HETEROGENEOUS INCREMENTAL LEARNING FOR DENSE PREDICTION: ADVANCING KNOWLEDGE RETENTION VIA SELF-DISTILLATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Incremental Learning (IL) aims to preserve knowledge acquired from previous tasks while incorporating knowledge from a sequence of new tasks. However, most prior work explores only streams of homogeneous tasks (e.g., only classification tasks) and neglects the scenario of learning across heterogeneous tasks that possess different structures of outputs. In this work, we formalize this broader setting as heterogeneous incremental learning (HIL). Departing from conventional IL, the task sequence of HIL spans different task types, and the learner needs to retain heterogeneous knowledge for different output space structures. To instantiate the HIL, we focus on HIL in the context of dense prediction (HIL4DP), a more realistic and challenging scenario. To this end, we propose the Heterogeneity-aware Incremental Self-Distillation (HISD) method, an exemplar-free approach that preserves previously gained heterogeneous knowledge by self-distillation incrementally. HISD comprises two complementary components: a distribution-balanced loss to alleviate the global imbalance of prediction distribution and a salienceguided loss that concentrates learning on informative edge pixels extracted with the Sobel operator. Extensive experiments demonstrate that the proposed HISD significantly outperforms existing IL baselines in this new scenario.

1 Introduction

Incremental learning (IL), also known as continual learning, has garnered significant attention since it holds the potential to continually adapt to a sequence of new tasks from the data stream (Dohare et al., 2024; Lee et al., 2024; Zhuang et al., 2024). The primary objective of IL is to address the catastrophic forgetting problem (McCloskey & Cohen, 1989), which refers to the performance degradation on previously learned tasks after learning new tasks in the absence of historical data.

Previous IL methods (Zhao et al., 2024; Yang et al., 2024b) in the field of computer vision are primarily developed within the context of specific tasks (*e.g.*, classification-only or segmentation-only), limiting the applicability of IL methods to broader scenarios. Specifically, the IL setting often assumes the arrival of homogeneous tasks, overlooking real-world scenarios where heterogeneous tasks (*e.g.*, classification and regression tasks) emerge continuously. Furthermore, sequentially handling heterogeneous tasks, which requires the integration of heterogeneous knowledge, remains underexplored. Those limitations present challenges to traditional IL and necessitate extending IL to a novel scenario of heterogeneous incremental learning (HIL), in which the incoming tasks are heterogeneous (*e.g.*, a data stream with a mixture of regression and classification tasks).

To instantiate the HIL setting, in this paper, we focus on a fundamental class of computer vision problems (Yuan & Zhao, 2024), dense prediction (DP) tasks, under the setup of HIL. The primary goal of DP is to learn a mapping from input images to pixel-wise annotated labels (Kim et al., 2023), with heterogeneous label spaces for different DP tasks (*e.g.*, concrete class labels and continuous depth maps). Considering the high cost of annotation and data scarcity, previous works have jointly trained on DP tasks to achieve better performance (Vandenhende et al., 2021; Yang et al., 2024a; Wang et al., 2025). However, due to privacy concerns and temporal inconsistency in data collection (Zhou et al., 2023; Yang et al., 2025a; Xu et al., 2025), jointly training on multiple tasks becomes impractical. This motivates our exploration of the HIL for dense prediction (HIL4DP). In

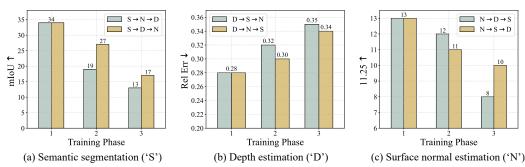


Figure 1: Vanilla training under HIL4DP. To assess the impact of catastrophic forgetting, we shuffle the learning sequences of three DP tasks. Each figure illustrates how the performance of a given task varies as the training phase proceeds, where the number in the horizontal axis denotes the task index in each sequence of three DP tasks. The performance metric is indicated above each column. The symbol $\uparrow (\downarrow)$ signifies that a higher (lower) value denotes better performance.

this scenario, the input data across tasks originates from the same domain, yet the tasks encountered sequentially are heterogeneous DP tasks. Under this scenario, we investigate the presence of catastrophic forgetting by performing vanilla training on sequentially introduced task data, with the experimental settings described in Sec. 5.1. As shown in Fig. 1, all tasks suffer from catastrophic forgetting regardless of the learning sequences.

To mitigate the issue, we propose the Heterogeneity-aware Incremental Self-Distillation (HISD) method. HISD performs self-distillation in an exemplar-free manner, *i.e.*, without storing historical data. It maintains the heterogeneous knowledge learned from previous tasks by generating pseudo-labels to guide the knowledge retention. To improve the effectiveness of the pseudo-label guidance, we propose two novel loss functions in the HISD method. Firstly, a distribution-balanced incremental self-distillation (DB-ISD) loss is proposed to mitigate imbalanced pseudo-labels in dense prediction tasks (Jiao et al., 2018; Li et al., 2020; Ren et al., 2022; Zhong et al., 2023) by balancing the distribution of different semantic groups. Additionally, we use the geometric mean to smooth the self-distillation loss within each group, which reduces the noise in pseudo-labels. Second, a proposed salience-guided incremental self-distillation (SG-ISD) loss utilizes the Sobel operator (Sobel, 2014) to extract the semantic boundaries of predictions, thereby emphasizing the loss of pixels near semantic boundaries to maintain previous knowledge more effectively.

In summary, the contributions of this paper are three-fold. *a)* We introduce a new scenario, heterogeneous incremental learning (HIL), and emphasize its unique challenges related to heterogeneous tasks and knowledge, in contrast to traditional IL. In particular, we investigate a more realistic case: HIL for dense prediction (HIL4DP). *b)* We propose the HISD method, which consists of two components: DB-ISD and SG-ISD. *c)* Comprehensive experiments across diverse datasets in the HIL4DP scenario validate the effectiveness of the proposed HISD approach, indicating that HISD mitigates catastrophic forgetting in the HIL4DP scenario more effectively than traditional IL baselines.

2 RELATED WORK

Incremental learning. Incremental learning (IL), also known as continual learning, aims to enable models to continually acquire new knowledge from streaming data while mitigating catastrophic forgetting of previously learned knowledge. Traditional works on IL can be broadly classified into three categories (De Lange et al., 2021): replay methods, which store exemplars and replay historical data (Rebuffi et al., 2017; Aljundi et al., 2019; Buzzega et al., 2020), regularization methods, which introduce additional regularization terms (Kirkpatrick et al., 2017; Deng et al., 2021; Saha & Roy, 2023; Bhat et al., 2023), and parameter isolation methods (De Lange et al., 2021), which assign separate model parameters to each new task while masking parameters associated with previous tasks (Fernando et al., 2017; Konishi et al., 2023). While existing works extend IL to handle heterogeneity in terms of class attributes (Dong et al., 2023; Goswami et al., 2023), data distribution (Wuerkaixi et al., 2025), and model structures (Madaan et al., 2023), they primarily focus on single-task-type scenarios and ignore the heterogeneity of tasks. In contrast, we turn our attention to a more challenging scenario, where the learning process involves a series of tasks with heterogeneous outputs.

Dense prediction. Dense prediction (DP) tasks, such as semantic segmentation, depth estimation, and surface normal prediction, are fundamental in computer vision (Cordts et al., 2016; Vandenhende et al., 2021; Zuo et al., 2022). Those tasks involve per-pixel discrete label or continuous value prediction, requiring fine-grained feature extraction and globally consistent outputs. In general, they pose greater challenges than image-level prediction tasks (Zuo et al., 2022). To achieve better performance, various methods are designed for DP tasks (Ronneberger et al., 2015; Chen et al., 2018; Ranftl et al., 2021). Although those supervised methods achieve remarkable performance, they rely heavily on large-scale, high-quality pixel-level annotated data, which is costly to obtain (Yang et al., 2025b; Xu et al., 2025). To mitigate data scarcity, multi-task learning methods (Zuo et al., 2022; Ye & Xu, 2024; Wang et al., 2025) are proposed to simultaneously learning DP tasks within a single model. However, practical constraints (*e.g.*, data privacy, limited resources, and sequential data collection (Zhou et al., 2023; Zhao et al., 2024)) render joint training across tasks difficult, which motivates the study of DP tasks under the proposed new scenario HIL.

