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ABSTRACT

Seeking high-quality representations with latent variable models (LVMs) to reveal
the intrinsic correlation between neural activity and behavior or sensory stimuli
has attracted much interest. Most work has focused on analyzing motor neural
activity that controls clear behavioral traces and has modeled neural temporal re-
lationships in a way that does not conform to natural reality. For studies of visual
brain regions, naturalistic visual stimuli are high-dimensional and time-dependent,
making neural activity exhibit intricate dynamics. To cope with such conditions,
we propose Time-Dependent Split VAE (TiDeSPL-VAE), a sequential LVM that
decomposes visual neural activity into two latent representations while consider-
ing time dependence. We specify content latent representations corresponding to
the component of neural activity driven by the current visual stimulus, and style
latent representations corresponding to the neural dynamics influenced by the or-
ganism’s internal state. To progressively generate the two latent representations
over time, we introduce state factors to construct conditional distributions with
time dependence and apply self-supervised contrastive learning to shape them. By
this means, TiDeSPL-VAE can effectively analyze complex visual neural activity
and model temporal relationships in a natural way. We compare our model with
alternative approaches on synthetic data and neural data from the mouse visual
cortex. The results show that our model not only yields the best decoding per-
formance on naturalistic scenes/movies but also extracts explicit neural dynamics,
demonstrating that it builds latent representations more relevant to visual stimuli.

1 INTRODUCTION

With the rapid development of neural recording technologies, researchers are now able to simul-
taneously record the spiking activity of large populations of neurons, providing new avenues for
exploring the brain (Urai et al., 2022). For analyzing these high-dimensional data, an important sci-
entific problem is how to account for the intrinsic correlation between neural activity and behavioral
patterns or sensory stimuli. As an influential approach, latent variable models (LVMs) construct
low-dimensional latent representations bridging to behavior or stimuli and explain neural activity
well (Saxena & Cunningham, 2019; Bahg et al., 2020; Vyas et al., 2020; Jazayeri & Ostojic, 2021;
Langdon et al., 2023). Recently, advanced deep learning algorithms allowed LVMs to extract high-
quality representations from neural activity without knowledge of experimental labels (Wu et al.,
2017; Pandarinath et al., 2018; Glaser et al., 2020; Liu et al., 2021), or to incorporate behavioral
information into models to constrain the shaping of latent variables (Mante et al., 2013; Hurwitz
et al., 2021; Sani et al., 2021; Singh Alvarado et al., 2021; Ahmadipour et al., 2024). These ap-
proaches have made various contributions to the analysis of neural activity, such as predicting held
neural responses (Gao et al., 2016; Pandarinath et al., 2018; Kapoor et al., 2024), decoding related
motion patterns or simple visual scenes (Liu et al., 2021; Schneider et al., 2023), and constructing
interpretable latent structures (Zhou & Wei, 2020; Aoi et al., 2020).

However, most studies have dealt with neural data recorded from motor brain areas under specific
controlled behavioral settings (Churchland et al., 2012; Pandarinath et al., 2018; Zhou & Wei, 2020;
Liu et al., 2021; Pei et al., 2021), such as pre-planned reaching movements (Dyer et al., 2017). There
is little work using LVMs to analyze neural data from visual brain regions (Gao et al., 2016; Zhao
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& Park, 2017; Schneider et al., 2023), even though how the visual system encodes input to recog-
nize objects is a primary topic (DiCarlo et al., 2012), and decoding visual neural activity to visual
stimuli is a challenging research highlight in the neuroscience community (Kay et al., 2008; Wen
et al., 2018; Du et al., 2023). Furthermore, existing LVMs treat temporal relationships unnaturally
(Pandarinath et al., 2018; Schneider et al., 2023) or even don’t consider time dependence (Zhou &
Wei, 2020; Palmerston & Chan, 2021). Given that visual neural activity has strict antecedent time
dependence, these models may struggle to build high-quality latent representations.

In this work, we propose Time-Dependent Split VAE (TiDeSPL-VAE), a sequential LVM that builds
two split latent representations with time dependence to better analyze visual neural activity. We
adopt the practice of splitting latent variables into content and style representations (Liu et al., 2021).
Content latent representations correspond to the component of neural activity driven by the current
visual stimulus, while style latent representations correspond to the neural dynamics influenced by
the organism’s internal state (pupil position, signals relayed from other brain regions, the neurons’
underlying currents, etc.). These latent variables are optimized by self-supervised contrastive learn-
ing. For comparison with outstanding alternatives, we evaluate our model on synthetic and mouse
visual datasets. The results show that our model builds meaningful latent representations that are
highly correlated with complex visual stimuli, providing new insights into the intrinsic relationship
between neural activity and visual stimulation. Specifically, our main contributions are as follows.

• To construct highly time-dependent latent representations, we introduce state factors to
accumulate and filter temporal information, allowing TiDeSPL-VAE to progressively com-
press neural activity along a chronological order in a natural way. Besides, we apply self-
supervised contrastive learning to shape content latent variables.

• Through evaluation on synthetic datasets, we show that our model better recovers latent
structure and is good at handling time-sequential data.

• Through evaluation on mouse visual datasets, we demonstrate that our model decodes neu-
ral activity to related natural scenes or natural movies well, showing the highest perfor-
mance compared to alternative models. Furthermore, visualization of latent representa-
tions presents that our model captures explicit temporal structures of neural dynamics for
different time scales.

2 RELATED WORK

With the advancement of deep learning, the application of cutting-edge learning algorithms and the
innovative design of model structures have greatly promoted the development of LVMs in neuro-
science. Some prominent works are summarized below.

VAE-based LVMs for neural activity analysis Recently, VAE-based approaches have become
a major avenue to discover latent variables underlying population neural activity, which better elu-
cidates the mechanisms of neural representations. As a well-known model, latent factor analysis
via dynamical systems (LFADS) used RNNs in a sequential VAE framework, extracting precise fir-
ing rate estimates and predicting observed behavior for single-trial data on motor cortical datasets
(Pandarinath et al., 2018; Keshtkaran & Pandarinath, 2019; Keshtkaran et al., 2022). Through spe-
cific latent variable design, pi-VAE (Zhou & Wei, 2020) and Swap-VAE (Liu et al., 2021) built
interpretable latent structures linked to motor behavioral patterns.

LVMs for visual neural activity analysis Several studies have made an effort to extract latent
manifolds from visual neural activity using LVMs. Although these studies cover various types of
models, such as the Gaussian process model (Ecker et al., 2014; Gondur et al., 2024), linear dynam-
ical system (Gao et al., 2016), autoencoder (Palmerston & Chan, 2021), and flow-based generative
models (Bashiri et al., 2021), they are limited to simple visual stimuli and are used for the task
of reconstructing neural responses. Recently, CEBRA, a self-supervised learning model, obtained
consistent latent representations and made progress in decoding movies (Schneider et al., 2023).

