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Abstract
With the rapid advancement and strong generalization capa-
bilities of large language models (LLMs), they have been
increasingly incorporated into the active learning pipelines
as annotators to reduce annotation costs. However, consid-
ering the annotation quality, labels generated by LLMs often
fall short of real-world applicability. To address this, we pro-
pose a novel active learning framework, Mixture of LLMs
in the Loop Active Learning, replacing human annotators
with labels generated through a Mixture-of-LLMs-based an-
notation model, aimed at enhancing LLM-based annotation
robustness by aggregating the strengths of multiple LLMs.
To further mitigate the impact of the noisy labels, we intro-
duce annotation discrepancy and negative learning to iden-
tify the unreliable annotations and enhance learning effec-
tiveness. Extensive experiments demonstrate that our frame-
work achieves performance comparable to human annotation
and consistently outperforms single-LLM baselines and other
LLM-ensemble-based approaches. Moreover, our framework
is built on lightweight LLMs, enabling it to operate fully on
local machines in real-world applications.

Code — https://github.com/qijindou/MoLLIA
Appendix —

https://github.com/qijindou/MoLLIA/tree/main/Appx

Introduction
Active Learning (AL) is a paradigm in machine learn-
ing that strategically selects informative samples for an-
notation, with the objective of minimizing labeling costs
while achieving predictive performance comparable to mod-
els trained on fully labeled datasets (Ren et al. 2021; Wu
et al. 2025; Werner et al. 2024). With the rapid advance-
ment of Large Language Models (LLMs) (Brown et al.
2020), renowned for their remarkable generalization ca-
pabilities (OpenAI 2023), these models have increasingly
been integrated into the conventional active learning work-
flow, enhancing the cost-efficiency of the annotation process
(Kholodna et al. 2024), and marking a significant evolution
in the active learning landscape (Xia et al. 2025).

The integration of LLMs into the active learning workflow
offers a promising route to improving annotation efficiency,
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Figure 1: Overview of MoLLIA.

however, their reliability as annotators remains an open chal-
lenge (Ding et al. 2023; Ming et al. 2024). Since LLMs are
trained for general purpose tasks, their performance often
degrades due to domain shift when applied to specialized
datasets, resulting in annotation quality that is typically in-
sufficient to serve as oracle labels (Gligorić et al. 2024; Guo
et al. 2025). LLM-ensemble methods, which combine mul-
tiple LLMs with diverse architectures or training paradigms,
offer a more robust and effective approach to enhancing an-
notation precision (Chen et al. 2025). Building upon this
idea, leveraging the outputs from a Mixture of LLMs as
annotators offers a feasible and more reliable strategy for
transforming traditional human in the loop active learning
into Mixture of LLMs in the loop active learning. More-
over, the active learning process can operate in a semi-fully,
or even fully, human-free manner, while maintaining a rela-
tively high standard of annotation quality.

Although model performance typically scales with the
volume of training data, real-world applications often suf-
fer from a shortage of labeled data. In active learning set-
tings, this limitation is even more pronounced, as usually
only a small subset of ground truth labeled data is avail-
able at the initial iteration. Consequently, fully exploiting
the limited labeled data to enhance the quality of Mixture
of LLMs generated annotations is critical for the success
of Mixture of LLMs in the loop active learning. Addition-
ally, since the generated labels may be noisy or unreliable
(Yang et al. 2025), using them directly as supervision labels
can degrade model performance and compromise the reli-
ability of the active learning process (Lu et al. 2025). To



mitigate this issue, adopting noisy label learning techniques
that compensate for label noise has proven to be a promis-
ing solution for handling unreliable annotations (Song et al.
2022). Besides, regarding the AL model as a task specific
small language model (SLM) which is trained or finetuned
on the target dataset, the mismatch between the SLM and
LLM-based annotators for annotation provides an additional
insights of annotation discrepancy. And this discrepancy can
be exploited to further refine the annotation process (Yuan
et al. 2024). Integrating these strategies into the Mixture of
LLMs framework allows the AL model to remain robust in
the presence of imperfect annotations, thereby boosting both
annotation quality and downstream model performance.

