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ABSTRACT

Hierarchical policies that integrate high-level planning with low-level control have shown
performance in robotic manipulation, but remain limited. We present a hierarchical frame-
work that combines a two-stage task planner with a low-level action planner that inte-
grates multimodal inputs and an explicit action-mask policy. At the high level, a Vision-
Language Model (VLM) first perceives object and scene information from observations,
and a Large Language Model (LLM) then reasons over this information together with a
task library and human instructions to generate a textual task plan. This two-stage de-
sign mitigates modality bias. At the low level, we employ an asymmetric encoder, using
SigLIP2 with Weight-Decomposed Low-Rank Adaptation (DoRA) for text and ResNets
for multi-view vision. We introduce a shared Temperature-Scaled Spatial Attention mod-
ule to enhance multi-view features and a Bidirectional Cross-Attention module to fuse
language-vision features for Action Chunking Transformer (ACT) policy. For multi-task
switching, we propose a novel explicit action-mask policy that jointly predicts actions and
their validity masks. The policy learns not only fine-grained control but also when to stop,
enabling real-time sub-task completion detection and robust switching across long-horizon
tasks without additional inference overhead. Experiments on weighing and multi-object
manipulation scenarios demonstrate planning accuracy, execution success, and efficiency,
with ablations confirming the contribution of each component. Finally, deployment on a
different robotic platform in a new scenario validates generalization. The video and code
are available at https://hierarchical-llm-robotics.github.io.

1 INTRODUCTION

Completing complex tasks remains a challenge in robotic manipulation (Li et al., 2025; Jiang et al., 2025;
Lee et al., 2021; Gu et al., 2025), as such settings often involve multiple objects, varying manipulation
strategies, and long-horizon action sequences, etc. A promising framework to address these difficulties is
the use of hierarchical policies (Kaelbling & Lozano-Pérez, 2011), where a high-level planner decomposes
a complex task into a sequence of sub-tasks, and a low-level policy executes each sub-task in order. This
approach requires a robust and capable high-level planner, as well as a multi-modal and precise low-level
action generation policy, to ensure reliable performance.

Recent advances in large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Team et al.,
2023) have introduced new opportunities for robotic hierarchical planning. However, prior works (Zhou
et al., 2025; Wang et al., 2025; Hu et al., 2023) leverage LLMs for task planning from observations and
instructions, but often suffer from modality bias (Zhang et al., 2025b; Chen et al., 2024; Guo et al., 2023),
over-relying on language reasoning while underutilizing visual information. Moreover, existing methods
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Figure 1: Overview of the proposed hierarchical framework for language-guided, multimodal, multi-
task robotic manipulation. The framework operates in three process: (I) Instruction Recognition, where
natural language commands are transcribed using a Whisper-based voice-to-text module; (II) High-Level
Task Planning, where a VLM first perceives the scene to extract objects and information, and then an LLM,
conditioned on the human instruction, the VLM output, and a library of predefined skills, decomposes the
command into a sequence of sub-tasks; (III) Low-Level Action Generation and Sub-task Switching, where an
ACT-based multimodal language-vision algorithm executes each sub-task by leveraging textual input, visual
observations, and robot joint states. An explicit action-mask policy predicts both actions and their validity,
while Task Completion Checker monitors these masks to detect termination and trigger switching to next
sub-task. The right shows two examples of decomposed human instructions and their sub-task executions.

often rely on heuristic verification (Ha et al., 2023) or repeated LLM inference to switche sub-task (Zhang
et al., 2025a; Guo et al., 2024; Shirai et al., 2024), which incurs computational overhead. Similarly, Vision-
Language-Action (VLA) (Zitkovich et al., 2023; Kim et al., 2024) models have shown promise in aligning
linguistic instructions with visual features, but many suffer from weak language-vision fusion (Shi et al.,
2024; Ha et al., 2023) or high inference costs (Zhou et al., 2025), limiting their scalability in real-world
applications.

To address this, we propose a hierarchical framework guided by a two-stage high-level planner and a low-
level planner that combines language-vision multimodal learning with an explicit action-mask sub-task
switching policy (see Figure1).

At the high level, to mitigate modality bias between vision perception and task planning, a VLM first per-
forms visual inference to produce a structured scene description. The LLM then incorporates the human
instruction and reasons over a sub-task library to generate a sequence of sub-task descriptions, which serve
as input to the low-level policy.

