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Abstract

In machine learning, an agent needs to estimate uncertainty to efficiently explore and adapt
and to make effective decisions. A common approach to uncertainty estimation maintains
an ensemble of models. In recent years, several approaches have been proposed for training
ensembles, and conflicting views prevail with regards to the importance of various ingredients
of these approaches. In this paper, we aim to address the benefits of two ingredients —
prior functions and bootstrapping — which have come into question. We show that prior
functions can significantly improve an ensemble agent’s joint predictions across inputs and
that bootstrapping affords additional benefits if the signal-to-noise ratio varies across inputs.
Our claims are justified by both theoretical and experimental results.

1 Introduction

Effective decision making, exploration, and adaption often requires an agent to know what it knows and also
what it does not know, which further relies on the agent’s capability for uncertainty estimation. In the past
few decades, many different approaches have been developed for uncertainty estimation, such as dropout (Gal
& Ghahramani, 2016), Bayes by Backprop (Blundell et al., 2015), hypermodels (Dwaracherla et al., 2020),
and stochastic Langevin MCMC (Welling & Teh, 2011; Dwaracherla & Van Roy, 2020). Maintaining an
ensemble of models is one of the most commonly used uncertainty estimation method. In particular, several
variants of ensemble agents have been developed for uncertainty estimation (Lakshminarayanan et al., 2017;
Fort et al., 2019; Osband et al., 2018) and downstream decision problems, such as bandits (Lu & Van Roy,
2017) and reinforcement learning (Osband et al., 2016).

An ensemble agent represents uncertainty based on a set of different models, but how should we train such
different models based on the same training dataset and prior knowledge? Different approaches have been
proposed, and it is still highly debated which approaches should be adopted for various practical problems.
Some recent papers (Lakshminarayanan et al., 2017; Fort et al., 2019) suggest that we can train such
models just with random parameter initialization and data shuffling. However, this approach does not pass
some simple sanity checks; for example, it does not produce diversity across models when applied to linear
regression. On the other hand, Osband et al. (2018) and He et al. (2020) propose to train ensemble agents
with randomized prior functions and emphasize the importance of incorporating agent’s prior uncertainty into
ensemble agent training. Finally, bootstrapping (Efron & Tibshirani, 1994) is a class of widely used techniques
to train diverse models. However, a recent paper (Nixon et al., 2020) questions whether bootstrapping plays
an essential role and suggests that it can even hurt performance. More broadly, the literature presents
conflicting messages with regards to the importance of prior functions and bootstrapping. In this paper, we
aim to bring clarity to these issues.

Most work on supervised learning has focused on producing accurate marginal predictions for each input.
However, recent papers (Wen et al., 2021; Wang et al., 2021; Osband et al., 2022a) emphasize the importance
of accurate joint predictions. In particular, accurate joint predictions are crucial for efficient exploration,
adaptation and effective decision. Taking cue from this line of research, we evaluate performance of ensemble
agents based on their joint as well as marginal predictions.
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We frame a class of ensemble agents — which includes those with and without prior functions or bootstrapping —
through proposing loss function perturbation as a unifying concept. By systematically comparing performance
of agents across this class, we elucidate benefits of prior functions and bootstrapping. In particular, we show
that prior functions can significantly enhance an ensemble agent’s joint predictions. As explained in (Wen
et al., 2021), joint predictions drive efficiency of exploration and adaptation. With regards to bootstrapping,
we show that further benefits depend on the variation of the signal-to-noise ratio (SNR) across the input space.
If the SNR is uniform across the input space and prior functions are appropriately tuned then bootstrapping
offers no significant value. On the other hand, if the SNR varies substantially across the input space then
bootstrapping can significantly improve performance regardless of how prior functions are tuned.

The remainder of this paper proceeds as follows: we first review literature in Section 2 and formulate the
problem in Section 3. Then we justify the main points of this paper, as discussed above, via analaysis
on Bayesian linear regression (Section 4), numerical experiments on classification using neural networks
(Section 5) and bandit problems (Section 6). For experiments on classification we consider the synthetic
data generated by Neural Testbed (Osband et al., 2022a), and CIFAR10 (Krizhevsky, 2009), a widely used
benchmark image dataset. Finally, Section 7 concludes the paper.

2 Literature review

In recent years, in addition to improving prediction accuracy (Hastie et al., 2009; Dietterich, 2000), ensemble
agents have also been built for uncertainty estimation (Lakshminarayanan et al., 2017; Fort et al., 2019;
Osband et al., 2018) and decision-making (Lu & Van Roy, 2017). In particular, Lakshminarayanan et al. (2017)
proposed to train ensemble agents for uncertainty estimation only based on random parameter initialization
and data shuffling. Though this simple approach might work in certain scenarios, it does not pass simple
sanity checks. On the other hand, Osband et al. (2018); He et al. (2020) proposed to train ensemble agents
by effectively perturbing the loss function of each model with a random but fixed additive prior function,
which incorporates the agent’s prior uncertainty.

Ensemble agents are also widely used in sequential decision problems, such as bandits (Lu & Van Roy, 2017)
and reinforcement learning (Osband et al., 2016). In particular, ensemble sampling (Lu & Van Roy, 2017;
Qin et al., 2022) is a particular version of Thompson sampling (Thompson, 1933; Russo et al., 2018) that
uses an ensemble of models to represent the uncertainty.

In most existing literature, agents are evaluated based on their marginal predictive distributions. Examples
of such metrics include marginal negative log-likelihood (NLL), Brier score (Brier et al., 1950), accuracy,
and expected calibration error (ECE) (Guo et al., 2017). Recent papers (Wen et al., 2021; Wang et al.,
2021) discussed the importance of joint predictive distribution for a wide range of downstream tasks, such
as sequential decision problems. Practical evaluation metrics have also been developed to evaluate the
joint predictive distributions (Osband et al., 2022a;b). A recent paper (Nixon et al., 2020) suggests that
non-parametric bootstrapping might not be helpful for building better ensemble agents. However, this paper
is limited to small ensemble sizes, high-SNR deep learning problems, and the agents are evaluated based on
their marginal predictive distributions. In addition to ensemble agents, there are other agents developed for
uncertainty estimation, as discussed in Section 1. Recently, the concept of epistemic neural network (Osband
et al., 2021) has been developed as a unifying umbrella for these agents.

3 Preliminaries

Consider a sequence of data pairs ((X¢,Yi41) : ¢t =0,1,2,...), where each X; is an input vector and Y;4 is
the associated output. Each output Y;;1 is independent of all other data, conditioned on Xy, and distributed
according to £(:|X;). The conditional distribution £ is referred to as the environment. The environment & is
random; and this reflects the agent’s uncertainty about how outputs are generated given inputs.

Note that IP(K_A,_l € |S,Xt) = €(|Xt) and IP(}/t_A,_l S |Xt) = E[5(|Xt)‘Xt]
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agent random initialization | prior function | bootstrapping
ensemble-N Yes No No
ensemble-P Yes Yes No
ensemble-BP Yes Yes Yes

Table 1: Comparison of ensemble-N, ensemble-P, and ensemble-BP: whether or not random initialization,
prior function, and bootstrapping are used for training different models.