Overall, to further reduce human labeling costs while
maintaining the reliability of active learning process for
practical deployment, we propose the Mixture of LLMs In
the Loop Active Learning (MoLLIA) framework (Fig. 1).
Specifically, at each active learning iteration, we select sam-
ples for annotation using existing acquisition strategies, and
employ multiple lightweight LLMs to generate candidate la-
bels. These outputs are then aggregated through a mixture
module to determine the final annotation used in the next it-
eration training. To mitigate the effects of noisy labels, we
further incorporate negative learning alongside annotation
discrepancy between AL model and LLMs. In summary, our
MLAL framework offers the following key contributions:

• Human-Free Active Learning: We propose a novel
zero-human annotation active learning framework based
on a Mixture-of-LLMs-based annotation model (Mo-
LAM). By aggregating MoLAM as annotators and incor-
porating other learning mechanism, our method achieves
annotation-free active learning with performance compa-
rable to traditional human in the loop approaches.

• Robust Active Learning: We leverage the disagreement
between the AL model (treated as a task specific SLM)
and the LLM-based annotator as an annotation discrep-
ancy indicator and incorporate a negative learning mech-
anism to improve the robustness of the learning process.

• Reliable Empirical Validation: We validate the ef-
fectiveness of proposed framework across four widely
used benchmark datasets and multiple active learning
strategies. MoLLIA achieves superior performance and
demonstrates comparability to human annotators.

Related Work
With the rapid advancement of LLMs, their integration into
active learning has become increasingly prevalent. Tradi-
tional AL methods rely on carefully designed uncertainty
metrics and sample selection strategies to maximize model
performance while minimizing annotation costs (Ren et al.
2021; Werner et al. 2024; Qi et al. 2025). Recently, due
to their strong generalization capabilities and extensive in-
herent knowledge, LLMs have been incorporated into AL
pipelines, either in the sampling or annotation stages, to fur-
ther reduce labeling costs (Azeemi, Qazi, and Raza 2024;
Xia et al. 2025). To utilize LLMs as annotators, Kholodna
et al. (2024) employ inter-annotator agreement to evaluate

the consistency of multiple LLMs and select the most reli-
able one to replace human annotators. Rouzegar and Makre-
hchi (2024) propose a hybrid annotation framework that
combines LLM-generated labels with human annotations
based on LLMs uncertainty. However, due to the limited
quality of LLM-generated labels, these approaches either
fail to match the performance of oracle labels or still require
substantial human annotation effort. While methods such as
NoisyAL (Yuan et al. 2024) and FreeAL(Xiao et al. 2023)
incorporate both LLMs and smaller models to generate and
refine labels, they are fundamentally noisy supervised learn-
ing approaches rather than active learning frameworks, as
they lack iterative sample selection guided by trainable-
model uncertainty. In addition, most existing methods de-
pend on commercial API calls, raising unresolved concerns
about data privacy and security, particularly in sensitive or
real-world applications.

To ensure the reliability and effectiveness of LLM-
generated outputs, numerous studies have explored tech-
niques for estimating their quality, with a primary focus
on uncertainty estimation. Overall, uncertainty estimation
in LLMs can be broadly categorized into three main ap-
proaches: verbalization-based, consistency-based, and logit-
based. Verbalization-based methods rely on prompting
LLMs to self-assess its confidence by explicitly asking for
likelihood judgments or uncertainty estimates through natu-
ral language responses (Yona, Aharoni, and Geva 2024; Lin,
Hilton, and Evans 2022). Consistency-based methods esti-
mate uncertainty by generating multiple responses for the
same input and analyzing their variability (Chen and Mueller
2024; Tian et al. 2023). Logit-based methods derive uncer-
tainty from the model’s internal probability distribution, us-
ing metrics such as entropy or margin over predicted tokens
to quantify confidence (Kuhn, Gal, and Farquhar 2023; Ab-
basi Yadkori et al. 2024; Zhang et al. 2025).

