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ABSTRACT

Incremental Learning (IL) aims to preserve knowledge acquired from previous
tasks while incorporating knowledge from a sequence of new tasks. However,
most prior work explores only streams of homogeneous tasks (e.g., only clas-
sification tasks) and neglects the scenario of learning across heterogeneous tasks
that possess different structures of outputs. In this work, we formalize this broader
setting as heterogeneous incremental learning (HIL). Departing from conventional
IL, the task sequence of HIL spans different task types, and the learner needs to re-
tain heterogeneous knowledge for different output space structures. To instantiate
the HIL, we focus on HIL in the context of dense prediction (HIL4DP), a more re-
alistic and challenging scenario. To this end, we propose the Heterogeneity-aware
Incremental Self-Distillation (HISD) method, an exemplar-free approach that pre-
serves previously gained heterogeneous knowledge by self-distillation incremen-
tally. HISD comprises two complementary components: a distribution-balanced
loss to alleviate the global imbalance of prediction distribution and a salience-
guided loss that concentrates learning on informative edge pixels extracted with
the Sobel operator. Extensive experiments demonstrate that the proposed HISD
significantly outperforms existing IL baselines in this new scenario.

1 INTRODUCTION

Incremental learning (IL), also known as continual learning, has garnered significant attention since
it holds the potential to continually adapt to a sequence of new tasks from the data stream (Do-
hare et al., 2024; Lee et al., 2024; Zhuang et al., 2024). The primary objective of IL is to address
the catastrophic forgetting problem (McCloskey & Cohen, 1989), which refers to the performance
degradation on previously learned tasks after learning new tasks in the absence of historical data.

Previous IL methods (Zhao et al., 2024; Yang et al., 2024b) in the field of computer vision are
primarily developed within the context of specific tasks (e.g., classification-only or segmentation-
only), limiting the applicability of IL methods to broader scenarios. Specifically, the IL setting often
assumes the arrival of homogeneous tasks, overlooking real-world scenarios where heterogeneous
tasks (e.g., classification and regression tasks) emerge continuously. Furthermore, sequentially han-
dling heterogeneous tasks, which requires the integration of heterogeneous knowledge, remains
underexplored. Those limitations present challenges to traditional IL and necessitate extending IL
to a novel scenario of heterogeneous incremental learning (HIL), in which the incoming tasks are
heterogeneous (e.g., a data stream with a mixture of regression and classification tasks).

To instantiate the HIL setting, in this paper, we focus on a fundamental class of computer vision
problems (Yuan & Zhao, 2024), dense prediction (DP) tasks, under the setup of HIL. The primary
goal of DP is to learn a mapping from input images to pixel-wise annotated labels (Kim et al.,
2023), with heterogeneous label spaces for different DP tasks (e.g., concrete class labels and contin-
uous depth maps). Considering the high cost of annotation and data scarcity, previous works have
jointly trained on DP tasks to achieve better performance (Vandenhende et al., 2021; Yang et al.,
2024a; Wang et al., 2025). However, due to privacy concerns and temporal inconsistency in data
collection (Zhou et al., 2023; Yang et al., 2025a; Xu et al., 2025), jointly training on multiple tasks
becomes impractical. This motivates our exploration of the HIL for dense prediction (HIL4DP). In
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(a) Semantic segmentation (‘S’) (b) Depth estimation (‘D’) (c) Surface normal estimation (‘N’)
Figure 1: Vanilla training under HIL4DP. To assess the impact of catastrophic forgetting, we shuffle
the learning sequences of three DP tasks. Each figure illustrates how the performance of a given
task varies as the training phase proceeds, where the number in the horizontal axis denotes the task
index in each sequence of three DP tasks. The performance metric is indicated above each column.
The symbol ↑ (↓) signifies that a higher (lower) value denotes better performance.

this scenario, the input data across tasks originates from the same domain, yet the tasks encoun-
tered sequentially are heterogeneous DP tasks. Under this scenario, we investigate the presence of
catastrophic forgetting by performing vanilla training on sequentially introduced task data, with the
experimental settings described in Sec. 5.1. As shown in Fig. 1, all tasks suffer from catastrophic
forgetting regardless of the learning sequences.

To mitigate the issue, we propose the Heterogeneity-aware Incremental Self-Distillation (HISD)
method. HISD performs self-distillation in an exemplar-free manner, i.e., without storing historical
data. It maintains the heterogeneous knowledge learned from previous tasks by generating pseudo-
labels to guide the knowledge retention. To improve the effectiveness of the pseudo-label guidance,
we propose two novel loss functions in the HISD method. Firstly, a distribution-balanced incre-
mental self-distillation (DB-ISD) loss is proposed to mitigate imbalanced pseudo-labels in dense
prediction tasks (Jiao et al., 2018; Li et al., 2020; Ren et al., 2022; Zhong et al., 2023) by balancing
the distribution of different semantic groups. Additionally, we use the geometric mean to smooth
the self-distillation loss within each group, which reduces the noise in pseudo-labels. Second, a pro-
posed salience-guided incremental self-distillation (SG-ISD) loss utilizes the Sobel operator (Sobel,
2014) to extract the semantic boundaries of predictions, thereby emphasizing the loss of pixels near
semantic boundaries to maintain previous knowledge more effectively.

In summary, the contributions of this paper are three-fold. a) We introduce a new scenario, hetero-
geneous incremental learning (HIL), and emphasize its unique challenges related to heterogeneous
tasks and knowledge, in contrast to traditional IL. In particular, we investigate a more realistic case:
HIL for dense prediction (HIL4DP). b) We propose the HISD method, which consists of two compo-
nents: DB-ISD and SG-ISD. c) Comprehensive experiments across diverse datasets in the HIL4DP
scenario validate the effectiveness of the proposed HISD approach, indicating that HISD mitigates
catastrophic forgetting in the HIL4DP scenario more effectively than traditional IL baselines.

