We have that

SNR(In,joint) = n

(∫ 1

0
wt(σ + (α2

tσ
2 + σ2

t )
1/2)dt

)2
∫ 1

0
w2

t (σ + (α2
tσ

2 + σ2
t )

1/2)2dt−
(∫ 1

0
wt(σ + (α2

tσ
2 + σ2

t )
1/2)dt

)2 .
Similarly, we have

SNR(In) = n

(∫ 1

0
wt

(
ut

1+ut

)1/2
dt

)2

∫ 1

0
w2

t
ut

1+ut
dt−

(∫ 1

0
wt

(
ut

1+ut

)1/2
dt

)2 .

This concludes the proof of Proposition 4.2. In Figure 2, we show that in a setting where the weighting is chosen to follow
the sigmoid one of (Kingma et al., 2021; Hoogeboom et al., 2023), we obtain that SNR(In,joint) ≤ SNR(In) for a larger
range of σ.

E. Diffusion-compatible kernels
In this section, we prove the results of Section 4.3. In particular, we prove Proposition 4.3. We recall that for a continuous
negative kernel ρc with c ∈ R a hyperparameter of the scoring rule, we say that ρc is diffusion compatible, if there exist
c⋆ ∈ [−∞,+∞] and f : R → R such that

lim
c→c⋆

f(c)Dρc
(p, q) = ∥Ep[X]− Eq[X]∥2.

We also recall some of the kernels we use.

kimq(x, x
′) = (∥x− x′∥2 + c)−1/2, (28a)

krbf(x, x
′) = exp

[
−∥x− x′∥2/2σ2

]
, (28b)

kexp(x, x
′) = exp [−∥x− x′∥/σ] . (28c)

In particular, we prove the following proposition.

Proposition E.1: Assume that ρ = −k with k given by (28a) or (28b). Then the scoring rule is diffusion compatible. In
particular, if k is given by (28a), we have that c⋆ = +∞ and f(c) = 2c. If k is given by (28b), we have that c⋆ = +∞
and f(c) = 2c.

Proof. First, we have that for any continuous positive kernel k, with ρ = −k, we get

Dρ(p, q) = S(q, q)− S(p, q)

= Eq⊗q[−k(Y, Y ′)]− 1

2
Eq⊗q[−k(Y, Y ′)]− Ep⊗q[−k(X,Y )] +

1

2
Ep⊗p[−k(X,X ′)]

= Ep⊗q[k(X,Y )]− 1

2
Ep⊗p[k(X,X ′)]− 1

2
Eq⊗q[k(Y, Y

′)].

In addition, we have that for any u, v ∈ R

uDρ(p, q) = Ep⊗q[u(k(X,Y )− v)]− 1

2
Ep⊗p[u(k(X,X ′)− v)]− 1

2
Eq⊗q[u(k(Y, Y

′)− v)].

Let k be given by (28a), i.e., for any x, x′ ∈ Rd, we have that kimq(x, x′) = (∥x− x′∥2 + c)−1/2. Let c > 0, u = 2c and
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v = c−1/2 and consider (cn)n∈N such that cn → +∞. We have that for any x, x′ and c > 0

|u(k(x, x′)− v)| = 2c1/2 − 2c(∥x− x′∥2 + c)−1/2

=
2c1/2(∥x− x′∥2 + c)1/2 − 2c

(∥x− x′∥2 + c)1/2

≤ 2c1/2∥x− x′∥
(∥x− x′∥2 + c)1/2

≤ 2∥x− x′∥
(∥x− x′∥2/c+ 1)1/2

≤ 2∥x− x′∥.

In addition, we have that for any x, x′ and n ∈ N

2c1/2n − 2cn(∥x− x′∥2 + cn)
−1/2 =

2− 2(∥x− x′∥2/cn + 1)1/2

(∥x− x′∥2/cn + 1)1/2
.

Therefore, letting n → +∞ we have that

lim
n→+∞

2c1/2n − 2cn(∥x− x′∥2 + cn)
−1/2 = ∥x− x′∥2.

Hence, setting f(c) = 2c, and using the dominated convergence theorem, we get that

lim
c→+∞

f(c)Dρ(p, q) = Ep⊗q[∥X − Y ∥2]− 1

2
Ep⊗p[∥X −X ′∥2]− 1

2
Eq⊗q[∥Y − Y ′∥2]

= ∥Ep[X]− Eq[X]∥2,

which concludes the first part of the proof. Next, we consider k be given by (28b), i.e., for any x, x′ ∈ Rd, we have that
kexp(x, x

′) = exp[−∥x− x′∥2/σ2]. Let u = 2σ2 and v = 1. Then, we have that

|u(k(x, x′)− v)| = 2σ2(1− exp[−∥x− x′∥2/2σ2]) ≤ ∥x− x′∥2.

Now consider (cn)n∈N such that cn → +∞. We have that

lim
n→+∞

2c2n(1− exp[−∥x− x′∥2/2c2n]) = ∥x− x′∥2.

Hence, setting f(c) = 2c, and using the dominated convergence theorem, we get that

lim
c→+∞

f(c)Dρ(p, q) = Ep⊗q[∥X − Y ∥2]− 1

2
Ep⊗p[∥X −X ′∥2]− 1

2
Eq⊗q[∥Y − Y ′∥2]

= ∥Ep[X]− Eq[X]∥2,

which concludes the second part of the proof.

Finally, we highlight that while the exponential kernel (28c) is not diffusion compatible it satisfies another compatibility rule.
More precisely, we can show the following result. The proof is similar to the proof of Proposition E.1, in the case of krbf.

Proposition E.2: Assume that ρ = −k with k given by (28c), i.e., k(x, x′) = exp[−∥x − x′∥/σ]. In that case, upon
setting f(c) = c and c⋆ = +∞, we get that

lim
c→+∞

f(c)Dρc(p, q) = Dρ⋆(p, q),

where ρ⋆(x, x′) = ∥x− x′∥, i.e. we recover the energy distance with β = 1.

F. DDIM updates from a Stochastic Differential Equation perspective
In this section, we show that one can exactly recover the DDIM updates from the stochastic process point of view with a
careful choice of forward process.

We first show that different choices of forward process yields different interpolation densities ps|0,t in Appendix F.1. With a
careful choice of the forward process and appropriate parameters, we show that we can recover DDIM updates (Song et al.,
2021a) in Appendix F.2.
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F.1. General forward processes

In this section, we consider general forward processes. The main property of all those forward processes (Xt)t∈[0,1] is that
they will satisfy

Xt = αtX0 + σtZ
′, X0 ∼ p0, (29)

with Z′ ∼ N (0, Id). First, we define
ε2t = 2ε2αtσt∂t(σt/αt) = ε2g2t .