While uncertainty estimation offers valuable insights into
the confidence of LLM predictions, it does not directly ad-
dress the quality of the final annotations. To further en-
hance annotation reliability, LLM-ensemble methods have
emerged as a widely adopted strategy that leverages the
complementary strengths of multiple LLMs (Chen et al.
2025). Recent advances in this area can be broadly cate-
gorized into two groups: consensus-oriented and diversity-
oriented approaches. Consensus-oriented methods aim to se-
lect the output that exhibits the highest agreement across
multiple responses, often relying on voting or similarity met-
rics (Li et al. 2024a; Guha et al. 2024; Si et al. 2023). In con-
trast, diversity-oriented methods focus on analyzing of dif-
ferences across candidate outputs to resolve conflicts or syn-
thesize more informative and robust responses(Jiang, Ren,
and Lin 2023; Tekin et al. 2024; Lv et al. 2024). However,
given that label generation lacks semantic structure in the
output space, consensus-oriented approaches are more suit-
able for our task, as they align better with the discrete and
bounded nature of classification labels.

Methodology
Without loss of generality, let L = {X,Y }, U = {X}
represent the initial collection of training set and unlabeled



Figure 2: Workflow of MoLLIA framework. The AL model is first trained on the initial labeled dataset and used to query the
most informative instances for annotation. A Mixture-of-LLMs-based annotator then generates labels y+ and corresponding
negative labels y− for the selected instances (as detailed in Mixture-of-LLMs-based Annotation Model section). The annotation
discrepancy (danno) is computed based on the disagreement between the AL model’s predictions and the Mixture-of-LLMs-
based annotator. The AL model is then updated using a loss function that incorporates both weighted annotation discrepancy
and negative learning, and the querying process is iteratively repeated based on the updated AL model.

data samples, where |U | ≫ |L|. Here, Y ⊂ {1, . . . ,K} de-
notes the set of multi-class labels, and K is the total number
of classes. Fig. 2 illustrates the workflow of our proposed
framework, MoLLIA. Our method adopts standard active
learning query strategies but replaces human annotation with
the Mixture-of-LLMs-based Annotation Model (MoLAM).
While MoLAM improves annotation quality compared to
single LLM annotators, its outputs may still include noisy
labels and therefore remain inferior to human level annota-
tion quality. To further mitigate this effects, we propose Ro-
bust Active Learning, which enhances robustness through
two key mechanisms. The first part utilize the negative la-
bels, classes that an instance is unlikely to belong to, pro-
vided by MoLAM to guide the AL model away from incor-
rect predictions, thereby improving learning efficiency and
class discrimination. The second part leverage the annota-
tion discrepancy, quantifying the disagreement between Mo-
LAM predicted labels and the AL model’s predictions, to re-
weight the training loss, reducing the influence of potentially
incorrect annotations.

Mixture-of-LLMs-based Annotation Model
Instead of relying on human annotators, MoLLIA further
reduces annotation costs by introducing a fully human-
free annotation model, MoLAM. The core idea of MoLAM
is that LLMs with different architectures exhibit varying
performance across datasets (Jiang, Ren, and Lin 2023).
Therefore, by aggregating the outputs of several lightweight
LLMs, MoLAM generates more reliable and comprehensive
labels, delivering annotation quality that is acceptable for
downstream active learning training.

Figure. 3 illustrates the training process of the MoLAM,
including training data generation and model training. Mo-
LAM is trained solely on the initial labeled dataset, which

Figure 3: Overview of MoLAM.

comprises a very small portion of the entire data pool (only
50 instances). Let {x, y} denotes one labeled example from
the initial labeled set L, and letMi ∈ {M1, ...,MN} repre-
sents the ith LLM among the N LLMs involved in MoLAM.
To construct the training data for MoLAM, each LLMMi

is queried T times on the same input x to produce: a log-
its vector, zi ∈ RK , representing the model’s confidence
over K candidate labels; a consistency score, ci ∈ RK ,
where each component c(k)i indicates how frequently class
k ∈ {1, . . . ,K} is predicted across T generations. The com-
putation is formalized as follows:

zi =Mi(x), zi ∈ RK (1)

ŷti = Decode(Mi(x)), t = 1, . . . , T (2)

c
(k)
i = 1

T

∑T
t=1 I[ŷti = k], ∀k ∈ 1, . . . ,K (3)

We then train MoLAM using the labeled data in the form
of {[z1, c1, . . . , zN , cN ], y}, where each input consists of
logits and consistency scores obtained from multiple LLMs.