To illustrate the main points of this paper, we consider three variants of ensemble agents, referred to as
ensemble-N, ensemble-P, and ensemble-BP'. All these agents include an ensemble of models, and are trained
based on Dy = ((X¢,Yi41) : ¢ =0,1,...,7 — 1). However, they differ in if prior functions and bootstrapping
are used for training, as illustrated in Table 1. In particular, the models in ensemble-N are trained with the
same loss function but different random initialization. On the other hand, in addition to random initialization,
models in ensemble-P are trained with random prior functions, and models in ensemble-BP are trained with
both prior functions and bootstrapping. For each ensemble agent, we denote its m-th model as Em, and
hence the agent is represented by ©p = (ffl, el E'AM)7 where M is the number of models in the ensemble.
Note that an ensemble agent defines a discrete distribution in the space of environments:

P(E € |or) = 4 o 1(ém € ),

where & is the agent’s imaginary environment. This discrete distribution is an approximation of the true
posterior P (€ € -|Dr), and characterizes the agent’s uncertainty about £.

We now briefly discuss how to evaluate an ensemble agent’s performance. In supervised learning, one
natural metric is the expected Kullback—Leibler (KL) divergence between P (€ € -|Dr) and IP(é €+67). In
Section 4, we use this metric to evaluate ensemble agents with a large number of models in linear regression
problems. However, for more general problems, this metric is computationally intractable and can also be
infinite. Thus, following previous papers (Wen et al., 2021; Osband et al., 2022a;b), we evaluate the ensemble
agent based on its predictive distributions. Specifically, for any inputs Xp.ry,—1 = (X7, ..., X1r4r—1), the
ensemble agent determines a predictive distribution, which could be used to sample imagined outcomes
?T+1:T+r = (YT+1, e ,Y/TJFT). Hence, the agent’s 7-th order predictive distribution is given by

Proyr—1 =PYri1r4r € 1O7, Xirsr—1), (1)

which represents an approximation to the underlying output distribution that would be obtained by condi-
tioning on the environment:

Py, =P Yriirir € 16 Xrrir-1). (2)

If 7 = 1, this represents a marginal prediction; that is a prediction of a single output. For 7 > 1, this is
a joint prediction over a sequence of 7 outputs. Recent papers (Wen et al., 2021; Osband et al., 2022a)
propose to use the expected KL-divergence between P7., . ; and Pr.rir_1, referred to as df; , to evaluate
both the marginal prediction and the joint prediction. Osband et al. (2022b) further proposed a variant
of df;, based on dyadic sampling, referred to as d%’i, to evaluate the agents’ joint prediction for practical
problems with high input dimension. In Section 5, we follow Osband et al. (2022b) to use diy, with 7 =1 to
evaluate marginal predictions and d%i with 7 = 10 to evaluate joint predictions. Finally, in bandit problems
(Section 6), we use the standard expected cumulative regret to evaluate ensemble agents. We will further
discuss the evaluation metrics in subsequent sections and Appendix A.

4 Bayesian linear regression

In this section, we use the classical Bayesian linear regression problem as a didactic example to compare
ensemble-N, ensemble-P, and ensemble-BP with a large number of models. In particular, we highlight the
benefits of bootstrapping in ensemble-BP.

1«p" stands for prior function, “B" for bootstrapping, and “N" for neither.
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Consider a Bayesian linear regression problem with heteroscedastic noises:
Yig1 =07 X, 4+ Wiy, t=0,1,2,... 3)

where 6, € R? is the coefficient vector and identifies the environment &, and Wii1’s are additive noises.
We assume that inputs X;’s are i.i.d. sampled from an input distribution Px. Moreover, conditioned on
X¢, the additive noise W;,; is independently sampled from N(0,02(X;)), where 02 : R? — R+ is the noise
variance function, i.e., noise variance depends on input. The agent does not know 6, but knows that prior
over 0, is N(0,031)? and also knows o2(-). Conditioned on the training data Dz, the posterior over 0, is
0. | Dr ~ N (ur,XT), where the posterior mean pur and the posterior covariance Y are

Yo — |:I 2 T-1 T/ 2 -1 _ T-1 2
r=[1/od + SI XXT /o2 (X)) and g = S [S15 XY o?(X0)]

4.1 Ensemble agents with a large number of models

We consider ensemble agents with a large number of models, and each m-th model is identified by a coefficient
vector 6,, € R?. As a standard method for training ensemble agents on linear regression problems (Lu &
Van Roy, 2017; Qin et al., 2022), we compute 6,, by minimizing the following perturbed loss function:

!

N X
0, € argmin 48.9)
P 2

A _
(67X = Yerr + Zevim]) + 5 0= Oull,, ¥m=1,....M )
t

i
<

where Z; 41, is additive perturbation for data pair (X, Y;+1) sampled from N (0, &2 (Xt)); v, 62 R — R
are respectively the weight function and the bootstrapping variance function; A > 0 is the regularization
coefficient; and 6,, is independently sampled from N (0,62I). The magnitude of 62 reflects the agent’s
prior uncertainty, and hence 6y is known as the agent’s prior scale. Note that [|§ — 6,,]|3 is a randomly
perturbed regularizer, and is equivalent to a prior function for linear regression (Osband et al., 2018). It is
straightforward to show that

b = (212 VX)X XT 4+ A1) 7 (S15 V(X0 (Ve + Ziga,m) X+ M) (5)

Note that Z, 1 ,, and ém are random variables, and ém | Dy ~ N (,&T, f)T), where i and fZT are respectively

the mean and covariance of 6,, conditioned on Dr (see Appendix B.1 for their analytical solutions). We say
an ensemble agent is unbiased if i = ur.

As discussed in Section 1, we consider three variants of ensemble agents: ensemble-N, ensemble-P, and
ensemble-BP. Note that for Bayesian linear regression, all these three agents can be trained based on
the perturbed loss function (4), but with different constraints on loss function parameters reflecting if
prior functions and bootstrapping are enabled. In particular, ensemble-N does not use prior functions or
bootstrapping, and fix 63 = 0 and 62(-) = 0. ensemble-P uses prior functions, but does not use bootstrapping
by fixing 62(-) = 0. ensemble-BP uses both prior functions and bootstrapping. Table 2 summarizes the
differences between ensemble-N, ensemble-P, and ensemble-BP.

’ agent ‘ Aand v(+) ‘ 52 ‘ 52(+) ‘
ensemble-N | allowed to tune fixed at 0 fixed at 0
ensemble-P | allowed to tune | allowed to tune fixed at 0
ensemble-BP | Proposition 1 Proposition 1 Proposition 1

Table 2: Comparison of ensemble-N, ensemble-P, and ensemble-BP for linear regression. The parameters
for ensemble-BP are chosen as the optimal parameters (Proposition 1).