We also consider Z ∼ N (0, Id) and introduce the dynamics (Xt)t∈[0,1]

dXt =

[
∂t log(αt)Xt +

g2t
2σt

(1− ε2)Z

]
dt+ εgtdBt, (30)

where (Bt)t∈[0,1] is a d-dimensional Brownian motion. In (30), we identify different forward processes which are all
non-Markov except in the case where ε = 1. The remarkable property of these forward processes is that they all recover the
interpolation (29). This means that the forward trajectories might be very different but they all admit the same marginal
distributions. More formally, we get the following result.

Proposition F.1: For any t ∈ [0, 1], let εt ∈ [0, 1]. Let Z ∼ N (0, Id) and X0 ∼ p0. Additionally, assume that the
following SDE admits a solution

dXt =

[
∂t log(αt)Xt +

g2t
2σt

(1− ε2)1/2Z

]
dt+ εgtdBt,

where (Bt)t∈[0,1] is a d-dimensional Brownian motion, p(z) = N (z; 0, Id) and pt(·|z) is the density of Xt conditionally
to Z = z. Denote pt(xt) =

∫
Rd pt(xt|z)p(z)dz. We have that for any t ∈ [0, 1], αtX0 + σtZ ∼ pt.

Explicit integration. We can solve exactly (30) and its solution is given for any t ≥ s by

Xt =
αt

αs
Xs + (1− ε2)1/2

(
σt −

αt

αs
σs

)
Z+ ε

(
σ2
t −

α2
t

α2
s

σ2
s

)1/2

Z̃,

with Z̃ ∼ N (0, Id). This can also be rewritten as

Xt − αtX0 =
αt

αs
(Xs − αsX0) + (1− ε2)1/2

(
σt −

αt

αs
σs

)
Z+ ε

(
σ2
t −

α2
t

α2
s

σ2
s

)1/2

Z̃

=
αt

αs
[(1− ε2)1/2σsZ+ εσsẐ] + (1− ε2)1/2

(
σt −

αt

αs
σs

)
Z+ ε

(
σ2
t −

α2
t

α2
s

σ2
s

)1/2

Z̃

= (1− ε2)1/2σtZ+ εσs
αt

αs
Ẑ+ ε

(
σ2
t −

α2
t

α2
s

σ2
s

)1/2

Z̃, (31)

with Xs = αsX0 + σs(1− ε)1/2Z+ σsεẐ, with Z, Z̃ and Ẑ independent Gaussian random variables with zero mean and
identity covariance. We can now compute the probability distribution ps,t|0. This will allow us to compute ps|0,t using
Gaussian posteriors. Using (31), we have

(Xs,Xt)|X0 ∼ N
((

αsX0

αtX0

)
,

(
σ2
sId Ct

Ct σ2
t Id

))
,

with

Ct =

[
ε2

αt

αs
+ (1− ε2)

σt

σs

]
σ2
sId =

[
ε2

αt

αs
σ2
s + (1− ε2)σtσs

]
Id.
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Now, let us compute the obtained posterior.

E[Xs|X0,Xt] = αsX0 +

[
ε2

αt

αs

σ2
s

σ2
t

+ (1− ε2)
σs

σt

]
(Xt − αtX0)

=

[
ε2

αt

αs

σ2
s

σ2
t

+ (1− ε2)
σs

σt

]
Xt + αs

(
1−

[
ε2

α2
t

α2
s

σ2
s

σ2
t

+ (1− ε2)
σs

σt

αt

αs

])
X0.

Finally, we have that

Cov(Xs|Xt,X0) = σ2
sId−

[
ε2

αt

αs
σ2
s + (1− ε2)σtσs

]2
1

σ2
t

Id

= σ2
s

(
1−

[
ε2

αt

αs

σs

σt
+ (1− ε2)

]2)
.

Note that in the special case where ε = 0, we recover a deterministic sampler. To summarize, we have the following result
which justifies (4).

Proposition F.2: Let ε ∈ [0, 1] and (Xt)t∈[0,1] given by Proposition F.1. Then, we have that for any s, t ∈ [0, 1] with
s ≤ t,

Xs = (ε2r1,2(s, t) + (1− ε2)r0,1)Xt

+ αs(1− ε2r2,2(s, t)− (1− ε2)r1,1(s, t))X0

+ σs(1− (ε2r1,1(s, t) + (1− ε2))2)1/2Z̃, (32)

with Z̃ ∼ N(0, Id) and where

ri,j(s, t) =
αi
t

αi
s

σj
s

σj
t

.

Limiting behavior. Looking at (32) one can wonder if we recover the SDE framework when we let s → t. This is indeed
the case as established below. We will make use of the following result

lim
s→t

ri,j(s, t)− 1

t− s
= i∂t log(αt)− j∂t log(σt).

Therefore, we get that taking the limit in (32) we have

dXt =
[
(ε2(∂t log(αt)− 2∂t log(σt))− (1− ε2)∂t log(σt))Xt

−αt(ε
2(2∂t log(αt)− 2∂t log(σt)) + (1− ε2)(∂t log(αt)− ∂t log(σt)))X0

]
dt

+ σt[−2ε2(∂t log(αt)− ∂t log(σt))]
1/2dBt.

It can easily be shown that
−2σ2

t (∂t log(αt)− ∂t log(σt)) = 2αtσt∂t(σt/αt) = g2t . (33)

In addition, we have

dXt =
[
−∂t log(αt)Xt + (ε2(2∂t log(αt)− 2∂t log(σt)) + (1− ε2)(∂t log(αt)− ∂t log(σt)))Xt

−αt(ε
2(2∂t log(αt)− 2∂t log(σt)) + (1− ε2)(∂t log(αt)− ∂t log(σt)))X0

]
dt

+ σt[−2ε2(∂t log(αt)− ∂t log(σt))]
1/2dBt

=
[
−∂t log(αt)Xt + (ε2(2∂t log(αt)− 2∂t log(σt))

+(1− ε2)(∂t log(αt)− ∂t log(σt)))(Xt − αtX0)
]
dt+ gtdBt

=
[
−∂t log(αt)Xt + (1 + ε2)(∂t log(αt)− ∂t log(σt)))(Xt − αtX0)

]
dt+ εgtdBt.
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Now, combining this result and (33) we get that

dXt =

[
−∂t log(αt) + g2t

1 + ε2

2

αtX0 −Xt

σ2
t

]
dt+ εgtdBt.

Taking the conditional expectation in this expression, we recover the score ∇ log pt and therefore

dXt =

[
−∂t log(αt) + g2t

1 + ε2

2
∇ log pt(Xt)

]
dt+ εgtdBt.