Given the limited amount of labeled data available for super-
vision, we adopt a semi-supervised learning strategy based
on a pseudo-labeling mechanism to leverage additional in-
formation from the unlabeled pool. A confidence threshold
σ is applied to determine whether an unlabeled instance is
reliable enough to be used for training. In this way, MoLAM
encapsulates the collective knowledge of Mixture of LLMs
and generates the refined label y+, which are then used in
subsequent active learning iterations. Additionally, to fur-
ther exploit the expert knowledge implicitly encoded in the
LLMs, MoLAM identifies negative labels y−, defined as la-
bels assigned consistently low probabilities (below threshold
δ) by all LLMs. These negative labels are integrated into the
training process via negative learning to improve the robust-
ness and discriminative ability of the AL model. The overall
procedure is formalized in the following equations:

h(x) = [z1, c1, . . . , zN , cN ] ∈ R2N ·K (4)

y− = {k|z(k)i < δ, ∀i ∈ 1, . . . , N} (5)

(y+, y−) = MoLAM(h(x)) (6)

Robust Active Learning

With MoLAM, the labels generated by a Mixture of LLMs
become more reliable than single LLM. However, due to the
inherent noise in LLM-generated annotations, we introduce
robust active learning, which leverages implicit information
embedded in both the LLMs outputs and the AL model pre-
dictions to further guide the training.

Specifically, we employ negative labels y− as the set of
classes that all LLMs assign consistently low confidence to,
as defined in Eq. (5). To discourage the AL model from pre-
dicting these likely incorrect labels, we incorporate a nega-
tive learning loss Lneg into the training objective. This loss
penalizes the model for assigning high probability to any
class in y−, and can be formulated as:

Lneg = −
∑

k∈y− log(1− p(k|x)) (7)

where p(k|x) is the predicted probability of class k by the
AL model for input x, and y− ⊂ {1, . . . ,K} is the set of
negative labels provided by MoLAM.

Moreover, the AL model can be regarded as task-specific
SLM, trained for a particular task and thus more likely to
encode domain-relevant knowledge. We apply the disagree-
ment between the AL model predicted label and the Mo-
LAM generated label as an indicator of annotation discrep-
ancy, denoted as danno, and formularized as danno = I[ỹ ̸=
y+], where ỹ = argmaxkp(k|x), denotes the predicted class
by the AL model. Empirically, we observe that danno is ef-
fective in identifying erroneous labels produced by LLMs.
To avoid training leakage, we compute danno using the AL
model’s predictions from the previous iteration, before the
newly selected samples have been incorporated into training.
A detailed analysis of the effectiveness of danno is presented
in the Component Effectiveness Analysis section under Ex-
periments. We incorporate danno as a weight to emphasize
high confidence annotations during training. We define the

Algorithm 1: MoLLIA Training and Update Strategy
Input: Labeled pool L; Unlabeled pool U ; annotation
model MoLAM; AL model; query size B; annotation
discrepancy danno; negative labels y−.
Output: Updated labeled and unlabeled pool, AL model,
annotation discrepancy, negative labels.

1: for AL iteration do
2: Select a batch of B instances x = {x1, x2, . . . , xB}

from U using the query strategy
3: Obtain MoLAM-generated labels y+ and negative la-

bels y− of x from MoLAM via Eq. (6)
4: Update Labeled and unlabeled pool:

L← L+ {(x, y+)}; U ← U − {x}
5: Obtain AL-predicted label ỹ = argmaxk p(k|x)
6: Compute negative learning loss Lneg via Eq. (7)
7: Compute annotation discrepancy danno = I[ỹ ̸= y+]
8: Compute weightWd via Eq. (8)
9: Update the AL model via Eq. (9)

10: end for

sample specific weightWd as:

Wd =

{
1 if danno = 0
α if danno = 1

(8)

where α ∈ (0, 1) is a down-weighting factor that reduces the
influence of potentially incorrect annotations. The final loss
function for the AL model is then defined as:

L =Wd · LCE + λLneg (9)

where LCE is the standard cross-entropy loss for multi-class
classification, Lneg is the negative learning loss, and λ is hy-
perparameter controlling the weight of the negative learning
penalty term. The complete training and update strategy of
the MoLLIA framework is summarized in Algorithm 1.