IL for dense prediction. Existing IL scenarios for DP tasks are typically tailored for the specific tasks, including incremental depth estimation (IDS) and continual semantic segmentation (CSS). The former focuses on enabling continuous depth estimation in emerging domains (Yang et al., 2024b), while the latter concerns with segmentation in incremental shift along class and domain directions (Toldo et al., 2024). We differ from these scenarios in two primary aspects. First, compared with previous task-specific scenarios, HIL4DP not only reduces the risk of overfitting on the specific task (Zhang & Yang, 2021), but holds the potential of learning knowledge from related vision tasks (Vandenhende et al., 2021). Second, while effective within their scope, these task-specific methods rely on homogeneous, task-specific information, making them unsuitable for a sequence of heterogeneous tasks (*i.e.*, HIL4DP). For instance, discrete class labels (Gong et al., 2024; Yin et al., 2025) or classification probabilities (Douillard et al., 2021; Toldo et al., 2024) commonly used in CSS are not available in regression-based tasks. Similarly, domain-aware solutions in IDS (Hu et al., 2023; Yang et al., 2024b) are designed to address challenges such as domain shift and depth spatial variations. Consequently, they are fundamentally inapplicable to the HIL4DP setting.

3 Problem Definition

Conventional IL assumes that all tasks share the same output structure. However, real-world applications such as dense prediction (DP) demand a learner capable of handling heterogeneous tasks whose outputs include class labels, depth maps, surface normal vectors, and more. We formalize this more general and challenging scenario as HIL in Sec. 3.1, and then formalize the more realistic scenario HIL4DP in Sec. 3.2. Finally, we analyze the challenges of HIL4DP in Sec. 3.3.

3.1 HETEROGENEOUS INCREMENTAL LEARNING (HIL)

In the HIL setting, let $\mathcal{T} = \{\mathcal{T}_t\}_{t=1}^T$ be a sequence of T heterogeneous tasks, where all tasks share a common input space \mathcal{X} but each task \mathcal{T}_t has its own output space \mathcal{Y}_t as

$$\mathcal{T}_t = \{(\mathcal{X}, \mathcal{Y}_t)\}, \qquad t = 1, \dots, T. \tag{1}$$

Due to the heterogeneity between tasks, the output space of each task varies, e.g., continuous or discrete outputs. Each task \mathcal{T}_t has its corresponding training dataset $\mathcal{D}_t = \{(x,y)|x\in\mathcal{X},y\in\mathcal{Y}_t\}$, where (x,y) refers to the input and its corresponding label, respectively. Here, we assume that training instances in different tasks have no overlap. Note that during the t-th training phase, only the corresponding dataset \mathcal{D}_t of task \mathcal{T}_t is available, and the datasets of other tasks are unavailable.

The objective of HIL is to design a unified heterogeneous incremental learner, $\mathcal{F}: \mathcal{X} \to \bigcup_{i=1}^T \mathcal{Y}_i$, capable of incrementally adapting to the sequence of tasks \mathcal{T} . Specifically, at the t-th training phase, the learner is expected to accurately predict outputs over the cumulative heterogeneous tasks $\mathcal{T}_{1:t}$. This requires the learner to retain knowledge acquired during the previous training phases without access to prior data.

3.2 HIL FOR DENSE PREDICTION (HIL4DP)

The above problem setup is universal and holds the potential to benefit a wide range of downstream heterogeneous tasks. In this paper, we focus on a challenging and realistic scenario involving a

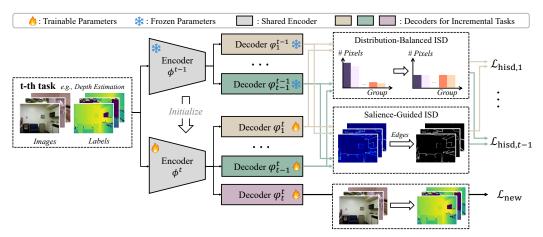


Figure 2: The training pipeline of the proposed HISD method in the t-th training phase. The HISD method uses the distribution-balanced ISD and salience-guided ISD to mitigate forgetting of previous tasks \mathcal{T}_j (j < t), all of which are calculated on the pseudo-labels generated by the frozen teacher model \mathcal{F}_i^{t-1} . Adapting to the new task \mathcal{T}_t is achieved by the task-specific loss function \mathcal{L}_{new} .

sequence of heterogeneous dense prediction tasks. Each task \mathcal{T}_t corresponds to a distinct dense prediction task (e.g., semantic segmentation, depth estimation, or surface normal prediction) with a unique output space (e.g., class labels, depth maps, or surface normal vectors).

Formally, the input and output spaces of task \mathcal{T}_t are defined as

$$\mathcal{T}_{t} = \{ (\mathcal{X}, \mathcal{Y}_{t}) | \mathcal{X} \subseteq \mathbb{R}^{C^{\text{in}} \times H \times W}, \mathcal{Y}_{t} \subseteq \mathbb{R}^{C^{\text{out}}_{t} \times H \times W} \},$$
(2)

where H,W denotes the spatial dimensions (i.e., the height and width of input images), $C^{\rm in}$ denotes the number of input channels (e.g., 3 for RGB images), $C^{\rm out}_t$ denotes the number of output channels for the t-th task \mathcal{T}_t , which varies across tasks (e.g., 1 for the depth estimation task or 3 for the surface normal estimation task). Moreover, \mathcal{Y}_t is continuous for some tasks (e.g., depth estimation and surface normal estimation) or discrete for some tasks (e.g., semantic segmentation), while all tasks share the same input domain. A detailed comparison between the proposed HIL4DP scenario and existing IL subcategories is provided in Appendix A.

3.3 CHALLENGES

HIL4DP poses challenges that extend beyond conventional IL. It involves sequentially learning *heterogeneous tasks* with distinct objectives and outputs, resulting in a more complex and challenging process. These tasks rely on *heterogeneous knowledge* (e.g., 3D scene understanding in depth estimation versus semantic structure in segmentation), making it difficult to balance knowledge retention and forgetting. Furthermore, the pixel-level nature of dense prediction requires preserving *fine-grained information* while maintaining globally consistent outputs. Additional discussion of these challenges posed by HIL4DP is provided in Appendix B.

According to the above analysis, the challenges in the HIL4DP scenario can be attributed to the unique nature of task heterogeneity and further compounded by the added complexity of DP tasks. In the next section, we propose a method to handle those challenges.

4 METHODOLOGY

In this section, we introduce the proposed HISD method for the HIL4DP setting.

4.1 OVERVIEW

Architecture. As illustrated in Fig. 2, we employ a task-shared encoder to acquire knowledge from a sequence of tasks and capture fine-grained features from images. Given the heterogeneity across tasks, a task-specific decoder is used per task. Formally, the learner \mathcal{F} during the t-th training phase

comprises: 1) a task-shared encoder $f_{\phi^t}: \mathcal{X} \to \mathbb{R}^d$ parameterized by ϕ^t that generalizes across tasks; 2) a set of task-specific decoders parameterized by $\{\varphi_i^t\}_{i=1}^t$, where each $g_{\varphi_i^t}: \mathbb{R}^d \to \mathcal{Y}_i$ maps hidden features to the specific output space of task \mathcal{T}_i . To simplify notation, the prediction function of task \mathcal{T}_j is defined as $\mathcal{F}_j^t(\cdot) = \mathcal{F}(\cdot; \phi^t, \varphi_j^t): \mathcal{X} \to \mathcal{Y}_j$, and the parameters of learner \mathcal{F} at the training phase t is denoted as $\Phi^t = \{\phi^t, \{\varphi_j^t\}_{j=1}^t\}$.

Incremental Self-Distillation (ISD). To enable continuous knowledge integration from new DP tasks, the parameters Φ^t are initialized from Φ^{t-1} with the expanded task-specific decoder φ^t_t to adapt to task \mathcal{T}_t . Then, Φ^t is trained on the new DP task \mathcal{T}_t using the task-specific training loss \mathcal{L}_{new} (e.g., L_1 loss for depth estimation task and cross-entropy loss for semantic segmentation tasks) via supervised learning, while retaining the previous knowledge via self-distillation loss \mathcal{L}_{dis} .