2Note that this isometric prior assumption is without loss of generality: any Bayesian linear regression problem satisfies this
assumption after appropriate coordinate transformation.
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Note that the discrete distribution represented by an ensemble agent is an empirical distribution of M
samples from P(Gm € -’DT) = N(ﬂT, ZT). Moreover, as M — oo, this discrete distribution converges to

P(ém S -’DT). In this section, we choose to evaluate

Eldic (P(6. € D) || P(0 < 1)), ©)

which effectively measures the performance of an ensemble agent with a large number of models. Further
discussion on this metric is provided in Appendix A. The following results show that for Bayesian linear
regression, ensemble-N cannot represent any uncertainty, since its models use the same strictly convex
loss function. On the other hand, ensemble-BP with infinite models is able to match the exact posterior
IP(H* € -}DT) by properly choosing the parameters in the perturbed loss function (4). The proofs are
straightforward and are provided in Appendix B.2.

Proposition 1 (ensemble-BP) For perturbed loss function (4), if we choose 62(-) = o2(-), v(-) = 1/d%("),
68 =0, and A\ = 1/0}, then ]P(Hm €-|Dr) =P (0. €-|Dr).

Proposition 2 (ensemble-N) For perturbed loss function (4), if we choose 6%(-) = 0 and 62 = 0, then 0,,
is deterministic conditioned on Dr.

4.2 Benefits of bootstrapping

We now compare ensemble-P and ensemble-BP, and show the benefits of bootstrapping. Note that Proposi-
tion 1 indicates that by appropriately choosing parameters for ensemble-BP, ]P(ém € - | DT) =P (0. €-|Dr).
On the other hand, we derive a lower bound on the expected KL-divergence for unbiased ensemble-P, based
on expected signal-to-noise (SNR) ratios along orthogonal directions. Consider the positive semi-definite
matrix

I =E 03X, X! /o?(X1)], (7)

where the expectation is over the input X;. Let v;, i = 1,2,...,d, denote the d eigenvalues of I, and
let v; denote the normalized eigenvector associated with ;. Recall that 7;’s are nonnegative and v;’s are
orthonormal. Hence, we have 07 X, = Z?Zl (6%v;) (X{'v;) and

V(X i) (0T vi) | Xi]
o?(X¢) ’

vi=v;Tv; =& [Jg(XtTvi)Q] =

o?(Xy)

where V|| denotes the (conditional) variance. Note that V [(X{v;)(#7v;) | X;] can be interpreted as the
magnitude of signal at X; along direction v;, and 0%(X;) is the magnitude of noise at X;. Thus, eigenvalue
v; can be interpreted as expected SNR along direction v;. We have the following lower bound for unbiased
ensemble-P based on 7;’s

Theorem 1 For perturbed loss function (]) and ensemble-P agents with 62(-) = 0, under any choice of v(-),
A, and 63 such that ensemble-P is unbiased, we have

sl (P < 21| i for))] = (11, ©

where v;’s are d eigenvalues of I and 7 = é Zle Yi-

Please refer to Appendix B.3 for the proof of Theorem 1. Note that this lower bound is always non-negative
due to Jensen’s inequality, and is zero when +;’s are equal. Theorem 1 states that if expected SNRs along
different directions are very different, or equivalently if matrix I' is “ill-conditioned”, then the expected
KL defined in (6) is large for unbiased ensemble-P. Note that I' can be ill-conditioned for several different
reasons. For instance, I is likely to be ill-conditioned if 0(X;) varies significantly across different directions
(heteroscedastic), or if the covariance matrix of the input distribution Px is ill-conditioned.
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Theorem 1 is a general lower bound and demonstrates the fundamental limitation of ensemble-P and potential
benefits of bootstrapping. However, there are special cases where bootstrapping is not strictly necessary
and ensemble-P can perform well after appropriate parameter tuning for each setting. Please refer to
Appendix B.4 for such examples.

5 Classification on Synthetic and Real Data

In this section, we switch the gear to compare ensemble-N, ensemble-P, and ensemble-BP in classification
problems. In specific, we look at classification problems on an open-source test suite called Neural Testbed
(Osband et al., 2022a) and a widely used benchmark image dataset, CIFAR10 (Krizhevsky, 2009). More
details about Neural Testbed and CIFAR10 dataset are provided in Appendices C and D. Our experiment
results show that many insights developed in Section 4 also translate to these classification problems. It is
worth mentioning that in this section, we consider ensemble agents with a limited number of models, and
each model is a neural network.

In Section 4, we have seen that ensemble-N reduces to a single point estimate. This might be bit contrived
as loss function is not convex in many deep learning problems. One would hope that, with neural networks,
random initialization is sufficient and ensemble-N will perform well, as suggested by Lakshminarayanan
et al. (2017). Indeed, in our experiments, we find that ensemble-N improves over the performance of a single
point estimate. However, with prior functions and bootstrapping, the performance of ensemble agents can be
further improved significantly.

Given a dataset Dy = (X4, Yt+1)f=_01, the m-th model in an ensemble agent for the classification problems
aims to minimize the perturbed loss function of form

—1 exp (fo,, (Xt))y,
L(Om,Dr) = = Y Wirrm] )
( T) Z +1 g <Zi3=;|1 exp (fom (Xt))i

t=
where Wii1 4, is the weight corresponding to the data pair (X¢,Y;4+1) and the m-th model in the ensemble,
fo(X,) € R is the vector of logits for input X;, and ) is the set of possible labels. Note that the weights
Wii1,m are sampled i.i.d, for each model m and data pair (X, Y;4+1), at the start and remain fixed for
the entire experiment. For both ensemble-N and ensemble-P agents, Wii1,, = 1 Vt,m, while for an
ensemble-BP agent, Wy 1, are sampled i.i.d. from 2 x Bernoulli(0.5). We evaluate the agents on both
marginal predictions and joint predictions. In specific, we use d;q% based on dyadic sampling (Osband et al.,
2022b) to evaluate agents on joint predictions (see Appendix A for more details).

) + A0nl13, 9)

5.1 Experiments on Neural Testbed

We first compare ensemble-N, ensemble-P, and ensemble-BP on Neural Testbed to demonstrate the benefits
of prior functions and bootstrapping in different scenarios. When comparing agents on the Neural Testbed,
the network for the single point estimate is chosen to have the same architecture as the generative model, a
2-layer MLP. We refer to this agent as mlp agent. The ensemble-N agent uses an ensemble of 2-layer MLPs.
The ensemble-P agent uses an ensemble of single point estimates combined with additive prior function
(Osband et al., 2018) at logits. The additive prior functions for each model of ensemble-P agent are different
only through initialization. In particular, we use random MLPs, with same architecture as generative model,
as the prior functions for experiments on neural testbed. The ensemble-BP agent uses the same model as an
ensemble-P agent, but uses bootstrapping to train the model. Please find more details about the neural
testbed and agents in Appendix C.

