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Abstract—Automating cloth folding is a challenging task with
practical implications in various domains. Existing methods
often struggle with unaligned configurations, limiting their ap-
plicability in real-world scenarios. In this research, we present
FabricFlowAlignNet (FFAN), a novel approach that learns flow-
based correspondences on point clouds between the current
observed and goal cloth configurations. We use these learned
3D correspondences for both cloth alignment and manipula-
tion: correspondences are used to align the observed cloth
with the goal, and the flow-based correspondences are re-used
as action proposals. Our experiments demonstrate that FFAN
demonstrates superior performance compared to a state-of-the-
art folding approach, particularly in scenarios where observed
cloth is rotated or otherwise unaligned with the goal.

I. INTRODUCTION

Cloth manipulation is a challenging task, with difficulties in
both perception and control due to the deformability of cloth.
Manual cloth manipulation techniques are time-consuming,
labor-intensive, and prone to human error. As a result, there
is a growing demand to automate cloth manipulation in
various domains such as folding laundry, handling textiles in
manufacturing, and assistive dressing.

A fundamental aspect of successful cloth manipulation is
establishing correspondences between the current observation
and the goal configuration. These correspondences provide
spatial associations necessary for planning and executing fold-
ing actions. However, while prior methods have proposed to
learn correspondences for cloth [10, 4], they do not explicitly
use such methods for reasoning about the alignment between
the observed cloth and the desired configuration. Alignment is
a crucial step in cloth manipulation, and prior correspondence-
based policies do not handle cases where the cloth and goal
are not aligned [10], or rely on human demonstrations [4].

In this work, we propose FabricFlowAlignNet (FFAN),
an approach that combines the use of correspondences and
symmetry-handling techniques to learn a goal-conditioned
cloth manipulation policy. Our method leverages correspon-
dences to “virtually” align the observation and goal point
clouds, enabling the policy to determine the appropriate ac-
tions to execute on the observation. By incorporating these
correspondences and symmetry handling, our approach aims
to acquire an understanding of cloth folding strategies and
develop a manipulation policy capable of accurately and
efficiently folding clothes. This is particularly beneficial in
challenging scenarios where the observed cloth is rotated or
unaligned with the desired goal configuration.

b ]

FabricFlowAlignNet
(Ours)

Fig. 1: Performance of FabricFlowAlignNet (FFAN) vs. FNN
on unaligned goals. FFAN uses an alignment procedure on
learned correspondences to achieve the desired manipulations.
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We evaluate the performance of our method against a state-
of-the-art folding approach [10] on a folding task, where
the goal and observation poses are not aligned. Our method
reasons about symmetries and employs correspondences to
deal with unaligned goals, unlike the baseline. The results
demonstrate the effectiveness and robustness of our approach
in achieving successful cloth folding when the observation and
goal configurations are unaligned.

II. PRIOR WORK

FabricFlowNet (FFN) [10] performed bimanual cloth fold-
ing by estimating flow correspondences between the observed
cloth image and goal cloth image. However, FEN relies on
strict alignment between observation and goal cloth poses in
the image. Our approach extends FFN by proposing an ap-
proach for aligning learned 3D correspondences to overcome
these limitations. By establishing spatial relationships between
points in observation and goal configurations, we enable
precise alignment and achieve better folding performance for
unaligned goals than FFN.

Fabric Descriptors [4] is a method for learning correspon-
dences in fabric manipulation tasks using a dense contrastive
loss. However, once the correspondences are learned, the
proposed policy relies on human demonstrations. In contrast,
our method can learn and estimate correspondences without
any human demonstrations.

SpeedFolding [1], employs self-supervised learning and
a small number of expert demonstrations to perform cloth
smoothing and folding. However, Speedfolding is trained
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Fig. 2: Overview of the FFAN pipeline.

exclusively in the real world. In comparison, our approach,
similar to FFN, undergoes training in simulation before being
transferred to the real world.