Experiments
To evaluate the performance and robustness of our proposed
framework, we use four benchmark multi-class text classifi-
cation datasets that are widely adopted in active learning re-
search via Hugging Face platform1: AG News (Zhang, Zhao,
and LeCun 2015), IMDB (Maas et al. 2011), TREC (Li and
Roth 2002), and PubMed (Dernoncourt and Lee 2017). AG
News is a news classification dataset composed of news ti-
tles and descriptions; IMDB is a collection of movie reviews
for sentiment classification; TREC is a question classifi-
cation dataset contains open-domain, fact-based questions;
PubMed is a biomedical text classification dataset composed
of article abstracts focused on diabetes-related topics. Ta-
ble 1 provides a detailed summary of these datasets. The
train, validation, and test splits used in our experiments fol-
low the original dataset configurations.

Implementation
To balance both performance and deployability, we adopt
five widely used lightweight LLMs, each ranging from

1https://huggingface.co/datasets



Dataset #Vocab./ #Document
#Label Train Vali. Test

AG News 65,043/4 114,000 6,000 7,600
IMDB 74,891/2 22,500 2,500 25,000
TREC 8,446/6 5,000 452 500
PubMed 45,457/5 176,642 29,672 29,578

Table 1: Experiment used dataset statistics.

7B to 9B parameters—suitable for inference on a sin-
gle GPU with 24GB VRAM. The selected models in-
clude Gemma-2-9B-it, Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.2, Qwen2.5-Coder-7B-Instruct, and Yi-1.5-9B.
And the prompt is shown in Appendix.

We employed two pretrained language models as back-
bone classifiers, DistilBERT (Sanh 2019) and Distil-
RoBERTa (Liu et al. 2019), implemented using PyTorch
(Paszke et al. 2019). To better simulate real-world deploy-
ment scenarios, we applied the cold start strategy (Zhu et al.
2019) with random initialization at the beginning of each
active learning iteration (Frankle and Carbin 2018). All ex-
periments were conducted on a single NVIDIA A40 GPU.
The maximum input sequence length was set to 128 tokens,
and each training iteration was run for up to 40 epochs. The
initial labeled training set and query batch size were both set
to 50 instances. To prevent overfitting and improve training
efficiency, we applied early stopping with a patience of 10
epochs (Du et al. 2019; Ying 2019). We used the AdamW
optimizer (Loshchilov and Hutter 2019), and the learning
rate was set to 5e-5.

The annotation model, MoLAM, is implemented with
XGBoost (Chen and Guestrin 2016). It is trained on 50 in-
stances, identical to the initial labeled training set, randomly
selected from the training set and validated on the corre-
sponding validation set. The thresholds for pseudo-labeling
and negative label identification are set to 0.9 and 0.001, re-
spectively. The annotation discrepancy weight α fixed at 0.5,
while the negative learning weight λ increases linearly from
0.4 to 1 during AL iteration. The XGBoost hyperparameter
for each dataset are provided in Appendix.

Baselines
As the field of LLMs in the Loop active learning is still
in its early stages and prior work primarily adopts either a
single LLM as the annotator or relies on human–LLM hy-
brid setups, there is currently no established baseline for
multi-LLMs annotation frameworks. Therefore, to provide
a meaningful comparison, we evaluate our proposed MoL-
LIA framework against single-LLM annotation across four
widely used active learning query strategies. To demonstrate
the generalization capability of our framework, we adopt
representative query strategies from three major categories:
uncertainty-based, diversity-based, and hybrid approaches.
NoiseStability (Li et al. 2024b), an uncertainty-based strat-
egy, selects instances based on the variability of model pre-
dictions under perturbations. CoreSet (Sener and Savarese
2018), a diversity-based strategy, identifies a subset of sam-

Methods AG News IMDB TREC PubMed

Single
LLM

GEMMA 0.8349 0.9373 0.5741 0.7313
LLAMA 0.7908 0.9172 0.4870 0.6233
MISTRAL 0.8182 0.8835 0.6357 0.6257
QWEN 0.7763 0.9403 0.6566 0.6217
YI 0.7930 0.9503 0.7682 0.6755

LLM
Ensem.