Therefore, we recover the usual sampler derived from the stochastic process point of view by taking the limit s → t in (32).

F.2. Connection with DDIM

We recall that in DDIM (Song et al., 2021a), the authors assume that the schedule (αt, σt) satisfies α2
t + σ2

t = 1. In this
case, they consider

p(xs|x0, xt) = N (xs; µ̂s,t(x0, xt), Σ̂s,t),

with

µ̂s,t(x0, xt) =

√
1− α2

s − η2s,t
1− α2

t

xt +

αs − αt

√
1− α2

s − η2s,t
1− α2

t

x0,

Σ̂s,t = η2s,tId. (34)

Note that in (Song et al., 2021a), α2
t is replaced with αt and ηs,t is denoted σt. Recall that in our introduction of diffusion

models in Section 2.1, see (4) we have

µs,t(x0, xt) = (ε2r1,2(s, t) + (1− ε2)r0,1)xt

+ αs(1− ε2r2,2(s, t)− (1− ε2)r1,1(s, t))x0,

Σs,t = σ2
s(1− (ε2r1,1(s, t) + (1− ε2))2)Id. (35)

The following result proves that the updates of DDIM (34) and the ones we present (35) are identical upon identification of
one parameter.

Proposition F.3: Assume that η2s,t = σ2
s(1−(ε2r1,1(s, t)+(1−ε2))2). Then, we have that Σs,t = Σ̂s,t and µs,t(x0, xt) =

µ̂s,t(x0, xt).

Proof. First, we have that√
1− α2

s − η2s,t
1− α2

t

=

√
1− α2

s − σ2
s(1− (ε2r1,1(s, t) + (1− ε2))2)

1− α2
t

=

√
1− α2

s − (1− α2
s)(1− (ε2r1,1(s, t) + (1− ε2))2)

1− α2
t

=
√
r0,2(s, t)(1− (1− (ε2r1,1(s, t) + (1− ε2))2))

= r0,1(s, t)(ε
2r1,1(s, t) + (1− ε2))

= ε2r1,2(s, t) + (1− ε2)r0,1(s, t).
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Hence, we get that

µ̂s,t(x0, xt) =

√
1− α2

s − η2s,t
1− α2

t

xt +

αs − αt

√
1− α2

s − η2s,t
1− α2

t

x0

=

√
1− α2

s − η2s,t
1− α2

t

xt + αs

1− r1,0(s, t)

√
1− α2

s − η2s,t
1− α2

t

x0

= (ε2r1,2(s, t) + (1− ε2)r0,1(s, t))xt + αs

[
1− ε2r2,2(s, t)− (1− ε2)r1,1(s, t)

]
x0 = µs,t(x0, xt),

which concludes the proof.

In our work, we call ε the churn parameter. In (Song et al., 2021a, Equation (16)), we have that

η2s,t = η2
1− α2

s

1− α2
t

(
1− α2

t

α2
s

)
= η2(r0,2(s, t)− r2,2(s, t)).

In that case η is another churn parameter. However, we can write the following relation between those two parameters.
In particular, in both cases we have that we recover if DDPM if ε = 1 (or equivalently if η = 1) and DDIM if ε = 0 (or
equivalently if η = 0).

Proposition F.4: We have that

η2 =
σ2
s(1− (ε2r1,1(s, t) + (1− ε2))2)

r0,2(s, t)− r2,2(s, t)
.

Similarly, we have that

ε2 =
1−

[
1− η2

r0,2(s,t)−r2,2(s,t)
σ2
s

]1/2
1− r1,1(s, t)

.

Remarkably, we have that ε = 0 if and only if η = 0 and ε = 1 if and only if η = 1.

Proof. Proving that ε = 0 if and only if η = 0 is straightforward and left to the reader. Now assume that ε = 1, we are
going to prove that η = 1.

η2 =
σ2
s(1− (ε2r1,1(s, t) + (1− ε2))2)

r0,2(s, t)− r2,2(s, t)

=
σ2
s − σ2

sr2,2(s, t)

r0,2(s, t)− r2,2(s, t)

=

(1−α2
s)(1−α2

t )α
2
s−(1−α2

s)
2α2

t

α2
s(1−α2

t )

r0,2(s, t)− r2,2(s, t)

=

(1−α2
s)(α

2
s−α2

t )

α2
s(1−α2

t )

r0,2(s, t)− r2,2(s, t)

=
r0,2(s, t)(1− r2,0(s, t))

r0,2(s, t)− r2,2(s, t)
= 1.

Similarly, we get that η = 1 implies that ε = 1.

G. Pseudo-code for loss function
G.1. Some replication utils

Given a batch of [x1, x2, x4, x5], assuming that n = 4 and m = 2, this function will output (before the reshape operation)
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x̂ =


x1 x1

x2 x2

x3 x3

x4 x4

 .

1 def replicate_fn(n: int, m: int, x: chex.Array) -> chex.Array:
2 batch_size, data_shape = x.shape[0], x.shape[1:]
3 x = x[:n]
4 x = jnp.reshape(x, (n, 1, *data_shape))
5 x = jnp.tile(x, (1, m) + (1,) * len(data_shape))
6 x = jnp.reshape(x, (n * m, *data_shape))
7 return x

We also assume that we are provided a function split fn such that given x with shape (nm, ...) the output of split fn
has shape (n,m, ...).

G.2. Loss function

We assume that we are given two functions compute rho fn and compute rho diagonal fn such that given x
and y with shape (n,m, ...) the output of compute rho diagonal fn is 1

n

∑n
i=1

1
m

∑m
j=1 ρ(xi,j , yi,j) and the output

of compute rho fn is 1
n

∑n
i=1

1
m(m−1)

∑m
j,j′=1,j ̸=j′ ρ(xi,j , yi,j′). Function ρ is consistent with the notation defined

in Section 2.2.

In addition, we assume that we have access to a function add noise fn such that given t of shape (n, ) and x0 of shape
(n, ...) it outputs xt = αtx0 + σtz where z has the same shape as x and has independent Gaussian entries N (0, 1).

Finally, we assume that we have access to a function apply fn such that given t of shape (n, ) and xt of shape (n, ...) it
outputs x̂θ(t, xt).