Cloth Funnels [2] proposes a method that uses self-
supervised rewards to learn both cloth canonicalization and
alignment. Their alignment procedure is an iterative version
of the Procrustes’ algorithm, which is designed for aligning
rigid objects. However, since the objects being aligned are
deformed fabrics, the alignment achieved using Procrustes can
be a local optimum. In contrast, our approach proposes using
random sample consensus (RANSAC) for aligning deformed
fabrics, resulting in an asymptotic, globally optimal alignment.

III. POINT CLOUD CORRESPONDENCE ESTIMATION FOR
CLOTH ALIGNMENT AND MANIPULATION

In this section, we describe FabricFlowAlignNet (FFAN),
our approach for estimating observation-goal correspondences
to align and manipulate cloth. A schematic overview can be
found in Fig. 2]

A. Learning Correspondences for Point Clouds

As the first component of our overall pipeline, we
propose a 3D, flow-based correspondence estimator called
“3DFlowNet” (Fig. [3). 3DFlowNet takes the observation and
goal point clouds ¢, and ¢, as input, and outputs 3D flow
f . 3DFlowNet is a non-trivial extension of the FlowNet from
FabricFlowNet [10]], which was limited to 2D.
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Fig. 3: 3DFlowNet Architecture

We first transform the point clouds into a graph, where
nodes represent cloth particles and are connected to their
neighboring particles on the cloth mesh. This step requires
privileged state information from the simulator of the cloth
mesh edges, which would not be available in the real world;
estimating these edges is an area of future work and could
leverage prior methods like VCD [5]. We embed the input
graphs by employing a graph neural network H, which outputs
embeddings for each node in the graph: ¢/, ¢, € RV*F.

We then use a Transformer network [7] denoted as T to
perform cross-attention between observation and goal features.
Our approach is inspired by prior Transformer-based per-point
networks like DCP [9] and TAX-Pose [6]. T" takes c,, and c;,
as input and outputs transformed embeddings ¢/ € RV < The
resulting transformer embeddings, ¢/, are then summed with
the original observation embeddings ¢/, to produce ¢/..

To estimate correspondences, we pass ¢, through MLP lay-
ers M to produce estimated correspondences f € RY#3 These
correspondences represent how each cloth particle transports
to achieve the goal configuration.

To train 3DFlowNet, we use ground truth correspondence
between point clouds ¢y and ¢, and a weighted L2 loss
Lo(f, f) = Z L wi(fi — f:)? where f represents the esti-
mated correspondences, f represents the ground truth corre-
spondences, and N is the total number of points in the point
cloud. The weights w; are higher for ground truth pick points.

B. Iterative Correspondence Estimation

To improve correspondence estimation when the displace-
ment between observed and desired goal configurations is
large, we introduce an iterative approach to improve the accu-
racy of our correspondence estimation. Our iterative process
involves transporting the input point cloud to the positions
indicated by the estimated correspondences, and then re-
computing the estimation with this intermediate point cloud.
Each iteration of this procedure should further refine the
estimated correspondence.

In each iteration, we utilize the trained 3DFlowNet model
to estimate the correspondence between the intermediate point
cloud ¢, and the target configuration c,. By integrating the
estimated correspondence into the observation, we simulate
the application of the flow to progressively approach the tar-
get configuration. The algorithm for iterative correspondence
estimation is summarized in Alg. [T}

C. RANSAC Alignment for Unaligned Goals

The correspondences estimated by 3DFlowNet indicate how
each point in the observed cloth configuration should move to
reach the desired configuration. In the case where the observa-
tion and goal are aligned with respect to each other, this per-
point flow correspondence represents a desired cloth manipu-
lation, which we can use to estimate the action (Sec. [[II-D).
However, in cases where the observation and goal are not



Algorithm 1 Iterative Correspondence Estimation

1: Input: Trained 3DFlowNet, Point Clouds c,, ¢q
Initialize all zeros f € RV*3
Co 1= Cp
fork=1...K do
f = 3DFlowNet(é,, cg)
f+=1r
Co+=f
end for
return f
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aligned, the flow correspondences contain both information
about alignment as well as the desired manipulation.