Figure 1 compares mlp, ensemble-N, ensemble-P, and ensemble-BP agents on the Neural Testbed problems
with input dimension 100. All the results are normalized w.r.t performance of mlp agent. We consider two
ways of tuning the hyperparameters, per problem and global tuning, where we pick a single hyperparameter
set for all the testbed problems. We observe that in both types of tuning, all the agents perform similarly in
marginal predictions. None of the ensemble agents are statistically distinguishable from an mlp which uses a
single point estimate. However, when evaluated by joint predictions, the agents are clearly distinguished.
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When we pick the best hyperparameter per problem (after averaging over 10 random seeds), we can see
that ensemble-N offers some advantage over mlp. This is significantly improved by ensemble-P which
uses prior functions. This highlights the benefits of prior functions. With bootstrapping, ensemble-BP
performs very similarly to ensemble-P and doesn’t improve the performance further. However, when a single
hyperparameter is used over the entire testbed, ensemble-BP agent performs better than mlp and other
ensemble agents. This indicates that one benefit of bootstrapping is robustness to parameter tuning.

0.8 -

0.6 ~

normalized joint ki

normalized marginal ki

global per_setting global
tuning

per_setting

tuning

Figure 1: Marginal predictions do not distinguish agents. Prior functions significantly improve the joint

predictions, with per setting tuning. Bootstrapping increases robustness to parameter specification and
improves predictions, with global tuning.

As presented in Section 4.2, for classification problems with different SNRs across inputs, bootstrapping can
further enhance the performance of ensemble agents. To illustrate this, we consider neural testbed problems
with medium temperature 0.1, and with 25% of samples with label 1 in the training dataset randomly flipped
to label 0 for each problem. This essentially generates two different SNRs across inputs for each problem. We
average the results over 100 random seeds. Figure 2 shows the performance of ensemble-P and ensemble-BP
agents on marginal and joint predictions. Best hyperparameters are chosen per setting for both the agents.
We observe that ensemble-BP agent doesn’t show a statistically significant improvement over ensemble-P in
marginal predictions, but does show such an improvement in joint predictions. A more detail breakdown

of the performance across different data regimes and results from additional experiments are provided in
Appendix C.2.
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Figure 2: Marginal and joint KL on Neural Testbed problems with varying SNR.

5.2 Experiments on CIFAR10

In Section 5.1, we have seen results highlighting the benefits of prior functions and bootstrapping on Neural
Testbed. Neural Testbed offers us a simple and transparent setting and helps us do systematic research
and gain insights. However, at the end the ensemble agents need to be applied on practical problems. We
compare the considered ensemble agents on CIFAR10 dataset and show the benefits of prior functions and
bootstrapping.

CIFARI10 has been widely known in the deep learning community as a benchmark dataset and used to test
classification algorithms. We look at the average performance across 4 problems, each with a different training
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dataset size from {10, 100, 1000, 50000}, where 50000 is the size of full training data set. For these experiments,
we use a vgg model (Simonyan & Zisserman, 2014) as the single point estimate model. An ensemble-N
agent consists of an ensemble of vgg models and ensemble-P agent consists of an ensemble of models with
each model being a vgg model combined with a small randomly initialized convolution network at logits.
The ensemble-BP agent uses the same network architecture as ensemble-P agent, but uses loss functions
perturbed via bootstrapping. In specific, we choose weights in Equation 9 as Wyy1 ,, ~ Bernoulli(p)/p.
We consider three variants with p = 0.5, p = 0.75, and p = 0.9, and the respective agents are referred to
as ensemble-BP(0.5), ensemble-BP(0.75), and ensemble-BP(0.9). More details about the agents and the
CIFARI10 dataset are provided in Appendix D.

Figure 3 compares the vgg, ensemble-N and ensemble-BP agents. The ensemble agents use 100 models, and
we normalize performance w.r.t vgg. Similar to Figure 1, we observe that both ensemble-N and ensemble-P
perform similarly on marginal predictions and offer some improvement over a single point estimate, vgg.
However, once evaluated by joint predictions, ensemble-P performs much better than ensemble-N, and
both ensemble-N and ensemble-P improve over vgg. The agents are evaluated by negative log-likelihood,
which is equivalent to expected KL divergence for agent comparison (Appendix A.3). A detail breakdown of
performance across different problems is provided in Appendix D.2.

1+ e
Z 0.754 _0.751
© c
c
.= 0.504 + 0.504
c

2 5
£ 0.25- T 0.25+

04 0 4

vgg ensemble-N ensemble-P vgg ensemble-N ensemble-P
agent agent

Figure 3: Prior functions significantly improve ensemble agent’s joint predictions.

In Figure 3, we observe that prior functions significantly improve an ensemble agent’s joint predictions. In
Figure 4, We compare the ensemble-BP agents along with other ensemble agents and show that bootstrapping
doesn’t improve the performance over well tuned ensemble-P agent on CIFARI10 problems. We use an
ensemble of size 10 for all the agents, average the results over 5 random seeds, and normalize the performance
w.r.t ensemble-N agent. For ensemble-P and ensemble-BP agents prior scale is swept over {1, 3, 10,30} and
the best prior scale is chosen per problem. We observe that all the ensemble agents perform pretty similarly
on marginal predictions, except for ensemble-BP(0.5). On comparing the agents on joint predictions, we can
see that prior functions offer a clear advantage and bootstrapping doesn’t offer an advantage over a well
tuned ensemble-P agent. This is consistent with our observations from Appendix B.4. We suspect that the
poor performance of ensemble-BP(0.5) on both marginal and joint predictions could be due to the CIFAR10
problems being high-SNR problems and the number of models in each ensemble is small. This is consistent
with observations of Fort et al. (2019) that bootstrapping might hurt performance on marginal predictions.
Also comparing ensemble-N and ensemble-P in Figure 3 and 4, we can see that difference between the agents
increases as we have more models in the ensemble.

In this section, we also compare ensemble agents on problem with non-uniform SNR across input space, similar
to Figure 2 in Section 5.1. We follow a similar procedure as Section 5.1 and flip labels of a fraction of data.
For this experiment, we consider the full CIFAR10 training dataset and flip the labels of 25% of randomly
picked images corresponding to classes {0, 1,2,3,4} and assign each of them to a random uniformly sampled
class from {5,6,7,8,9} per image. This creates different SNRs across different classes. Figure 5 shows the
results in such setting. All the ensemble agents use 10 models, results are averaged across 5 random seeds, and
the performance is normalized w.r.t performance of ensemble-N. Best prior scale is chosen for ensemble-P
and ensemble-BP by sweeping over {0,0.3,1,3,10}. The performance of ensemble-P is very close to that of
ensemble-N, this might be due to prior functions, based on the randomly initialized convolution networks,
being ineffective in this corrupted labels setting. We can see that ensemble-BP(0.9) and ensemble-BP(0.75)
offers a clear advantage on joint predictions, and ensemble-BP(0.9) offers an improvement even on marginal
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Figure 4: Performance of ensemble agents with 10 models across CIFAR10 problems. Bootstrapping doesn’t
offer an advantage over well tuned ensemble-P in this setting.

predictions. The results in Figures 5 and 2 show that when SNR is non-uniform across input space, ensemble
agents could further benefit from bootstrapping, even the ensemble agents already use prior functions.
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Figure 5: Bootstrapping further improves ensemble agent’s joint predictions.