However, as shown in Fig. 1, vanilla training on a new task \mathcal{T}_t leads to catastrophic forgetting of previous tasks in the HIL4DP scenario. To mitigate this problem, a simple method is to employ the self-distillation (Pham et al., 2022). Specifically, during the t-th training phase, the previous learners $\{\mathcal{F}_i^{t-1}\}_{i=1}^{t-1}$ trained on previous tasks $\mathcal{T}_{1:t-1}$ are treated as the teacher model, while the current learners $\{\mathcal{F}_i^t\}_{i=1}^{t-1}$ being trained on the new task \mathcal{T}_t serve as the student model. To retain prior knowledge of each task \mathcal{T}_j , we introduce the distillation loss function $\mathcal{L}_{\mathrm{dis},j}$ to align the prediction of the student model on \mathcal{D}_t with the pseudo-label generated by the teacher model. Since datasets $\mathcal{D}_{1:t-1}$ of previous tasks are inaccessible and every task shares a common input space, the pseudo-labels for previous tasks can be generated on the dataset \mathcal{D}_t of the new task. Formally, the total training loss to train Φ^t is formulated as

$$\mathcal{L} = \alpha \underbrace{\sum_{(x,y)\in\mathcal{D}_t} \frac{1}{(t-1)|\mathcal{D}_t|} \sum_{j}^{t-1} \bar{\mathcal{L}}_{\mathrm{dis},j}(\mathcal{F}_j^t(x), \mathcal{F}_j^{t-1}(x))}_{\mathcal{L}_{\mathrm{dis}}} + \underbrace{\frac{1}{|\mathcal{D}_t|} \sum_{(x,y)\in\mathcal{D}_t} \bar{\mathcal{L}}_t(\mathcal{F}_t^t(x), y)}_{\mathcal{L}_{\mathrm{new}}}, \quad (3)$$

where $\bar{\mathcal{L}}_{\mathrm{dis},j}$ is the task-specific distillation loss function of task \mathcal{T}_j , $\bar{\mathcal{L}}_t$ is the task-specific loss function of task \mathcal{T}_t , $|\mathcal{D}_t|$ denotes the number of samples in the dataset \mathcal{D}_t , and α is the hyperparameter to control the impact of the distillation loss $\mathcal{L}_{\mathrm{dis}}$.

However, as illustrated in the next sections, naive distillation in Eq. (3) yields limited gains due to imbalanced pseudo-label distributions and insufficient focus on salient regions. To address those issues, we further propose the HISD method, consisting of two loss components for each task j: distribution-balanced incremental self-distillation (DB-ISD) loss $\mathcal{L}_{\mathrm{db},j}$ and salience-guided incremental self-distillation (SG-ISD) loss $\mathcal{L}_{\mathrm{sg},j}$. Thus, the total training loss to learn Φ^t in the proposed method is formulated as

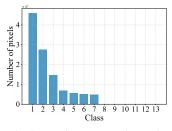
$$\mathcal{L} = \frac{\alpha}{2(t-1)} \sum_{j=1}^{t-1} \underbrace{\sum_{(x,y)\in\mathcal{D}_t} \frac{1}{|\mathcal{D}_t|} (\mathcal{L}_{\mathrm{db},j}(x) + \mathcal{L}_{\mathrm{sg},j}(x))}_{\mathcal{L}_{\mathrm{hisd},j}} + \mathcal{L}_{\mathrm{new}}.$$
(4)

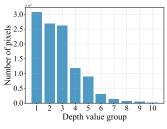
The details of DB-ISD and SG-ISD are introduced in the following sections.

4.2 DISTRIBUTION-BALANCED INCREMENTAL SELF-DISTILLATION (DB-ISD)

To preserve previous knowledge while learning new tasks, the teacher model generates pseudolabels on the new training data to revise the heterogeneous knowledge of previous tasks. However, we observe that the distribution of generated pseudo-labels is imbalanced. To address the imbalance issue, we propose the DB-ISD method, which first partitions image pixels into semantic groups and then balances their respective contributions.

Imbalance issue. Generally, DP tasks can be categorized into pixel-level classification and pixel-level regression tasks. To illustrate the imbalance phenomenon across these two types of DP tasks, Fig. 3 visualizes the distribution of pseudo-labels generated by the learner after the first training phase on raw images from the new task data, exhibiting an imbalance pixel-wise distribution of class labels for the classification task (*e.g.*, semantic segmentation in Fig. 3(b)) and values for the regression task (*e.g.*, depth estimation in Fig. 3(c)). This phenomenon is widespread across different tasks rather than being limited to our experiments (Ge et al., 2024), posing a risk to effective knowledge retention during the learning phase of the new task (Jiao et al., 2018).





(a) An example of raw images

(b) Semantic segmentation task

(c) Depth estimation task

Figure 3: An illustration of the distribution imbalance in pseudo-labels. The number of pixels in the semantic segmentation task is counted per class. In the depth estimation task, we divide the range of pseudo-labels given by the teacher model into ten equal intervals, each of which is a group, and then the ten groups are sorted based on the number of pixels in each group.

Group partition. A group is defined as a collection of pixels that share similar semantics, as decided by their pseudo-labels. For each task \mathcal{T}_j , the generated pixel-level pseudo-labels $\mathcal{F}_j^{t-1}(x) \in \mathbb{R}^{H \times W}$ on the image $x \in \mathcal{D}_t$ are divided into C_j non-overlapping groups. For a pixel-level classification task \mathcal{T}_j in DP, a group corresponds to a class. The number of groups C_j equals the number of classes. Concretely, for each class $c \in \{i\}_{i=1}^{C_j}$, we construct binary masks $M_{c,j}^x \in \{0,1\}^{H \times W}$ that indicates the presence of class $c \in M_{c,j}^x[m,n] = \mathbb{I}(\mathcal{F}_j^{t-1}(x)[m,n] = c)$, where $\mathbb{I}(\cdot)$ is the indicator function, $m \in \{1,\ldots,H\}, n \in \{1,\ldots,W\}$ denote the indices of the mask, and A[m,n] for a matrix A denotes the (m,n)-th entry in A. For a pixel-level regression task \mathcal{T}_j in DP, we first obtain a scalar value per pixel by averaging across the channel dimension of size C_j^{out} . The resulting continuous values are then min–max normalized (Bishop & Nasrabadi, 2006) into the interval [0,1] and binarized into two groups $(C_j=2)$, i.e., foreground and background (Ge et al., 2024), using a threshold $\tau \in (0,1)$. This yields two masks: $M_{1,j}^x[m,n] = \mathbb{I}(\mathcal{F}_j^{t-1}(x)[m,n] < \tau)$, and $M_{2,j}^x[m,n] = \mathbb{I}(\tau \leq \mathcal{F}_j^{t-1}(x)[m,n])$.

Loss function. Inside each group, we compute the *geometric mean* of the per-pixel self-distillation loss to mitigate the impact of inaccuracies and noise (Tao et al., 2008). The group losses are then averaged arithmetically, ensuring that each group contributes equally to the training objective. Given an input image x, the loss function $\mathcal{L}_{\mathrm{db},j}$ of DB-ISD for each task \mathcal{T}_j during the t-th training phase can be expressed as

$$\mathcal{L}_{\mathrm{db},j}(x) = \sum_{c=1}^{C_j} \frac{1}{C_j} \left(\prod_{(m,n)\in I_{c,j}(x)} \mathcal{L}_{\mathrm{dis},j} \left(\mathcal{F}_j^t(x), \mathcal{F}_j^{t-1}(x) \right) [m,n] \right)^{\frac{1}{|I_{c,j}(x)|}}, \tag{5}$$

where $\mathcal{L}_{\mathrm{dis},j}$ denotes the per-pixel self-distillation loss of task \mathcal{T}_j , $I_{c,j}(x) = \{(m,n) | M_{c,j}^x[m,n] > 0\}$ is a set of indices that the corresponding pixel belongs to the group c for the image x of task \mathcal{T}_j , and $|I_{c,j}(x)|$ denotes the number of elements in $I_{c,j}(x)$.

4.3 SALIENCE-GUIDED INCREMENTAL SELF-DISTILLATION (SG-ISD)

In dense prediction tasks, a substantial amount of informative signal resides around semantic boundaries or sharp value transitions (Zhu et al., 2020; Zuo et al., 2022). Preserving this information in HIL4DP effectively enhances the retention of heterogeneous knowledge. Hence, we introduce a complementary salience-guided loss to ensure that the model retains information in these pixels.