3 TIME-DEPENDENT SPLIT VAE

Basic notations Considering the neural activity of a population of neurons over a period of time,
we define a sequence input as x = (x1,x2, . . . ,xT ) ∈ RT×N , which represents spike counts of N
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Figure 1: The method overview. A. The illustration of TiDeSPL-VAE for analyzing neural activity
in the mouse visual cortex during passive viewing. The encoder extracts spatial features from se-
quential spike data. The latent variables are built conditionally on features of the encoder and RNNs’
state factors to introduce time dependence. The decoder maps latent variables to reconstructed firing
rates. Detailed network structures are given in Appendix A. B. The operations of each module in
TiDeSPL-VAE (see details in Section 3.1).

neurons within T time windows. The output r = (r1, . . . , rT ) ∈ RT×N is an estimate of firing rates
of the input. The low-dimensional latent representation of time point t is denoted as zt ∈ RM .

3.1 MODEL ARCHITECTURE

Our goal is to compress neural activity into high-quality latent representations while modeling the
temporal relationship. Therefore, we explicitly model the time dependence between latent variables
across time steps based on a sequential VAE. In practice, we split latent variables into content and
style latent representations (zt = [z

(c)
t , z

(s)
t ]), corresponding to stimulus-driven and neural dynami-

cal components, respectively. To construct time-dependent connections along a chronological order,
we introduce the state factor ht to sift and accumulate temporal information (Bayer & Osendorfer,
2015; Fabius & van Amersfoort, 2015; Chung et al., 2015) so that the latent variables and output
of the current time step are conditioned on the input and state factors of the antecedent time steps.
We name our model as Time-Dependent Split VAE (TiDeSPL-VAE; Figure 1A) and formulate the
operations of each module (Figure 1B) below.

Encode Based on the above assumptions, content latent variables driven by the current stimulus
are constructed as deterministic values, while style latent variables are constructed as random values
from a parameterized distribution (approximate posterior) since there is a lot of intrinsic noise as
well as variability in the neural dynamics. For time dependence, the latent variables are built on xt

and ht−1:

z
(c)
t = f (c)

enc

(
fx(xt),h

(c)
t−1

)
, (1)

z
(s)
t

∣∣∣x1:t,h
(s)
1:t−1 ∼ N (µz,t,σ

2
z,t · I), [µz,t,σz,t] = f (s)

enc

(
fx(xt),h

(s)
t−1

)
, (2)

where fx, f (c)
enc and f

(s)
enc are all parameter-learnable neural networks for extracting spatio-temporal

features and building the latent variables. The similar functions of f in the following text are also
trainable neural networks.
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Prior Similar to the variational approximate posterior, the prior of z(s)t is conditioned on ht−1 for
time dependence. The distribution is formulated as:

z̃
(s)
t

∣∣∣h(s)
1:t−1 ∼ N (µ̃z,t, σ̃

2
z,t · I), [µ̃z,t, σ̃z,t] = f

(s)
prior

(
h
(s)
t−1

)
. (3)

Decode The decoder aims to reconstruct the neural activity input, which receives the full latent
variables with style state factors as an auxiliary. Since the input is a sequence of spike counts, we
denote the reconstructed responses as a parameterized Poisson distribution (Gao et al., 2016), i.e.,
the actual output of the decoder is spike firing rates:

x̂t

∣∣∣z(c)1:t , z
(s)
1:t ,h

(s)
1:t−1 ∼ Poisson(rt), rt = fdec

(
z
(c)
t , z

(s)
t ,h

(s)
t−1

)
. (4)

Recurrent The state factor is updated by recurrent neural networks, GRU (Cho et al., 2014). By
selectively integrating and exploiting input and latent variables, the state factor is crucial for learning
complex sequential dynamics. Importantly, since content state factors depend on dynamic changes
in visual stimuli while stimulus-driven neural activity inevitably affects neural dynamics, h(c)

t and
h
(s)
t are updated differently:

h
(c)
t = f

(c)
GRU

(
fx(xt),h

(c)
t−1

)
, (5)

h
(s)
t = f

(s)
GRU

(
fx(xt), z

(c)
t , z

(s)
t ,h

(s)
t−1

)
. (6)

3.2 MODEL LEARNING

As content latent variables correspond to the component of neural activity driven by visual stimuli,
we use self-supervised contrastive learning to make them more relevant to visual stimuli. For a
given sample x = (x1, . . . ,xT ), we randomly select another sequence offset by several time steps
as a positive sample, denoted xpos = (x1+∆, . . . ,xT+∆), where ∆ can be positive or negative. In
this work, the offset is always less than the length of the sequence to ensure that the positive sample
pairs overlap and to enhance the time constraint. Then, a mini-batch of negative samples is randomly
selected from the entire training set. The model is encouraged to bring the content latent variables
of the positive pairs closer together and to push those of negative samples away.

As we introduce time dependence into our model and apply a time-dependent prior distribution to
guide the parameterized distribution of style latent variables, we extend the evidence lower bound of
VAE to a time-wise version and use the objective function for contrastive learning, which together
form the loss function of TiDeSPL-VAE:

L = Lrecons + βLregular + γLcontrast, (7)

where β and γ are hyperparameters that serve to control the severity of the penalty for each loss
term. The reconstruction loss Lrecons is formulated as 1

T

∑T
t=1 [LP(xt, rt) + LP(xpos,t, rpos,t)],

where LP is Poisson negative log likelihood loss. Lregular is the KL divergence to measure the
difference between the prior and the approximate posterior of style latent variables, formulated as
1
T

∑T
t=1

[
DKL(z

(s)
t ∥z̃(s)t ) + DKL(z

(s)
pos,t∥z̃

(s)
pos,t)

]
. Besides, we compute the L2 norm of the expec-

tation and log-variance of the prior distribution as a regularization to avoid excessive fluctuations
over time and to stabilize model training. We utilize NT-Xent loss (Chen et al., 2020) as Lcontrast.
For this term, we do not apply the time-wise operation, but flatten the temporal and spatial dimen-
sions of content latent variables for the loss computation. To enhance the effect of the positive
sample, we adopt the practice of swapping content latent variables between the positive pairs while
maintaining style latent variables (Liu et al., 2021). The swapped latent representations are then
used to compute new reconstructed firing rates and an additional reconstruction loss. A detailed
derivation of all formulas is given in Appendix B.
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A B C D

Figure 2: Results on the synthetic non-temporal dataset. A. The true latent variables. B. The re-
gressed latent variables of our model. C. The results of an alternative model (see Appendix G for
other alternatives). D. The reconstruction scores of all models. Each black dot represents an indi-
vidual run, and the red dot represents the average score of ten runs.

4 EXPERIMENTS

4.1 EVALUATION AND ALTERNATIVE MODELS

In this work, we intend to construct latent representations that exhibit strong relevance to visual
stimulation. According to this expectation, we evaluate our model from two aspects, similar to
studies oriented to motor brain regions (Liu et al., 2021; Schneider et al., 2023). First, we quantify
the performance in decoding visual stimuli using latent representations, which has long served as a
research hotspot for unraveling the mechanisms of visual processing (Kay et al., 2008; Wen et al.,
2018). Second, we assess the clarity of latent temporal structures extracted from neural dynamics.