Vote-based 0.8247 0.9418 0.7320 0.6802
Logits-based 0.8262 0.9421 0.7113 0.6802

Others

DA 0.5487 0.9206 0.4186 0.6864
PAG 0.7771 0.9322 0.7152 0.7444
SNAIL 0.8342 0.9489 0.6903 0.7199
FixMatch 0.8530 0.9490 0.7207 0.7096
MoL 0.8819 0.9534 0.7924 0.7744
MoLAM 0.8887 0.9538 0.8040 0.7772

Table 2: Annotation accuracy across datasets for different
approaches.

ples that best represents the entire unlabeled pool by maxi-
mizing coverage in the feature space. BEMPS (Tan, Du, and
Buntine 2023), a hybrid strategy, computes a proper scor-
ing rule for each instance based on the model’s predictive
distribution, effectively capturing both uncertainty and rep-
resentativeness. In addition, we include Random Sampling
as a baseline to serve as a reference point for performance
without active query selection.

To evaluate the effectiveness of our annotation module,
MoLAM, we compare it against a diverse set of base-
lines that share the common objective of enhancing anno-
tation quality. These include approaches based on LLM-
ensemble, data augmentation, meta-learning, and semi-
supervised learning. Since the classification task does not
involve semantically meaningful output text, we adopt two
output-based LLM-ensemble methods as baselines: vote-
based (Li et al. 2024a) and logits-based (Fathullah, Xia,
and Gales 2023). These methods aggregate the predicted la-
bels or the predicted probability distributions from multi-
ple LLMs to produce the final annotation. To address the
challenge of limited labeled data, we additionally consider
vocabulary-level data augmentation (DA) (Ma 2019) and
sentence paraphrasing (PAG) (Yadav, Tang, and Srinivasan
2024) as baselines, both aimed at enriching the input space.
Furthermore, since the Mixture of LLMs paradigm can also
be viewed as a form of black box meta-learning, we compare
MoLAM with SNAIL (Mishra et al. 2018), a representative
meta-learning method designed to adapt rapidly from few-
shot examples. To assess the ability of MoLAM to utilize
unlabeled data, we benchmark MoLAM against FixMatch
(Sohn et al. 2020), a widely adopted semi-supervised learn-
ing method. Lastly, we include MoL, an ablation variant of
MoLAM that excludes the pseudo-labeling mechanism, to
isolate its contribution to overall performance.

Annotation Performance of MoLAM
Table. 2 presents the annotation performance of our pro-
posed MoLAM compared with other annotation baselines,
evaluated on a randomly sampled test set. For the first two



Figure 4: Averaged micro-F1 score with BEMPS on Distil-
BERT, averaged results with 5 random seeds.

sections, Single LLM and LLM-ensemble, the reported ac-
curacy is obtained by directly applying each method to la-
bel the input without any additional training. For the re-
maining methods involve training-based approaches, they
are trained on 50 instances, same as the size of initial la-
beled pool. To maintain the consistency, the model back-
bones used for DA and PAG are XGBoost, the same as Mo-
LAM. While for SNAIL and FixMatch, we adopt a MLP
backbone with residual connections, in line with the archi-
tectural requirements of these methods, as XGBoost does
not support gradient-based optimization.

From the table, we first observe that individual LLMs
exhibit varied annotation performance across different
datasets, and no single model consistently outperforms on all
four benchmarks. This highlights the necessity of a Mixture-
of-LLMs-based annotation model to improve generalization
and robustness across diverse datasets. Additionally, we find
that IMDB appears to be relatively easier for LLMs to anno-
tate, whereas TREC and PubMed present greater challenges.
This may be attributed to differences in the semantic mean-
ing and complexity of the labels inherent to each dataset.