Salient-pixel extraction. To enhance distillation, the SG-ISD loss focuses on the edges of the pixel-wise loss map, corresponding to pixels with sharp variations that carry the most informative signals. Though ground-truth edges are unavailable, an edge set can be obtained by identifying pixels where the value changes significantly between adjacent pixels (Vincent et al., 2009). We first calculate a pixel-wise loss map between the frozen teacher model \mathcal{F}_j^{t-1} and the student model \mathcal{F}_j^t as

$$\mathbf{I}_{j}(x) = \mathcal{L}_{\mathrm{dis},j}(\mathcal{F}_{j}^{t}(x), \mathcal{F}_{j}^{t-1}(x)) \in \mathbb{R}^{H \times W}, \tag{6}$$

where $I_j(x)$ denotes the pixel-wise self-distillation loss map of input x for task \mathcal{T}_j . To localize sharp spatial transitions in $I_j(x)$, we apply the Sobel operator (Sobel, 2014), a discrete differenti-

ation operator that approximates the gradients of the image intensity function. With the horizontal convolution kernel defined as $\mathbf{G}_h = [1,2,1]^{\top}[1,0,-1]$, and the vertical convolution kernel defined as $\mathbf{G}_v = [1,0,-1]^{\top}[1,2,1]$, the Sobel operator conduct the gradient approximation as

$$\mathbf{G}_{j}(x) = \sqrt{\left(\mathbf{G}_{h} * \mathbf{I}_{j}(x)\right)^{2} + \left(\mathbf{G}_{v} * \mathbf{I}_{j}(x)\right)^{2}},\tag{7}$$

where * denotes the convolution operator and the superscript $(\cdot)^2$ denotes the elementwise square operation. The edge set \mathbf{P}_i is then selected by thresholding the gradient magnitude map \mathbf{G}_i as

$$\mathbf{P}_{j}(x) = \{ (m, n) \mid \mathbf{G}_{j}(x)[m, n] > k \}, \tag{8}$$

where k is a hyperparameter controlling the necessary gradient intensity to constitute an edge.

Loss function. We accumulate the pixel-wise loss over the extracted salient edge set only:

$$\mathcal{L}_{\mathrm{sg},j}(x) = \sum_{(m,n)\in\mathbf{P}_j(x)} \frac{1}{|\mathbf{P}_j(x)|} \mathbf{I}_j(x)[m,n],\tag{9}$$

where $|\mathbf{P}_i(x)|$ denotes the number of elements in $\mathbf{P}_i(x)$.

To summarize, by plugging Eqs. (5) and (9) into Eq. (4), we obtain the objective function of the proposed HISD method in the t-th training phase. By balancing group contributions and emphasizing salient boundaries, the proposed HISD method provides an effective defense against forgetting.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. We empirically evaluate the performance of the proposed method in the HIL4DP scenario under four well-established and practical DP benchmarks (Zhang et al., 2025; Wang et al., 2025), including *CityScapes* (Cordts et al., 2016), *NYUv2* (Silberman et al., 2012), *PASCAL-Context* (Everingham et al., 2010), and *Taskonomy* (Zamir et al., 2018), for scenarios involving 2, 3, 4, and 10 heterogeneous tasks. The task sequences are randomly selected, and the training data is evenly divided across tasks without overlap. Evaluation is performed using the full test set. During the training phase of each task, the labels of other tasks are inaccessible. Additional benchmark details can be found in Appendix C.1.

Evaluation metrics. Due to the heterogeneity of task outputs, different evaluation metrics are required to assess model performance across tasks. However, the disparity among these metrics makes it difficult to compare overall performance using simple averaging. Thus, following the setup in (Maninis et al., 2019), we adopt the average of the relative improvement over the vanilla training across tasks after the t-th training phase as the overall evaluation metric, defined as

$$\Delta_b^t = \frac{1}{t} \sum_{i=1}^t \frac{1}{M_i} \sum_{j=1}^{M_i} \frac{(-1)^{s_{i,j}} (E_{i,j}^m - E_{i,j}^b)}{E_{i,j}^b}.$$
 (10)

Here, t is equal to the number of learned tasks, M_i denotes the number of metrics for task \mathcal{T}_i . $E^m_{i,j}$ and $E^b_{i,j}$ denote the performance of the method m and the vanilla training for the j-th metric in task \mathcal{T}_i , respectively. $s_{i,j}$ is set to 1 if a lower value indicates better performance in terms of the j-th metric in task \mathcal{T}_i and otherwise 0. Δ^T_b denotes the final performance after the last training phase T, while $\bar{\Delta}^T_b = \frac{1}{T} \sum_{j=1}^T \Delta^j_b$ denotes the average performance across T training phases.

Comparison methods. In the HIL4DP setup, we compare the proposed method HISD with IL methods applicable to this scenario. Specifically, baseline methods include EWC (Kirkpatrick et al., 2017), LWF (Li & Hoiem, 2017), iCaRL (Rebuffi et al., 2017), DER (Buzzega et al., 2020), SPG (Konishi et al., 2023), and SGP (Saha & Roy, 2023). For the replay-based baseline methods, DER and iCaRL, we store and replay the pixel-wise predictions to ensure fair comparison with HISD. In addition to these IL methods, we also establish two extreme baselines for comparison, including *a*) Vanilla training, which involves sequentially training tasks, *b*) Joint training, where all tasks are trained simultaneously using the complete dataset, which serves as the upper bound. For

Table 1: Performance on 3 tasks (*i.e.*, 13-class semantic segmentation, depth estimation, and surface normal prediction) after the last training phase of the *NYUv2* dataset across different encoders. The best results for each task are shown in **bold**. $\uparrow(\downarrow)$ means that the higher (lower) the value, the better the performance.

		Segm	entation	Depth		Surface Normal					
	Method	mIoII4	Pix Acc↑	Abs Err 1	Rel Err↓	Angle	Distance	V	Vithin t°		$\Delta_b^T \uparrow$
		mIoU↑	FIX ACC	AUS EIT ↓	Kei Eii ţ	Mean ↓	Median ↓	11.25 ↑	22.5 ↑	30 ↑	
	Vanilla training	17.49	46.81	0.9609	0.3328	32.45	26.92	20.72	42.56	54.73	+0.00%
	Joint training	41.84	66.14	0.5793	0.2201	31.53	25.78	22.38	44.54	56.36	+40.83%
∞	EWC	32.17	57.21	0.9586	0.3493	37.52	33.08	13.47	33.37	45.35	+24.39%
7-	iCaRL	21.78	53.00	1.3093	0.4561	33.07	27.73	19.45	41.20	53.43	-4.82%
ResNet-18	LwF	31.51	57.37	0.8986	0.3345	37.06	32.09	13.89	34.66	46.81	+24.74%
esl	DER	21.90	53.10	1.2735	0.4422	33.09	27.74	19.36	41.18	53.43	-3.31%
\mathcal{B}	SPG	18.10	48.15	0.8801	0.3019	32.57	26.92	20.80	42.58	54.66	+4.01%
	SGP	21.34	49.75	0.9270	0.3181	32.87	27.15	19.99	42.15	54.31	+6.53%
	HISD	35.12	59.63	0.7410	0.2641	35.32	30.55	17.23	37.26	49.12	+32.74%
	Vanilla training	18.26	50.85	0.8305	0.2725	28.21	21.93	26.74	50.99	63.08	+0.00%
	Joint training	47.78	71.03	0.4933	0.2149	28.10	22.24	25.32	50.43	62.95	+44.36%
	EWC	36.55	61.75	0.7321	0.2629	33.61	28.99	18.37	39.34	51.51	+31.08%
ResNet-50	iCaRL	28.08	57.41	0.9877	0.3549	30.52	25.47	22.08	44.75	57.36	+7.12%
\e	LwF	38.06	63.77	0.6505	0.2466	31.84	26.28	20.67	43.33	56.07	+32.94%
[sa	DER	27.12	58.04	0.7383	0.2650	31.25	26.30	21.50	43.58	55.91	+17.83%
R	SPG	19.77	51.40	0.7595	0.2626	28.38	22.29	25.79	50.41	62.87	+4.07%
	SGP	18.99	51.52	0.8368	0.2764	28.27	22.52	25.79	49.91	62.50	+1.15%
	HISD	38.70	63.70	0.6294	0.2369	32.55	27.38	19.66	41.66	53.96	+ 35.71 %

Table 2: Performance on 10 tasks: semantic segmentation (Seg.), depth estimation (Dep.), surface normal estimation (Normal), edge-2D detection (E.-2D), reshading (Res.), keypoint-2D detection (K.-2D), edge-3D detection (E.-3D), Euclidean distance (E. D.), curvatures (Curv.), and keypoint-3D detection. (K.-3D) on the *Taskonomy* dataset. The lower the loss value, the better the performance.