For a comprehensive analysis, we compare TiDeSPL-VAE with several outstanding LVMs, includ-
ing four generative models (an unsupervised: β-VAE (Higgins et al., 2017), a sequential: LFADS
(Pandarinath et al., 2018), a supervised: pi-VAE (Zhou & Wei, 2020), and a self-supervised: Swap-
VAE (Liu et al., 2021)) and a nonlinear encoding method with contrastive learning (CEBRA)
(Schneider et al., 2023). Specifically, β-VAE, pi-VAE and Swap-VAE compress neural activity
independently for each time point. LFADS processes sequential neural activity with bidirectional
RNNs. CEBRA encodes temporal features of sequence data with fixed convolutional kernels. None
of them build latent representations progressively along the chronological order.

Furthermore, considering that our model has more parameters after incorporating the recurrent mod-
ule, we build a small version of our model (TiDeSPL-VAE-small) with fewer trainable parameters
than Swap-VAE (see Appendix E) for fair comparisons.

4.2 EXPERIMENTS ON SYNTHETIC DATA

We first validate TiDeSPL-VAE on the task of reconstructing synthetic latent variables. We generate
two synthetic datasets for considering different properties of visual neural activity. One is a non-
temporal dataset generated from several sets of labels, resembling categories of visual stimuli. The
other is a temporal dataset constructed by the Lorenz system to test for time dependence. The
generating procedure for both synthetic datasets follows some previous work (Zhou & Wei, 2020;
Liu et al., 2021; Gao et al., 2016; Sussillo et al., 2016). A detailed description of the datasets
and the model training implementation is presented in Appendix C. After training, we apply linear
regression to map latent variables of models to the ground truth on the test set and report R2 of the
linear regression as the reconstruction score.

Results on the non-temporal dataset As shown in Figure 2, TiDeSPL-VAE reliably separates
the different clusters as well as recovers the structure of true latent variables to form clear arcs. In
contrast, some of the alternative models fail to construct similar structures although they separate
clusters (Swap-VAE; CEBRA, Figure 6D of Appendix), and others even struggle to split four clus-
ters (β-VAE, LFADS, and pi-VAE1; Figure 6A-C of Appendix). Quantitatively, the reconstruction
scores also suggest that our model outperforms all alternative models (Figure 2D).

1pi-VAE incorporates the label prior during training, but inferred latent variables are built without the label
prior at the evaluation stage. This way is used in all subsequent experiments.
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Table 1: The reconstruction scores of all models on the synthetic temporal dataset. The standard
error is computed based on 5 runs with different random initialization.

β-VAE LFADS pi-VAE Swap-VAE CEBRA TiDeSPL-VAE
Original 0.036±0.027 0.573±0.043 0.167±0.012 0.193±0.004 0.242±0.001 0.629±0.016
Shuffled 0.025±0.022 0.020±0.006 0.209±0.007 0.146±0.008 0.051±0.005 0.038±0.007

Results on the temporal dataset In the first row of Table 1, TiDeSPL-VAE performs signifi-
cantly better than those models that process sequential data at each time point independently, and
moderately better than LFADS that uses bidirectional RNNs to handle temporal data. These results
demonstrate the superiority of our model in dealing with time-dependent data. Moreover, when we
shuffle the time dimension for each trial data on the original dataset to obtain a dataset without time
dependence (the second row of Table 1), the performance of our model and LFADS shows a drastic
degradation. However, the other models are less affected, with only Swap-VAE and CEBRA suffer-
ing a degradation due to the use of time-jittered positive samples. This phenomenon further supports
the above conclusions.

4.3 EXPERIMENTS ON MOUSE VISUAL CORTEX DATA

We utilize a subset of the Allen Brain Observatory Visual Coding dataset (Siegle et al., 2021) for
evaluation, which has been used in a variety of work, such as constructing brain-like networks (Shi
et al., 2022), modeling functional mechanisms (Bakhtiari et al., 2021; de Vries et al., 2020), and
decoding neural representations (Schneider et al., 2023). This dataset is collected by Neuropixel
probes from 6 mouse visual cortical regions simultaneously, including VISp, VISl, VISrl, VISal,
VISpm, and VISam. Notably, the neural activity was recorded while mice passively viewed natural-
istic visual stimuli without any task-driven behavior.

The dataset contains 32 sessions, each for one mouse. Since the class of neurons responsive to
natural visual stimuli is found in six visual regions, in this work we choose to analyze the neural
activity of five mice that have the highest number of recorded neurons (see Appendix D for details),
and these neurons are evenly distributed across all regions (the coefficient of variation for the number
of neurons across six brain regions is below 0.5). We focus on neural activity in response to natural
scenes and natural movies. As for natural scenes, there are 118 images presented in random order,
each for 250ms and 50 trials. We select five scenes that elicit the strongest average responses for
experiments. The neural activity in the form of spike counts is binned into 10ms windows so that
each trial contains 25 time points. As for the natural movie, it is 30s long with a frame rate of 30Hz,
presented for 10 trials. We bin the spike counts with a sampling frequency of 120Hz and align
them with the movie timestamps, resulting in 4 time points for each frame. For both datasets, we
randomly split each across all trials into 80% for training, 10% for validation, and 10% for test.

4.3.1 EXPERIMENTS FOR NEURAL ACTIVITY UNDER STATIC NATURAL SCENE STIMULI

Experiment setup and evaluation In this experiment, we set all models to have 128-dimensional
latent variables and train them for 5,000 iterations. The optimizer is set to Adam with a learning rate
of 0.0001. At the training stage, each sample input to TiDeSPL-VAE is sequential neural activity
from 5 time points. For self-supervised contrastive learning, the offset of positive samples from
target samples is within ±3 time points. At the inference stage, we consider the temporal dependence
and the assumption that the latent variables of TiDeSPL-VAE are generated by an n-order Markov
chain. Consequently, for a target time point, we form a sequence data including its antecedent n
time points and its own to compute the latent variables (here n=4). The setup for the other models is
given in Appendix F. To quantify performance in decoding natural scenes, we first obtain the latent
variables of the last 20 time points (50ms-250ms) in each trial, since there is a response latency
in the mouse visual cortex for static stimuli (Siegle et al., 2021). Then, these latent variables are
concatenated into a vector as latent representations of neural activity for that trial. We use the KNN
algorithm, a nonparametric supervised learning method, to classify the latent representations of each
trial, i.e., to decode the corresponding natural scenes. We search the number of neighbors in odd
numbers from 1 to 20 and use the Euclidean distance metric. We fit the KNN using the training set
and choose the best number of neighbors on the validation set with classification accuracy as the
metric. The accuracy of the test set is reported as the decoding score.
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Table 2: The decoding scores (%) for natural scene classification on the visual neural dataset. The
standard error is computed based on 10 runs with different random initialization.