At the low level, we design an asymmetric multimodal encoder that combines SigLIP2 (Tschannen et al.,
2025) with DoRA (Liu et al., 2024) for text encoding and ResNet-based encoders for multi-view vision. A
shared Temperature-Scaled Spatial Attention module employs spatial attention to enhance visual features.
To fuse the textual and enhanced visual features, we propose a Bidirectional Cross-Attention module, which
consists of two parallel cross-attention branches that enable each modality to attend to the other. This design
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enables dynamic cross-modal interaction, enriching each modality with complementary information. The
fused representation is then fed into the Action Chunking Transforme (ACT) (Zhao et al., 2023) policy.

For multi-task switching, we introduce a novel explicit action-mask policy, which jointly predicts both ac-
tions and their corresponding validity masks. By explicitly supervising the mask alongside action prediction,
the policy learns not only how to generate fine-grained actions but also when an action sequence should ter-
minate. This enables real-time sub-task completion detection, reducing overhead and improving efficient
switching for long-horizon, multi-task manipulation.

We evaluate our framework on weighing and multi-object scenarios with diverse, long-horizon tasks, where
it outperforms strong baselines in both planning accuracy, execution success, and efficiency. Ablation studies
verify the contribution of each component, while deployment in another manipulation scenario on a different
dual-arm platform demonstrates the generalization.

In summary, the main contributions of this study are:

1. A two-stage high-level planner where a VLM parses visual observation and an LLM reasons over instruc-
tions and a task library to generate structured task plans, mitigating modality bias between perception and
planning.

2. An asymmetric multimodal encoder for the low-level planner, combining SigLIP2 with DoRA for text
and multi-view ResNets for vision, together with shared Temperature-Scaled Spatial Attention and Bidi-
rectional Cross-attention Models for language-vision fusion.

3. A novel explicit action-mask policy that jointly predicts actions and validity masks, enabling real-time
sub-task completion detection without extra overhead and improving efficiency in multi-tasks switching.

4. Experiments confirm strong performance, ablations reveal each component’s impact, while additional
deployments on a different dual-arm robotic platform validate generalization.

2 RELATED WORK

2.1 HIERARCHICAL PLANNING AND SUB-TASK SWITCHING IN ROBOTICS

Hierarchical planning (Kaelbling & Lozano-Pérez, 2011) is an efficient approach for robotic manipulation
in complex scenarios, as it decomposes tasks into a high-level planner and a low-level action controller.
Recently, the integration of large language models (LLMs) (Duan et al., 2025; 2024; Zhou et al., 2024;
Ahn et al., 2022) and advanced action generation models (Huang et al., 2024; Chi et al., 2023; Zhao et al.,
2023) has further advanced this paradigm. Zhou et al. (2025); Wang et al. (2025); Hu et al. (2023) prompt
LLMs with CoT reasoning, incorporating both observations and human instructions to generate task plans,
demonstrating strong high-level planning ability. However, such approaches are prone to modality bias
(Zhang et al., 2025b; Chen et al., 2024; Guo et al., 2023), where the model over-relies on prompted reasoning
process while neglecting some visual information. For instance, a prompted LLM may detect objects in an
observation image but fail to capture their states, such as whether a digital balance is powered on, whereas
a dedicated perception stage can succeed (see Appendix A.3). To address this, we introduce a two-stage
high-level method: a VLM first performs visual inference to describe the scene, and then an LLM reasons
over the VLM output together with the human instruction and task library. This design mitigates modality
bias by balancing perception and planning. Another challenge is sub-task switching, i.e., deciding when a
sub-task is complete and transitioning to the next. Heuristic-based verification (Ha et al., 2023) often fails in
unstructured settings, while relying on repeated LLM inference (Zhang et al., 2025a; Guo et al., 2024; Shirai
et al., 2024; Schakkal et al., 2025) incurs high overhead. In contrast, we propose an explicit action-mask
policy that predicts a validity mask for each action, enabling efficient sub-task completion detection and
switching without extra computation.
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2.2 VLAS FOR ROBOTICS

Vision-Language-Action models (VLAs) (Pertsch et al., 2025; Din et al., 2025; O’Neill et al., 2024;
Zitkovich et al., 2023) enable robots to learn multi-modal policies that associate language with visual obser-
vations, supporting open-vocabulary and multitask manipulation for improved robotic performance. A key
challenge for VLAs lies in effectively aligning language with visual observations. For example, Ha et al.
(2023) employ CLIP (Radford et al., 2021) to encode text directly, concatenating it with image features as
input to a diffusion policy, while Shi et al. (2024) utilize FiLM (Perez et al., 2018) to fuse encoded visual
features with DistilBERT (Sanh et al., 2019) language features. However, these methods do not finetune the
text encoder, leading to weak alignment where visual features dominate the text. To address this, Zhou et al.
(2025) leverage SigLIP (Tschannen et al., 2025), a model specifically designed for robust text-image align-
ment, by symmetrically employing it as the encoder for both text and images, together with DoRA (Liu et al.,
2024) for joint finetuning across modalities. But their symmetrical encoder structure introduces significant
parameter overhead, making real-time action generation, particularly with multi-view inputs, computation-
ally impractical. In this work, we adopt an asymmetric encoder architecture: SigLIP2 with DoRA for text
encoding and four ResNet-18 backbones for multi-view vision. We further introduce a shared spatial at-
tention module and a bidirectional cross-attention module to strengthen cross-modal fusion, enabling robust
performance in complex manipulation tasks.