Method	Seg.	Dep.	Normal	E2D	Res.	K2D	E3D	E. D.	Curv.	K3D	$\Delta_b^T \uparrow$
Vanilla	0.7282	0.2673	0.2869	0.1627	0.4658	0.5143	0.5214	0.1968	1.8655	0.3863	+0.00%
Joint	0.1615	0.1071	0.1281	0.1434	0.1487	0.2969	0.3244	0.1054	1.3501	0.3149	+44.57%
EWC	0.4701	0.2358	0.1945	0.1692	0.3109	0.5327	0.5525	0.2286	1.9835	0.4347	+6.41%
iCaRL	0.5704	0.2247	0.2214	0.1846	0.3386	0.5022	0.5126	0.1918	1.7441	0.3965	+8.47%
LwF	0.6482	0.2628	0.2484	0.1774	0.4718	0.5298	0.5137	0.1879	1.9212	0.4208	+0.68%
DER	0.5993	0.2872	0.2315	0.1518	0.4584	0.5068	0.4564	0.2674	1.8488	0.3762	+1.94%
SPG	0.6768	0.2775	0.2617	0.1707	0.4641	0.5481	0.5418	0.2008	1.9087	0.3537	+0.11%
SGP	0.6751	0.2856	0.2595	0.1668	0.4608	0.5266	0.5319	0.2009	1.8036	0.3765	+0.79%
HISD	0.5357	0.2110	0.1868	0.1541	0.3379	0.4955	0.5114	0.2187	1.7530	0.4120	+ 10.90 %

fair comparison, grid searches for task-specific hyperparameters are performed. Introduction and hyperparameter details of baselines are shown in the Appendix C.2.

Implementation details. We adopt the DeepLabV3+ architecture (Chen et al., 2018). Specifically, a pre-trained *ResNet-18* (He et al., 2016) with dilated convolutions (Yu et al., 2017) is used as the task-shared encoder across all tasks, and task-specific decoders are Atrous Spatial Pyramid Pooling (Chen et al., 2018). To further assess the effectiveness of the proposed method, we also conduct experiments using the *ResNet-50* (He et al., 2016) as the encoder. Details of hyperparameters are provided in Appendix C.3.

5.2 RESULTS

Tab. 1 presents the results of the proposed HISD method on the *NYUv2* dataset, evaluated across various architectures. As can be seen, compared to baseline methods, the proposed HISD method yields superior average performance across tasks. Moreover, the HISD method consistently enhances results across different architectures, highlighting its robustness and generalizability.

We also present the results of the proposed HISD method in the 10-task scenario on the *Taskonomy* dataset. As shown in Tab. 2, the HISD method outperforms the baseline methods, achieving the lowest test loss across the largest number of individual tasks, as well as the best average performance across all tasks. These results further demonstrate the effectiveness of the proposed HISD method.



Figure 4: Visualization of the raw data (left), the gradient magnitude map of its prediction (middle), and the gradient magnitude map of the loss map (right).

5.3 ABLATION STUDY

We conduct ablations to assess the contribution of every component in HISD.

Effectiveness of ISD. We compared the incremental self-distillation (ISD) with several alternative training paradigms used for maintaining previous knowledge in the t-th(t > 1) training phase: 1) While $\{\phi^t, \varphi_t^t\}$ is being trained on \mathcal{L}_{new} , the decoders $\{\varphi_t^j\}_{j=1}^{t-1}$ for the old tasks are updated using pseudo-labels. 2) After $\{\phi^t, \varphi_t^t\}$ is being trained on \mathcal{L}_{new} ,

Table 3: Various training paradigms.

Method	$ \Delta_b^T \uparrow$	$ar{\Delta}_b^T \uparrow$
Paradigm ₁ Paradigm ₂ Paradigm ₃		-4.56% $-5.23%$ $-11.48%$
ISD	+0.00%	+0.00%

the decoders $\{\varphi_t^j\}_{j=1}^{t-1}$ for the old tasks are updated using pseudo-labels. 3) Only updating the new decoder φ_t^t with \mathcal{L}_{new} . All the training paradigms update the encoder and decoder of the first task on \mathcal{L}_{new} . As shown in Tab. 3, ISD consistently outperforms these alternatives.

Effectiveness of DB-ISD. We assess the effectiveness of the DB-ISD from three perspectives. First, as depicted in Tab. 4, removing DB-ISD from the baseline degrades the final metric by 2.84% and the average metric by 2.35%. Second, substituting the geometric mean in Eq. (5) with the arithmetic mean ("HISD w/ Arithmetic" in Tab. 4) degrades performance, highlighting the advancement of the geometric mean. Third, for regression tasks, we compare our group partitioning with baselines that divide the value range into

Table 4: Ablation study.

Method	$\Delta_b^T \uparrow$	$\bar{\Delta}_b^T \uparrow$
HISD	+0.00%	+0.00%
HISD w/o \mathcal{L}_{sg}	-1.27%	-0.43%
HISD w/o $\mathcal{L}_{\mathrm{db}}$	-2.84%	-2.35%
HISD w/ Arithmetic	-6.29%	-3.06%
HISD (\hat{C}_j =5)	-3.64%	-1.51%
$HISD (\hat{C}_{i}=10)$	-5.43%	-2.50%
HISD (\hat{C}_j =15)	-9.72%	-3.56%

equally sized intervals for group numbers $\hat{C}_j \in \{5, 10, 15\}$, where each interval has the same width of $\frac{1}{\hat{C}_i}$. As shown in Tab. 4, the proposed HISD outperforms all variants consistently.

Effectiveness of SG-ISD. As shown in Tab. 4, removing the salience-guided loss reduces the final and average metrics by 1.27% and 0.43%, respectively, underscoring the importance of edge-aware focus to HISD. To assess the effectiveness of the Sobel operator applied to the loss map in Eqs. (6) and (7), we compare its gradient magnitude map with the one derived from the prediction map. As shown in Fig. 4, the gradient magnitude map of the loss map (right) produces more distinct edges than those from the prediction map (middle), making it better suited for identifying edge sets.

Due to page limit, additional experiments, including results for different task sequences, additional model architectures, on other datasets, and an advantages analysis of the HIL4DP scenario by comparing it with training separate task-specific models are put in Appendix D and E.

6 CONCLUSION

In this paper, we propose a novel incremental learning scenario named heterogeneous incremental learning (HIL), which brings unique challenges for traditional incremental learning. Specifically, we focus on the practical and challenging dense prediction tasks within the HIL scenario (HIL4DP). To address these unique challenges, we propose the heterogeneity-aware incremental self-distillation (HISD), which is composed of a prediction distribution balance and a salience-guided incremental self-distillation loss function. The comprehensive experimental results and ablation studies demonstrate the effectiveness of the proposed HISD method.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. It involves no human subjects or animal experiments, relying solely on publicly available and authorized datasets. All authors confirm adherence to ethical guidelines and declare no conflicts of interest.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the HISD code in the supplementary material. Full experimental details, including datasets, baselines, and hyperparameters, are presented in Appendix C, while Sec. 4 outlines the core algorithm. These resources support the reproduction of our main results.

REFERENCES

- Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online continual learning. *Advances in neural information processing systems*, 32, 2019.
- Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common representation space in lifelong learning. In *The Eleventh International Conference on Learning Representations*, 2023.
- Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4. Springer, 2006.
- Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for general continual learning: a strong, simple baseline. *Advances in neural information processing systems*, 33:15920–15930, 2020.
- Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.
- Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3213–3223, 2016.
- Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.
- Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening sharpness for dynamic gradient projection memory benefits continual learning. *Advances in Neural Information Processing Systems*, 34:18710–18721, 2021.
- Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mahmood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026): 768–774, 2024.
- Jiahua Dong, Wenqi Liang, Yang Cong, and Gan Sun. Heterogeneous forgetting compensation for class-incremental learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11742–11751, 2023.
- Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. Plop: Learning without forgetting for continual semantic segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4040–4050, 2021.
- Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International journal of computer vision*, 88: 303–338, 2010.