Models Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

PCA (baseline) 20.0 43.2 51.2 43.6 20.0

β-VAE 57.6±4.3 47.6±1.4 33.6±1.8 46.4±2.3 44.4±2.2
LFADS 55.2±2.8 50.0±3.1 48.8±2.5 54.8±1.8 50.4±2.5
pi-VAE 76.4±3.4 67.2±2.5 68.8±2.3 81.2±2.5 30.4±2.2

Swap-VAE 86.0±1.6 70.8±2.0 54.4±1.5 67.2±2.9 59.6±3.5
CEBRA 47.6±2.3 46.0±1.6 42.8±2.0 52.4±1.7 45.2±1.5

TiDeSPL-VAE-small 90.0±2.0 65.2±3.2 71.2±2.2 74.4±2.7 70.8±2.0
TiDeSPL-VAE 96.4±1.1 74.8±2.0 74.8±1.7 78.8±2.9 67.6±2.1
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Figure 3: Results on the visual neural dataset under natural scenes (Mouse 1). All dimension reduc-
tion is done by tSNE. A. The upper panel is the 2-dimensional embedding of the latent representa-
tions from TiDeSPL-VAE for each trial. Each color corresponds to one natural scene. Transparent
dots denote trials from the training set. Hollow dots denote trials from the test set. The lower panel
is the 2-dimensional embedding of the latent trajectories over time, averaged over all trials for each
scene. The asterisk is the starting point. B-E. The same visualization as A for alternative models.

Results of decoding scores As shown in Table 2, TiDeSPL-VAE achieves the highest decoding
scores on four mice with a noticeable improvement over other models. We observe some meaningful
phenomena in the comparisons. The fact that pi-VAE introduces class labels of natural scenes in
the training stage leads to high decoding scores, but not stably (Mouse 5). The performance of
Swap-VAE is consistently good, which suggests that the swapping operation for training is indeed
effective. However, the other two models (LFADS and CEBRA) that take sequential data as input
instead perform poorly in the downstream task, suggesting that their approaches (bidirectional RNNs
and temporal filters) for extracting temporal neural features are less suitable in this case. In contrast,
the chronological stepwise computation in our model reliably captures time dependence.

Results of latent structures In addition to the quantitative analysis, we visualize the latent repre-
sentations by embedding them in two dimensions using tSNE (Figure 3, we focus on Mouse 1 with
the highest scores. See Appendix H for results of other mice). On the one hand, we apply dimen-
sion reduction to the representations of each trial (including all time points from 50ms to 250ms),
to show the trial-to-trial performance in decoding natural scenes. On the other hand, we reduce the
dimensions of a single time point and take the average across trials, to show the latent trajectories
over time. For the results of TiDeSPL-VAE, we first observe that most trials are well separated for
different classes, especially those from the test set. The latent trajectories capture a similar clear
temporal structure with weak class information. For pi-VAE and Swap-VAE, while they are able
to discriminate scene classes of trials, the latter part of latent trajectories show varying degrees of
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Table 3: The decoding scores (%, in 1s window) for natural movie frame classification on the visual
neural dataset. The standard error is computed based on 10 runs with different random initialization.

Models Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

PCA (baseline) 8.44 28.77 25.42 21.56 11.69

β-VAE 7.44±0.24 15.13±0.35 14.00±0.37 17.11±0.50 9.28±0.31
LFADS 8.94±0.25 26.57±2.46 26.77±2.23 24.76±1.80 12.69±1.38
pi-VAE 10.24±0.31 42.51±0.65 36.96±0.60 38.31±0.52 18.08±0.59

Swap-VAE 11.09±0.25 44.99±0.76 36.37±1.53 37.68±1.14 19.14±0.63
CEBRA 10.62±0.18 52.76±0.89 61.01±0.76 42.11±0.73 22.33±0.31

TiDeSPL-VAE-small 12.26±0.30 63.30±0.34 57.57±0.39 53.46±0.58 28.70±0.42
TiDeSPL-VAE 13.88±0.19 65.38±0.36 59.88±0.72 54.33±0.54 30.18±0.40
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Figure 4: Results on the visual neural dataset under natural movie (Mouse 2). All dimension reduc-
tion is done by tSNE. A. The 2-dimensional embedding of the latent representations from TiDeSPL-
VAE for each frame in the middle 10s of the entire movie. Each color corresponds to all frames
within 1s. Small dots denote one frame. Large dots denote the average among all frames within
the 1s. The red dashed line connects all averages. B-C. The same visualization as A for alternative
models. D. The decoding scores (%) for natural movie frame classification across different time
window constraints. Error bars indicate the standard error for 10 runs.

entanglement across time. As for LFADS and CEBRA, their ability to encode temporal features of
sequential neural activity results in explicit temporal evolution, but the latent representations of dif-
ferent classes are largely intermingled. These results suggest that our model effectively distinguishes
between category information and explicitly captures temporal information from neural dynamics.

In summary, these results demonstrate the advantages of our model in decoding natural scene stim-
uli and extracting fine neural dynamics. However, we also see that the decoding performance for
different mice exhibits large differences and the latent representations of some trials are not able to
unravel the category entanglement. This may be attributed to the substantial variability in the neural
activity of different mice and different trials during passive viewing.

4.3.2 EXPERIMENTS FOR NEURAL ACTIVITY UNDER NATURAL MOVIE STIMULI

Experiment setup and evaluation In this experiment, all models are also set up with 128-
dimensional latent variables and trained for 20,000 iterations. The optimizer and the learning rate
are the same as for the dataset under natural scenes. For TiDeSPL-VAE, at the training stage, we use
neural activity from 4 time points as one sample and set the maximum absolute offset to 2. At the
inference stage, following the approach in Section 4.3.1, the latent variables of a target time point
are generated based on antecedent n time points (n=3) and its own. The setup for the other models
is also presented in Appendix F. To quantify the performance in decoding natural movie frames,
we compute the latent variables of 4 time points within each frame and take the average as latent
representations for that frame. KNN is applied to predict movie frames corresponding to latent rep-
resentations (900 frames in total, i.e., 900 classes). Following a previous method (Schneider et al.,
2023), we take the accuracy measured by considering the error between a predicted frame and the
true frame within 1s (default size of time window constraint) as a correct prediction. We similarly
use the validation set to find the best number of neighbors and report the accuracy of the test set as
the decoding score.
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Table 4: The decoding scores (%) of ablation studies on the loss function and the recurrent module
of TiDeSPL-VAE. The standard error is computed based on 10 runs.

Natural Scenes Natural Movie
Models Mouse 1 Mouse 2 Mouse 1 Mouse 2

TiDeSPL-VAE 96.4±1.1 74.8±2.0 13.88±0.19 65.38±0.36
Without negative samples 94.0±1.7 70.4±0.8 11.27±0.36 49.59±1.18
Without contrastive loss 89.2±1.5 68.8±1.9 11.24±0.23 47.98±0.90
Without swap operation 90.4±1.7 68.0±2.7 10.22±0.31 49.39±0.57
Without swap operation and constrastive loss 84.4±2.6 58.0±2.1 9.16±0.37 24.84±1.10

With temporal independent prior 87.2±1.9 70.8±3.3 12.09±0.16 57.74±0.62

GRU→Vanilla RNN 90.4±1.5 69.6±3.1 13.08±0.31 63.19±0.55
GRU→LSTM 91.2±2.5 68.4±2.4 12.77±0.25 64.69±0.53
Non-recurrent 82.0±2.2 52.0±3.1 11.14±0.30 53.26±0.48

Results of decoding scores We find that TiDeSPL-VAE performs best on four mice (Table 3). In
particular, our model achieves significantly higher decoding scores than LFADS. Furthermore, we
analyze the decoding scores under different sizes of time window constraints (maximum difference
between predicted and real frames) on Mouse 2, since most models achieve the highest scores on
it. Figure 4D shows that our model consistently outperforms CEBRA and Swap-VAE across a wide
range of window sizes, while CEBRA’s performance degrades faster at smaller size constraints.