3 PROBLEM STATEMENT

We aim to enable a robotic system to interpret natural-language instructions, plan a sequence of discrete
sub-tasks from a predefined library, and execute them sequentially with automatic completion checking.
Formally, given an instruction Linstr and a sub-task library T , the high-level planner πH outputs

Tplan = (τ1, . . . , τm) = πH(Linstr), τi ∈ T . (1)

For each τi ∈ Tplan, the low-level controller πL maps the observation ot = [otext
τi , o

cam
τi,t, o

rob
τi,t] to the next

action
at+1 = πL(o

text
τi , o

cam
τi,t, o

rob
τi,t). (2)

Figure 2: Two-stage high-level task planner.

A task-completion checker detects n consec-
utive invalid actions and triggers transition to
τi+1 until all sub-tasks are finished.

4 APPROACH

4.1 HIGH-LEVEL TASK PLANNER

We adopt a two-stage high-level planner, mit-
igates modality bias by separating perception
from reasoning.

Stage 1 (VLM visual perception). The VLM
is prompted as a scene-analysis assistant and
receives the current observation, front-camera
image. It outputs a strict JSON description under a fixed schema, including objects (IDs, names),
states (e.g., on/off, on-surface), and relations (e.g., in front of), as illustrated on the left of Figure 2.

Stage 2 (LLM planning). Conditioned on the JSON scene description, the human instruction obtained
in Step I (Figure 1) via voice-to-text (Whisper), and a learned sub-task library T , the LLM, prompted as
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Figure 3: Architecture of the Low-Level Action Planner. For sub-task τ (“open the balance”), we adopt an
asymmetric encoder: the language input is encoded by a frozen SigLIP2 (Tschannen et al., 2025) augmented
with trainable DoRA adapters, while multi-view images at time t is processed by a fine-tuned ResNet. The
resulting features are fused via (i) a temperature-scaled spatial attention for visual enhancement and (ii) a
bidirectional cross-attention for language-vision integration. These fused features, together with the robot
joint state, are passed to an ACT-based policy (Zhao et al., 2023), whose output is normalized and augmented
with two additional linear heads predicting the next k timesteps of joint actions and their corresponding
validity masks. A Task-Completion Checker monitors the masks and terminates the current sub-task if more
than n consecutive invalid actions are detected, switching to next sub-task τ + 1.

a robot planning assistant, generates an ordered list of sub-tasks drawn from T , together with a concise
natural-language reply that explains the plan (see the right side of Figure 2).

This design balances perception and planning: the VLM provides structured visual facts, while the LLM
reasons over these facts together with the instruction to produce executable, library-constrained plans. For
example, given the instruction “I want to know the weight of the red cube ...” and a parsed scene where the
balance is off and the cube is on-surface in back of it, the LLM outputs [open the balance, place the red cube
on the balance, ...] and a short reply. For prompted details please see Appendix A.2.

4.2 LOW-LEVEL ACTION PLANNER

4.2.1 ENCODER MODULE

We encode the sub-task text τ from the high-level planner with a SigLIP2-based text encoder (Tschannen
et al., 2025). To adapt it to our policy, we fine-tune with DoRA (Liu et al., 2024), which decomposes
weight updates into a low-rank term and a learnable magnitude, yielding greater expressivity with parameter
efficiency. Concretely (Figure4a), for a linear projection with weight W ∈ RC×K , we learn A ∈ RC×r,
B∈Rr×K , and a scaling vector M ∈RK (broadcast across rows), and compute Y = X

(
(W +AB)�M

)
,

where X∈RB×C , � denotes element-wise multiplication, C is the input feature dimension, K is the output
feature dimension, and r is the low rank. We insert DoRA adapters into the linear layers and fine-tune
only (A,B,M) while freezing the base SigLIP2 weights. For vision, we use ResNet-18 (He et al., 2016)
backbones pretrained on ImageNet (Deng et al., 2009) and further fine-tuned on our task data. Finally, both
text and vision features are projected to 512 dimensions for multimodal fusion later.

4.2.2 MULTIMODAL FUSION MODULE

To obtain robust fused features for manipulation, we first enhance visual representations using a
Temperature-Scaled Spatial Attention (TSA) module, and then integrate them with text via a Bidirectional
Cross-Attention (BCA) module.