Among the methods that aggregate outputs from multiple
LLMs, MoLAM consistently achieves the highest annota-
tion performance across all datasets and baselines. While
ensemble-based approaches help stabilize predictions by
combining outputs from multiple LLMs, they do not lead
to substantial improvement in annotation quality. Input data
augmentation methods, DA and PAG, also exhibit lim-
ited effectiveness, likely because both vocabulary-level and
sentence-level augmentations fail to enrich the input feature
space; in particular, word-level transformations may distort

Figure 5: Averaged micro-F1 score with NoiseStability on
DistilBERT, averaged results with 5 random seeds.

the original semantics, resulting in degraded annotation per-
formance. While advanced trainable methods, SNAIL and
FixMatch, employ more complex architectures with atten-
tion mechanisms, their performance still falls short of Mo-
LAM. This could be attributed to the limited expressiveness
of the input features, which constrains the effectiveness of
sophisticated architectures in this annotation setting. More-
over, the usage of pseudo-labeling in MoLAM plays a key
role in effectively leveraging unlabeled data, further enhanc-
ing its annotation performance. We also present specific ex-
amples of labels generated by MoLAM compared with those
from ensemble methods, as shown in Appendix Fig. 12.

Active Learning Performance
Fig. 4 and 5, along with Fig. 8 and 9 in the Appendix, il-
lustrate the performance of our proposed framework across
different datasets, backbone classifiers, and query strategies.
LLMs-L and LLMs-V refer to the LLM-ensemble methods
based on logits and voting, respectively. Overall, we ob-
serve that MoLLIA consistently outperforms both individual
LLM and ensemble-based methods, achieving performance
comparable to that of human annotators. Notably, on sim-
pler datasets such as IMDB, which contains only two la-
bels, MoLLIA even surpasses the oracle annotations. This is
attributed to the incorporation of negative learning and an-
notation discrepancy, which enhance learning effectiveness.
For datasets that are more challenging for LLMs to anno-
tate, MoLLIA still demonstrates superior performance over
both single LLM and ensemble methods, closely matches
human-level annotation quality, and highlighting its poten-
tial as a practical substitute for human annotators. While



AG News IMDB TREC PubMed
True Negative Labels 0.4833 0.2142 0.2511 0.1844
False Negative Labels 0.0030 0.0002 0.0001 0.0022

Table 3: Distribution of negative labels across datasets, re-
ported as the proportion relative to the full label space.

Figure 6: True positive detection rate of annotation dis-
crepancy across different estimation methods, measured as
the proportion of correctly identified accurate annotations
among all annotated instances.

some single LLM, e.g. Llama and Yi, perform well on spe-
cific datasets, their performance is inconsistent and tends to
drop significantly on others, highlighting the lack of gener-
alization across diverse tasks.

Component Effective Analysis and Ablation Study
To evaluate the effectiveness of key components in our
framework, we conduct a quantitative analysis of the neg-
ative labels and annotation discrepancy. Table 3 reports the
distribution of negative labels y− provided by MoLAM with
the δ = 0.001 across the total label space. True Negative
Labels indicate cases where MoLAM correctly identifies la-
bels that do not belong to the instance, while False Negative
Labels correspond to instances where the true label is mis-
takenly classified as negative. The results demonstrate that
MoLAM offers insightful guidance to the AL model through
its negative label predictions. Importantly, the false negative
rate remains extremely low across all datasets, suggesting
that the use of negative labels introduces minimal additional
noise into the learning process. Fig. 6 presents the true pos-
itive detection rate of annotation discrepancy, measured as
the proportion of correctly identified accurate annotations
out of all annotations. We compare our approach with sev-
eral mainstream uncertainty estimation methods, including
entropy, margin, and consistency-based metrics. The results
show that the discrepancy derived from the disagreement be-
tween AL model and LLMs achieves the highest detection
performance, highlighting its effectiveness in identifying po-
tentially unreliable annotations.

To assess the contribution of each core component in our
proposed MoLLIA framework, we conduct an ablation study
with four variants, as summarized in Table 4. Each variant

MoLAM Negative Learning Annotation Discrepancy
A

√ √ √

B
√ √

C
√ √

D
√

Table 4: Ablation study configurations.