Results of latent structures We similarly reduce the dimensions of latent representations of each
movie frame for visualization. We set all frames within 1s as a group and show the trajectories of la-
tent representations evolving over time for the middle 10s of the movie (Figure 4A-C, see Appendix
H for results from other parts of the movie). Compared to the other models, the representations of
TiDeSPL-VAE show clear temporal structure along movie frames and less overlap and entanglement
between different groups.

To conclude, our model constructs meaningful latent representations related to the content and tem-
poral structure of movie stimuli at large time scales. At small time scales, although there is a drop
in decoding performance, our model still significantly outperforms the alternatives. Similar features
of adjacent frames may be a factor that makes the latter problem challenging, which may require
further exploration.

4.4 ABLATION STUDIES

We perform ablation studies in several aspects of TiDeSPL-VAE’s components and neural activity
input dimensions to explore their impact on performance. We present the results of Mouse 1 and
Mouse 2 in the main text and the results of the other mice are given in Appendix I.

The loss function and the recurrent module of TiDeSPL-VAE To show the effectiveness of
components of our model, we conduct some ablation studies on the loss function and the recurrent
module (Table 4 and 9). In terms of contrastive learning, we first exclude negative samples from
the computation of the contrastive loss and use only the cosine distance between the content latent
variables of the positive sample pairs as the loss function, i.e., only bring the positive pairs closer.
There is a slight decrease in model performance, suggesting that negative samples are useful. Then
we directly remove the constrastive loss or the swap operation, both of which show a similar impact.
We last remove both, i.e., there are no more objectives related to constrastive learning. The large
drop in performance suggests that contrastive learning plays a crucial role in our models. In terms
of the regular loss of style latent variables, we originally assumed that the prior distribution is time-
dependent. When we assume that it is an independent standard normal distribution at each time
step, the model performance degrades, demonstrating that time-dependent assumptions about the
prior are also important. In terms of the recurrent module, the results suggest that GRU is a better
choice in considering the trade-off between performance and computational efficiency. Besides, we
evaluate a non-recurrent version of our model by setting the time steps of GRU to 1, demonstrating
that the recurrent module plays a critical role.
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Table 5: The decoding scores (%) of ablation studies on the content and style latent representations.

Natural Scenes Natural Movie
Mouse 1 Mouse 2 Mouse 1 Mouse 2

Content 94.0±1.3 70.8±2.1 14.02±0.27 68.77±0.46
Style 76.4±1.9 62.0±2.5 7.48±0.20 14.87±0.73
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Figure 5: The results of ablation studies on the dimension of latent variables and the number of input
neurons. Error bars indicate the standard error for 10 runs.

The content and style latent representations We evaluate decoding scores of content and style
latent representations (Table 5). We find that content variables outperform style variables, supporting
our conceptual interpretation of them, i.e., content variables are more relevant to visual stimuli.

The dimension of latent variables and the number of input neurons We perform ablation stud-
ies on the number of latent variables and input neurons. As shown in Figure 5 and 9, first, the model
performance saturates gradually as the dimension of latent variables increases, which suggests that it
is sufficient to choose a dimension at reasonable intervals (not too much fewer than input neurons).
Second, performance decreases as the number of sampled neurons decreases, suggesting that for
each mouse, all recorded neurons contribute to the representation of visual stimuli.

5 DISCUSSION

This work presents a novel sequential VAE by introducing time dependence into a self-supervised
generative model, aiming to reveal intrinsic correlations between visual neural activity and visual
stimulation. Our model, TiDeSPL-VAE, constructs latent representations conditioned on antecedent
input to extract temporal relationships from neural activity in a natural way. Results of synthetic
and mouse datasets demonstrate that our model outperforms alternative models and builds latent
representations that are strongly correlated with visual stimulation, in terms of decoding natural
scenes or movie frames and extracting explicit temporal structure from neural dynamics.

Most LVMs have focused on neural activity in the motor brain regions. There is a paucity of research
explaining visual neural activity with this type of model. CEBRA has made meaningful explorations
of neural responses of the mouse visual cortex (Schneider et al., 2023). Our work provides evidence
that introducing time dependence with a chronological order plays a crucial role in studying visual
neural activity with LVMs. However, there are some problems requiring further exploration. For
example, neural responses elicited by complex natural visual stimuli show large variability across
subjects and trials (Xia et al., 2021; Marks & Goard, 2021). Due to this, it is difficult for LVMs
to consistently construct high-quality stimulus-correlated latent representations across conditions.
Improvements in model structures and learning algorithms are needed in future work.

Last but not least, our approach is not limited to visual neural spikes from mice and can be extended
to neural data from other brain regions and other species and of other modalities. As a promising
model for neuroscience, it may also provide some insights into the field of machine learning.
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A BACKBONE STRUCTURE OF TIDESPL-VAE

The encoder and decoder of our model are derived from Swap-VAE. The encoder consists of three
blocks, the first two of which are sequentially stacked with a linear layer, a batch normalization,
and a ReLU activation. The last block differs from Swap-VAE in that it additionally introduces the
hidden states of the GRU as input. The output dimensions of the three blocks are N, M, and M, where
N is the number of neurons and M is the number of latent variables. The decoder is a symmetric
structure of the encoder, where the first two blocks are also sequentially stacked with a linear layer,
a batch normalization, and a ReLU activation, and the last block is a linear layer followed by a
SoftPlus activation. We set the dimensions of the content and style variables to be equal and use a
one-layer GRU for each latent representation, where the dimensions of the hidden states are equal
to the dimensions of the latent variables. For β-VAE, we use the same backbone structure. For other
alternative models, we retain the structure of the original.

In the training, we ensure that the hyperparameters of all models are consistent, obtained by grid
search. All models are trained on NVIDIA A100.

B DERIVATION OF THE LOSS FUNCTION OF TIDESPL-VAE

Given that we use state factors and recurrent neural networks to build time dependence in VAE
and process sequential data, we need to maximize the likelihood of the joint sequential distribution
p(x1:T ). Involving the latent variables z1:T , we have the variational lower bound:

log p(x1:T ) =

∫
q(z1:T |x1:T ) log p(x1:T )dz1:T

=

∫
q(z1:T |x1:T ) log

p(x1:T , z1:T )

p(z1:T |x1:T )
dz1:T

=

∫
q(z1:T |x1:T ) log

q(z1:T |x1:T )

p(z1:T |x1:T )
dz1:T +

∫
q(z1:T |x1:T ) log

p(x1:T , z1:T )

q(z1:T |x1:T )
dz1:T

= KL(q(z1:T |x1:T )∥p(z1:T |x1:T )) +

∫
q(z1:T |x1:T ) log

p(x1:T , z1:T )

q(z1:T |x1:T )
dz1:T

≥
∫

q(z1:T |x1:T ) log
p(x1:T , z1:T )

q(z1:T |x1:T )
dz1:T ,

(8)

where p(x1:T , z1:T ) is the joint distribution as well as p(z1:T |x1:T ) and q(z1:T |x1:T ) is the true
posterior and the variational approximate posterior, respectively. The true posterior is intractable.