2 RELATED WORK

Incremental learning. Incremental learning (IL), also known as continual learning, aims to enable
models to continually acquire new knowledge from streaming data while mitigating catastrophic
forgetting of previously learned knowledge. Traditional works on IL can be broadly classified into
three categories (De Lange et al., 2021): replay methods, which store exemplars and replay histor-
ical data (Rebuffi et al., 2017; Aljundi et al., 2019; Buzzega et al., 2020), regularization methods,
which introduce additional regularization terms (Kirkpatrick et al., 2017; Deng et al., 2021; Saha
& Roy, 2023; Bhat et al., 2023), and parameter isolation methods (De Lange et al., 2021), which
assign separate model parameters to each new task while masking parameters associated with pre-
vious tasks (Fernando et al., 2017; Konishi et al., 2023). While existing works extend IL to handle
heterogeneity in terms of class attributes (Dong et al., 2023; Goswami et al., 2023), data distribu-
tion (Wuerkaixi et al., 2025), and model structures (Madaan et al., 2023), they primarily focus on
single-task-type scenarios and ignore the heterogeneity of tasks. In contrast, we turn our attention
to a more challenging scenario, where the learning process involves a series of tasks with heteroge-
neous outputs.
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Dense prediction. Dense prediction (DP) tasks, such as semantic segmentation, depth estimation,
and surface normal prediction, are fundamental in computer vision (Cordts et al., 2016; Vanden-
hende et al., 2021; Zuo et al., 2022). Those tasks involve per-pixel discrete label or continuous value
prediction, requiring fine-grained feature extraction and globally consistent outputs. In general, they
pose greater challenges than image-level prediction tasks (Zuo et al., 2022). To achieve better per-
formance, various methods are designed for DP tasks (Ronneberger et al., 2015; Chen et al., 2018;
Ranftl et al., 2021). Although those supervised methods achieve remarkable performance, they rely
heavily on large-scale, high-quality pixel-level annotated data, which is costly to obtain (Yang et al.,
2025b; Xu et al., 2025). To mitigate data scarcity, multi-task learning methods (Zuo et al., 2022;
Ye & Xu, 2024; Wang et al., 2025) are proposed to simultaneously learning DP tasks within a sin-
gle model. However, practical constraints (e.g., data privacy, limited resources, and sequential data
collection (Zhou et al., 2023; Zhao et al., 2024)) render joint training across tasks difficult, which
motivates the study of DP tasks under the proposed new scenario HIL.

IL for dense prediction. Existing IL scenarios for DP tasks are typically tailored for the specific
tasks, including incremental depth estimation (IDS) and continual semantic segmentation (CSS).
The former focuses on enabling continuous depth estimation in emerging domains (Yang et al.,
2024b), while the latter concerns with segmentation in incremental shift along class and domain
directions (Toldo et al., 2024). We differ from these scenarios in two primary aspects. First, com-
pared with previous task-specific scenarios, HIL4DP not only reduces the risk of overfitting on the
specific task (Zhang & Yang, 2021), but holds the potential of learning knowledge from related vi-
sion tasks (Vandenhende et al., 2021). Second, while effective within their scope, these task-specific
methods rely on homogeneous, task-specific information, making them unsuitable for a sequence of
heterogeneous tasks (i.e., HIL4DP). For instance, discrete class labels (Gong et al., 2024; Yin et al.,
2025) or classification probabilities (Douillard et al., 2021; Toldo et al., 2024) commonly used in
CSS are not available in regression-based tasks. Similarly, domain-aware solutions in IDS (Hu et al.,
2023; Yang et al., 2024b) are designed to address challenges such as domain shift and depth spatial
variations. Consequently, they are fundamentally inapplicable to the HIL4DP setting.

3 PROBLEM DEFINITION

Conventional IL assumes that all tasks share the same output structure. However, real-world ap-
plications such as dense prediction (DP) demand a learner capable of handling heterogeneous tasks
whose outputs include class labels, depth maps, surface normal vectors, and more. We formalize
this more general and challenging scenario as HIL in Sec. 3.1, and then formalize the more realistic
scenario HIL4DP in Sec. 3.2. Finally, we analyze the challenges of HIL4DP in Sec. 3.3.

3.1 HETEROGENEOUS INCREMENTAL LEARNING (HIL)

In the HIL setting, let T = {Tt}Tt=1 be a sequence of T heterogeneous tasks , where all tasks share
a common input space X but each task Tt has its own output space Yt as

Tt = {(X ,Yt)}, t = 1, . . . , T. (1)

Due to the heterogeneity between tasks, the output space of each task varies, e.g., continuous or
discrete outputs. Each task Tt has its corresponding training dataset Dt = {(x, y)|x ∈ X , y ∈ Yt},
where (x, y) refers to the input and its corresponding label, respectively. Here, we assume that
training instances in different tasks have no overlap. Note that during the t-th training phase, only
the corresponding dataset Dt of task Tt is available, and the datasets of other tasks are unavailable.

The objective of HIL is to design a unified heterogeneous incremental learner, F : X →
⋃T

i=1 Yi,
capable of incrementally adapting to the sequence of tasks T . Specifically, at the t-th training phase,
the learner is expected to accurately predict outputs over the cumulative heterogeneous tasks T1:t.
This requires the learner to retain knowledge acquired during the previous training phases without
access to prior data.

3.2 HIL FOR DENSE PREDICTION (HIL4DP)

The above problem setup is universal and holds the potential to benefit a wide range of downstream
heterogeneous tasks. In this paper, we focus on a challenging and realistic scenario involving a
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Figure 2: The training pipeline of the proposed HISD method in the t-th training phase. The HISD
method uses the distribution-balanced ISD and salience-guided ISD to mitigate forgetting of previ-
ous tasks Tj (j < t), all of which are calculated on the pseudo-labels generated by the frozen teacher
model F t−1

j . Adapting to the new task Tt is achieved by the task-specific loss function Lnew.

sequence of heterogeneous dense prediction tasks. Each task Tt corresponds to a distinct dense
prediction task (e.g., semantic segmentation, depth estimation, or surface normal prediction) with a
unique output space (e.g., class labels, depth maps, or surface normal vectors).

Formally, the input and output spaces of task Tt are defined as

Tt = {(X ,Yt)|X ⊆ RCin×H×W ,Yt ⊆ RCout
t ×H×W }, (2)

where H , W denotes the spatial dimensions (i.e., the height and width of input images), C in denotes
the number of input channels (e.g., 3 for RGB images), Cout

t denotes the number of output channels
for the t-th task Tt, which varies across tasks (e.g., 1 for the depth estimation task or 3 for the
surface normal estimation task). Moreover, Yt is continuous for some tasks (e.g., depth estimation
and surface normal estimation) or discrete for some tasks (e.g., semantic segmentation), while all
tasks share the same input domain. A detailed comparison between the proposed HIL4DP scenario
and existing IL subcategories is provided in Appendix A.

3.3 CHALLENGES

HIL4DP poses challenges that extend beyond conventional IL. It involves sequentially learning het-
erogeneous tasks with distinct objectives and outputs, resulting in a more complex and challeng-
ing process. These tasks rely on heterogeneous knowledge (e.g., 3D scene understanding in depth
estimation versus semantic structure in segmentation), making it difficult to balance knowledge re-
tention and forgetting. Furthermore, the pixel-level nature of dense prediction requires preserving
fine-grained information while maintaining globally consistent outputs. Additional discussion of
these challenges posed by HIL4DP is provided in Appendix B.