To address the cases where the goal is not aligned, we
first propose estimating the alignment using the flow-based
correspondence and RANSAC [3]. The forward pass through
3DFlowNet provides the estimated correspondences. The
RANSAC procedure attempts to find an alignment transform
with the maximum number of inlier cloth points as follows:

1) Sample three indices (i, j, k) on the cloth.

2) Compute the transformation matrix 71" between the 3
sampled cloth points (}32-, Djs pﬁ) and t}}eir estimated
correspondences (p; + fi, pj + fj, pr + fr)-

3) Compute inliers by transforming all current cloth points
p according to T', computing the distance between trans-
formed points and points transported using estimated
flow ||Tp — (p + f)||, and thresholding the per-point
distance by an epsilon e.

4) Sample m times and choose the transformation matrix
T with the maximum number of inliers.

Once the alignment 7' has been estimated, we virtually
align the observation and goal, re-estimate correspondences
given the alignment, and determine the manipulation action
according to the following section.

D. Estimating the Pick Location for an Action
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Fig. 4: 3DPickNet Architecture

To predict the pick points necessary for cloth manipulation,
we introduce a neural network called “3DPickNet”. Similar to
FFN [10], our method supports bimanual manipulation and is
capable of estimating both pick points p; and ps. The inputs
to 3DPickNet are the current observation ¢, and the estimated

correspondences f between c, and the goal configuration c,.
The architecture of 3DPickNet is depicted in Figure [}

To enable the prediction of the second pick point condi-
tioned on the first pick point, we utilize two separate networks:
3DPickNetl and 3DPickNet2. In 3DPickNetl, we concatenate
co and f and create a graph representation of the point
cloud. Each node in the graph is represented as [z,y, z, f].
3DPickNetl generates a probability value for each node to be
selected as the first pick point p;. The node with the highest
probability is identified as p;.

3DPickNet2 is responsible for predicting the second pick
point po, taking p; into account. In this network, we introduce
an additional input channel called p;, which represents a 3D
Gaussian distribution centered on p;. This channel assigns
higher values to nodes near p; and lower values to nodes
farther away, to give PickNet2 information about the first pick
location when predicting the second pick point ps.

For training 3DPickNet, we use a weighted binary cross-
entropy loss. The loss function compares the predicted proba-
bilities of nodes being pick points with the ground truth labels.
The binary cross-entropy loss function is defined as:

N
L(p,y) =Y —wi(yilogpi + (1 —yi)log(1 —p;)) (1)

=1

where p represents the predicted probabilities, y is the ground
truth labels, and N is the total number of nodes. The weights
w; are higher for ground truth pick points.

Once the pick points p; and p, are predicted using the
estimated correspondences f, the corresponding actions can
be executed to achieve the desired goal configuration.

E. Implementation Details

We use the same dataset as FabricFlowNet [10], but use
point clouds of the cloth instead of depth images, and use 3D
pick and place points instead of 2D. The graph neural network
H for 3DFlowNet consists of two Graph Attention layers
(GATConv) [8]]. The MLP network architecture M consists
of two fully-connected layers. The 3DPickNet architecture
consists of three Graph Attention Network layers and two
MLP layers for both 3DPickNetl and 3DPickNet2. At the end
of each network, a Sigmoid layer computes the probability
of each node being a pick point. 3DPickNetl represents
each node with a six-dimensional feature, while 3DPickNet2
utilizes a seven-dimensional feature to accommodate the ad-
ditional information provided by p;.

IV. EXPERIMENTS

Our experiments investigate the following questions: (1)
How does FFAN compare with FabricFlowNet (FFN) [10] on
aligned goals? (2) How does FFAN compare with FFN on
unaligned goals? We evaluate the methods in simulation, using
the average L2 distance between cloth points in the achieved
vs. desired point clouds as our error metric.