1 def loss_fn(t: jnp.Array, x0: jnp.Array) -> jnp.Array:
2

3 # add noise and replicate
4 xt = add_noise_fn(key=key, t=t, x0=x0)
5 key, _ = jax.random.split(key)
6 x0_population = replicate_fn(n=n, m=m, x=x0)
7 t_population = replicate_fn(n=n, m=m, x=t)
8 xt_population = replicate_fn(n=n, m=m, x=xt)
9

10 # compute prediction
11 eps_population = jax.random.normal(key=key, shape=xt_population.shape)
12 key, _ = jax.random.split(key)
13 output_population = apply_fn(t=t_population, xt=xt_population, eps=eps_population)
14

15 # split the populations
16 x0_population = split_fn(n=n, m=m, x=x0_population)
17 output_population = split_fn(n=n, m=m, x=output_population)
18

19 # compute confinement term
20 confinement = compute_rho_diagonal_fn(x=x0_population, y=output_population)
21

22 # compute interaction term for predictions
23 interaction_prediction = compute_rho_fn(x=output_population, y=output_population)
24

25 # Generalized kernel score
26 score = 0.5 * lbda * interaction_prediction - confinement
27

28 # Our aim to maximize the score, so the loss is negative score
29 loss = -score
30

31 return loss
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In this function, we have focused on the x0-prediction and have omitted the weighting for simplicity.

H. Extended related work
Diffusion and GANs. In (Xiao et al., 2022), the authors propose to replace the conditional mean estimator of diffusion
models with a GAN. This allows to model bigger steps in the denoising process. Recall that, seeing diffusion models as
hierarchical VAEs, the ELBO is given by

log pθ(x) ≥ −
N∑

k=1

KL(p(xtk−1
|xtk)|pθ(xtk−1

|xtk)) + C,

where C is a constant. In (Xiao et al., 2022), the relative entropy KL(q(xt−1|xt)|pθ(xt−1|xt)) is replaced by an adversarial
loss. Namely, the authors consider

L(θ, ϕ) =
N∑

k=1

(
Ep(xtk−1

|xtk
)[− log(Dϕ(t, xtk−1

, xtk))] + Epθ(xtk−1
|xtk

)[− log(1−Dϕ(t, xtk−1
, xtk))]

)
.

In that case, Dϕ is a discriminator and pθ is a generator. The main differences with our setting is that in our case, we do not
train a discriminator. In our setting the discriminative parameters are only given by the kernel parameters, i.e., in the case of
the energy distance, the parameters are given by λ and β in (13) and are fixed. In this regards our parameterization is much
more lightweight. In addition, while the transition pθ(xtk−1

|xtk) is estimated in a similar way as in our paper, i.e.,

pθ(xtk−1
|xtk) =

∫
Rd

pθ(x0|xtk)p(xtk−1
|x0, xtk)dx0,

the discriminator is not applied on the x0 variable conditionally to xtk but on the couple (xtk , xtk−1
). This is similar to the

differences we highlighted in Appendix D.5 when comparing joint loss and conditional loss. Note that our approach could
be extended to consider kernels not on p0|s but instead leveraging the characterisation

p(xs|xt) =

∫
Rd

p(xu|xt)p(xs|xu, xt)dxu,

for u ≤ min(s, t). In that case, choosing u = 0 is simply a special case.

Modeling the covariance. The importance of modeling p0|t in the low step regime has been highlighted in numerous
papers, see (Ho et al., 2020; Nichol & Dhariwal, 2021; Bao et al., 2022a;b; Ou et al., 2024). A number of approaches aim at
learning/approximating the covariance of ps|t or p0|t, see (Ho et al., 2020; Nichol & Dhariwal, 2021; Bao et al., 2022a;b; Ou
et al., 2024; Rozet et al., 2024). Most of the time in order to obtain a tractable approximation of this covariance they consider
diagonal approximations leveraging the Hutchinson trace estimator (Hutchinson, 1989). In contrast, we do not assume a
Gaussian form for p0|t or ps|t. Doing so we (i) model more complex distributions than Gaussian transitions (ii) avoid the
additional complexity of having to model a covariance matrix.

Relationship to works using MMD. Scoring rules have corresponding MMD divergences, and approaches exist that use
the MMD in diffusion and particle flow models. Galashov et al. (2025) generates a sequence of distributions from a forward
diffusion process. It then generates noise-dependent neural MMDs between clean and noisy data, and performs gradient
flow to move particles from noise level t to a lower noise level s < t. Compared to ours, Galashov et al. (2025) does not use
a generator since it is a particle flow. Their best CIFAR-10 FID is 7.7. Aiello et al. (2024) first trains a diffusion model, and
then refines/distills by coarsening the reverse timesteps, and uses MMD on CLIP features to finetune the DDM denoiser.
Their CIFAR10 FID for NFE = 10 improves from 13.6 to 3.8, while ours is 3.19.

I. Experimental details
I.1. 2D experiments

We consider a target distribution p0 given by a mixture of two Gaussians, p0 = 0.5N (µ1, σ
2Id) + 0.5N (µ2, σ

2Id), where
µ1 = (3, 3), µ2 = (−3, 3) and σ = 0.5. We create a dataset from this distribution by sampling 102400 points.

31



Distributional Diffusion Models

We train diffusion model and distributional diffusion models for 100k steps with batch size 128 with learning rate 1e− 3
using Adam optimizer with a cosine warmup for first 100 iterations. We use b1 = 0.9, b2 = 0.999, ϵ = 1e− 8 in Adam
optimizer. On top of that, we clip the updates by their global norm (with the maximal norm being 1). We use EMA decay
of 0.99. We use the flow matching noise schedule (3) and we use safety epsilon 1e− 2. When training the model, we use
sigmoid loss weighting as in (Kingma et al., 2021). The time is encoded via sinusoidal embedding into the dimension 2048
followed by 2 layer MLP where hidden dimension is 2048 and the output dimension is 2048, using gelu activation. As a
backbone architecture, we use a 9-layers MLP with gelu activation and with hidden dimension of 64. The MLP is applied
as follows. First, we apply 4 preprocessing MLP layers to the embedding of time t and separately to the xt. After that, we
concatenate these two on the last dimension and pass through 4 MLP layers which is then followed by one output MLP
layer of dimension 2. When we use the distributional diffusion model, the noise ξ has the same dimensionality as xt and we
concatenate the two along the last dimension. After passing it through the MLP, which produces a vector of dimension 4, we
ignore first 2 dimension to get the output x̂θ(t, xt, ξ) of dimension 2. We use the population size m = 32 (see Algorithm 1)
and we use β = 0.1, λ = 1 for distributional model and β = 2, λ = 0 for diffusion-like variant.

For evaluation, we sample 4096 samples Xi
0 ∼ p0 as well as samples Xi

t |Xi
0 from the forward process (3). For Figure 2,

right, we use the MMD squared given by Dρ (10) with ρ(x, x′) = −krbf(x, x
′) (see (9b)) for σ = 1.