According to the above analysis, the challenges in the HIL4DP scenario can be attributed to the
unique nature of task heterogeneity and further compounded by the added complexity of DP tasks.
In the next section, we propose a method to handle those challenges.

4 METHODOLOGY

In this section, we introduce the proposed HISD method for the HIL4DP setting.

4.1 OVERVIEW

Architecture. As illustrated in Fig. 2, we employ a task-shared encoder to acquire knowledge from
a sequence of tasks and capture fine-grained features from images. Given the heterogeneity across
tasks, a task-specific decoder is used per task. Formally, the learner F during the t-th training phase
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comprises: 1) a task-shared encoder fϕt : X → Rd parameterized by ϕt that generalizes across
tasks; 2) a set of task-specific decoders parameterized by {φt

i}ti=1, where each gφt
i
: Rd → Yi maps

hidden features to the specific output space of task Ti. To simplify notation, the prediction function
of task Tj is defined as F t

j (·) = F(·;ϕt, φt
j) : X → Yj , and the parameters of learner F at the

training phase t is denoted as Φt = {ϕt, {φt
j}tj=1}.

Incremental Self-Distillation (ISD). To enable continuous knowledge integration from new DP
tasks, the parameters Φt are initialized from Φt−1 with the expanded task-specific decoder φt

t to
adapt to task Tt. Then, Φt is trained on the new DP task Tt using the task-specific training loss Lnew

(e.g., L1 loss for depth estimation task and cross-entropy loss for semantic segmentation tasks) via
supervised learning, while retaining the previous knowledge via self-distillation loss Ldis.

However, as shown in Fig. 1, vanilla training on a new task Tt leads to catastrophic forgetting of
previous tasks in the HIL4DP scenario. To mitigate this problem, a simple method is to employ
the self-distillation (Pham et al., 2022). Specifically, during the t-th training phase, the previous
learners {F t−1

i }t−1
i=1 trained on previous tasks T1:t−1 are treated as the teacher model, while the

current learners {F t
i }

t−1
i=1 being trained on the new task Tt serve as the student model. To retain prior

knowledge of each task Tj , we introduce the distillation loss function Ldis,j to align the prediction
of the student model on Dt with the pseudo-label generated by the teacher model. Since datasets
D1:t−1 of previous tasks are inaccessible and every task shares a common input space, the pseudo-
labels for previous tasks can be generated on the dataset Dt of the new task. Formally, the total
training loss to train Φt is formulated as

L = α
∑

(x,y)∈Dt

1

(t− 1)|Dt|

t−1∑
j

L̄dis,j(F t
j (x),F t−1

j (x))

︸ ︷︷ ︸
Ldis

+
1

|Dt|
∑

(x,y)∈Dt

L̄t(F t
t (x), y)︸ ︷︷ ︸

Lnew

, (3)

where L̄dis,j is the task-specific distillation loss function of task Tj , L̄t is the task-specific loss func-
tion of task Tt, |Dt| denotes the number of samples in the dataset Dt, and α is the hyperparameter
to control the impact of the distillation loss Ldis.

However, as illustrated in the next sections, naive distillation in Eq. (3) yields limited gains due to
imbalanced pseudo-label distributions and insufficient focus on salient regions. To address those
issues, we further propose the HISD method, consisting of two loss components for each task j:
distribution-balanced incremental self-distillation (DB-ISD) loss Ldb,j and salience-guided incre-
mental self-distillation (SG-ISD) loss Lsg,j . Thus, the total training loss to learn Φt in the proposed
method is formulated as

L =
α

2(t− 1)

t−1∑
j=1

∑
(x,y)∈Dt

1

|Dt|
(Ldb,j(x) + Lsg,j(x))︸ ︷︷ ︸
Lhisd,j

+Lnew.
(4)

The details of DB-ISD and SG-ISD are introduced in the following sections.

4.2 DISTRIBUTION-BALANCED INCREMENTAL SELF-DISTILLATION (DB-ISD)

To preserve previous knowledge while learning new tasks, the teacher model generates pseudo-
labels on the new training data to revise the heterogeneous knowledge of previous tasks. However,
we observe that the distribution of generated pseudo-labels is imbalanced. To address the imbalance
issue, we propose the DB-ISD method, which first partitions image pixels into semantic groups and
then balances their respective contributions.

Imbalance issue. Generally, DP tasks can be categorized into pixel-level classification and pixel-
level regression tasks. To illustrate the imbalance phenomenon across these two types of DP tasks,
Fig. 3 visualizes the distribution of pseudo-labels generated by the learner after the first training
phase on raw images from the new task data, exhibiting an imbalance pixel-wise distribution of
class labels for the classification task (e.g., semantic segmentation in Fig. 3(b)) and values for the
regression task (e.g., depth estimation in Fig. 3(c)). This phenomenon is widespread across differ-
ent tasks rather than being limited to our experiments (Ge et al., 2024), posing a risk to effective
knowledge retention during the learning phase of the new task (Jiao et al., 2018).
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(a) An example of raw images
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(b) Semantic segmentation task
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(c) Depth estimation task

Figure 3: An illustration of the distribution imbalance in pseudo-labels. The number of pixels in the
semantic segmentation task is counted per class. In the depth estimation task, we divide the range
of pseudo-labels given by the teacher model into ten equal intervals, each of which is a group, and
then the ten groups are sorted based on the number of pixels in each group.

Group partition. A group is defined as a collection of pixels that share similar semantics, as decided
by their pseudo-labels. For each task Tj , the generated pixel-level pseudo-labels F t−1

j (x) ∈ RH×W

on the image x ∈ Dt are divided into Cj non-overlapping groups. For a pixel-level classification
task Tj in DP, a group corresponds to a class. The number of groups Cj equals the number of
classes. Concretely, for each class c ∈ {i}Cj

i=1, we construct binary masks Mx
c,j ∈ {0, 1}H×W

that indicates the presence of class c: Mx
c,j [m,n] = I(F t−1

j (x)[m,n] = c), where I(·) is the
indicator function, m ∈ {1, . . . ,H}, n ∈ {1, . . . ,W} denote the indices of the mask, and A[m,n]
for a matrix A denotes the (m,n)-th entry in A. For a pixel-level regression task Tj in DP, we
first obtain a scalar value per pixel by averaging across the channel dimension of size Cout

j . The
resulting continuous values are then min–max normalized (Bishop & Nasrabadi, 2006) into the
interval [0,1] and binarized into two groups (Cj = 2), i.e., foreground and background (Ge et al.,
2024), using a threshold τ ∈ (0, 1). This yields two masks: Mx

1,j [m,n] = I(F t−1
j (x)[m,n] < τ),

and Mx
2,j [m,n] = I(τ ≤ F t−1

j (x)[m,n]).