Figure 7: Ablation study of different component, and the leg-
end is referred from Table 4.

disables one or more components, Negative Learning and
Annotation Discrepancy, while retaining the MoLAM anno-
tation module. The corresponding experimental results are
presented in Fig. 7, with each curve labeled according to
its configuration in the table. The results clearly show that
both Negative Learning and Annotation Discrepancy signif-
icantly contribute to the overall performance of the model.
Notably, the inclusion of Negative Learning yields the most
substantial performance improvement, underscoring its crit-
ical role in enhancing the learning effectiveness of the AL
model model by guiding it away from wrong predictions.

Additionally, we conduct a parameter sensitivity analysis
to evaluate the generalizability of MoLLIA, as shown in Ap-
pendix Fig. 10 and Fig. 11. To demonstrate the deployability
of the proposed framework, we report the maximum CUDA
memory usage across different datasets and backbone mod-
els in Appendix Table 5.

Conclusion

In this study, we proposed a novel active learning framework
that replaces human annotators with a Mixture-of-LLMs-
based annotator, significantly reducing annotation costs. To
ensure practical applicability and robustness in real-world
scenarios, our framework relies solely on lightweight LLMs
and incorporates negative learning and annotation discrep-
ancy to further enhance the learning effectiveness of the AL
model. Overall, the proposed MoLLIA framework demon-
strates strong performance across four benchmark datasets,
achieving annotation quality comparable to that of human
annotators. Future work may explore hybrid annotation
strategies that combine LLM-generated and human labels to
balance efficiency and accuracy.
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Appendix

Additional Result

Figure 8: Averaged micro-F1 score with CoreSet on Distil-
RoBERTa, averaged results with 5 random seeds.

Figure 9: Averaged micro-F1 score with random on Distil-
BERT, averaged results with 5 random seeds.

Parameter Sensitive Analysis
Figures 10 and 11 present the parameter sensitivity analy-
sis for the negative learning weight λ and the annotation
discrepancy weight α. The results are reported as micro-F1
scores, averaged over five random seeds using the Random
query strategy on DistilBERT. Since λ is linearly increased
during AL iterations, the legends indicate its starting and
ending values. Overall, the results show that increasing λ
benefits the learning process by gradually incorporating neg-
ative labels. Additionally, setting α = 0.5 allows the model
to effectively leverage annotation discrepancies, helping it
focus on more reliable supervision.

Figure 10: Performance on different negative learning
weight parameter λ.

Figure 11: Performance with different values of the annota-
tion discrepancy weight parameter α.

Qualitative Evaluation of MoLAM
Fig. 12 presents two examples illustrating the annotation
performance of MoLAM. In these examples, LLMs-L and
LLMs-V represent the LLM-ensemble baselines based on
logits aggregation and majority voting, respectively. The val-
ues shown in square brackets correspond to the logits (for
LLMs-L) or consistency scores (for LLMs-V) associated
with each label index in the label list. In some cases, the
sum of the consistency scores does not equal 1 because cer-
tain LLMs may generate non-existent or invalid labels.



(a) An example on IMDB.

(b) An example on AG News.

Figure 12: Qualitative comparison of annotation perfor-
mance between LLM-ensemble and MoLAM.

All logits and consistency scores from the participating
LLMs serve as input features to MoLAM. Notably, in both
examples, MoLAM successfully predicts the correct label
even when both ensemble baselines fail. This highlights the
effectiveness of our proposed Mixture-of-LLMs-based an-
notation model in capturing nuanced decision patterns be-
yond simple aggregation, leading to more accurate and ro-
bust annotations.

Prompt design

Classify the given question based on the following
categories: {List of labels}
Task: Determine the most appropriate category for
the question. Your response should be only one of
these labels: {List of labels}, with no additional text
or explanation.
Question: {article}
Output:

MoLAM parameter

AG News IMDB TREC PubMed
Learning rate (lr) 0.07 0.01 0.05 0.01
Max depth (md) 5 5 6 3
# Estimators (ne) 300 300 300 500

Table 5: XGBoost hyperparameters used in MoLAM across
datasets.

CUDA Memory Usage

AG News IMDB TREC PubMed
DistilBERT 20489 20780 20348 20114
DistilRoBERTa 20516 20604 19988 20340

Table 6: The maximum CUDA memory occupation (MB)
during the AL iteration across different query strategies.