Considering Eq. 1, Eq. 5 and Eq. 6, we know that z(c)t is deterministic values and h
(s)
t is a function

of x1:t and z
(s)
1:t . Therefore, we have the factorization:

p(x1:T , z1:T ) =

T∏
t=1

p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)p(z

(s)
t |x1:t−1, z

(s)
1:t−1), (9)

q(z1:T |x1:T ) =

T∏
t=1

q(z
(s)
t |x1:t, z

(s)
1:t−1), (10)

where q(z
(s)
t |x1:t, z

(s)
1:t−1), p(z

(s)
t |x1:t−1, z

(s)
1:t−1) and p(xt|z(s)1:t , z

(c)
1:t ,x1:t−1) are the distributions

defined by Eq. 2, Eq. 3 and Eq. 4, respectively. Based on the above factorization, we decompose
the variational lower bound as:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

∫
q(z1:T |x1:T ) log

p(x1:T , z1:T )

q(z1:T |x1:T )
dz1:T

=

∫
q(z1:T |x1:T )

T∑
t=1

(
log

p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)p(z

(s)
t |x1:t−1, z

(s)
1:t−1)

q(z
(s)
t |x1:t, z

(s)
1:t−1)

)
dz1:T

=

T∑
t=1

(∫
q(z1:T |x1:T ) log

p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)p(z

(s)
t |x1:t−1, z

(s)
1:t−1)

q(z
(s)
t |x1:t, z

(s)
1:t−1)

dz1:T

)
.

(11)

When we simplify the above log-likelihood to a function g(x1:t, z1:t), we have:

∫
q(z1:T |x1:T )g(x1:t, z1:t)dz1:T

=

∫ (∫
q(z1:T−1|x1:T−1)q(z

(s)
T |x1:T , z

(s)
1:T−1)g(x1:t, z1:t)dzT

)
dz1:T−1

=

∫ (
q(z1:T−1|x1:T−1)g(x1:t, z1:t)

∫
q(z

(s)
T |x1:T , z

(s)
1:T−1)dzT

)
dz1:T−1

=

∫
q(z1:T−1|x1:T−1)g(x1:t, z1:t)dz1:T−1

= · · · =
∫

q(z1:t|x1:t)g(x1:t, z1:t)dz1:t.

(12)

Therefore, we further decompose Eq. 11 as:

∫
q(z1:T |x1:T ) log

p(x1:T , z1:T )

q(z1:T |x1:T )
dz1:T

=

T∑
t=1

(∫
q(z1:t|x1:t) log

p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)p(z

(s)
t |x1:t−1, z

(s)
1:t−1)

q(z
(s)
t |x1:t, z

(s)
1:t−1)

dz1:t

)

=

T∑
t=1

(∫
q(z1:t|x1:t) log p(xt|z(s)1:t , z

(c)
1:t ,x1:t−1)dz1:t+

∫
q(z1:t|x1:t) log

p(z
(s)
t |x1:t−1, z

(s)
1:t−1)

q(z
(s)
t |x1:t, z

(s)
1:t−1)

dz1:t

)

=

T∑
t=1

(∫
q(z1:t|x1:t) log p(xt|z(s)1:t , z

(c)
1:t ,x1:t−1)dz1:t−∫

q(z1:t−1|x1:t−1)KL(q(z
(s)
t |x1:t, z

(s)
1:t−1)∥p(z

(s)
t |x1:t−1, z

(s)
1:t−1))dz1:t−1

)
=

∫
q(z1:T |x1:T )

T∑
t=1

(
log p(xt|z(s)1:t , z

(c)
1:t ,x1:t−1)−

KL(q(z
(s)
t |x1:t, z

(s)
1:t−1)∥p(z

(s)
t |x1:t−1, z

(s)
1:t−1))

)
dz1:T

= Eq(z1:T |x1:T )

[
T∑

t=1

log p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)−

KL(q(z
(s)
t |x1:t, z

(s)
1:t−1)∥p(z

(s)
t |x1:t−1, z

(s)
1:t−1))

]
.

(13)

Finally, for a given sequential data x, we have the loss function for training the generative objective:
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L ≃
T∑

t=1

− log p(xt|z(s)1:t , z
(c)
1:t ,x1:t−1)︸ ︷︷ ︸

reconstruction loss

+KL(q(z
(s)
t |x1:t, z

(s)
1:t−1)∥p(z

(s)
t |x1:t−1, z

(s)
1:t−1))︸ ︷︷ ︸

regularization loss

,

(14)

where the first and second terms correspond to LP and DKL in the main text, respectively.

Since we assume a Poisson distribution for the reconstructed neural activity, LP is the Poisson
negative log-likelihood:

LP(xt, rt) = − log
rxt
t

xt!
e−rt

= −xt log rt + rt + logxt!

≈ −xt log rt + rt + xt logxt − xt +
1

2
log (2πxt).

(15)

As for DKL, under the assumption that both the prior and the approximate posterior are Gaussian,
we have:

DKL(z
(s)
t ∥z̃(s)t ) =

∫
q(z

(s)
t |x1:t, z

(s)
1:t−1) log

q(z
(s)
t |x1:t, z

(s)
1:t−1)

p(z
(s)
t |x1:t−1, z

(s)
1:t−1)

dz
(s)
t

=

∫
q(z

(s)
t |x1:t, z

(s)
1:t−1) log

1√
2πσ2

z,t

exp

(
−

(
z
(s)
t −µz,t

)2

2σ2
z,t

)
1√

2πσ̃2
z,t

exp

(
−

(
z
(s)
t −µ̃z,t

)2

2σ̃2
z,t

)dz
(s)
t

= −
E
q(z

(s)
t )

[(
z
(s)
t − µz,t

)2]
2σ2

z,t

+

E
q(z

(s)
t )

[(
z
(s)
t − µ̃z,t

)2]
2σ̃2

z,t

− logσz,t + log σ̃z,t

= −1

2
+

σ2
z,t + µ2

z,t − 2µz,tµ̃z,t + µ̃2
z,t

2σ̃2
z,t

− logσz,t + log σ̃z,t

=
1

2

(
−1 +

(µz,t − µ̃z,t)
2
+ σ2

z,t

σ̃2
z,t

− logσ2
z,t + log σ̃2

z,t

)
.

(16)

Finally, we apply NT-Xent loss as the contrastive loss:

Lcontrast = − log
exp

(
sim

(
z(c), z

(c)
pos

)
/τ
)

exp
(
sim

(
z(c), z

(c)
pos

)
/τ
)
+
∑

exp
(
sim

(
z(c), z

(c)
neg

)
/τ
) , (17)

where sim(∗, ∗) is the cosine similarity and τ is the temperature coefficient.