Loss function. Inside each group, we compute the geometric mean of the per-pixel self-distillation
loss to mitigate the impact of inaccuracies and noise (Tao et al., 2008). The group losses are then
averaged arithmetically, ensuring that each group contributes equally to the training objective. Given
an input image x, the loss function Ldb,j of DB-ISD for each task Tj during the t-th training phase
can be expressed as

Ldb,j(x) =

Cj∑
c=1

1

Cj

 ∏
(m,n)∈Ic,j(x)

Ldis,j

(
F t

j (x),F t−1
j (x)

)
[m,n]

 1
|Ic,j(x)|

, (5)

where Ldis,j denotes the per-pixel self-distillation loss of task Tj , Ic,j(x) = {(m,n)|Mx
c,j [m,n] >

0} is a set of indices that the corresponding pixel belongs to the group c for the image x of task Tj ,
and |Ic,j(x)| denotes the number of elements in Ic,j(x).

4.3 SALIENCE-GUIDED INCREMENTAL SELF-DISTILLATION (SG-ISD)

In dense prediction tasks, a substantial amount of informative signal resides around semantic bound-
aries or sharp value transitions (Zhu et al., 2020; Zuo et al., 2022). Preserving this information in
HIL4DP effectively enhances the retention of heterogeneous knowledge. Hence, we introduce a
complementary salience-guided loss to ensure that the model retains information in these pixels.

Salient-pixel extraction. To enhance distillation, the SG-ISD loss focuses on the edges of the pixel-
wise loss map, corresponding to pixels with sharp variations that carry the most informative signals.
Though ground-truth edges are unavailable, an edge set can be obtained by identifying pixels where
the value changes significantly between adjacent pixels (Vincent et al., 2009). We first calculate a
pixel-wise loss map between the frozen teacher model F t−1

j and the student model F t
j as

Ij(x) = Ldis,j(F t
j (x),F t−1

j (x)) ∈ RH×W , (6)

where Ij(x) denotes the pixel-wise self-distillation loss map of input x for task Tj . To localize
sharp spatial transitions in Ij(x), we apply the Sobel operator (Sobel, 2014), a discrete differenti-
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ation operator that approximates the gradients of the image intensity function. With the horizontal
convolution kernel defined as Gh = [1, 2, 1]⊤[1, 0,−1], and the vertical convolution kernel defined
as Gv = [1, 0,−1]⊤[1, 2, 1], the Sobel operator conduct the gradient approximation as

Gj(x) =

√
(Gh ∗ Ij(x))2 + (Gv ∗ Ij(x))2, (7)

where ∗ denotes the convolution operator and the superscript (·)2 denotes the elementwise square
operation. The edge set Pj is then selected by thresholding the gradient magnitude map Gj as

Pj(x) = {(m,n) | Gj(x)[m,n] > k}, (8)

where k is a hyperparameter controlling the necessary gradient intensity to constitute an edge.

Loss function. We accumulate the pixel-wise loss over the extracted salient edge set only:

Lsg,j(x) =
∑

(m,n)∈Pj(x)

1

|Pj(x)|
Ij(x)[m,n], (9)

where |Pj(x)| denotes the number of elements in Pj(x).

To summarize, by plugging Eqs. (5) and (9) into Eq. (4), we obtain the objective function of the pro-
posed HISD method in the t-th training phase. By balancing group contributions and emphasizing
salient boundaries, the proposed HISD method provides an effective defense against forgetting.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. We empirically evaluate the performance of the proposed method in the HIL4DP
scenario under four well-established and practical DP benchmarks (Zhang et al., 2025; Wang
et al., 2025), including CityScapes (Cordts et al., 2016), NYUv2 (Silberman et al., 2012), PASCAL-
Context (Everingham et al., 2010), and Taskonomy (Zamir et al., 2018), for scenarios involving 2, 3,
4, and 10 heterogeneous tasks. The task sequences are randomly selected, and the training data is
evenly divided across tasks without overlap. Evaluation is performed using the full test set. During
the training phase of each task, the labels of other tasks are inaccessible. Additional benchmark
details can be found in Appendix C.1.

Evaluation metrics. Due to the heterogeneity of task outputs, different evaluation metrics are re-
quired to assess model performance across tasks. However, the disparity among these metrics makes
it difficult to compare overall performance using simple averaging. Thus, following the setup in
(Maninis et al., 2019), we adopt the average of the relative improvement over the vanilla training
across tasks after the t-th training phase as the overall evaluation metric, defined as

∆t
b =

1

t

t∑
i=1

1

Mi

Mi∑
j=1

(−1)si,j (Em
i,j − Eb

i,j)

Eb
i,j

. (10)

Here, t is equal to the number of learned tasks, Mi denotes the number of metrics for task Ti. Em
i,j

and Eb
i,j denote the performance of the method m and the vanilla training for the j-th metric in task

Ti, respectively. si,j is set to 1 if a lower value indicates better performance in terms of the j-th
metric in task Ti and otherwise 0. ∆T

b denotes the final performance after the last training phase T ,
while ∆̄T

b = 1
T

∑T
j=1 ∆

j
b denotes the average performance across T training phases.

Comparison methods. In the HIL4DP setup, we compare the proposed method HISD with IL
methods applicable to this scenario. Specifically, baseline methods include EWC (Kirkpatrick
et al., 2017), LWF (Li & Hoiem, 2017), iCaRL (Rebuffi et al., 2017), DER (Buzzega et al., 2020),
SPG (Konishi et al., 2023), and SGP (Saha & Roy, 2023). For the replay-based baseline methods,
DER and iCaRL, we store and replay the pixel-wise predictions to ensure fair comparison with
HISD. In addition to these IL methods, we also establish two extreme baselines for comparison,
including a) Vanilla training, which involves sequentially training tasks, b) Joint training, where all
tasks are trained simultaneously using the complete dataset, which serves as the upper bound. For
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Table 1: Performance on 3 tasks (i.e., 13-class semantic segmentation, depth estimation, and surface
normal prediction) after the last training phase of the NYUv2 dataset across different encoders. The
best results for each task are shown in bold. ↑(↓) means that the higher (lower) the value, the better
the performance.