A. Performance on Aligned Goals

We use the same test set as FFN [10] to evaluate perfor-
mance on aligned goals. This test set consists of 40 single-step
goals, where both the observation and the goal positioned at
the center of the workspace with the same orientation. For this
experiment, we do not use alignment estimation with FFAN
to directly compare pre-aligned folding performance.

Table [[] presents the performance comparison between our
method and FFN. The results demonstrate that our method
performs comparably to FFN on aligned goals, with only a
marginal difference in average particle distance.

TABLE I: Folding Performance on 40 Aligned Goals

Method Average Particle Distance (mm) |
FFN [10] 426
FFAN (Ours) 5.54

B. Performance on Unaligned Goals

We also evaluate the performance on unaligned goals, where
the goal cloth configuration is randomly rotated and there-
fore not aligned with the initial observed configuration. We
conducted experiments on three test sets: Easy, Medium, and
Hard, where each test set corresponds to a different range of
rotations. Easy encompasses angles between -5 and 5 degrees,
Medium ranges from -45 to 45 degrees, and Hard covers a
complete rotation from 0 to 360 degrees.

We evaluated the performance of FFAN in two scenar-
ios: using ground truth vs. estimated correspondences for
RANSAC alignment. Figure [5] presents a comparison of the
two methods against FFN across all four test sets: aligned,
easy, medium, and hard. From the results, we observe that
our method with estimated correspondences outperforms FFN
on the Medium and Hard tasks. However, using ground truth
correspondences for RANSAC alignment yields even better
results across all misaligned sets, surpassing the performance
of FFN. This demonstrates the potential for further improve-
ment by improving the correspondence estimation. Qualitative
results on the Medium case can be found in Fig. [I]
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Fig. 5: Comparison of Folding on Different Test Sets

C. Ablations

1) No Iterative Correspondence: In this section, we ablate
our approach by removing iterative correspondence estimation
(Sec. [II-B). Table [[] shows that average particle distance error
is higher when iterative correspondence estimation is removed.

TABLE II: Ablation of Iterative Correspondence Estimation

Method Average Particle Distance (mm) |
FFAN w/o Iter. Corresp. 10.591
FFAN w/ Iter. Corresp. 5.54

2) Number of lIterations for Iterative Correspondence:
To determine the number of iterations to run for iterative
correspondence estimation, we measured performance while
increasing the number of iterations on a validation set. We
used flow prediction error, an unweighted version of the loss
from Sec. @ , as our performance metric. We evaluated
number of iterations £ = 1 (run 3DFlowNet once) to 4. Note
that we did not retrain 3DFlowNet in an iterative manner.

Figure [6] shows the flow prediction error as a function of
the number of iterations (k) in the iterative flow process. As
we increase k from 1 to 3, there is a notable decrease in the
flow prediction error; however, beyond k = 3, we observed
a slight increase in the error. Based on these observations,
we empirically determined that the number of iterations for
iterative flow correspondence estimation is k£ = 3.
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Fig. 6: Error vs. Number of Correspondence Estimation Steps

V. CONCLUSION

In this work, we propose FabricFlowAlignNet (FFAN), a
goal-conditioned policy for cloth alignment and folding. Our
approach estimates flow correspondences to reason about the
alignment between the observed cloth and desired goal, then
predicts actions given the estimated alignment. FFAN performs
on par with FFN for aligned goals, and outperforms FFN when
handling large misalignments. Our ablations demonstrate the
importance of using iterative correspondence estimation and
of selecting the number of iterations.

Limitations and Challenges: Our method also currently
requires meshes as input; for cloth manipulation in the real
world, such a mesh will have to be estimated. Like FFN,
our method relies on sub-goals, which can be restrictive and
may not generalize well to unseen fabrics and configurations.
Exploring alternative approaches that eliminate explicit sub-
goals is a potential direction for future work.
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