543

544

545

546 547

548

549 550

551

552

553

554

555

556

558

559

561

562

563

564

565

566

567 568

569

570

571

572

573

574

575

576

577

578 579

580

581

582

583

584 585

586

588

589

590

591

592

- 540 Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super 542 neural networks. arXiv preprint arXiv:1701.08734, 2017.
 - Lihui Ge, Guanqun Wang, Tong Zhang, Yin Zhuang, He Chen, Hao Dong, and Liang Chen. Regression-guided refocusing learning with feature alignment for remote sensing tiny object detection. *IEEE transactions on geoscience and remote sensing*, 62:1–14, 2024.
 - Yizheng Gong, Siyue Yu, Xiaoyang Wang, and Jimin Xiao. Continual segmentation with disentangled objectness learning and class recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848–3857, 2024.
 - Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost Van De Weijer. Fecam: Exploiting the heterogeneity of class distributions in exemplar-free continual learning. Advances in Neural Information Processing Systems, 36:6582–6595, 2023.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
 - Junjie Hu, Chenyou Fan, Liguang Zhou, Qing Gao, Honghai Liu, and Tin Lun Lam. Lifelongmonodepth: Lifelong learning for multidomain monocular metric depth estimation. IEEE Transactions on Neural Networks and Learning Systems, 2023.
 - Jianbo Jiao, Ying Cao, Yibing Song, and Rynson Lau. Look deeper into depth: Monocular depth estimation with semantic booster and attention-driven loss. In Proceedings of the European conference on computer vision (ECCV), pp. 53-69, 2018.
 - Donggyun Kim, Jinwoo Kim, Seongwoong Cho, Chong Luo, and Seunghoon Hong. Universal few-shot learning of dense prediction tasks with visual token matching. In *International Confer*ence on Learning Representations, 2023. URL https://openreview.net/forum?id= 88nT0j5jAn.
 - James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.
 - Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameterlevel soft-masking for continual learning. In *International Conference on Machine Learning*, pp. 17492–17505. PMLR, 2023.
 - Donggyu Lee, Sangwon Jung, and Taesup Moon. Continual learning in the presence of spurious correlations: Analyses and a simple baseline. In The Twelfth International Conference on Learning Representations, 2024.
 - Zeju Li, Konstantinos Kamnitsas, and Ben Glocker. Analyzing overfitting under class imbalance in neural networks for image segmentation. *IEEE transactions on medical imaging*, 40(3):1065– 1077, 2020.
 - Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine intelligence, 40(12):2935–2947, 2017.
 - Divyam Madaan, Hongxu Yin, Wonmin Byeon, Jan Kautz, and Pavlo Molchanov. Heterogeneous continuous learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15985–15995, 2023.
 - Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1851–1860, 2019.
 - Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165. Elsevier, 1989.

- Minh Pham, Minsu Cho, Ameya Joshi, and Chinmay Hegde. Revisiting self-distillation. *arXiv* preprint arXiv:2206.08491, 2022.
 - René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188, 2021.
 - Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.
 - Jiawei Ren, Mingyuan Zhang, Cunjun Yu, and Ziwei Liu. Balanced mse for imbalanced visual regression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7926–7935, 2022.
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), *Medical Image Computing and Computer-Assisted Intervention MICCAI* 2015, pp. 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.
 - Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. In *Proceedings* of the AAAI conference on artificial intelligence, volume 37, pp. 9677–9685, 2023.
 - Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12*, pp. 746–760. Springer, 2012.
 - Irwin Sobel. History and definition of the sobel operator. *Retrieved from the World Wide Web*, 1505, 2014.
 - Dacheng Tao, Xuelong Li, Xindong Wu, and Stephen J Maybank. Geometric mean for subspace selection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(2):260–274, 2008.
 - Marco Toldo, Umberto Michieli, and Pietro Zanuttigh. Learning with style: Continual semantic segmentation across tasks and domains. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(11):7434–7450, 2024.
 - Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3614–3633, 2021.
 - O Rebecca Vincent, Olusegun Folorunso, et al. A descriptive algorithm for sobel image edge detection. In *Proceedings of informing science & IT education conference (InSITE)*, volume 40, pp. 97–107, 2009.
 - Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Xuehao Wang, Zhan Zhuang, Feiyang Ye, and Yu Zhang. MTSAM: Multi-task fine-tuning for segment anything model. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=6N4QMbeVaO.
 - Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang, Changshui Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated continual learning. *arXiv* preprint arXiv:2502.14205, 2025.
- Guangkai Xu, Yongtao Ge, Mingyu Liu, Chengxiang Fan, Kangyang Xie, Zhiyue Zhao, Hao Chen, and Chunhua Shen. What matters when repurposing diffusion models for general dense perception tasks? In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=BgYbk6ZmeX.

- Honghui Yang, Di Huang, Wei Yin, Chunhua Shen, Haifeng Liu, Xiaofei He, Binbin Lin, Wanli Ouyang, and Tong He. Depth any video with scalable synthetic data. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=qWqFbnKsqR.
 - Honghui Yang, Di Huang, Wei Yin, Chunhua Shen, Haifeng Liu, Xiaofei He, Binbin Lin, Wanli Ouyang, and Tong He. Depth any video with scalable synthetic data. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL https://openreview.net/forum?id=gWqFbnKsqR.
 - Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024a.
 - Zhiwen Yang, Liang Li, Jiehua Zhang, Tingyu Wang, Yaoqi Sun, and Chenggang Yan. Domain shared and specific prompt learning for incremental monocular depth estimation. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 8306–8315, 2024b.
 - Hanrong Ye and Dan Xu. Invpt++: Inverted pyramid multi-task transformer for visual scene understanding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Hongmei Yin, Tingliang Feng, Fan Lyu, Fanhua Shang, Hongying Liu, Wei Feng, and Liang Wan. Beyond background shift: Rethinking instance replay in continual semantic segmentation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 9839–9848, 2025.
 - Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 472–480, 2017.
 - Bo Yuan and Danpei Zhao. A survey on continual semantic segmentation: Theory, challenge, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3712–3722, 2018.
 - Jingdong Zhang, Jiayuan Fan, Peng Ye, Bo Zhang, Hancheng Ye, Baopu Li, Yancheng Cai, and Tao Chen. Bridgenet: Comprehensive and effective feature interactions via bridge feature for multi-task dense predictions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
 - Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and data engineering*, 34(12):5586–5609, 2021.
 - Linglan Zhao, Xuerui Zhang, Ke Yan, Shouhong Ding, and Weiran Huang. Safe: Slow and fast parameter-efficient tuning for continual learning with pre-trained models. *arXiv* preprint arXiv:2411.02175, 2024.
 - Yin Zhaoyun, Wang Pichao, Wang Fan, Xu Xianzhe, Zhang Hanling, Li Hao, and Jin Rong. Transfgu: A top-down approach to fine-grained unsupervised semantic segmentation. In *European Conference on Computer Vision*, pp. 73–89. Springer, 2022.
 - Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, and Jiaya Jia. Understanding imbalanced semantic segmentation through neural collapse. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 19550–19560, 2023.
 - Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep class-incremental learning: A survey. *arXiv preprint arXiv:2302.03648*, 1(2):6, 2023.
 - Shengjie Zhu, Garrick Brazil, and Xiaoming Liu. The edge of depth: Explicit constraints between segmentation and depth. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13116–13125, 2020.
 - Huiping Zhuang, Yizhu Chen, Di Fang, Run He, Kai Tong, Hongxin Wei, Ziqian Zeng, and Cen Chen. Gacl: Exemplar-free generalized analytic continual learning. *Advances in Neural Information Processing Systems*, 37:83024–83047, 2024.

Shuangquan Zuo, Yun Xiao, Xiaojun Chang, and Xuanhong Wang. Vision transformers for dense prediction: A survey. *Knowledge-based systems*, 253:109552, 2022.

A COMPARISON WITH EXISTING INCREMENTAL LEARNING SCENARIOS

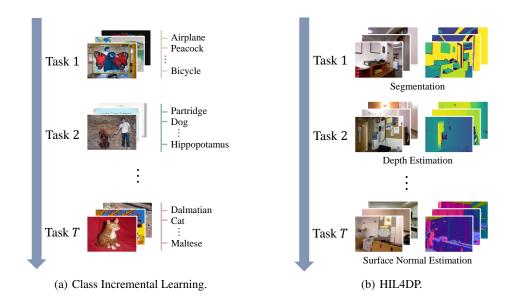


Figure 5: Comparison between Class Incremental Learning (CIL) and Heterogeneous Incremental Learning for Dense Prediction (HIL4DP). (a) CIL incrementally recognizes all encountered classes, while (b) HIL4DP progressively addresses all encountered heterogeneous dense prediction tasks.

In this section, we analyze the similarities and differences between the proposed heterogeneous incremental learning for dense prediction (HIL4DP) scenario and the traditional incremental learning (IL) scenario.

Similarities. The proposed HIL4DP scenario shares three key similarities with the traditional IL scenario: objectives, settings, and challenges. First, both HIL4DP and IL aim to achieve performance on sequential tasks comparable to that of joint training across multiple tasks (Wang et al., 2024). Second, in both settings, models can be trained for multiple epochs on all data for a given task, while data from previous and future tasks remains inaccessible. Finally, both HIL4DP and IL face the issue of catastrophic forgetting, where training on the current task leads to the loss of knowledge from previous tasks.