5
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(a) SigLIP2 text encoder with DoRA adapters. (b) Temperature-Scaled Spatial Attention.

(c) Bidirectional Cross-Attention Module. (d) Data sampling and loss computation.

Figure 4: Overview of key modules in low-level palnner

Temperature-Scaled Spatial Attention (TSA) employs a spatial attention mechanism to adaptively en-
hance feature representation. Given the encoded camera image features Fcam, two feature maps, Fmaxcam and
F avgcam, are first obtained by applying maximum pooling and average pooling operations along the channel
dimension, respectively. These two maps are concatenated and passed through a channel-reduction convo-
lution to generate the attention logits. The logits are then scaled by a temperature parameter γ and activated
through tanh function to produce the temperature-scaled spatial attention map. Finally, the spatially at-
tended feature F spacam is computed as F spacam = Fcam + α · tanh

(
attn logits

γ

)
� Fcam, where α is a learnable

weight controlling the contribution of the attended features. In our setting, a single TSA module is shared
across multi-camera views to enforce consistent attention and improve parameter efficiency.

Bidirectional Cross-Attention (BCA) enables mutual language-vision interaction via Transformer cross-
attention (Vaswani et al., 2017; Lu et al., 2019), where each modality uses its features as queries to attend to
the other. Figure4c shows the BCA architecture (matching the color-gradient box in Figure3). Two parallel
branches perform cross-attention in both directions: the blue dotted box (with arrows) fuses visual features
with textual ones, and the orange box denotes the reverse. Inputs are visual tokens from the TSA module
and encoded text features.

4.2.3 EXPLICIT ACTION-MASK POLICY

The low-level planner not only generates continuous actions but also determines when to terminate the
current sub-task and switch to the next. To this end, we introduce an explicit action-mask policy for real-
time termination. For each predicted action, the policy outputs a binary mask m ∈ {0, 1} indicating its
validity, actions are gated by the mask, and the sub-task ends once a predefined number of consecutive
invalid masks is observed.

6
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Figure 5: High-Level sub-task language descriptions and low-Level demonstrations for two scenarios.

Formally, the low-level policy πL maps the current observation tuple otext
τi , o

cam
τi,t, o

rob
τi,t to the next action and

its mask (âτi,t+1, m̂τi,t+1). We train πL with behavior cloning (BC). The objective is

min
πL

E(otext
τi
, ocam
τi,t

, orob
τi,t

, aτi,t+1,mτi,t+1)∼D

[
LBC

(
(âτi,t+1, m̂τi,t+1), (aτi,t+1,mτi,t+1)

)]
. (3)

where LBC combines an `1 loss on actions and a binary cross-entropy-with-logits loss on the mask. This
enables real-time termination without additional inference overhead. In this work, we use an ACT-based
policy, which predicts the next k action timesteps in a single forward pass. Therefore, the loss function is:

LBC = mean
[
|âτi,t+1:t+k, aτi,t+1:t+k

∣∣ ]+ λmean
[
`bce(m̂τi,t+1:t+k, mτi,t+1:t+k)

]
. (4)

The coefficient λ weights the mask term, we use an annealing schedule that starts with a larger λ and decays
it during training.

Figure 4d shows the sampling and loss pipeline. We uniformly sample k-step (here k=4 for illustration)
windows from demonstrations, padding incomplete segments with zeros and invalid masks. The ACT back-
bone outputs a shared representation, which we extend with two separate linear heads: one predicts actions
(action linear layer) and the other predicts mask probabilities (mask linear layer). We optimize with an `1
loss on actions and BCE on masks, enabling the policy to jointly learn control and termination. Further
details are provided in Appendix A.4. At inference, sub-task completion is detected once the mask signals
n consecutive invalid actions, triggering the Task Completion Checker to switch sub-tasks (Figure 3).

5 EXPERIMENTS AND RESULTS

5.1 TASKS DESCRIPTION

We design two manipulation scenarios for our method on our dual-arm robotic platform (Appendix A.5).

Weighing Scenario. Weighing objects (tape, cube, battery) on a digital balance, which may be powered off,
requires sub-tasks such as powering the balance and placing/removing objects (Figure 5, top). This setting
tests high-level decomposition and low-level generalization across diverse manipulation strategies.

Multi-Object Scenario. Tasks include operating a timer, opening a cup, and installing a battery (Figure 5,
bottom). Given instructions (e.g., “Tell me how long if you install the battery”), the planner must sequence
actions such as starting the timer, inserting the battery, and stopping it, stressing long-horizon, fine-grained
execution.