6 Bandit experiments

One of our motivations for examining variants of ensemble agents is to understand how to train an ensemble
agent that drives effective decision making. The results of Sections 4 and 5 show that prior functions
and bootstrapping can improve the quality of joint predictions of ensembles on fixed dataset problems.
Theoretically, better joint predictions should enable a learning agent to make better sequential decisions
(Wen et al., 2021). We evaluate this empirically using Thompson sampling on heteroscedastic linear bandit
problems.

The heteroscedastic linear bandit is a straightforward extension of the heteroscedastic linear regression
problem considered in Section 4. First, we sample a set of N actions X = {z1,...,zy} i.i.d. from a
d-dimensional standard normal distribution. We then sample a d-dimensional parameter vector 68* from
a prior N(0,02I), and a diagonal matrix ¥, whose entries are sampled i.i.d from Uniform(0,1). The
Yobs controls the variance of the observation noise, and for an input X;, the observation noise is given by
Wip1 ~ N(0, X, 2opsX;). This leads to different actions in X having difference observation noise variances
and hence leading to heteroscedastic behaviour.

At each time t, the agent samples a model from the approximate posterior and acts greedily w.r.t the
parameter obtained. The agent selects an action X; € X and observes a reward R;11 = Y11 = 0] Xi + Wiyt
Let R, = E[R:4+1|€, Xt = x] denote the expected reward of action = conditioned on the environment, and let
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X, € argmax,cx R, denote the optimal action. We assess agent performance through

T-1
regret(T) := Z E mX* *EXt] )
t=0

which measures the shortfall in expected cumulative rewards relative to an optimal decision maker. Note
that the expectation in the regret definition is taken over all the random instances.

In this section, we empirically examine the performance of Thompson sampling (TS) agents, that use variants
of ensembles to approximate the posterior over the environment and drive decisions. At each timestep, a T'S
agent samples an imaginary environment from its approximate posterior and selects an action greedy to the
sampled environment (Thompson, 1933; Russo et al., 2018). This simple heuristic is known to effectively
balance the exploration and exploitation trade-off, and allows us to evaluate the ability of an ensemble
agent to drive decisions. The complete procedure for evaluating agents in bandit problems is provided in
Algorithm 1 in Appendix E.

Figure 6 compares the ensemble-N, ensemble-P and ensemble-BP on a simple bandit problem with 2-
dimensional features, 4 actions N = 4. For all three agents, we consider an infinitely large ensemble, which is
equivalent to resolving the optimization problem in (4) with new prior function and data pair weights at
each time. This allows us to use the distributions derived in Appendix B.1 for different ensemble agents.
We tune parameters of ensemble agents, as outlined in Table 2, to minimize the final regret. Even in this
simple problem, we can see that ensemble-N performs far worse than other two agents, ensemble-P performs
much better than ensemble-N, but still worse than ensemble-BP. This clearly highlights the benefits of prior
functions and bootstrapping for ensemble agents.

— led
g
2 t
0 1e3- agen
(0] ——ensemble-N
2
5 le2 - —— ensemble-P
> ensemble-BP
€ 1e1-
S5
[v]
14

0 5000 10000 15000 20000 25000
t

Figure 6: Cumulative regret of ensemble agents on heteroscedastic bandit

7 Conclusion

We address a long-standing debate on the efficacy of prior functions and bootstrapping, in ensemble agent
training, for uncertainty estimation and decision making. We show that prior functions can significantly
enhance the joint predictions of ensemble agents. Moreover, we show that bootstrapping can further improve
the performance when SNR varies substantially across the input space. We also show that, if the SNR is
uniform across the input space and prior functions are appropriately tuned then bootstrapping offers no
significant benefit. We justify our claims using theoretical and experimental results on linear regression,
classification, and bandit problems. We believe that some of our analysis for linear regression can also be
extended to neural network regression via neural tangent kernel (NTK) type analysis (Jacot et al., 2018; Lee
et al., 2019), but we defer this for future. We also believe that many of our claims extend to reinforcement
learning problems. Through this work we hope to improve the community’s understanding of how to train
better ensemble agents for uncertainty estimation.

10
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Appendices

A Evaluation metrics

Most work on supervised learning has focused on producing accurate marginal predictions for each input.
However, some recent papers (Wen et al., 2021; Wang et al., 2021; Osband et al., 2022a;b) show that for a
broad class of downstream tasks such as combinatorial decision problems and sequential decision problems,
accurate marginal predictions are insufficient and accurate joint predictions are essential. Wen et al. (2021);
Osband et al. (2022a) also propose to evaluate the predictive distributions based on expected KL divergence.
As defined in Section 3, R .

Proi, 1 =PYrirryr €00, Xrpyr 1)

is the ensemble agent’s 7-th order predictive distribution at 7 inputs Xp.7r 4,1, and
P;:T#»Tfl =P (YT+1:T+T S |g; XT:TJrTfl)

is the environment’s 7-th order predictive distribution at the same inputs. Osband et al. (2022a) proposes to
evaluate

{(L =E {dKL (P’;::T-‘r‘l'—l pT:T+~r—1)} ) (10)
where the expectation is over all random variables, including environment £, the ensemble agent parameters
O, inputs X7.74,-1 and outcomes Y 1.74,. Recall that Xr.ry,—1 = (X7, X741,..., X74r—1) are part

of the sequence of data pairs ((X;, Y1) :t=0,1,2,...). In many supervised learning problems, they are
sampled i.i.d. from an input distribution Px. Also recall that when 7 = 1, df;; measures the agent’s marginal
predictive distribution; when 7 > 1, it measures the agent’s joint predictive distribution.

A.1 Metric for Bayesian linear regression

We now discuss the relationship between df;, and the evaluation metric (6) used in Section 4. We explain
why the evaluation metric (6) is an equivalent metric of df;, for ensemble agents with a large number of
models, as 7 — co. The explanation here is informal, and we leave rigorous mathematical proof to future
work. First, we also define

Proyr—1 =P Yrirrir € |Dr, Xripgr—1) -
In a sense, ﬁT:Tj—T—l represents the result of perfect inference. We define the expected KL divergence between
Prorir—1 and Prory,_; as

dy, =E {dKL (FT:T+771

Note that from Proposition 1 of Lu et al. (2021),

pT:T+7'71):| .

T =dgy +1(E Yrerrir | D Xrorgr—1)

where I (€; Yri1.174+ | Dry X1r4-—1) is the conditional mutual information between £ and Ypi1.74-, condi-

tioned on D7 and X7.74,—1. Note that I(&; Yry1.74+ | Dr, X1.74+—1) does not depend on the agents, thus
—5T . .

df; and dy;, are equivalent for agent comparison.