Table 5: Comparison between different categories within incremental learning.

Subcategory	Domain Gap	Task ID	Multiple Task Type	
CIL	×	×	×	
TIL	×	√	×	
DIL	$\sqrt{}$	×	×	
HIL/HIL4DP	×	×	√	

Differences. Traditional incremental learning can be classified into three subcategories: class incremental learning (CIL), task incremental learning (TIL), and domain incremental learning (DIL). Compared with other subcategories, the domain of the training data in DIL varies across tasks, while the number of classes remains consistent across different tasks. In both CIL and TIL, the domain of the training data remains consistent; however, as the number of tasks increases, so does the total number of classification categories. The key difference between TIL and CIL is that TIL requires a task ID during inference. However, CIL, TIL, and DIL remain restricted to classification tasks and do not support scenarios involving sequentially arriving heterogeneous tasks. In contrast, the proposed HIL4DP assumes tasks share an input distribution but differ in output types (*e.g.*, class labels and continuous values), which introduces unique challenges for HIL4DP. Illustration of the comparison can be found in Fig. 5 and Tab. 5.

B CHALLENGES OF HIL4DP

The unique challenges posed by the proposed HIL4DP scenario are listed as follows.

Heterogeneous tasks. The technical challenges inherent in HIL4DP are beyond those typically encountered in conventional IL scenarios. Different from traditional settings that focus on a single type of tasks (*e.g.*, classification or segmentation), HIL4DP requires learning different types of tasks at different training phases, where each task often involves distinct objective functions and heterogeneous outputs. This results in a more complex and challenging training process.

Heterogeneous knowledge. Different tasks require distinct and heterogeneous knowledge representations. For example, the depth estimation task requires a comprehensive understanding of 3D scenes, while the semantic segmentation task primarily relies on high-level structured semantic knowledge (Kim et al., 2023; Zhaoyun et al., 2022). This divergence presents a challenge for mitigating catastrophic forgetting during the learning of new tasks, highlighting the necessity of strategies that facilitate effective knowledge transfer across heterogeneous tasks.

Fine-grained information. DP tasks involve producing pixel-level outputs that rely on rich fine-grained information, thereby posing additional challenges (Zuo et al., 2022). This complexity makes retaining previously learned knowledge particularly difficult, requiring strategies capable of preserving fine-grained representations and producing globally coherent outputs across sequential DP tasks.

C EXPERIMENT DETAILS

C.1 DETAILS OF DATASETS

To evaluate the performance of the proposed HISD, we conduct experiments on four datasets using different task numbers as different scenarios: *NYUv2* dataset for 3 tasks, *CityScapes* dataset for 2 tasks, *PASCAL-Context* dataset for 4 tasks, and *Taskonomy* dataset for 10 tasks.

NYUv2 dataset. This dataset contains 795 training images and 654 testing images in a variety of indoor scenes with ground truth for three tasks (*i.e.*, 13-class semantic segmentation, depth estimation, and surface normal prediction). We use the mean Intersection over Union (mIoU) and Pixel Accuracy (Pix Arr) to evaluate the semantic segmentation task, and use the Absolute Error (Abs Err) and the Real Error (Rel Err) to evaluate the depth prediction task. For the surface normal estimation task, it is evaluated with the mean and the median of angular error measured in degrees, and the percentage of pixels whose angular error is within 11.25, 22.5, and 30 degrees.

CityScapes dataset. This dataset comprises 2,975 images for training and an additional 500 images for testing, where we conduct experiments on two tasks (*i.e.*, 7-class semantic segmentation and depth estimation). We use the mean Intersection over Union (mIoU) and Pixel Accuracy (Pix Arr) to evaluate the semantic segmentation task, and use the Absolute Error (Abs Err) and the Real Error (Rel Err) to evaluate the depth prediction task.

PASCAL-Context dataset. This dataset has 4,998 annotated training images and 5,105 annotated test images for four dense prediction tasks, including semantic segmentation, human parsing, surface normal estimation, and salience detection. The mIoU is used to evaluate the semantic segmentation task, human parts segmentation task, and saliency estimation task, while the mean of angular error measured in degrees is used to evaluate the surface normal estimation task.

Taskonomy dataset. We split the 1,390 images from three different views in this dataset into training data for the 10 tasks, reserving one unseen view for testing. The evaluation metric used for performance assessment is the test loss.

C.2 BASELINES

We compare the proposed HISD method against vanilla training, as well as three categories of traditional IL methods: regularization-based methods including EWC (Kirkpatrick et al., 2017), LWF (Li & Hoiem, 2017), and SGP (Saha & Roy, 2023), which constrain the changes in important parameters, representations, and gradients; replay-based methods such as iCaRL (Rebuffi et al., 2017) and DER (Buzzega et al., 2020), which store historical data in a fixed-size memory and replay

them during the learning of new tasks; and the parameter isolation method SPG (Konishi et al., 2023), which combines orthogonal gradient projections with scaled gradient steps in the important gradient spaces for past tasks. For all replay-based methods, the exemplar size is fixed at 50.

For different methods, we perform grid searches on hyperparameters and select the best result. The hyperparameters of each method for different datasets are shown in Tab. 6.

Table 6: H	vperparameter	of different	methods.
------------	---------------	--------------	----------

Method	NY	Uv2	CityS	'capes	PASCAL-Context	Taskonomy
Method	Resnet-18	Resnet-50	Resnet-18	Resnet-50	Resnet-18	Resnet-18
EWC	109	10^{10}	10^{6}	10^{3}	10^{6}	109
iCaRL	0.01	0.1	0.01	0.1	0.1	1
LWF	5	5	0.01	0.1	5	0.1
DER	DER 0.01		1	1	0.1	0.1
SGP 0.1		10	10	1000	1000	100

C.3 IMPLEMENTATION DETAILS

The task sequences are randomly selected. For the NYUv2 dataset, the sequence is: Semantic segmentation \rightarrow Depth estimation \rightarrow Surface normal prediction, as shown in Tab. 1. For the Taskon-omy dataset, the sequence is: Semantic segmentation (Seg.) \rightarrow Depth estimation (Dep.) \rightarrow Surface normal estimation (Normal) \rightarrow Reshading (Res.) \rightarrow Keypoint-2D detection (K.-2D) \rightarrow Edge-2D detection (E.-2D) \rightarrow Euclidean distance (E.D.) \rightarrow Curvatures (Curv.) \rightarrow Keypoint-3D detection (K.-3D) \rightarrow Edge-3D detection (E.-3D), as shown in Tab. 2.

For all methods, we adopt the following common settings to ensure a fair comparison. The batch size is set to 64 for the *CityScapes* dataset, 16 for the *Taskonomy* dataset, 48 for *NYUv2* and *PASCAL-Context* datasets. We use the Adam optimizer with an initial learning rate of 10^{-4} , and adopt a linear learning rate scheduler with a warmup phase, where the warmup rate is set to 0.5. Weight decay is fixed at 10^{-5} .

In the proposed HISD method, we perform grid searches for the hyperparameters α , k, and τ . Specifically, we set hyperparameters as follows: $\alpha=3, k=0.5, \tau=0.9$ for NYUv2 dataset on Resnet-18, $\alpha=20, k=0.6, \tau=0.6$ for NYUv2 dataset on Resnet-50, $\alpha=100, k=0.6, \tau=0.6$ for CityScapes dataset on Resnet-18, $\alpha=1, k=0.8, \tau=0.5$ for CityScapes dataset on Resnet-50, and $\alpha=50, k=0.5, \tau=0.5$ for PASCAL-Context dataset, $\alpha=1, k=0.5, \tau=0.9$ for Taskonomy dataset. We use the task-specific loss function as the per-pixel self-distillation loss function $\mathcal{L}_{\mathrm{dis},j}$ of each task \mathcal{T}_j , i.e., $\mathcal{L}_{\mathrm{dis},j}=\mathcal{L}_j$. All methods are implemented using Pytorch framework, and all models are trained on RTX V100 GPUs.

D ADDITIONAL RESULTS

Results for the shuffled task sequence on the NYUv2 dataset are provided in Tab. 7. When the task sequence is: Surface normal prediction \rightarrow Depth estimation \rightarrow Semantic segmentation, the proposed HISD method consistently outperforms the baseline methods, further demonstrating that its effectiveness is independent of task sequence.