Method

Segmentation Depth Surface Normal

∆T
b ↑

mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑

R
es

N
et

-1
8

Vanilla training 17.49 46.81 0.9609 0.3328 32.45 26.92 20.72 42.56 54.73 +0.00%
Joint training 41.84 66.14 0.5793 0.2201 31.53 25.78 22.38 44.54 56.36 +40.83%

EWC 32.17 57.21 0.9586 0.3493 37.52 33.08 13.47 33.37 45.35 +24.39%
iCaRL 21.78 53.00 1.3093 0.4561 33.07 27.73 19.45 41.20 53.43 −4.82%
LwF 31.51 57.37 0.8986 0.3345 37.06 32.09 13.89 34.66 46.81 +24.74%
DER 21.90 53.10 1.2735 0.4422 33.09 27.74 19.36 41.18 53.43 −3.31%
SPG 18.10 48.15 0.8801 0.3019 32.57 26.92 20.80 42.58 54.66 +4.01%
SGP 21.34 49.75 0.9270 0.3181 32.87 27.15 19.99 42.15 54.31 +6.53%

HISD 35.12 59.63 0.7410 0.2641 35.32 30.55 17.23 37.26 49.12 +32.74%

R
es

N
et

-5
0

Vanilla training 18.26 50.85 0.8305 0.2725 28.21 21.93 26.74 50.99 63.08 +0.00%
Joint training 47.78 71.03 0.4933 0.2149 28.10 22.24 25.32 50.43 62.95 +44.36%

EWC 36.55 61.75 0.7321 0.2629 33.61 28.99 18.37 39.34 51.51 +31.08%
iCaRL 28.08 57.41 0.9877 0.3549 30.52 25.47 22.08 44.75 57.36 +7.12%
LwF 38.06 63.77 0.6505 0.2466 31.84 26.28 20.67 43.33 56.07 +32.94%
DER 27.12 58.04 0.7383 0.2650 31.25 26.30 21.50 43.58 55.91 +17.83%
SPG 19.77 51.40 0.7595 0.2626 28.38 22.29 25.79 50.41 62.87 +4.07%
SGP 18.99 51.52 0.8368 0.2764 28.27 22.52 25.79 49.91 62.50 +1.15%

HISD 38.70 63.70 0.6294 0.2369 32.55 27.38 19.66 41.66 53.96 +35.71%

Table 2: Performance on 10 tasks: semantic segmentation (Seg.), depth estimation (Dep.), surface
normal estimation (Normal), edge-2D detection (E.-2D), reshading (Res.), keypoint-2D detection
(K.-2D), edge-3D detection (E.-3D), Euclidean distance (E. D.), curvatures (Curv.), and keypoint-3D
detection. (K.-3D ) on the Taskonomy dataset. The lower the loss value, the better the performance.

Method Seg. Dep. Normal E.-2D Res. K.-2D E.-3D E. D. Curv. K.-3D ∆T
b ↑

Vanilla 0.7282 0.2673 0.2869 0.1627 0.4658 0.5143 0.5214 0.1968 1.8655 0.3863 +0.00%
Joint 0.1615 0.1071 0.1281 0.1434 0.1487 0.2969 0.3244 0.1054 1.3501 0.3149 +44.57%

EWC 0.4701 0.2358 0.1945 0.1692 0.3109 0.5327 0.5525 0.2286 1.9835 0.4347 +6.41%
iCaRL 0.5704 0.2247 0.2214 0.1846 0.3386 0.5022 0.5126 0.1918 1.7441 0.3965 +8.47%
LwF 0.6482 0.2628 0.2484 0.1774 0.4718 0.5298 0.5137 0.1879 1.9212 0.4208 +0.68%
DER 0.5993 0.2872 0.2315 0.1518 0.4584 0.5068 0.4564 0.2674 1.8488 0.3762 +1.94%
SPG 0.6768 0.2775 0.2617 0.1707 0.4641 0.5481 0.5418 0.2008 1.9087 0.3537 +0.11%
SGP 0.6751 0.2856 0.2595 0.1668 0.4608 0.5266 0.5319 0.2009 1.8036 0.3765 +0.79%

HISD 0.5357 0.2110 0.1868 0.1541 0.3379 0.4955 0.5114 0.2187 1.7530 0.4120 +10.90%

fair comparison, grid searches for task-specific hyperparameters are performed. Introduction and
hyperparameter details of baselines are shown in the Appendix C.2.

Implementation details. We adopt the DeepLabV3+ architecture (Chen et al., 2018). Specifically,
a pre-trained ResNet-18 (He et al., 2016) with dilated convolutions (Yu et al., 2017) is used as the
task-shared encoder across all tasks, and task-specific decoders are Atrous Spatial Pyramid Pool-
ing (Chen et al., 2018). To further assess the effectiveness of the proposed method, we also conduct
experiments using the ResNet-50 (He et al., 2016) as the encoder. Details of hyperparameters are
provided in Appendix C.3.

5.2 RESULTS

Tab. 1 presents the results of the proposed HISD method on the NYUv2 dataset, evaluated across
various architectures. As can be seen, compared to baseline methods, the proposed HISD method
yields superior average performance across tasks. Moreover, the HISD method consistently en-
hances results across different architectures, highlighting its robustness and generalizability.

We also present the results of the proposed HISD method in the 10-task scenario on the Taskonomy
dataset. As shown in Tab. 2, the HISD method outperforms the baseline methods, achieving the
lowest test loss across the largest number of individual tasks, as well as the best average performance
across all tasks. These results further demonstrate the effectiveness of the proposed HISD method.
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Prediction LossRaw Data

Figure 4: Visualization of the raw data (left), the gradient magnitude map of its prediction (middle),
and the gradient magnitude map of the loss map (right).

5.3 ABLATION STUDY

We conduct ablations to assess the contribution of every component in HISD.

Table 3: Various training paradigms.
Method ∆T

b ↑ ∆̄T
b ↑

Paradigm1 −7.76% −4.56%
Paradigm2 −6.65% −5.23%
Paradigm3 −10.94% −11.48%

ISD +0.00% +0.00%

Effectiveness of ISD. We compared the incremental self-
distillation (ISD) with several alternative training paradigms
used for maintaining previous knowledge in the t-th(t > 1)
training phase: 1) While {ϕt, φt

t} is being trained on Lnew,
the decoders {φj

t}t−1
j=1 for the old tasks are updated using

pseudo-labels. 2) After {ϕt, φt
t} is being trained on Lnew,

the decoders {φj
t}t−1

j=1 for the old tasks are updated using pseudo-labels. 3) Only updating the new
decoder φt

t with Lnew. All the training paradigms update the encoder and decoder of the first task
on Lnew. As shown in Tab. 3, ISD consistently outperforms these alternatives.