7
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Method
Weighing Scenario Multi-Object Scenario

High-Level
(Succ. %↑) Time

[s]↓

Low-Level
(Succ. %↑ / Time [s]↓)

High-Level
(Succ. %↑) Time

[s]↓

Low-Level
(Succ. %↑ / Time [s]↓)

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Flat-ACT – – – – 0 / – 0 / – 0 / – – – – – 0 / – 0 / – 0 / –
SayCan 80 70 70 15.5 – – – 80 75 70 14.9 – – –
One-stage CoT 80 75 70 7.8 – – – 85 70 70 8.3 – – –
YAY – – – – 80 / 87.2 75 / 128.9 70 / 166.5 – – – – 75 / 128.7 70 / 183.8 60 / 259.1
Ours 100 95 85 13.5 95 / 62.7 95 / 99.7 90 / 126.8 100 100 90 12.7 90 / 86.4 85 / 132.5 80 / 191.1

Table 1: Comparison results. “–” indicates that the method does not support the corresponding evaluation.
T1, T2, and T3 denote Tier 1, Tier 2, and Tier 3, respectively.

5.2 COMPARATIVE EVALUATION

Metrics: We evaluate performance using three metrics: (i) high-level plan success rate, (ii) low-level exe-
cution success rate (assuming a correct plan), and (iii) average inference/execution time. Precise definitions
are provided in Appendix A.7.

Evaluation Tiers: Instructions are grouped into three tiers (Tier 1, Tier 2, Tier 3) of increasing complexity
(2-4 sub-tasks). More details are provided in Appendix A.8.

Comparison Methods: We compare against four baselines: (i) Flat-ACT (Zhao et al., 2023), a flat policy
trained on combined demonstrations; (ii) SayCan (Ahn et al., 2022), value-based LLM planning; (iii) One-
Stage CoT, where an LLM directly plans via CoT; and (iv) YAY (Shi et al., 2024), used for low-level
comparison. More details are in Appendix A.9.

Results: Table 1 reports results across three tiers under two scenarios, with 20 trials per setting. Flat-
ACT highlights the limitations of flat policies: without hierarchical decomposition, it fails to generalize in
multi-task settings. SayCan, which relies on a value-based verification method, and One-stage CoT both
underperform compared to our approach, although One-stage CoT achieves the shortest inference time. In
contrast, our two-stage high-level planner consistently delivers the highest success rates across all instruc-
tion tiers, albeit with longer inference time. For low-level execution, YAY is a strong baseline but suffers
from lower success rates and longer execution times, as it lacks an termination mechanism and must wait
until the timestep end of each sub-task. Our low-level planner outperforms YAY in both precision and ef-
ficiency across two manipulation scenarios. Moreover, the explicit action-mask policy improves efficiency
and reliability by predicting termination, which reduces redundant motions and shortens execution time.

5.3 ABLATION

We conduct four ablations. Results are summarized in Table 2, with details in Appendix A.10. LLMs
for High-Level Planner: We compare Qwen, Gemini, GPT-5, and GPT-4o. GPT series yields the highest
success, with GPT-5 slightly stronger but much slower. We adopt GPT-4o as a balanced choice. Encoders
for Text and Vision: Our asymmetric design (SigLIP2&DoRA for text, ResNets for vision) outperforms all
methods in success rate, while the symmetric SigLIP2&DoRA variant is impractical due to the parameter
increase (120.24M → 449.95M), resulting significant inference time. Multimodal Fusion: Removing TSA
or BCA reduces success rate, showing both modules are essential for accurate manipulation and robust
fusion. Sub-task Switching: Replacing our action mask with LLM-based checks or fixed timesteps leads
to longer execution times. Our mask-based approach enables efficient and reliable sub-task switching.

8
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Method
High-Level
(Succ. %↑) Time

[s]↓
T1 T2 T3

GPT-5 100 100 90 73.0
GPT-4o 100 95 85 13.5
Qwen 100 70 40 35.7
Gemini 90 90 80 6.5

(a) LLMs for High-Level Planner (High-level)

Method
Low-Level

(Succ. %↑ / Time [s]↓)

T1 T2 T3

Ours (Asymmetric) 95 / 62.7 95 / 99.7 90 / 126.8
SigLIP2&DoRA
(Symmetric) 0 / - 0 / - 0 / -

SigLIP2 (Text) 90 / 61.1 85 / 99.8 80 / 124.5
DistilBERT (Text) 85 / 58.8 85 / 95.7 75 / 117.0

(b) Encoders for Text and Vision (Low-level)

Method
Low-Level

(Succ. %↑ / Time [s]↓)

T1 T2 T3

Ours 95 / 62.7 95 / 99.7 90 / 126.8
No TSA 95 / 63.2 90 / 100.2 80 / 124.2
No BCA 90 / 62.1 85 / 100.8 75 / 119.5

(c) Multimodal Fusion (Low-level)

Method
Low-Level

(Succ. %↑ / Time [s]↓)

T1 T2 T3

Ours 95 / 62.7 95 / 99.7 90 / 126.8
LLM-based 95 / 86.9 95/ 133.4 85 / 167.8
Fixed-ts 95 / 88.2 90 / 132.2 90 / 170.5

(d) Sub-task Switching (Low-level)

Table 2: Ablation studies under the weighing scenario.