The results of the *CityScapes* dataset using *ResNet-18* with different task sequences are provided in Tab. 8. Tab. 9 presents the results of the proposed HISD method on the same dataset using *ResNet-50*, with semantic segmentation as the first task and depth estimation as the second. As can be seen, the proposed HISD method outperforms baseline methods in both mitigating the performance degradation of the previous task and improving overall performance. Note that although the *Cityscapes* dataset contains only 2 tasks, the HIL4DP scenario is fundamentally different from transfer learning (TL), as HIL4DP treats all tasks equally by preserving the performance of previous tasks. In contrast, TL primarily focuses on optimizing the performance of the target task.

Tab. 10 presents the results of the proposed method on the *PASCAL-Context* dataset, using *ResNet-18*. The tasks are trained sequentially in the sequence: Semantic Segmentation (Seg.) \rightarrow Human

Table 7: Performance on the NYUv2 dataset with a shuffled task sequence after the last training phase. The best results for each task are shown in **bold**. $\uparrow(\downarrow)$ means that the higher (lower) the value, the better the performance.

	Segmentation		Depth		Surface Normal						
Method	T. IIA D'	D' 4 4	Abs Err ↓	Dol Enu	Angle Distance		Within t°			$\Delta_b^T \uparrow$	
	mIoU↑	Pix Acc↑	ADS EIT ↓	Rel Err↓	Mean ↓	Median ↓	11.25 ↑	22.5 ↑	30 ↑		
Vanilla training	33.77	60.36	1.0261	0.3592	40.76	34.74	10.16	30.98	43.17	+0.00%	
Joint training	41.84	66.14	0.5793	0.2201	31.53	25.78	22.38	44.54	56.36	+3.09%	
EWC	29.78	56.75	0.9217	0.3218	39.15	33.31	10.48	31.98	44.95	-0.77%	
iCaRL	23.87	53.78	1.5976	0.5474	35.87	33.19	11.60	31.55	44.63	-27.11%	
LwF	31.49	58.96	0.8586	0.3044	37.66	32.54	11.76	33.50	46.17	+0.77%	
DER	24.41	54.38	1.5884	0.5428	35.78	33.00	11.71	31.84	44.96	-26.55%	
SPG	34.40	60.79	1.0025	0.3454	40.01	34.18	11.10	31.86	43.96	+0.29%	
SGP	34.34	61.16	1.0859	0.3803	41.30	35.83	9.62	29.30	41.47	-0.17%	
HISD	28.86	56.83	0.7024	0.2553	35.05	30.36	12.71	36.04	49.41	+1.18%	

Table 8: Performance on two tasks after the last training phase (i.e., 7-class semantic segmentation and depth estimation) of the *CityScapes* dataset under two different sequences.

			, ,			1					
		Seg	mentation ightarrow	Depth		Depth o Segmentation					
Method	Segmentation		Depth		$\Delta_b^T \uparrow$	Segmentation		Depth		$\Delta_b^T \uparrow$	
	mIoU↑	Pix Acc↑	Abs Err ↓	Rel Err↓	— _b 1	mIoU↑	Pix Acc↑	Abs Err↓	Rel Err↓	Δ_b	
Vanilla training	58.40	86.84	0.0203	50.0861	+0.00%	68.44	91.45	0.0456	77.8347	+0.00%	
Joint training	71.38	92.15	0.0164	43.7236	+15.06%	71.38	92.15	0.0164	43.7236	+28.23%	
EWC	66.14	90.01	0.0203	56.8526	+0.85%	65.56	90.06	0.0217	51.9560	+19.98%	
iCaRL	67.10	91.09	0.0204	50.2167	+4.76%	57.24	87.82	0.0221	58.8481	+13.90%	
LwF	62.67	87.98	0.0202	47.6400	+3.50%	67.52	89.54	0.0192	47.2005	+24.91%	
DER	67.15	91.11	0.0206	51.3117	+3.99%	69.20	91.90	0.0256	54.3059	+18.92%	
SPG	68.07	91.31	0.0484	94.8094	-51.50%	69.68	91.75	0.0418	104.0395	-5.80%	
SGP	53.00	82.38	0.0202	49.2638	-3.06%	68.07	91.31	0.0484	94.8094	-7.16%	
HISD	68.28	90.76	0.0192	51.7254	+5.89%	69.12	91.12	0.0186	45.5291	+26.70%	

Table 9: Performance on two tasks after the last training phase (i.e., 7-class semantic segmentation and depth estimation) of the *CityScapes* dataset using *Resnet-50*. The best results for each task are shown in **bold**. $\uparrow(\downarrow)$ means that the higher (lower) the value, the better the performance.

Method	Segme	entation	Dep	$\Delta_b^T \uparrow$	
1/2011011	mIoU↑	Pix Acc↑	Abs Err ↓	Rel Err↓	— _b 1
Vanilla training	64.93	88.93	0.0168	40.0604	+0.00%
Joint training	76.49	93.91	0.0155	45.7162	+4.26%
EWC	69.44	90.60	0.0154	41.4725	+3.41%
iCaRL	72.80	92.60	0.0166	47.3969	-0.22%
LwF	76.07	93.66	0.0175	43.5094	+2.42%
DER	73.26	93.16	0.0159	46.5341	+1.70%
SPG	57.99	85.69	0.0155	44.7024	-4.55%
SGP	65.53	88.44	0.0157	43.8087	-0.61%
HISD	76.52	93.81	0.0165	44.2749	+3.65%

Parsing (H.Parts) \rightarrow Saliency Map (Sal.) \rightarrow Surface Normal Estimation (Normal). As can be seen, the proposed HISD method outperforms baseline methods, demonstrating its superior performance.

E ADVANTAGES OF THE HIL4DP SCENARIO

We demonstrate the advantages of the HIL4DP scenario by comparing it with training separate task-specific models under the same amount of labeled data. Beyond its practical benefit of supporting heterogeneous tasks within a shared encoder, HIL4DP offers two key advantages: higher performance and lower memory overhead.

Table 10: Performance on four tasks (i.e., 21-class semantic segmentation, 7-class human parts segmentation, saliency estimation, and surface normal estimation) in the *PASCAL-Context* dataset. The best results for each task are shown in **bold**. $\uparrow(\downarrow)$ means that the higher (lower) the value, the better the performance.

1					
Method	Seg.↑	H.Parts ↑	Sal.↑	$\mathbf{Normal} \!\!\downarrow$	$\Delta_b^T\uparrow$
Vanilla training Joint training	11.88 57.77	27.40 48.05	52.09 60.88	21.4409 21.0313	$+0.00\% \\ +60.05\%$
EWC	34.27	37.04	55.05	23.9992	+27.18%
iCaRL	12.06	30.17	56.84	20.7354	+3.00%
LWF	38.10	34.63	54.04	24.0761	+29.82%
DER	10.81	32.03	55.48	20.4669	+2.37%
SPG	7.16	20.31	47.38	20.5474	-8.81%
SGP	8.46	29.55	49.83	20.6048	-2.67%
HISD	39.96	33.62	53.76	23.7274	+31.45%

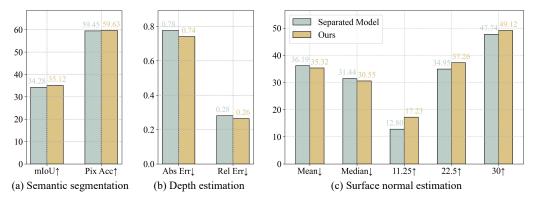


Figure 6: The comparison between training separate models and the proposed HISD. Each figure illustrates the performance improvement of the HISD method in the HIL4DP scenario of a given task. The symbol $\uparrow (\downarrow)$ signifies that a higher (lower) value denotes better performance.

Better performance. The comparison on *NYUv2* dataset is shown in Fig. 6. As can be seen, HIL4DP achieves average improvements of 1.38%, 5.2%, and 9.87% on the semantic segmentation, depth estimation, and surface normal estimation tasks, respectively, compared to task-specific models.

Lower memory overhead. Compared to using a shared encoder in the HIL4DP scenario, training separate task-specific models introduces more parameter overhead of 172.23% for additional encoders when using *ResNet-18* with ten tasks. Notably, this overhead grows with both the encoder complexity and the number of tasks, which is efficiently avoided by the proposed HIL4DP scenario.

F USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for the purpose of improving the readability and language of this manuscript. This work was conceived, designed, and executed entirely by the authors without technical contribution from LLMs. The authors take full responsibility for all technical contributions presented in this manuscript.