Table 4: Ablation study.
Method ∆T

b ↑ ∆̄T
b ↑

HISD +0.00% +0.00%
HISD w/o Lsg −1.27% −0.43%
HISD w/o Ldb −2.84% −2.35%

HISD w/ Arithmetic −6.29% −3.06%

HISD (Ĉj=5) −3.64% −1.51%

HISD (Ĉj=10) −5.43% −2.50%

HISD (Ĉj=15) −9.72% −3.56%

Effectiveness of DB-ISD. We assess the effectiveness of the
DB-ISD from three perspectives. First, as depicted in Tab. 4,
removing DB-ISD from the baseline degrades the final met-
ric by 2.84% and the average metric by 2.35%. Second,
substituting the geometric mean in Eq. (5) with the arith-
metic mean (“HISD w/ Arithmetic” in Tab. 4) degrades per-
formance, highlighting the advancement of the geometric
mean. Third, for regression tasks, we compare our group
partitioning with baselines that divide the value range into
equally sized intervals for group numbers Ĉj ∈ {5, 10, 15}, where each interval has the same width
of 1

Ĉj
. As shown in Tab. 4, the proposed HISD outperforms all variants consistently.

Effectiveness of SG-ISD. As shown in Tab. 4, removing the salience-guided loss reduces the final
and average metrics by 1.27% and 0.43%, respectively, underscoring the importance of edge-aware
focus to HISD. To assess the effectiveness of the Sobel operator applied to the loss map in Eqs. (6)
and (7), we compare its gradient magnitude map with the one derived from the prediction map. As
shown in Fig. 4, the gradient magnitude map of the loss map (right) produces more distinct edges
than those from the prediction map (middle), making it better suited for identifying edge sets.

Due to page limit, additional experiments, including results for different task sequences, additional
model architectures, on other datasets, and an advantages analysis of the HIL4DP scenario by
comparing it with training separate task-specific models are put in Appendix D and E.

6 CONCLUSION

In this paper, we propose a novel incremental learning scenario named heterogeneous incremental
learning (HIL), which brings unique challenges for traditional incremental learning. Specifically, we
focus on the practical and challenging dense prediction tasks within the HIL scenario (HIL4DP). To
address these unique challenges, we propose the heterogeneity-aware incremental self-distillation
(HISD), which is composed of a prediction distribution balance and a salience-guided incremental
self-distillation loss function. The comprehensive experimental results and ablation studies demon-
strate the effectiveness of the proposed HISD method.
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A COMPARISON WITH EXISTING INCREMENTAL LEARNING SCENARIOS
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(a) Class Incremental Learning.
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Figure 5: Comparison between Class Incremental Learning (CIL) and Heterogeneous Incremental
Learning for Dense Prediction (HIL4DP). (a) CIL incrementally recognizes all encountered classes,
while (b) HIL4DP progressively addresses all encountered heterogeneous dense prediction tasks.

In this section, we analyze the similarities and differences between the proposed heterogeneous in-
cremental learning for dense prediction (HIL4DP) scenario and the traditional incremental learning
(IL) scenario.

Similarities. The proposed HIL4DP scenario shares three key similarities with the traditional IL
scenario: objectives, settings, and challenges. First, both HIL4DP and IL aim to achieve perfor-
mance on sequential tasks comparable to that of joint training across multiple tasks (Wang et al.,
2024). Second, in both settings, models can be trained for multiple epochs on all data for a given
task, while data from previous and future tasks remains inaccessible. Finally, both HIL4DP and
IL face the issue of catastrophic forgetting, where training on the current task leads to the loss of
knowledge from previous tasks.

Table 5: Comparison between different categories within incremental learning.

Subcategory Domain Gap Task ID Multiple Task Type

CIL × × ×
TIL ×

√
×

DIL
√

× ×
HIL/HIL4DP × ×

√

Differences. Traditional incremental learning can be classified into three subcategories: class in-
cremental learning (CIL), task incremental learning (TIL), and domain incremental learning (DIL).
Compared with other subcategories, the domain of the training data in DIL varies across tasks, while
the number of classes remains consistent across different tasks. In both CIL and TIL, the domain
of the training data remains consistent; however, as the number of tasks increases, so does the total
number of classification categories. The key difference between TIL and CIL is that TIL requires
a task ID during inference. However, CIL, TIL, and DIL remain restricted to classification tasks
and do not support scenarios involving sequentially arriving heterogeneous tasks. In contrast, the
proposed HIL4DP assumes tasks share an input distribution but differ in output types (e.g., class
labels and continuous values), which introduces unique challenges for HIL4DP. Illustration of the
comparison can be found in Fig. 5 and Tab. 5.
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B CHALLENGES OF HIL4DP

The unique challenges posed by the proposed HIL4DP scenario are listed as follows.

Heterogeneous tasks. The technical challenges inherent in HIL4DP are beyond those typically
encountered in conventional IL scenarios. Different from traditional settings that focus on a sin-
gle type of tasks (e.g., classification or segmentation), HIL4DP requires learning different types of
tasks at different training phases, where each task often involves distinct objective functions and
heterogeneous outputs. This results in a more complex and challenging training process.

Heterogeneous knowledge. Different tasks require distinct and heterogeneous knowledge repre-
sentations. For example, the depth estimation task requires a comprehensive understanding of
3D scenes, while the semantic segmentation task primarily relies on high-level structured seman-
tic knowledge (Kim et al., 2023; Zhaoyun et al., 2022). This divergence presents a challenge for
mitigating catastrophic forgetting during the learning of new tasks, highlighting the necessity of
strategies that facilitate effective knowledge transfer across heterogeneous tasks.

Fine-grained information. DP tasks involve producing pixel-level outputs that rely on rich fine-
grained information, thereby posing additional challenges (Zuo et al., 2022). This complexity makes
retaining previously learned knowledge particularly difficult, requiring strategies capable of preserv-
ing fine-grained representations and producing globally coherent outputs across sequential DP tasks.

C EXPERIMENT DETAILS

C.1 DETAILS OF DATASETS

To evaluate the performance of the proposed HISD, we conduct experiments on four datasets using
different task numbers as different scenarios: NYUv2 dataset for 3 tasks, CityScapes dataset for 2
tasks, PASCAL-Context dataset for 4 tasks, and Taskonomy dataset for 10 tasks.

