
Published in Transactions on Machine Learning Research (11/2024)

Active Learning for Level Set Estimation Using Randomized
Straddle Algorithms

Yu Inatsu inatsu.yu@nitech.ac.jp
Department of Computer Science, Nagoya Institute of Technology

Shion Takeno takeno.shion.m6@f.mail.nagoya-u.ac.jp
Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University
RIKEN Center for Advanced Intelligence Project

Kentaro Kutsukake kutsukake.kentaro.c3@f.mail.nagoya-u.ac.jp
Institute of Materials and Systems for Sustainability, Nagoya University
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University

Ichiro Takeuchi takeuchi.ichiro.n6@f.mail.nagoya-u.ac.jp
Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University
RIKEN Center for Advanced Intelligence Project

Reviewed on OpenReview: https: // openreview. net/ forum? id= N8M2yqRicS

Abstract

Level set estimation (LSE) the problem of identifying the set of input points where a func-
tion takes a value above (or below) a given threshold is important in practical applications.
When the function is expensive to evaluate and black-box, the straddle algorithm, a rep-
resentative heuristic for LSE based on Gaussian process models, and its extensions with
theoretical guarantees have been developed. However, many existing methods include a
confidence parameter, β1/2

t , that must be specified by the user. Methods that choose β1/2
t

heuristically do not provide theoretical guarantees. In contrast, theoretically guaranteed
values of β1/2

t need to be increased depending on the number of iterations and candidate
points; they are conservative and do not perform well in practice. In this study, we propose
a novel method, the randomized straddle algorithm, in which βt in the straddle algorithm is
replaced by a random sample from the chi-squared distribution with two degrees of freedom.
The confidence parameter in the proposed method does not require adjustment, does not
depend on the number of iterations and candidate points, and is not conservative. Further-
more, we show that the proposed method has theoretical guarantees that depend on the
sample complexity and the number of iterations. Finally, we validate the applicability of
the proposed method through numerical experiments using synthetic and real data.

1 Introduction

In various practical applications, including engineering, level set estimation (LSE) the estimation of the
region where the value of a function is above (or below) a given threshold, θ is important. A specific example
of LSE is the estimation of defective regions in materials for quality control. For instance, in silicon ingots,
which are used in solar cells, the carrier lifetime value a measure of the ingot’s quality is observed at each
point on the ingot’s surface before shipping, allowing identification of regions that can or cannot be used
as solar cells. Since many functions encountered in practical applications, such as the carrier lifetime in
the silicon ingot example, are black-box functions with high evaluation costs, it is desirable to identify the
desired region without performing an exhaustive search of these black-box functions.
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Bayesian optimization (BO) (Shahriari et al., 2015) is a powerful tool for optimizing black-box functions with
high evaluation costs. BO predicts black-box functions using surrogate models and adaptively observes the
function values based on a criterion called acquisition functions (AFs). Many studies have focused on BO,
particularly on developing new AFs. Among these, BO based on the AF known as Gaussian process upper
confidence bound (GP-UCB) (Srinivas et al., 2010) offers a theoretical guarantee for finding the optimal
solution and is a useful method that is flexible and extendable to various problem settings. GP-UCB-based
methods have been proposed in various settings, such as the LSE algorithm (Gotovos et al., 2013), multi-
fidelity BO (Kandasamy et al., 2016; 2017), multi-objective BO (Zuluaga et al., 2016; Inatsu et al., 2024),
high-dimensional BO (Kandasamy et al., 2015; Rolland et al., 2018), parallel BO (Contal et al., 2013), cascade
BO (Kusakawa et al., 2022), and robust BO (Kirschner et al., 2020). These GP-UCB-based methods, like
the original GP-UCB-based BO, provide some theoretical guarantee for optimality in each problem setting.