For each Xi
t , we produce 8 samples ξ ∼ N (ξ, 0, Id) and we compute standard deviation of x̂θ(t, x

i
t, ξ) over ξ. Then, we

average the standard deviation over all the xi
t. On top of that, since we know the posterior p(X0|Xt), which is given by

p(x0|xt) = w1N (x0; ν1,Σ) + w2N (x0; ν2,Σ),

wk ∝ N (αtµk, (α
2
tσ

2 + σ2
t )Id),

νk = Σ

(
αt

σ2
t

Xt +
1

σ2
µk

)
,

Σ =

(
α2
t

σ2
t

+
1

σ2

)−1

Id,

where µk with k = 1, 2 are the means of p0 and σ2 is the variance. The values of αt and σt are given by the schedule (3).
We produce 8 samples X0 ∼ p(·|Xi

t) and compute their standard deviation and then average over Xi
t . We report this metric

in Figure 3, right. In order to produce Figure 4, we fix x0 to be equal to either µ1 or to µ2. We then produce Xt|x0 for each
t (one sample for each t and x0). After that, we visualize x̂θ(t,X

i
t , ξ) for n = 4096 samples of ξ ∼ N (0, Id).

I.2. Image space experiments

Architecture. In our image space experiments we consider a U -net architecture (Ronneberger et al., 2015). We consider a
channel of size 256 and apply the following multiplier for the channel at each level of the U -net, (1, 2, 2, 2). At each level
we consider 2 residual blocks. We apply an attention layer at the second level of the U -net (resolution 16 in the case of
CIFAR-10 and resolution 32 in the case of CelebA and LSUN Bedrooms). We use an attention block in the bottleneck block
of the U -net. Each residual block consists of normalizing the input, applying a 3 × 3 convolution block and applying a
non-linearity. This is then followed by a dropout layer and a 3× 3 convolution block. Finally we add the input (processed
through a 1 × 1 convolutional block) of the residual block to this output (this is the residual connection). We use the
RMSnorm for the normalization layer and GELU for the non-linearity. When using an attention layer, this is done after
the convolutional residual block just described. We use a multi-head attention mechanism with 8 heads. We process the
time with a sinusoidal embedding followed by a MLP layer. In the case of CelebA, we use a linear embedding layer to
process the conditioning vector of shape (40, ) while in the case of CIFAR10 we consider an embedding matrix to process
the class information. Once the time conditioning and the (optional) other conditioning have been obtained we sum them.
The conditioning is used in the model by replacing the RMSnorm with an adaptive RMSnorm layer, i.e., the scale and
bias of the normalization layers are obtained by passing the conditioning vector through a MLP layer. Similarly to the two
dimensional setting, we concatenate xt of shape (b, h, w, c) and ξ of shape (b, h, w, c) along the last dimension in order to
get an input of shape of shape (b, h, w, 2c). The output of the U -net is of shape of shape (b, h, w, 2c) and we drop half of
the channels to get a sample of shape (b, h, w, c).

For latent CelebA-HQ, we follow the recipe of (Rombach et al., 2022) to train the autoencoder. We train the autoencoder
with a similar architecture as the autoencoder used in LDM-4 (see (Rombach et al., 2022)). It encodes CelebA-HQ of shape
(256, 256, 3) into latent code of shape (64, 64, 3). Then, for latent diffusion model and distributional latent model, we use a
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similar architecture as LDM-4 except that we concatenate the latent xt and ξ over the last dimension. More precisely, we
consider a channel of size 256 and apply the following multiplier for the channel at each level of the U -net, (1, 2, 2, 2). At
each level we consider 2 residual blocks. We apply an attention layer at the foruth level of the U -net. The structure of the
residual block is identical as in image space. Similarly, we use the same type of normalization layer and non-linearity. We
use a multi-head attention mechanism with 8 heads.

Training and evaluation details. We train all the pixel-space models for 1e6 steps with batch size 256 for CIFAR-10,
batch size of 64 for CelebA, LSUN Bedrooms. The latent space model consists of two-stage training regime, where we first
train latent autoencoder for 2e6 steps with batch size 16. It is then followed by training a latent diffusion model for 2e6
steps with batch size 16.

For all the experiments, we use the Adam optimizer with additional norm clipping (maximal norm equal to 1) with the
learning rate equal to 1e− 4 and an additional cosine warmup for 100 first iterations.

Our autoencoder on CelebA-HQ is trained with 0.1 coefficient on adversarial loss, 100 coefficient on generator loss and 100
coefficient on codebook, from the VQ-VAE (van den Oord et al., 2017) loss. We use a β-VAE with β = 1e− 6.

For all the models, we sweep over weighting wt (see (6), (13)), where we either do not use any weighting or we use
sigmoid weighting, see (Kingma et al., 2021), weighting with bias parameters {−2,−1, 0, 1, 2}. When we train classical
diffusion model, we always use velocity as a prediction target, i.e., the target is X0 −X1. When we train distributional
model, we use X0 as prediction target. For distributional models, we additionally sweep over λ ∈ {0, 0.1, 0.5, 1.0},
β ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 1.5, 1.99, 2.0}. We use population size m = 4. We also tried m = 2 but it led to
slightly worse results (the resulting FID was 7% worse). We did not use higher population sizes since it led to higher
computational and memory cost (see Appendix J for more details). When we use kernel diffusion losses, see Section 2.2
and Section 3, for (imq) kernel (9a), we sweep over c ∈ {0.01, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 10.0, 50.0, 100.0}. For for (rbf)
kernel (9b) and for (exp) kernel (9c), we firstly compute median M2 = ||x− x′||22 for (rbf) kernel and M = ||x− x′||2
for (exp) kernel, on a subset of 100 batches of size 512 from the dataset. Then, for (rbf) kernel, we define σ2 = M2γ
and we sweep over γ ∈ {0.01, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 10.0}. For (exp) kernel, we define σ = Mγ and we sweep over
γ ∈ {0.01, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 10.0}. Since we only use kernel diffusion losses on CIFAR-10, we only report the
value of the medians in this case. We have that M2 = 1357.8127 and M = 36.9.

In order to produce samples, we follow Algorithm 2 for distributional models and SDE sampler for classical diffusion
models. To evaluate performance, we use FID (Heusel et al., 2017) metric. As we train the models, every 10000 steps we
produce samples with 10 denoising steps for distributional models and with 100 denoising steps for classical diffusion model.
We then evaluate the performance of the models by computing FID on a subset of 2048 datapoints from the original dataset.
Then, we use this metric in order to select the best hyperparameters and the best checkpoints for each best hyperparameter.
After training is done, for every combination of λ, β (or c, σ, σ2 in case of other kernels), we select the best checkpoint based
on their FID on this small subset of data. The corresponding checkpoints are then used for evaluation when sampling with
10, 30, 50, 70, 90, 100 denoising steps. To compute the final FIDs, we use 50000 samples for CIFAR-10, LSUN Bedrooms
and CelebA. We use 30000 samples for latent CelebA-HQ.