NYUv2 dataset. This dataset contains 795 training images and 654 testing images in a variety of
indoor scenes with ground truth for three tasks (i.e., 13-class semantic segmentation, depth estima-
tion, and surface normal prediction). We use the mean Intersection over Union (mIoU) and Pixel
Accuracy (Pix Arr) to evaluate the semantic segmentation task, and use the Absolute Error (Abs Err)
and the Real Error (Rel Err) to evaluate the depth prediction task. For the surface normal estimation
task, it is evaluated with the mean and the median of angular error measured in degrees, and the
percentage of pixels whose angular error is within 11.25, 22.5, and 30 degrees.

CityScapes dataset. This dataset comprises 2,975 images for training and an additional 500 images
for testing, where we conduct experiments on two tasks (i.e., 7-class semantic segmentation and
depth estimation). We use the mean Intersection over Union (mIoU) and Pixel Accuracy (Pix Arr)
to evaluate the semantic segmentation task, and use the Absolute Error (Abs Err) and the Real Error
(Rel Err) to evaluate the depth prediction task.

PASCAL-Context dataset. This dataset has 4,998 annotated training images and 5,105 annotated
test images for four dense prediction tasks, including semantic segmentation, human parsing, surface
normal estimation, and salience detection. The mIoU is used to evaluate the semantic segmentation
task, human parts segmentation task, and saliency estimation task, while the mean of angular error
measured in degrees is used to evaluate the surface normal estimation task.

Taskonomy dataset. We split the 1,390 images from three different views in this dataset into train-
ing data for the 10 tasks, reserving one unseen view for testing. The evaluation metric used for
performance assessment is the test loss.

C.2 BASELINES

We compare the proposed HISD method against vanilla training, as well as three categories of
traditional IL methods: regularization-based methods including EWC (Kirkpatrick et al., 2017),
LWF (Li & Hoiem, 2017), and SGP (Saha & Roy, 2023), which constrain the changes in important
parameters, representations, and gradients; replay-based methods such as iCaRL (Rebuffi et al.,
2017) and DER (Buzzega et al., 2020), which store historical data in a fixed-size memory and replay
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them during the learning of new tasks; and the parameter isolation method SPG (Konishi et al.,
2023), which combines orthogonal gradient projections with scaled gradient steps in the important
gradient spaces for past tasks. For all replay-based methods, the exemplar size is fixed at 50.

For different methods, we perform grid searches on hyperparameters and select the best result. The
hyperparameters of each method for different datasets are shown in Tab. 6.

Table 6: Hyperparameter of different methods.

Method NYUv2 CityScapes PASCAL-Context Taskonomy
Resnet-18 Resnet-50 Resnet-18 Resnet-50 Resnet-18 Resnet-18

EWC 109 1010 106 103 106 109

iCaRL 0.01 0.1 0.01 0.1 0.1 1
LWF 5 5 0.01 0.1 5 0.1
DER 0.01 0.1 1 1 0.1 0.1
SGP 0.1 10 10 1000 1000 100

C.3 IMPLEMENTATION DETAILS

The task sequences are randomly selected. For the NYUv2 dataset, the sequence is: Semantic seg-
mentation → Depth estimation → Surface normal prediction, as shown in Tab. 1. For the Taskon-
omy dataset, the sequence is: Semantic segmentation (Seg.) → Depth estimation (Dep.) → Surface
normal estimation (Normal) → Reshading (Res.) → Keypoint-2D detection (K.-2D) → Edge-2D
detection (E.-2D) → Euclidean distance (E.D.) → Curvatures (Curv.) → Keypoint-3D detection
(K.-3D) → Edge-3D detection (E.-3D), as shown in Tab. 2.

For all methods, we adopt the following common settings to ensure a fair comparison. The batch size
is set to 64 for the CityScapes dataset, 16 for the Taskonomy dataset, 48 for NYUv2 and PASCAL-
Context datasets. We use the Adam optimizer with an initial learning rate of 10−4, and adopt a linear
learning rate scheduler with a warmup phase, where the warmup rate is set to 0.5. Weight decay is
fixed at 10−5.

In the proposed HISD method, we perform grid searches for the hyperparameters α, k, and τ .
Specifically, we set hyperparameters as follows: α = 3, k = 0.5, τ = 0.9 for NYUv2 dataset on
Resnet-18, α = 20, k = 0.6, τ = 0.6 for NYUv2 dataset on Resnet-50, α = 100, k = 0.6, τ = 0.6
for CityScapes dataset on Resnet-18, α = 1, k = 0.8, τ = 0.5 for CityScapes dataset on Resnet-50,
and α = 50, k = 0.5, τ = 0.5 for PASCAL-Context dataset, α = 1, k = 0.5, τ = 0.9 for Taskonomy
dataset. We use the task-specific loss function as the per-pixel self-distillation loss function Ldis,j

of each task Tj , i.e., Ldis,j = Lj . All methods are implemented using Pytorch framework, and all
models are trained on RTX V100 GPUs.

D ADDITIONAL RESULTS

Results for the shuffled task sequence on the NYUv2 dataset are provided in Tab. 7. When the
task sequence is: Surface normal prediction → Depth estimation → Semantic segmentation, the
proposed HISD method consistently outperforms the baseline methods, further demonstrating that
its effectiveness is independent of task sequence.

The results of the CityScapes dataset using ResNet-18 with different task sequences are provided in
Tab. 8. Tab. 9 presents the results of the proposed HISD method on the same dataset using ResNet-
50, with semantic segmentation as the first task and depth estimation as the second. As can be seen,
the proposed HISD method outperforms baseline methods in both mitigating the performance degra-
dation of the previous task and improving overall performance. Note that although the Cityscapes
dataset contains only 2 tasks, the HIL4DP scenario is fundamentally different from transfer learn-
ing (TL), as HIL4DP treats all tasks equally by preserving the performance of previous tasks. In
contrast, TL primarily focuses on optimizing the performance of the target task.

Tab. 10 presents the results of the proposed method on the PASCAL-Context dataset, using ResNet-
18. The tasks are trained sequentially in the sequence: Semantic Segmentation (Seg.) → Human
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Table 7: Performance on the NYUv2 dataset with a shuffled task sequence after the last training
phase. The best results for each task are shown in bold. ↑(↓) means that the higher (lower) the
value, the better the performance.