5.4 GENERALIZATION TO OTHER PLATFORM AND EXPERIMENT

We further validate our approach on a different platform in a drawer-storage scenario (Figure 6). Additional
details are provided in the Appendix A.11 and video.

Figure 6: Deployment in a drawer-storage scenario using another robotic platform.

6 CONCLUSION

Hierarchical framework with high-level task planner and low-level action planner can enhance complex
multi-task robotic manipulation. We introduce a two-stage high-level task planner combines with a Vision-
Language Model (VLM) and Large Language Model (LLM) , could mitigate modality bias. On the low-level
side, an asymmetric encoder design, SigLIP2 with Weight-Decomposed Low-Rank Adaptation (DoRA) for
text and multi-view ResNets for vision, cuts compute while preserving strong language-vision alignment.
A Temperature-Scaled Spatial Attention module to enhance multi-view features and a Bidirectional Cross-
Attention module to fuse language-vision features. A novel explicit action-mask policy for Action Chunking
Transformer (ACT) jointly learns continuous actions and validity masks, enabling real-time sub-task comple-
tion detection and robust switching without additional inference overhead. Experiments confirm advantages
over strong baselines, with ablations validating each module and deployment on another dual-arm platform
demonstrating generalization.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) are not only studied for high-level task planning within our
framework but are also employed for checking grammar and polishing the writing of this manuscript.

A.2 PROMPTS FOR OUR TWO-STAGE HIGH-LEVEL PLANNER AND THE ONE-STAGE COT BASELINE

We provide the exact prompts used in our experiments for reproducibility. Our proposed two-stage planner
separates perception from reasoning, while the one-stage baseline directly performs planning with chain-of-
thought (CoT) reasoning.

Our Proposed Two-Stage Prompt:

Stage 1: Perception-only prompt.
system_prompt = (

"You are a highly accurate scene analysis assistant for a robot. "
"Your task is to describe the visual scene in strict JSON format. "
"Only describe what you see. Do not infer intent or plan tasks."

)

user_text = (
"Please analyze the provided image and describe it using the following

schema:\n"
"{ ’objects’: [...], ’states’: [...], ’relations’: [...] }\n"
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"Constraints:\n"
"1. IDs start from 1.\n"
"2. States must follow predefined values (on/off, on_surface, etc.).\n"
"3. Relations use spatial prepositions like ’on_top_of’ or ’next_to’.\n"

)

Stage 2: Planning-only prompt.
system_prompt = (

"You are a robot planning assistant. "
"Your task is to create a plan from a provided scene description "
"to achieve a human’s instruction. "
"Only use the known instructions."

)

user_text = (
f"Human instruction: {user_instruction}\n\n"
f"Scene description: {perception_str}\n\n"
f"Known instructions: {instruction_listing}\n\n"
"Output JSON with ’tasks’ and ’reply’."

)

The Baseline of One-Stage Prompt with CoT:

system_prompt = (
"You are a robot planning assistant with visual perception. "
"First, internally perceive the scene from provided images (do not reveal

your chain-of-thought). "
"Second, plan a sequence of known robotic instructions to achieve the human

instruction. "
"Only output a single JSON object matching the required schema. "
"Never include your reasoning process or any explanation outside the JSON."

)

user_text = (
"Task:\n"
f"- Human instruction: {user_instruction}\n\n"
"Known instructions (choose zero or more, order matters):\n"
f"{instruction_listing}\n\n"
"Pipeline (use implicit reasoning, do NOT reveal the reasoning):\n"
"1) Perception from images (internal-only):\n"
" a) What objects are in the scene?\n"
" b) What are their states (on/off, open/closed, etc.)?\n"
" c) What are the spatial relations?\n"
"2) Planning: choose and order the known instructions.\n\n"
"Output format (JSON ONLY): {...}\n"

)

A.3 COMPARISON OF TWO-STAGE HIGH-LEVEL PLANNER WITH ONE-STAGE METHOD

As illustrated in Figure 7, the one-stage LLM-based method with CoT reasoning fails to perceive the state
of the digital balance, resulting in an incorrect plan that redundantly includes the sub-task “turn on the bal-
ance.” This error arises from modality bias, where the LLM focuses on abstract reasoning while neglecting
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visual perception, particularly when the visual information is ambiguous. In contrast, our two-stage planner
explicitly separates perception and reasoning: the VLM first infers that the balance is already “on,” and the
LLM then generates a correct task plan without unnecessary actions.