I.3. Robotics experiments

We used the Libero benchmark (Liu et al., 2024), a life-long learning benchmark that consists of 130 language-conditioned
robotic manipulation tasks. There are 5 suites in the Libero benchmark, Libero-Spatial, Libero-Object, Libero-Goal,
Libero-Long and Libero-90. Each suite contains 10 tasks, except Libero-90 which has 90 tasks. In our experiments we focus
on Libero-Long, the most challenging suite with 10 tasks that features long-horizon tasks with diverse object interactions,
and reproduce the main experiment settings on three other suites: Libero-Spatial, Libero-Object, Libero-Goal, with 10 tasks.
We train language-conditioned multitask diffusion policies for the 10 tasks of Libero10 suite and evaluate the success rates
of the policies in simulation. We encode the visual observations using a ResNet (He et al., 2016), and encode the language
instruction using a pretrained and frozen Bert (Devlin et al., 2018) encoder. Our multitask diffusion policy does action
chunking (Chi et al., 2023), and predicts and executes a chunk of 8 7-dimensional actions conditioned on the language
instruction, the current visual observations and proprioceptive states. For the denoiser, we follow Aloha unleashed (Zhao
et al., 2024) and use a cross-attention based transformer denoiser.

We follow the original Libero paper for training and evaluating our multitask diffusion policy. As a loss function for training
the diffusion policy, we use the Mean Squared Error (MSE). Libero10 suite has 138090 steps of training data and we use a
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batch size of 32 to train our policies for 250k steps (roughly 50 epochs). Evaluation is on simulated environment for 50
episodes per task following the Libero benchmark. We evaluate our policy every 25k steps (roughly 5 epochs). We take the
median success rate of the policy across all tasks in the suite and repeat the experiment over 3 seeds. We report the median
success rates over all tasks and best checkpoint during training. We use the same set for other three suites and train for 50
epochs and evaluate every 5 epochs.

Energy distance diffusion model. For the energy distance diffusion variant, we concatenated 2 noise dimensions, sampled
from N (0; Id) to the action dimension of the chunks. For training we used population size m = 16 per data sample, and
computed the loss with varying βs and λs. For evaluation, we use a single sample and execute the predicted action chunk
from the diffusion policy using a varying number of diffusion steps (2, 16, 50).

J. Computational complexity
Our method has the same computational complexity during sampling as ordinary diffusion models. However, it has an
increased computational complexity during training which is detailed below.

Assume that the computational complexity of the forward pass in our diffusion model is O(F ) and that the dimensionality
of x is D.

Diffusion loss case. The loss function in (14) with m = 1 and λ = 0, can be thought of as a standard diffusion model loss
function. It requires O(nF ) evaluations to compute xθ(ti, Xti) for every element of a batch. Then, to evaluate the loss (the
norm), the complexity is O(nD). Therefore the total cost of computing the loss is O(n(F +D)). The backwards pass is
proportional to the forward pass and has computational complexity O(nF ).

Distribution loss case. For λ ̸= 0 and m > 1, we first need O(nmF ) function evaluations to compute xθ(ti, Xti , ξi,j)
for i = 1, . . . , n and for ξi,j , j = 1, . . . ,m. Additionally, we need O(nmD) operations to compute the first (diffusion-
like) terms of the loss. Then, in order to compute the interaction terms, we need O(nm(m − 1)D) time. Therefore,
the total cost is of computing the loss is O(nm(F + D) + nm(m − 1)D). Naively, the backwards pass will take
O(nmF +nm(m− 1)F ) = O(nm2F ) time. However, since the 2nd term uses the gradients of xθ(ti, Xti , ξi,j), one could
precompute these for all i = 1, . . . , n and j = 1, . . . ,m and therefore decrease the total backwards cost to O(nmF ). We
found that in practice, the XLA compiler in JAX performs this optimization without explicit coding, see our results below.

Runs on real hardware. We compared the training times on real hardware. We study the training of CIFAR-10 as we vary
m. We report steps per second metric where a step corresponds to a full forward+backward step. As hardware, we use A100
GPU (40Gb of memory) with batch size = 16, H100 GPU (80Gb of memory) with batch size = 64 and TPUv5p (95Gb of
memory) with batch size = 64 (per device with 4 devices in total). The results below indicate that steps per second decreases
proportionally to m.

Hardware Diffusion Distributional (m=2) Distributional (m=4) Distributional (m=8)
A100 (batch size =16) 9.05 6.78 4.6 2.77
H100 (batch size =64) 14.3 7.85 4.15 2.06
TPUv5 (batch size =64) 11.2 8.5 4.3 2.22

Table 1. Steps per seconds on real hardware for different models.

K. Additional experiments
K.1. Additional 2D experiments

We trained an unconditional standard diffusion model and our distributional models on a more complex 2D distribution –
checkerboard, see Galashov et al. (2025). We report MMD between sampled and target distributions with different NFEs,
smaller MMD is in bold, in Table 2 Our approach outperforms standard diffusion for small NFEs.

K.2. Additional image experiments

In this section, we provide additional results for image space experiments.
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NFEs Diffusion Distributional
5 7.00e-3 1.57e-4
10 2.10e-3 1.96e-4
50 2.70e-4 1.55e-4
100 1.96e-4 2.00e-4
1000 1.71e-4 1.83e-4

Table 2. MMD between target and sampled distribution for checkerboard dataset.
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Figure 10. Heatmap of FIDs for conditional image generation on CIFAR-10. x-axis corresponds to λ, y-axis corresponds to β, the color
corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of diffusion steps. Black
squares correspond to the cases where performance reaches FID higher than specified threshold.

Impact of parameters β and λ on FID. We report detailed performance of distributional models x̂θ based on chosen β
and λ for different number of diffusion steps. We present results for conditional image generation on CIFAR-10 in Figure 10
and on CelebA in Figure 11. The unconditional image generation for LSUN Bedrooms are given in Figure 12 and for latent
CelebA-HQ in Figure 13. In practice, we noticed that performance of models for some λ and β led to very high FIDs. In
order to better visually inspect the results, we mask the corresponding blocks if FID reaches a certain threshold. We used
following thresholds: 9.8 for CIFAR-10, 20 for CelebA and LSUN Bedrooms, 300 for latent CelebA HQ. The results on
CIFAR-10 and CelebA suggest that for a small number of steps, the best values of parameters are located in the bottom right
corner, i.e. λ close to 1.0 and β small. As we increase the number of steps, better values appear in the top left corner, i.e., λ
close or equal to 0 and β ≈ 2. In case of unconditional generation, we noticed generally that using the minimal possible β
led to the best results, as can be seen from Figure 12 and Figure 13, where the bottom row leads to the best performance.