C SYNTHETIC DATASETS

C.1 GENERATING PROCEDURE

Non-temporal dataset First, we generate labels ui from four uniform distributions on
[ 2i×π

4 , (2i+1)×π
4 ], i ∈ {0, 1, 2, 3}, in preparation for building four clusters. Second, for each

cluster, we sample 2-dimensional latent variables z from independent Gaussian distribution with

16
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(5 sinui, 5 cosui) as mean and (0.6− 0.5| cosui|, 0.5| cosui|) as variance. Third, we feed sampled
latent variables into a RealNVP network (Dinh et al., 2017) to form firing rates of 100-dimensional
observations and generate the synthetic neural activity from the Poisson distribution. Each cluster
contains 4,000 samples. All samples are split to 80% (12,800 samples) for training and 20% (3,200
samples) for test.

Temporal dataset We generate three dynamic latent variables from the Lorenz system consisting
of a set of nonlinear equations and the firing rates of 30 simulated neurons are computed by randomly
weighted linear readouts from the Lorenz latent variables. The synthetic neural activity is also
generated from the Poisson distribution. The hyperparameters of the Lorenz system follow some
previous work (Sussillo et al., 2016). We run the Lorenz system for 1s (1ms for a time point) from
five randomly initialized conditions. Each condition contains 20 trials. We use 80% of the dataset
(16 trials/condition, 80,000 samples) for training and 20% (4 trials/condition, 20,000 samples) for
test.

C.2 TRAINING IMPLEMENTATION

Non-temporal dataset All models are set up with 32-dimensional latent variables and trained
for 20,000 iterations with an optimizer of Adam and a learning rate of 0.0005. Notably, since this
dataset does not involve time dependence, the length of input sequences is set to 1 even for models
that can handle sequential data.

Temporal dataset All models are set up with 8-dimensional latent variables and trained for 20,000
iterations with an optimizer of Adam and a learning rate of 0.001. Our model and LFADS use 50ms
of data as input, while the other models take data at one time point because they can’t process
sequential data.

D CHARACTERS OF NEURAL DATASET

In this work, we use a subset of the Allen Brain Observatory Visual Coding dataset (de Vries et al.,
2020; Siegle et al., 2021) recorded from six visual cortical regions of the mouse with Neuropixel
probes. The full names and abbreviations of all cortical regions are listed in Table 6. We present the
number of neurons for all chosen mice.

Table 6: Characters of the neural dataset.

Cortical Region Abbreviation Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

primary visual cortex VISp 75 51 93 63 52
lateromedial area VISl 39 30 56 38 20
rostrolateral area VISrl 49 24 58 44 41
anterolateral area VISal 42 51 43 71 46

posteromedial area VISpm 62 90 17 19 64
anteromedial area VISam 94 72 49 60 64

In our experiments, we focus on neural activity in response to natural scenes and natural movies.
For both datasets, we randomly split each across all trials into 80% for training, 10% for validation,
and 10% for test. The number of samples for each dataset is shown in Table 7.

Table 7: The number of samples for the visual neural dataset.

Dataset Training Validation Test

visual neural dataset under natural scenes 5000 625 625
visual neural dataset under natural movies 28800 3600 3600

E NUMBER OF TRAINABLE PARAMETERS OF ALL MODELS

The number of model parameters is roughly proportional to the number of input neurons. We present
the number of parameters for the Mouse 1 dataset.

17
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Table 8: The number of model parameters for the Mouse 1 dataset.

β-VAE LFADS pi-VAE Swap-VAE CEBRA TiDeSPL-VAE-small TiDeSPL-VAE

Number of parameters 0.39M 0.45M 0.49M 0.38M 0.71M 0.29M 0.68M

F EXPERIMENT SETUP ON NEURAL DATASET FOR ALTERNATIVE MODEL

For β-VAE, pi-VAE, and Swap-VAE, each input sample is neural activity of an independent time
point, both at the training and inference stages. For LFADS, we apply the same approach as our
model. For CEBRA, following the original approach (Schneider et al., 2023), we take the surround-
ing points centered on the target point to form a sequence of the same length as during the training
stage (5 time points for natural scenes and 4 for natural movie) and compute its latent variables.

G ADDITIONAL RESULTS ON SYNTHETIC NON-TEMPORAL DATASET

A B C D

Figure 6: The regressed latent variables of alternatives on the synthetic non-temporal dataset.

H ADDITIONAL VISUALIZATION OF LATENT REPRESENTATIONS

We visualize latent representations of TiDeSPL-VAE in experiments under natural scenes for the
other four mice and latent representations of TiDeSPL-VAE, SwapVAE and CEBRA in experiments
under natural movie stimuli for other parts of the movie. The results are in line with the conclusion
in the main text.
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Figure 7: Visualization results of TiDeSPL-VAE on the visual neural dataset under natural scenes
(Mouse 2-5).
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Figure 8: Visualization results on the visual neural dataset under natural movie (Mouse 2). A-C. The
2-dimensional embedding of the latent representations for each frame in the first 10s of the movie.
D-F. The 2-dimensional embedding of the latent representations for each frame in the last 10s of the
movie. The first 10s show more entanglement across time, while the last 10s are rarely entangled.
Nevertheless, our model still outperforms other alternative models.

I ADDITIONAL RESULTS OF ABLATION STUDIES

We present the results of ablation studies for the other three mice, which are consistent with the
conclusion in the main text.

Table 9: The decoding scores (%) of ablation studies on the loss function and the recurrent module
of TiDeSPL-VAE. The standard error is computed based on 10 runs.

Natural Scenes Natural Movie
Models Mouse 3 Mouse 4 Mouse 5 Mouse 3 Mouse 4 Mouse 5

TiDeSPL-VAE 74.8±1.7 78.8±2.9 67.6±2.1 59.88±0.72 54.33±0.54 30.18±0.40
Without negative samples 67.2±2.5 76.0±2.0 59.6±2.6 45.67±0.60 44.17±0.42 19.93±0.35
Without contrastive loss 72.0±1.6 76.4±2.6 60.4±1.9 44.09±0.67 44.02±0.47 18.24±0.41
Without swap operation 66.4±1.9 72.4±2.4 65.2±3.0 45.30±0.41 43.12±0.57 21.83±0.39
Without swap operation and constrastive loss 59.6±2.7 66.8±2.3 53.6±2.8 22.33±0.81 26.49±0.66 12.02±0.49

With non-temporal prior 64.4±2.6 69.6±3.0 61.2±3.0 53.87±0.49 46.90±0.48 22.92±0.43

GRU→Vanilla RNN 72.4±2.1 73.6±2.3 58.4±1.6 59.13±0.42 53.83±0.41 29.62±0.40
GRU→LSTM 70.8±1.5 80.8±1.9 62.4±2.4 60.00±0.60 54.37±0.41 28.50±0.61
Non-recurrent 56.4±2.7 68.0±2.6 59.6±4.1 48.31±0.47 43.81±0.40 22.98±0.44

Table 10: The decoding scores (%) of ablation studies on the content and style latent representations
of TiDeSPL-VAE. The standard error is computed based on 10 runs.