Figure 7: Comparison of planning results between the standard one-stage LLM-based CoT method and our
proposed two-stage planner. The one-stage LLM-based CoT method fails to observe the correct power state
of the balance, whereas our two-stage planner accurately perceives it and generates a correct task plan. For
clarity, the results are obtained using the web-based GPT interface.

A.4 DETAILS FOR ACTION-MASK LOSS COMPUTATION AND INFERENCE

Figure4d illustrates the data sampling and loss computation pipeline. We uniformly sample windows from
demonstrations: blue blocks denote the observation tuple (camera images and instruction text), and green
blocks denote robot joint states. At time t0, the ACT-based policy predicts a k-step action chunk (here k=4
for illustration). The next four joint states serve as action targets (purple). Feeding the observation at t0 into
the low-level planner yields predicted actions and masks (green/purple dashed boxes), and we compute the
loss against the ground-truth targets. In the second case, we sample a window at a later time ti, closer to the
end of the demonstration. Since only three future steps remain, we pad the fourth action target with zeros
and mark its corresponding mask as invalid (purple outlined box), indicating task completion is near.

During training, the action loss is averaged over the available (non-padded) steps, while the mask loss is
computed over all k steps using binary cross-entropy with logits. Concretely, the ACT backbone outputs
a shared normalize representation, which we extend with two separate linear heads: one predicts actions
(action linear layer) and the other predicts mask probabilities (mask linear layer). This setup allows the
model to jointly learn both fine-grained action prediction and when to terminate the task, guided by the
mask signal.

During inference, the policy outputs a chunk of predicted actions along with their corresponding mask prob-
abilities indicating action validity. If the mask probability exceeds a predefined threshold and the number of
consecutive invalid actions reaches n, the sub-task is considered complete. Control then transitions to the
next sub-task, as handled by the Task Completion Checker Module (see Figure3).

A.5 ROBOTIC SYSTEM SETUP

We built our system based on the Aloha (Zhao et al., 2023). Unlike the original Aloha system, where the
top-view camera is mounted on the metal frame, we mount it on a fixed boom (see right image), which helps
avoid visual vibrations caused by robot movement. We further add a microphone to capture human language
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Figure 8: Description of our robotic platform.

instructions. For vision, four Logitech C922n webcams are used: two wrist-mounted for close-up object
views, and two front/top cameras for scene coverage. The system operates at 50 Hz, with a monitor for
operator feedback and a foot pedal that allows the operator to manually end recording once a demonstration
is complete. Demonstrations are recorded via a bimanual teleoperation setup with two master and two slave
arms, enabling natural control while logging synchronized text, vision, and joint data for imitation learning.

A.6 DETAILS OF DATASET, TRAINING, AND DEPLOYMENT

We collect demonstrations using our robotic system. For both weighing and multi-object scenarios, each
sub-task is recorded separately, with 40 demonstrations per sub-task (50 for more complex ones such as
inserting a battery). Episodes end when the operator completes the task and presses the foot pedal.

We train the policy on a server with RTX A6000 GPUs. The model is trained using Adam with a learning
rate of 1.0× 10−5, batch size 32, and action chunk size 100 for ACT, for 100k iterations.

During deployment, we use a workstation with an RTX 3090 GPU and 64GB RAM. For temporal smooth-
ing, we adopt ACT’s (Zhao et al., 2023) temporal ensembling with a reduced weight (default 1.0e−2) to
emphasize recent predictions, improving reactivity at the cost of slight smoothness. For task termination,
we set the invalid mask probability threshold to 0.75. If three consecutive actions are marked invalid, the
system switches to the next task.

A.7 DETAILS FOR METRICS

We evaluate our system using three metrics:

• High-Level Plan Success Rate: Measures whether the high-level planner outputs the correct sequence of
sub-tasks for a given instruction, as judged by human.
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• Low-Level Execution Success Rate: Measures the ability of the low-level policy to successfully complete
the sub-tasks, assuming a correct task plan is provided.

• Average Inference and Execution Time: Reports the average inference time of the high-level planner
and the average execution time of the low-level policy, computed only over attempts in which all sub-tasks
are completed.

A.8 DETAILS FOR EVALUATION TIERS

We evaluate performance across three tiers of instruction complexity:

• Tier 1: Instructions require 2 sub-tasks to complete. Example: “Please help me restart the balance,”
which involves shutting down and turning it back on.