Detailed results with different kernels. We present results on conditional image generation on CIFAR-10 with different
kernels. First, in Figure 14, we show the value of the λ for every kernel which achieves the lowest FID for the given number
of diffusion steps. Overall, we observe that λ follows a downward trend as we increase the number of diffusion steps, which
is consistent with out experiments in the main paper. Furthermore, we show the corresponding value of the kernel parameter
which achieves the lowest FID for given number of diffusion steps. Below, we also show the detailed figures of FID for
every λ and kernel parameter combination.
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Figure 11. Heatmap of FIDs for conditional image generation on CelebA. x-axis corresponds to λ, y-axis corresponds to β, the color
corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of diffusion steps. Black
squares correspond to the cases where performance reaches FID higher than specified threshold.
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Figure 12. Heatmap of FIDs for unconditional image generation on LSUN Bedrooms. x-axis corresponds to λ, y-axis corresponds to β,
the color corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of diffusion steps.
Black squares correspond to the cases where performance reaches FID higher than specified threshold.
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Figure 13. Heatmap of FIDs for unconditional image generation on Latent CelebA-HQ. x-axis corresponds to λ, y-axis corresponds to β,
the color corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of diffusion steps.
Black squares correspond to the cases where performance reaches FID higher than specified threshold.
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Figure 16. Heatmap of FIDs for conditional image generation on CIFAR-10 for Inverse MQ (9a) kernel. x-axis corresponds to λ, y-axis
corresponds to c, the color corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of
diffusion steps. Black squares correspond to the cases where performance reaches FID higher than specified threshold.

On top of that, we compare performance of different kernels for a fixed value of λ. We also report the performance of energy
kernel, which is defined by ρ(x, x′) = ∥x − x′∥β , see also Section 2.2. The results are given in Figure 15. We see that
overall using different (to energy) kernels leads to similar results overall.

Finally, we present detailed results of FIDs for different kernels with different parameters λ and corresponding kernel
parameters. We report the corresponding heatmaps. Whenever the value of FID is larger than a threshold, we put black
rectangles. For Inverse MQ, we use threshold 13.3. For RBF kernel, we use threshold 10. For Exponential kernel, we use
threshold 10. For Inverse MQ, the results are given in Figure 16. We observe that overall the best FIDs are achieved for
larger values of parameter c for all three kernels we investigate. Moreover, when number of diffusion steps increases, the
region with the best FIDs moves from λ ≈ 0 to λ ≈ 1. The results for RBF kernel are given in Figure 17. We observe
that in case of small number of diffusion steps, the region of the best values is around λ = 1 and smaller values of σ2. As
we increase the number of diffusion steps, we generally observe that many values of λ and σ2 yield similar reasonable
results. Results for Exponential kernel are given in Figure 18. When the number of steps is low, the best values are achieved
for λ close to 1. As we increase the value of λ, the best region moves closer to smaller values of λ. This is coherent with
our theoretical and methodological motivation, i.e., λ ≈ 1 is beneficial in the low number of diffusion steps regime, and
confirms our experiments when using the energy kernel ρ(x, x′) = −∥x− x′∥β , see Figure 10.
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Figure 17. Heatmap of FIDs for conditional image generation on CIFAR-10 for RBF (9b) kernel. x-axis corresponds to λ, y-axis
corresponds to σ2, the color corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of
diffusion steps. Black squares correspond to the cases where performance reaches FID higher than specified threshold.
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Figure 18. Heatmap of FIDs for conditional image generation on CIFAR-10 for Exponential (9c) kernel. x-axis corresponds to λ, y-axis
corresponds to σ, the color corresponds to FID going from minimal (blue) to maximal (red) values. Different columns denote number of
diffusion steps. Black squares correspond to the cases where performance reaches FID higher than specified threshold.

ImageNet. We ran initial experiments on ImageNet (Russakovsky et al., 2015) with resolution 64× 64× 3, but so far
were unable to obtain satisfactory results. We will focus on scaling our method up to large datasets in the follow-up work.

K.3. Comparisons to distillation and numerical solvers

In this section, we compare our approach with the DPM-solver++ method Lu et al. (2022) and the state-of-the-art, multi-step
distillation method, moment-matching distillation (Salimans et al., 2024).

For all the sampling methods, we sweep over the “safety” parameter η, which specifies the time interval to be [η, 1− η]. We
considered values {0.1, 0.01, 0.001, 0.0001}. Moreover, for all the methods we also sweep over the “churn” parameter ε
which controls the stochasticity, see Equation (4), we tried {0.0, 0.25, 0.5, 0.75, 1.0}. We found the stochastic version of
DPM-solver++ (with a churn parameter close to 1) overall worked the best. For ordinary diffusion and our method, we use
a “uniform” time schedule. For DPM-solver++ we use the “logsnr” time schedule (see Lu et al. (2022)), which led to the
best results (we also tried EDM and uniform).

For our distillation comparisons, we distill pre-trained diffusion models into student models. These student models are
trained for 100,000 iterations, using a batch size of 256 for pixel-space models and 32 for latent-space models. During
training, we sweep over the learning rate and Exponential Moving Average (EMA) decay.

The student model utilizes a stochastic DDIM sampler with a churn parameter, ε. We sweep over ε values in the set
{0.0, 0.5, 1.0}. We found that at sampling time, setting the churn parameter to ε = 0 for the distilled student yielded the
best results.

For all the methods, we present the results with the best hyperparameters in the tables below (Table 3,Table 4,Table 5,Table 6).

Table 3. CIFAR-10 (Conditional) results. The metric is FID averaged across 3 random seeds. We report results with different NFEs for
baseline diffusion model, DPM++, Distributional (ours) and moment matching distillation. In bold, we highlight the method with the
lowest FID and in italic, we highlight the method with the second lowest FID.

NFEs Diffusion DPM++ Distributional Distillation
2 80.77 19.41 29.33 5.19
4 23.31 12.60 4.67 3.84
8 7.53 3.95 3.21 3.13

10 5.67 3.55 3.19 2.99
12 4.83 3.69 3.03 2.93
15 3.61 3.91 2.87 2.76

The results indicate that our approach is competitive with multistep distillation (across a varied number of steps) and
outperforms DPM-Solver++ at 8 or more Number of Function Evaluations (NFEs). The performance of DPM-Solver++
degrades as the number of steps increases, which is an expected consequence of its numerical instability.