Method

Segmentation Depth Surface Normal

∆T
b ↑

mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
Vanilla training 33.77 60.36 1.0261 0.3592 40.76 34.74 10.16 30.98 43.17 +0.00%
Joint training 41.84 66.14 0.5793 0.2201 31.53 25.78 22.38 44.54 56.36 +3.09%

EWC 29.78 56.75 0.9217 0.3218 39.15 33.31 10.48 31.98 44.95 −0.77%
iCaRL 23.87 53.78 1.5976 0.5474 35.87 33.19 11.60 31.55 44.63 −27.11%
LwF 31.49 58.96 0.8586 0.3044 37.66 32.54 11.76 33.50 46.17 +0.77%
DER 24.41 54.38 1.5884 0.5428 35.78 33.00 11.71 31.84 44.96 −26.55%
SPG 34.40 60.79 1.0025 0.3454 40.01 34.18 11.10 31.86 43.96 +0.29%
SGP 34.34 61.16 1.0859 0.3803 41.30 35.83 9.62 29.30 41.47 −0.17%

HISD 28.86 56.83 0.7024 0.2553 35.05 30.36 12.71 36.04 49.41 +1.18%

Table 8: Performance on two tasks after the last training phase (i.e., 7-class semantic segmentation
and depth estimation) of the CityScapes dataset under two different sequences.

Method

Segmentation → Depth Depth → Segmentation

Segmentation Depth
∆T

b ↑ Segmentation Depth
∆T

b ↑
mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓ mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓

Vanilla training 58.40 86.84 0.0203 50.0861 +0.00% 68.44 91.45 0.0456 77.8347 +0.00%
Joint training 71.38 92.15 0.0164 43.7236 +15.06% 71.38 92.15 0.0164 43.7236 +28.23%

EWC 66.14 90.01 0.0203 56.8526 +0.85% 65.56 90.06 0.0217 51.9560 +19.98%
iCaRL 67.10 91.09 0.0204 50.2167 +4.76% 57.24 87.82 0.0221 58.8481 +13.90%
LwF 62.67 87.98 0.0202 47.6400 +3.50% 67.52 89.54 0.0192 47.2005 +24.91%
DER 67.15 91.11 0.0206 51.3117 +3.99% 69.20 91.90 0.0256 54.3059 +18.92%
SPG 68.07 91.31 0.0484 94.8094 −51.50% 69.68 91.75 0.0418 104.0395 −5.80%
SGP 53.00 82.38 0.0202 49.2638 −3.06% 68.07 91.31 0.0484 94.8094 −7.16%

HISD 68.28 90.76 0.0192 51.7254 +5.89% 69.12 91.12 0.0186 45.5291 +26.70%

Table 9: Performance on two tasks after the last training phase (i.e., 7-class semantic segmentation
and depth estimation) of the CityScapes dataset using Resnet-50. The best results for each task are
shown in bold. ↑(↓) means that the higher (lower) the value, the better the performance.

Method Segmentation Depth
∆T

b ↑
mIoU↑ Pix Acc↑ Abs Err ↓ Rel Err↓

Vanilla training 64.93 88.93 0.0168 40.0604 +0.00%
Joint training 76.49 93.91 0.0155 45.7162 +4.26%

EWC 69.44 90.60 0.0154 41.4725 +3.41%
iCaRL 72.80 92.60 0.0166 47.3969 −0.22%
LwF 76.07 93.66 0.0175 43.5094 +2.42%
DER 73.26 93.16 0.0159 46.5341 +1.70%
SPG 57.99 85.69 0.0155 44.7024 −4.55%
SGP 65.53 88.44 0.0157 43.8087 −0.61%

HISD 76.52 93.81 0.0165 44.2749 +3.65%

Parsing (H.Parts) → Saliency Map (Sal.) → Surface Normal Estimation (Normal). As can be seen,
the proposed HISD method outperforms baseline methods, demonstrating its superior performance.

E ADVANTAGES OF THE HIL4DP SCENARIO

We demonstrate the advantages of the HIL4DP scenario by comparing it with training separate task-
specific models under the same amount of labeled data. Beyond its practical benefit of supporting
heterogeneous tasks within a shared encoder, HIL4DP offers two key advantages: higher perfor-
mance and lower memory overhead.
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Table 10: Performance on four tasks (i.e., 21-class semantic segmentation, 7-class human parts
segmentation, saliency estimation, and surface normal estimation) in the PASCAL-Context dataset.
The best results for each task are shown in bold. ↑(↓) means that the higher (lower) the value, the
better the performance.

Method Seg.↑ H.Parts↑ Sal.↑ Normal↓ ∆T
b ↑

Vanilla training 11.88 27.40 52.09 21.4409 +0.00%
Joint training 57.77 48.05 60.88 21.0313 +60.05%

EWC 34.27 37.04 55.05 23.9992 +27.18%
iCaRL 12.06 30.17 56.84 20.7354 +3.00%
LWF 38.10 34.63 54.04 24.0761 +29.82%
DER 10.81 32.03 55.48 20.4669 +2.37%
SPG 7.16 20.31 47.38 20.5474 −8.81%
SGP 8.46 29.55 49.83 20.6048 −2.67%

HISD 39.96 33.62 53.76 23.7274 +31.45%

(a) Semantic segmentation (b) Depth estimation (c) Surface normal estimation

Figure 6: The comparison between training separate models and the proposed HISD. Each figure
illustrates the performance improvement of the HISD method in the HIL4DP scenario of a given
task. The symbol ↑ (↓) signifies that a higher (lower) value denotes better performance.

Better performance. The comparison on NYUv2 dataset is shown in Fig. 6. As can be seen,
HIL4DP achieves average improvements of 1.38%, 5.2%, and 9.87% on the semantic segmenta-
tion, depth estimation, and surface normal estimation tasks, respectively, compared to task-specific
models.

Lower memory overhead. Compared to using a shared encoder in the HIL4DP scenario, training
separate task-specific models introduces more parameter overhead of 172.23% for additional en-
coders when using ResNet-18 with ten tasks. Notably, this overhead grows with both the encoder
complexity and the number of tasks, which is efficiently avoided by the proposed HIL4DP scenario.

F USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for the purpose of improving the readability and
language of this manuscript. This work was conceived, designed, and executed entirely by the au-
thors without technical contribution from LLMs. The authors take full responsibility for all technical
contributions presented in this manuscript.

19


	Introduction
	Related Work
	Problem Definition
	Heterogeneous Incremental Learning (HIL)
	HIL for Dense Prediction (HIL4DP)
	Challenges

	Methodology
	Overview
	Distribution-Balanced Incremental Self-Distillation (DB-ISD)
	Salience-Guided Incremental Self-Distillation (SG-ISD)

	Experiments
	Experimental Setup
	Results
	Ablation study

	Conclusion
	Comparison with Existing Incremental Learning Scenarios
	Challenges of HIL4DP
	Experiment Details
	Details of datasets
	Baselines
	Implementation details

	Additional Results
	Advantages of the HIL4DP Scenario
	Use of Large Language Models