• Tier 2: Instructions require 3 sub-tasks. Example: “Please tell me the weight of the cube,” assuming the
balance is already powered on. The low-level planner handles placing the cube, waiting for measurement,
and returning it.

• Tier 3: Instructions require 4 sub-tasks. Example: “Please tell me the weight of the No.2 battery, and
remember to put everything back afterward,” which includes turning on the balance, placing the battery
upright, removing it, and turning off the balance.

A.9 DETAILS FOR COMPARSION METHODS:

We compare our method against three baselines:

• Flat-ACT: To assess the benefit of hierarchical planning, we compare against a flat policy based on Action
Chunking with Transformers (ACT) (Zhao et al., 2023), a SOTA imitation learning method. We train ACT
on combined sub-task demonstrations to execute full instructions without hierarchical decomposition.

• SayCan: To evaluate high-level planning, we include SayCan (Ahn et al., 2022), which uses LLMs for
sub-task selection via language-based reasoning combined with a value function conditioned on visual and
text inputs. We only compare the high-level planning component, as the low-level policy is not the focus
of their work.

• One-Stage CoT: A widely used baseline where the LLM directly generates sub-task sequences from raw
observations and instructions via Chain-of-Thought (CoT) reasoning, without a separate perception stage.

• YAY: To compare low-level capabilities, we adopt the low-level policy of YAY (Shi et al., 2024), a strong
vision-language-based algorithm. We use the same sub-task instructions for fair comparison.

A.10 DETAILED ABLATION STUDIES

We conduct four ablations to validate the design choices of our framework. Here we provide the complete
settings and results for each study.

LLMs for High-Level Planner: To evaluate the effectiveness of different LLMs as high-level task plan-
ners, we benchmark four recent models: Qwen (Hui et al., 2024), Gemini (Comanici et al., 2025), GPT-
5 (OpenAI, 2025), and GPT-4o (Hurst et al., 2024). For each model, we employ two-stage inference and
conduct 20 trials per tier in the weighing scenario. As shown in Table 2a, the GPT series achieves the highest
success rates, but GPT-5 incurs the longest inference time. Considering this trade-off, we adopt GPT-4o as
the high-level task planner.

Encoders for Text and Vision: We vary the encoder of the low-level planner using a symmetric struc-
ture, where both text and vision are encoded with SigLIP2 fine-tuned with DoRA. We also test variants that
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replace SigLIP2&DoRA with plain SigLIP2 or DistilBERT for text. As shown in Table 2b, our method
achieves the highest success rate, while the symmetric SigLIP2&DoRA for text and vision design is imprac-
tical due to the parameter increase (120.24M→ 449.95M) and resulting very high inference time.

Multi-modal Fusion Strategy: We ablate the proposed Temperature-Scaled Spatial Attention (TSA) and
Bidirectional Cross-Attention (BCA) modules individually by removing them from the architecture. We
ablate TSA and BCA separately, removing one module at a time while keeping the other unchanged The
ablation results are reported in Table 2c. The result shows that the absent of TSA and BCA lead to decrease
success rate, because of the precise decrease and multimodal fusion inference., while maintain the similar
execution time.

Action Mask for Sub-task Switching: We replace the action mask with two strategies: (1) an iterative
LLM-based completion check, where a lightweight Gemini-2.0-Flash-Lite model (Team et al., 2025) verifies
sub-task completion at 1 Hz (Schakkal et al., 2025), and (2) using the default pre-defined fixed timestep
lengths for each sub-task (Fixed-ts). As shown in Table 2d, both alternatives incur longer execution times,
whereas our explicit action-mask mechanism enables immediate termination and switching upon sub-task
completion, leading to higher efficiency.

Figure 9: Robotic platform for generalization

A.11 DETAILS FOR GENERALIZATION TO OTHER PLATFORM AND EXPERIMENT

Another Robotic System Setup: For the robotic platform used in generalization, please refer to Figure 9.
We employ a PIPER 6-DoF robotic arm from AgileX, which supports CAN bus communication between
paired arms to enable ALOHA-style master, slave teleoperation for data collection. For perception, the
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system incorporates four Intel RealSense cameras: D435i models mounted on the wrists and D455f models
positioned for the top and front views.

Task Description: Storage Scenario. The task involves organizing scattered items on a desktop (e.g.,
pens, blocks, tape) into designated drawers as required. This scenario can be decomposed into two main
sub-task types: opening/closing specific drawers and picking/placing designated objects. Unlike standard
pick-and-place tasks, this setup challenges the algorithm’s ability in high-level semantic understanding,
sequential planning, and generalization across diverse objects.
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