Recall that for the Bayesian linear regression problem described in Section 4, ©1 includes M samples drawn
iid. from P (ém € -’DT) =N (ﬂT, f]T) When M is sufficiently large, we have

P (?T+1:T+T € "GT,XT;THA) ~ P (S}TJrl:TJrT €- ﬂT,iTyXT;TJrTA) .
On the other hand, recall the posterior over 6,, which indexes the environment &, is N (ur, Xr). Hence,

Pr.74,_1 can be rewritten as
P (Yri1:74+ € - \pors X1y Xrimgr—1) -

13
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Consequently, when M is sufficiently large, we have
dip, =~ E {dKL (IP (Yri1r4r € '|ALT,ET,XT:T+T—1)HIP (?T—‘rl:T-‘rT € "ﬂT, iTvXT:T—&-T—l))} .

Finally, as is discussed in Section 2.5 of Wen et al. (2021), as 7 — oo, under suitable regularity conditions,
we have

dig, ~E [dKL (N(MTa ET)HN(ﬂTa iT)ﬂ
=E[dk(P (6. € |Dr) | P (0, € -|D1))]. (11)

In other words, as 7 — 00, d, is approximately equivalent to the metric in (6) for comparing ensemble
agents with a large number of models.

A.2 Dyadic sampling

One limitation of df;; is that the magnitude of 7 required to provide additional insight beyond marginals can
become intractably large, especially when the dimension of the input X; is high (Osband et al., 2022b). As a
solution, Osband et al. (2022b) proposes to use dyadic sampling to evaluate joint predictive distributions. In
a high level, dyadic sampling changes the joint distribution of inputs Xp.p4,_1: it first samples two random
anchor points from the input space, and then resamples 7 inputs from these two anchor points. The expected
KL-divergence under dyadic sampling is referred to as d%i

Similar to Osband et al. (2022b), we use dyadic sampling with 7 = 10 to evaluate ensemble agents’ joint
predictions in Section 5. Note that d;i with 7 = 10 can be efficiently computed based on Monte-Carlo
simulation (see Algorithm 1 of Osband et al. (2022Db)).

A.3 Expected KL-divergence and negative log-likelihoods

As discussed in recent papers (Wen et al., 2021; Osband et al., 2022b), df,;, and its variants (e.g. dIqu) are
equivalent to variants of negative log-likelihood (nll), which is also known as the cross-entropy loss, for agent
comparison. In particular, note that the 7-th order cross-entropy loss is

tg = —E[log ﬁT:T-&-T—l(YT-&-l:T-i-T)L (12)
and it is straightforward to show that
di;, = dig + Ellog P;‘:T+771(YT+1:T+T)]-

Since Pf.p, . 1(Yr41.74-) does not depend on the agent, df;, and diy rank agents identically.

For experiments on the CIFAR10 dataset, since Pf.; .1 (Yri1.74+), the likelihood under the true environ-
ment &, is unknown, we choose to use 7-th order cross-entropy loss or negative log-likelihood (nll) to compare
agents.

B Bayesian linear regression

B.1 Perturbed loss function and solution

As is described in Section 4, the perturbed loss function is:

A = v(Xt) ;o1 2 A
0., € argermn Z (9 Xt — [Yeg1 + Zt+1,m]) +

— S —bmlls.
2 2 vz

where Z;41,,, is additive perturbation for data pair (X, Y;+1) sampled from N (0, &2 (Xt)); v, 52 R - pt
are respectively the weight function and the bootstrapping variance function; A > 0 is the regularization

14
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coefficient; and 6., is independently sampled from N (0,631). The magnitude of 62 reflects the agent’s
prior uncertainty, and hence 6y is known as the agent’s prior scale. Note that ||§ — 9~m\|% is a randomly
perturbed regularizer, and is equivalent to a prior function for linear regression (Osband et al., 2018). It is
straightforward to show that

= (ST (X)X XT + AT) ™ (zt L u(Xy) (Yipr + Zigrm) X + A§m> .

Note that 6y, | Dy ~ N (ﬂT, ET), where

T-1 -1/
pr = <Z”(X1)XtXtT+/\I> < V(Xt)YHlXt>

t=0

T-1 -1 sra T-1 -1
Sr = (Z (X)X XF +,\I> < VQ(Xt)&Q(Xt)XtX;‘F—&—)\Q&(Q]I) (Z V(Xt)XtXE’+AJ> .

t=0 t=0

B.2 Proofs for Proposition 1 and 2

Proof for Proposition 1

Proof Based on the analytical formula of fip and £ provided in Appendix B.1, if 62(-) = o2(-), v(-) = 1/0%(-),
68 = 02, and \ = 1/02, we have fir = pr and X7 = Sp. Thus, P(f,, € - \DT) P (0. € -|Dr). [

Proof for Proposition 2

Proof Note that when 62(-) = 0 and 62 = 0, we have
— —1 —
= (Xisy V(X)X XT + M) (ZtT:ol V(Xt)YtHXt) :

which is deterministic conditioned on Dr. |

B.3 Proof for Theorem 1

Proof Notice that to ensure that fiz = ur, we need v(-) = c¢/o? ( ) and A = ¢/o? for a constant ¢ > 0.
Without loss of generality, we choose ¢ = 1. Under this choice and 62(-) = 0, we have:

-1y 1 -1 T 1 -1
N = X X + 1 o1) XXT — T
T (Z 2(X,) " o2 ) (65/001) (Z X + g )
t=0 0
O/Uo 22T = 77E (13)
H/—’

=n

where we define the shorthand notation n = 63/0§ to simplify the exposition. Then following the KL-
divergence formula for multivariate Gaussian distributions, we have

dir, (P 9, € |Dr) H P (ém e ~’DT)> —dir, (N(pr, £1) || N(pr, n5%))

1 1
=3 {d logn +logdet (X7) — d + —tr [S71] ] . (14)
n
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Taking an expectation over Dp, we have

€ [die (P (0.  1D7) | P (6, € |r))] = 5E [dlogn +log det (Sr) — d + %tr [2;1]]

@ %E [dlogn logdet (37') —d+ %tr [ETI]]
% {dlogn E [logdet (£7')] —d—i—%E [tr [ETl]]}
(b)
2 % {dlogn logdet (E [23']) —d+ %tr [E [251“} o (15)

where (a) follows from log det (37) = — log det (E;l), and (b) follows from E [tr [Z;l]] =tr [E [Z;l]] and
E [logdet (£7")] < logdet (E [£7'])

since log det(+) is a concave function. Note that

1
Yol=— |1
T o3 + z:: 02 Xt ]
hence 1
B3] = & 1 +71)
)

Let (1, (s, ... (4 denote the eigenvalues of E [Z;l], consequently we have

1+ T'yZ
a5

G =

where ~;’s are eigenvalues of ' = E [Ugg;ifé;] By rewriting log det (IE [Z;l}) and tr [E [2}1” using

eigenvalues, we have
1 d 1
E [dKL (P (6, € -|Dr) H P <0m c ~‘DT>)} > [dlogn - ;mggi —d+ EZ;Q

By minimizing the right-hand side of the above inequality over 7, which is equivalent to minimizing over the
prior sample variance 63, we obtain the minimizing 7

&M—‘

-ig

Plug in the minimizing 7., we have

E {dKL (P(Q* e D) HP(ém c -‘DT)H > [dlog( Z ) Zlogg}] .