Natural Scenes Natural Movie
Mouse 3 Mouse 4 Mouse 5 Mouse 3 Mouse 4 Mouse 5

Content 76.4±1.6 77.6±2.3 68.0±2.3 65.92±0.51 57.07±0.44 32.39±0.48
Style 60.8±2.8 61.6±3.2 49.2±3.3 14.62±1.06 17.96±1.00 11.12±0.39
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Figure 9: The results of ablation studies on the dimension of latent variables and the number of input
neurons. Error bars indicate the standard error for 10 runs.

In addition, more ablation studies in other aspects of TiDeSPL-VAE are shown in Table 11 and 12.
By removing the reconstruction loss and the KL divergence computed on positive samples, we find
that these loss terms contribute less to performance, suggesting that the contrastive loss and the swap
operation are sufficient to emphasize the positive samples. We evaluate two versions of our model
containing only content or style latent representations. The results demonstrate that splitting these
two latent representations is important and support the conclusion of Table 5 and 10.

Table 11: The decoding scores (%) of further ablation studies on the loss function and the latent
representation of TiDeSPL-VAE for natural scene classification.

Models Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

TiDeSPL-VAE 96.4±1.1 74.8±2.0 74.8±1.7 78.8±2.9 67.6±2.1
Without reconstruction and KL losses on positive samples 96.0±1.7 71.2±1.8 74.4±1.4 77.2±1.4 65.6±1.9

Containing only content 74.0±2.0 49.6±2.8 53.2±2.3 68.8±3.8 56.0±3.1
Containing only style 60.0±3.0 32.4±2.6 44.4±2.6 47.2±1.7 44.8±2.8

Table 12: The decoding scores (%) of further ablation studies on the loss function and the latent
representation of TiDeSPL-VAE for natural movie frame classification.

Models Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

TiDeSPL-VAE 13.88±0.19 65.38±0.36 59.88±0.72 54.33±0.54 30.18±0.40

Without reconstruction and KL losses on positive samples 12.80±0.19 64.18±0.42 58.70±0.53 54.00±0.39 29.97±0.50

Containing only content 12.16±0.24 63.33±0.29 58.64±0.37 52.11±0.39 30.24±0.54
Containing only style 7.57±0.24 11.73±0.43 12.86±0.35 16.10±0.33 9.89±0.22
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J ABLATION STUDIES ON THE MOUSE VISUAL NEURAL DATASET FOR
TRAINING AND TEST

In the Allen Brain Observatory Visual Coding dataset, each mouse is implanted with Neuropixel
probes separately, so there is no guarantee that the neural sites recorded from each mouse are aligned,
and the number of recorded neurons is different. Therefore, we treat each mouse as a single dataset
in the main experiments. For further analysis, we sample neurons from all five mice evenly to form a
dataset (named All Mice) with a similar number of neurons to a single mouse dataset. The results in
Table 13 show that our model outperforms other models on All Mice, but the performance is overall
lower than that on a single mouse dataset, suggesting variability in neural activity to the same visual
stimuli across mice.

Table 13: The decoding scores (%) on the All Mice datasets.

LFADS pi-VAE Swap-VAE CEBRA TiDeSPL-VAE
All Mice (natural scene) 41.6±4.0 44.0±3.8 34.4±4.9 46.4±3.7 49.6±2.4
All Mice (natural movie) 16.36±1.02 22.44±0.53 22.07±0.28 22.98±0.76 28.07±1.01

In addition, we sample the same number of neurons (250) in each mouse. We then train our model
on one mouse and test it on the other. As shown in Table 14 and 15, for the same mouse in the
test, there is a significant drop in performance for models trained on other mice. This may be due to
the difficulty of aligning the recorded neurons and the large variation in response patterns between
mice.

Table 14: The decoding scores (%) of TiDeSPL-VAE which is trained on one mouse and tested on
the other for natural scene classification.

Training
Test Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

Mouse 1 88.8±2.1 48.0±2.2 59.2±3.2 60.0±3.0 50.4±2.6
Mouse 2 54.0±3.9 70.0±3.5 51.6±3.7 64.0±3.1 48.0±2.9
Mouse 3 56.0±2.9 48.8±3.4 70.0±2.7 58.0±3.4 50.4±2.1
Mouse 4 63.2±4.0 53.2±3.3 51.6±1.7 75.2±1.9 56.0±2.9
Mouse 5 64.4±2.3 42.8±1.6 42.4±2.7 54.4±3.1 69.6±3.1

Table 15: The decoding scores (%) of TiDeSPL-VAE which is trained on one mouse and tested on
the other for natural movie frame classification.

Training
Test Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

Mouse 1 11.42±0.30 25.87±0.36 20.76±0.62 23.56±0.45 12.83±0.58
Mouse 2 8.60±0.23 60.41±0.62 17.47±0.50 18.91±0.54 10.79±0.29
Mouse 3 8.32±0.13 19.82±0.88 52.50±0.84 19.53±0.41 11.43±0.32
Mouse 4 8.42±0.35 20.24±0.63 18.08±0.51 51.18±0.64 11.26±0.31
Mouse 5 8.34±0.29 21.00±0.51 18.60±0.35 19.51±0.54 28.10±0.50

K ABLATION STUDY ON NATURAL SCENE STIMULI

In addition to the experiments on the five scenes that elicit the strongest average responses, we
select five other scenes that elicit the weakest responses for an ablation study. As shown in Table
16, compared to the experiments on the scenes that elicit the strongest responses, the performance
on the scenes that elicit the weakest responses is lower overall, suggesting that it is more difficult
for models to build stimulus-relevant latent variables from neural activity with low signal-to-noise.
Nevertheless, our model still performs best in most cases, demonstrating its robustness.
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Table 16: The decoding scores (%) for natural scene classification on the visual neural dataset under
five scenes that elicit the weakest responses.

Models Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

LFADS 44.8±3.5 23.2±3.5 26.4±1.4 36.8±3.3 35.2±3.6
pi-VAE 20.0±2.5 28.8±3.1 29.6±2.7 20.8±0.7 19.2±0.7

Swap-VAE 47.2±2.6 32.8±3.1 26.4±0.9 33.6±3.3 28.8±1.3
CEBRA 36.0±3.0 27.2±2.1 29.6±1.4 32.8±1.3 36.0±1.1

TiDeSPL-VAE 58.4±2.7 35.2±3.5 36.8±2.4 42.4±2.1 32.0±1.6

L VISUALIZATION WITH DIFFERENT HYPERPARAMETERS OF TSNE

To analyze the visualization of our model’s latent representations on the Mouse 1 dataset under nat-
ural scene stimuli, we select different hyperparameters of tSNE (perplexity in the range [5, 50] and
early exaggeration in the range [12, 24]). The results (Figure 10 and 11) show that the embedding
properties are stable across different hyperparameters.
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Figure 10: Visualization results of TiDeSPL-VAE on the Mouse 1 dataset under natural scene stimuli
(different perplexity and same early exaggeration).
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Figure 11: Visualization results of TiDeSPL-VAE on the Mouse 1 dataset under natural scene stimuli
(same perplexity and different early exaggeration).
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