Our approach has two compelling advantages over multistep distillation. First, it does not rely on distillation, eliminating
the need to train a large, slow teacher model. Second, it does not require specifying additional sampler hyperparameters
during training.
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Table 4. CelebA (Conditional) results. The metric is FID averaged across 3 random seeds. We report results with different NFEs for
baseline diffusion model, DPM++, Distributional (ours) and moment matching distillation. In bold, we highlight the method with the
lowest FID and in italic, we highlight the method with the second lowest FID.

NFEs Diffusion DPM++ Distributional Distillation
2 62.85 58.39 81.79 7.02
4 26.25 20.39 22.98 6.47
8 13.07 17.28 4.94 4.43

10 11.67 22.48 3.60 4.43
12 10.00 23.23 3.37 4.25
15 8.51 23.53 3.45 4.27

Table 5. LSUN (Unconditional) results. The metric is FID averaged across 3 random seeds. We report results with different NFEs for
baseline diffusion model, DPM++, Distributional (ours) and moment matching distillation. In bold, we highlight the method with the
lowest FID and in italic, we highlight the method with the second lowest FID.

NFEs Diffusion DPM++ Distributional Distillation
2 238.85 120.99 233.24 16.04
4 41.57 43.60 69.90 5.54
8 10.82 12.95 9.79 4.52

10 9.08 17.85 7.14 4.64
12 7.04 16.07 6.12 3.81
15 6.51 23.91 5.78 4.39

Table 6. Latent CelebA-HQ (Unconditional) results. The metric is FID averaged across 3 random seeds. We report results with different
NFEs for baseline diffusion model, DPM++, Distributional (ours) and moment matching distillation. In bold, we highlight the method
with the lowest FID and in italic, we highlight the method with the second lowest FID.

NFEs Diffusion DPM++ Distributional Distillation
2 101.47 114.44 67.60 37.88
4 53.83 26.05 23.80 14.47
8 15.60 20.70 9.84 8.22

10 11.89 21.84 8.15 6.76
12 9.97 24.61 7.04 6.05
15 8.39 27.31 6.21 5.46

Furthermore, combining our distributional approach with a modern distillation method is a potentially interesting topic for
future research.

K.4. Additional robotics experiments

In addition to Libero10 suite, we repeated our main experiment on three other suites in Libero benchmark: Liber-Goal,
Libero-Spatial, and Libero-Object. We present the performance on these three additional suites in Figure 19. In all three
suites, distributional diffusion helps the performance when fewer number of diffusion steps are used, reproducing our results
on Libero10.

In the setting of Section 6.3, we only consider the case β = 1 and compared our results for several values of λ ∈ [0, 1],
namely λ ∈ {0.0, 0.1, 0.5}. In Figure 20, we present a similar study as Figure 9 but in the case where β = 2.

We also ran an ablation over m with fixed β = 1 and λ = 0.5. The results are reported in Table 7.

K.5. Additional samples

For CIFAR-10, samples from the distributional model x̂θ trained with β = 0.1, λ = 1 and with 10 sampling steps are shown
in Figure 21, left. Samples from the one trained with β = 2, λ = 0 and with 100 sampling steps are shown in Figure 22,
left. The samples from the diffusion model with 10 steps are shown in Figure 21, right and with 100 steps are shown in
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Figure 19. Performance in three other Libero suites - Libero-Goal, Libero-Spatial, and Libero-Object - as function of diffusion steps
and λ with same settings as Figure 9. We plot the maximum success rate from best checkpoint during training. Distributional models
consistently performed the best when fewest diffusion steps are used. λ > 0 also performs better than λ = 0
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Figure 20. Left. Performance in Libero10 as function of diffusion steps and λ, same as Figure 9 but for β = 2. Right. we reproduce
Figure 9 for ease of read.
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m Success rate
2 0.783
4 0.73
8 0.817

16 0.800
32 0.840
64 0.797

Table 7. Ablation over m for robotics dataset.

Figure 21. Left, samples from distributional model trained on CIFAR-10 and sampled with 10 steps. β = 0.1, λ = 1. Right, samples
from diffusion model trained on CIFAR-10 and sampled with 10 steps.

Figure 22, right.

For CelebA, samples from the distributional model trained with β = 0.001, λ = 1 and with 10 sampling steps, are shown in
Figure 23, left. Samples from the one trained with β = 2, λ = 0 and with 100 sampling steps, are shown in Figure 24, left.
Samples from diffusion model with 10 steps are shown in Figure 23, right and with 100 steps are shown in Figure 24, right.

For LSUN Bedrooms, samples from the distributional model trained with β = 0.0001, λ = 1 and with 10 sampling steps,
are shown in Figure 25, left. Samples from the one trained with β = 0.0001, λ = 0 and with 100 sampling steps, are shown
in Figure 26, left. Samples from the diffusion model with 10 steps are shown in Figure 25, right and with 100 steps are
shown in Figure 26, right.

For latent CelebA HQ, samples from the distributional model trained with β = 0.01, λ = 0.5 and with 10 sampling steps,
are shown in Figure 27, left. The samples from the one trained with β = 0.01, λ = 0.1 and with 100 sampling steps, are
shown in Figure 28, left. Samples from the diffusion model with 10 steps are shown in Figure 27, right and with 100 steps
are shown in Figure 28, right.
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Figure 22. Left, samples from distributional model trained on CIFAR-10 and sampled with 100 steps. β = 2, λ = 0. Right, samples
from diffusion model trained on CIFAR-10 and sampled with 100 steps.

Figure 23. Left, samples from distributional model trained on CelebA and sampled with 10 steps. β = 0.001, λ = 1. Right, samples
from diffusion model trained on CelebA and sampled with 10 steps.
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Figure 24. Left, samples from distributional model trained on CelebA and sampled with 100 steps. β = 2, λ = 1. Right, samples from
diffusion model trained on CelebA and sampled with 100 steps.

Figure 25. Left, samples from distributional model trained on LSUN Bedrooms and sampled with 10 steps. β = 0.0001, λ = 1. Right,
samples from diffusion model trained on LSUN Bedrooms and sampled with 10 steps
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Figure 26. Left, samples from distributional model trained on LSUN Bedrooms and sampled with 100 steps. β = 0.0001, λ = 0. Right,
samples from diffusion model trained on LSUN Bedrooms and sampled with 100 steps

Figure 27. Left, samples from distributional model trained on latent CelebA HQ and sampled with 10 steps. β = 0.01, λ = 0.5. Right,
samples from diffusion model trained on latent CelebA HQ and sampled with 10 steps.
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Figure 28. Left, samples from distributional model trained on latent CelebA HQ and sampled with 100 steps. β = 0.01, λ = 0.1. Right,
samples from diffusion model trained on latent CelebA HQ and sampled with 100 steps.
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