Rewrite the above equation using the eigenvalues of ¥ x, we have

3o, (0. 003 1)) 2o (177 - S (12)
:;iln(f:z{j) (16)

where 7 = é Z?:l ~;. This concludes the proof. |
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B.4 When bootstrapping is not strictly necessary

We would like to clarify that bootstrapping is not always strictly necessary for the considered Bayesian linear
regression problems, and there are cases in which ensemble-P can work well. The following is one example:
assume that X;’s are independently drawn from N (0, I), and the linear regression problem is homoscedastic
in the sense that 02(X;) = o is a constant. In this case, if ensemble-P chooses v(X;) = 1/0? for all X; and
A = 1/02, then we have fir = ur,

T-1
Sr=[I/of + Z XtXtT/aﬂ_l and S =63%% /o)
=0

(see Appendix B.1). Also note that for sufficiently large T % tT;Ol X; X' ~ I due to Law of large numbers.

4
;(72)2 I. In other words, if we choose
0

2 2 A, ~2

~ %09 ~ 90

Hence, we have Y7 ~ U2+TU§I and Yp ~ e
A2 2, 2\ 2
b5 = (1+TUO/0 )00,

then P(ém € -’DT) approximately matches P (0, € :|Dr) under ensemble-P. Notice that this choice of 63
depends on the training data size T'. Also note that for this case, the lower bound in Theorem 1 is zero since
I =02/l

Another example is a high SNR scenario where 0(X;) ~ 0 for all input X;. From Proposition 1, the
optimal ensemble-BP agent will choose 6%(X;) = 0?(X;) ~ 0 for all X;. Consequently, under mild technical
conditions, an ensemble-P agent can be near-optimal.

C Neural Testbed experiments

Neural Testbed (Osband et al., 2022a) is an open-source test suite designed to evaluate the predictive
distributions of deep learning algorithms on randomly generated classification problems, based on a neural
network generative model. Problem instances are binary classification problems which are sampled from a
random 2-layer MLP, with 50 hidden units, across different input dimensions d € {2, 10,100}, training set
sizes T = dr with r € {1, 10,100,1000}, and output temperatures {0.01,0.1,0.5} which correspond to high,
medium, and low SNR. By default, results are averaged over 10 random seeds in each setting, and confidence
bars are also reported. We evaluate the agents based on their marginal predictions and joint predictions as
discussed in Appendix A.

C.1 Agent description

The mlp agent uses a single point estimate that has the same network architecture as the generative model,
which is a 2-hidden layer MLP with 50 units in each hidden layer. The ensemble-N agent uses 100 models
with each model being a 2-layer MLP that only differ in initialization. The ensemble-P agent also uses 100
models with each model being a 2-layer MLP with an additive prior function which is also a random 2-layer
MLP (Osband et al., 2018). In specific, m-th model of the ensemble-P model takes the form

f9m (‘T) =90, (’JJ) + Dm (.’E),

where gg, , pm(x) : X — RV are the trainable network and randomly initialized prior function which remains
fixed through out the experiment. p,,(x) differs across m only through initialization. The ensemble-BP also
uses 100 models that are similar to models of ensemble-P. The main difference between the ensemble-BP
and ensemble-P is the loss function. In Equation (9), ensemble-N and ensemble-P chooses constant weights
Wisi,m = 1, ¥m,t, while ensemble-BP used in neural testbed experiments samples Wy4q ,, i.i.d from
Bernoulli(0.5).

We modify the code from enn library at https://github.com/deepmind/enn and the neural testbed library
at https://github.com/deepmind/neural_testbed to model our agents and run experiments on Neural
Testbed. We run our experiments using 8-core CPU and 4 GB ram instances on Google cloud compute. In
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all the figures, we normalized the scores of all agents in each setting with the score of an uniform random
agent, which picks each class 0 and 1, with probability of 0.5. This helps us to ensure that problems across
different temperature and input dimensions contribute roughly equally to the final score.

For the ensemble agents used for Neural Testbed experiments, we find the best hyperparamters by sweeping
over a set of hyperparameters. We use similar sweeps as mentioned in Osband et al. (2022b). For mlp and
ensemble-N agents, for a problem with input dimension D and temperature p, we choose the weight decay
term (A in Equation 9) from X\ € {0.1,0.3,1,3,10} x d/,/p. For ensemble-P agent, in addition to sweeping
over the weight decay term, we also sweep over the prior scale of the additive prior functions. In specific, for
a problem with temperature p, we choose values from {0.3/,/p,0.3/p,1/\/p,1/p,3/\/p.3/p, }.

C.2 Additional results
ensemble-P’s sensitivity to prior scale:

Figure 7 shows the sensitivity of performance of ensemble-P agent with respect to different prior scales. In
particular we choose input dimension 100 and temperature of 0.01. But we observe similar trend across other
settings as well. We observe that the performance of ensemble-P agent does depend on the prior scale, but
the performance is not too sensitive as long as prior scale is roughly correct. The dotted line denote the
performance of an uniform random agent which picks both classes with equal probability. We can see that,
especially when the training dataset size is small, the ensemble-N agent (prior scale is 0) performs close to
an uniform random agent.

=

C

2 training dataset size (T)
o) —+—100

©

£ 300

= —+—1000

o

~

00 001 003 01 03 1.0 3.0 10.0 30.0 100.0
prior scale

Figure 7: We see that performance does depend on the prior scale,but the performance is not very sensitive
to prior scale as long as it is in the correct range. The dotted line indicates the performance of a uniform
random agent.

Performance of ensemble-N on varying SNR testbed problems

Figure 8 is an extension of Figure 2 with the performance of ensemble-N included on the varying SNR
problems derived by flipping labels of the neural testbed problems. We can see that all three ensemble
agents perform very similarly on marginal predictions. However, when evaluated by joint predictions,
ensemble-P performs significantly better than ensemble-N and, with bootstrapping, ensemble-BP improves
over ensemble-P.

Figure 9 shows the breakdown of performance of the agents in Figure 8 for input dimension 10. The main
improvement of ensemble-BP over ensemble-P arises when the training dataset size T is not too small.
When T is close to 0, prior plays the most prominent role, and after a point, as T increases the posterior
distribution concentrates and the benefits of bootstrapping start to diminish.
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Figure 8: The ensemble agents are distinguished on joint predictions. ensemble-P improves over the
performance of ensemble-N agent which is further improved by ensemble-BP.
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Figure 9: Breakdown of bootstrap results on testbed with varying SNR

D Cifarl0 experiments

CIFARI10 has been widely known in the deep learning community as a benchmark dataset and used to evaluate
classification algorithms. Fach data pair in CIFAR10 dataset consists of an image and a label corresponding
to one of 10 classes which we refer to as {0,1,2,...9}. We look at different problems constructed from the
dataset, by limiting the training set size. In particular, we consider training sets of sizes 10, 100, 1000, and
50000, where 50000 is the size of the full training dataset.

For Figure 5, we flip the labels of 25% of images corresponding to first 5 classes, {0, 1,2, 3,4}, and assign
each of them to a random uniformly sampled class from the other 5 classes, {5,6,7,8,9} per image. This
creates different SNRs across different classes. For this experiment, we consider a single setting, where the
agents are trained with 50,000 training samples (full training data).

D.1 Agent description

For the experiments on CIFAR10 dataset, we use a vgg model (Simonyan & Zisserman, 2014) as the single
point estimate model. An ensemble-N agent consists of an ensemble of vgg models and ensemble-P agent
consists of an ensemble of models with each model being a vgg model with output of a small randomly
initialized convolution network added to the logits. Each model of ensemble-BP is same as that of ensemble-P,
but uses a slightly different loss function. In Equation (9), ensemble-N and ensemble-P uses constant weights
Wis1,m =1, Vm, t, while ensemble-BP uses Wy, 1, sampled i.i.d from Bernoulli distribution. We consider few
variants of ensemble-BP based on the mean probability of the Bernoulli distribution. We use ensemble-BP(p)
to denote the ensemble-BP agent with weights W41 ., sampled i.i.d from Bernoulli(p)/p.
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The single point estimate agent vgg uses VGG model (Simonyan & Zisserman, 2014). We make use
of the VGG model implementation at https://github.com/deepmind/enn. The VGG model consists
of 11 blocks whose output is finally passed through an average pool layer and a dense layer to get the
logits. Each of the 11 bolcks consists of a convolution layer, batchnorm layer, and a relu layer. The
11 blocks have convolution layers with kernel width of (3,3) with number of channels from 1st to 11th
block as (64,64, 128,128, 128, 256, 256, 256,512,512, 512) and stride length as (1,1,2,1,1,2,1,1,2,1,1). The
ensemble-N agent uses an ensemble of multiple VGG models. The ensemble-P agent uses an ensemble
of multiple models, with each model consisting of a VGG model combined with a randomly initialized
convolution network at the logits. The convolution prior network consists of 3 convolution layers with kernel
of size (5,5) and output channels as 4,8, 4 in first, second, and third layers respectively. Finally the output of
third layer is passed through a dense layer to get logits which are added to the logits of VGG model. The
ensemble-BP agent uses the same network as ensemble-P.

For experiments on CIFAR10, we consider 4 different problems, based on the training dataset size. Once
trained, all the agents in all problems are evaluated on the same (full) test dataset. We choose the weight
decay of 30/(training dataset size) for all the agents. This value was obtained by sweeping weight decay for
ensemble-N with 10 VGG models. For ensemble-P agent in Figure 3 and 10, we choose a prior scale of 30.
In the experiments for Figure 11, both ensemble-P and ensemble-BP use a prior scale of 3. For all ensemble
agents, we train the the models of ensemble separately and combine them during evaluation. Each model is
trained on 2x2 TPU with per-device batch size of 32. Each model is trained for 400 epochs. For training, we
use an SGD optimizer with learning rate schedule with initial learning rate as {0.0001,0.001,0.01,0.025} for
training dataset sizes {10, 100, 1000, 50000} and the learning rate is reduced to one-tenth after 200 epochs,
one-hundredth after 300 epochs, and one-thousandth after 350 epochs.

D.2 Additional results

Figure 3 compares the average performance of vgg, ensemble-N, and ensemble-P across CIFAR10 problems
of different training dataset sizes. Figure 10 shows a more detailed breakdown of performance across CIFAR10
problems of different training dataset sizes. We see that on marginal predictions, both ensemble-N and
ensemble-P perform similarly, while they are clearly distinguished on joint predictions. We also see that the
benefit of the prior functions is higher when the training dataset size is lower. This is what we expect as the
prior information matters the most when we have low data.
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Figure 10: Performance of ensemble agents with 100 models across CIFAR10 problems of different training
dataset sizes.

Figure 11 shows the average performance of ensemble agents on CIFAR10 problems across different ensemble
sizes. We consider a slight variation of the above problem, where 1% of the images have their labels assigned
to uniformly random values in {1,2,...10}. This ensures that the problem is not extremely high SNR. We
use a fixed prior scale of 3 for ensemble-P and ensemble-BP on all the problems. Note that this might not
be the best prior scale for ensemble-P and ensemble-BP agents; however, this helps in gaining insights into
bootstrapping methods. The results are normalized w.r.t performance of ensemble-N. We see that for small
ensemble sizes, on marginal predictions, bootstrapping might actually hurt the performance as suggested in
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Fort et al. (2019). However, as we increase the ensemble size, even on marginal predictions, bootstrapping
starts to help. On joint predictions, which are actually indicative of downstream tasks (Wen et al., 2021),
bootstrapping offers a clear benefit.
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Figure 11: Performance of ensemble agents across different ensemble sizes. Bootstrapping helps on larger
ensembles when evaluated on joint predictions.

E Bandit experiments

Section 6 demonstrates the performances of variants of ensemble agents, including ensemble-N, ensemble-P,
and ensemble-BP, on randomly generated bandit problems. In particular, all the ensemble agents use
Thompson sampling (TS) as the exploration scheme. Algorithm 1 provides the pseudo-code for how we
evaluate ensemble agents on bandit problems. In particular, it describes how random bandit problems are
sampled and how the ensemble agents adaptively choose actions.

Figure 12 is an extension of Figure 6 with an additional agent that is a variation of ensemble-P which uses
different weights for data pairs based on the observation noise variance at that data pair. Typically, when
ensemble-N or ensemble-P agents are used, they choose a fixed weight across all data pairs. We can see that
using weights based on observation noise variance improves performance to some extent, but ensemble-BP
still performs the best. This further justifies the benefits of bootstrapping.
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Figure 12: Heteroscadastic linear bandit with 4 actions
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Algorithm 1 Evaluation of ensemble agents on bandit problems

Require: the following inputs are required

—_

. distribution over the environment P(& € -), action distribution Px, and the number of actions N.

2. ensemble agent type (e.g. ensemble-N, ensemble-P, or ensemble-BP)

3. number of time steps T’

4. number of sampled problems .J

for j=1,2,...,J do
Step 1: sample a bandit problem
1. sample environment £ ~ P(€ € +)
2. sample a set X of N actions x1,x2,...,xy i.i.d. from Px
3. obtain the mean rewards corresponding to actions in X

R, =E[Y;1 ], X, =2], Vo eX

4. compute the optimal expected reward R, = max,cx R,
Step 2: run the ensemble agent

Initialize the data buffer Dy = ()
fort=1,2,...,T do
1. Update agent parameters ©; based on D;_;
2. action selection based on TS:
i. sample model &, from the agent belief distribution

E~T (5’ € -|®t)
ii. act greedily based on &
X; € arg 5163§E[ﬁ+1 =1]| fctht = 7]
iii. generate observation Y;;; based on action X,
Yigr ~ P (Vi1 €8, Xy)

3. update the buffer D; « append (D;_1, (X3, Yii1))

end for
compute the total regret incurred in 7' time steps

Regret; (T') = S (R. — Rx,)

end for
return average total regret & Z'jjzl Regret,; (T)
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