However, GP-UCB and its related methods require the user to specify a confidence parameter, β1/2
t , to

adjust the trade-off between exploration and exploitation, where t is the number of iterations in BO. As a
theoretical value for GP-UCB, Srinivas et al. (2010) proposes that β1/2

t should increase with the iteration
t, but this value is conservative, and Takeno et al. (2023) has pointed out that it results in poor practical
performance. To solve this issue, Berk et al. (2021) proposed a randomized GP-UCB (RGP-UCB), replacing
βt with a ramdom sample from a gamma distribution. They demonstarated through numerical experiments
that the practical performance of RGP-UCB is better than that of the original GP-UCB. Althought they also
provided the theoretical regret analysis, their theoretical results and proofs of theorems contain some non-
ignorable technical issues (see, Appendix C in Takeno et al. (2023)). Recently, Takeno et al. (2023) proposed
an improved RGP-UCB (IRGP-UCB), which uses an AF that randomizes βt in GP-UCB by replacing it with
a random sample from a two-parameter exponential distribution. IRGP-UCB does not require parameter
tuning, and the realized values from the exponential distribution are less conservative than the theoretical
values in GP-UCB, resulting in better practical performance. Furthermore, it has been shown that IRGP-
UCB provides a tighter bound for the Bayesian regret, one of the optimality measures in BO, than existing
methods. However, it is not clear whether IRGP-UCB can be extended to various methods, including LSE.
This study proposes a new method for LSE based on the randomization used in IRGP-UCB.

1.1 Related Work

GPs (Rasmussen & Williams, 2005) are often used as surrogate models in BO1, and methods using GPs for
LSE have also been proposed. A representative heuristic using GPs is the straddle heuristic by Bryan et al.
(2005). The straddle method balances the trade-off between the absolute value of the difference between
the GP model’s predicted mean and the threshold value, and the uncertainty of the prediction. However,
no theoretical analysis has been performed on this method. An extension of the straddle heuristic to cases
where the black-box function is a composite function was proposed by Bryan & Schneider (2008), but this
too is a heuristic method that lacks theoretical analysis.

As a GP-UCB-based method using GPs, Gotovos et al. (2013) proposed the LSE algorithm. The LSE
algorithm uses the same confidence parameter, β1/2

t as GP-UCB and is based on the degree of violation from
the threshold relative to the confidence interval determined by the GP prediction model. It has been shown
that the LSE algorithm returns an ε-accurate solution for the true set with high probability. Bogunovic
et al. (2016) proposed the truncated variance reduction (TRUVAR) method, which can handle both BO
and LSE. TRUVAR also accounts for situations where the observation cost varies across observation points
and is designed to maximize the reduction in uncertainty in the uncertain set for each observation point
per unit cost. Additionally, Shekhar & Javidi (2019) proposed a chaining-based method, which handles the
case where the input space is continuous. As an expected improvement-based method, Zanette et al. (2019)
proposed the maximum improvement for level-set estimation (MILE) method. MILE is an algorithm that
selects the input point with the highest expected number of points estimated to be in the super-level set,
one step ahead, based on data observation.

1 Although both BO and LSE for black-box functions adaptively select the next input point, their objectives are fundamen-
tally different and we will leave the detailed description of BO to a comprehensive survey (Shahriari et al., 2015).
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LSE methods have also been proposed for different settings of black-box functions. For example, Letham
et al. (2022) introduced a method for cases where the observation of the black-box function is binary. In the
robust BO framework, where the inputs of black-box functions are subject to uncertainty, LSE methods for
various robust measures have been developed. Iwazaki et al. (2020) proposed LSE for probability threshold
robustness measures, and Inatsu et al. (2021) introduced LSE for distributionally robust probability threshold
robustness measures both of which are acquisition functions based on MILE. Additionally, Hozumi et al.
(2023) proposed a straddle-based method within the framework of transfer learning, where a large amount
of data for similar functions is available alongside the primary black-box function to be classified. Inatsu
et al. (2020) introduced a MILE-based method for the LSE problem in settings where the uncertainty of the
input changes depending on the cost. Mason et al. (2022) addressed the LSE problem in the context where
the black-box function is an element of a reproducing kernel Hilbert space.

The straddle method, LSE algorithm, TRUVAR, chaining-based algorithm, and MILE, which have been
proposed under settings similar to those considered in this study, have the following issues. The straddle
method is not an acquisition function proposed based on GP-UCB, but it includes the confidence parameter
β

1/2
t , which is essentially the same as in GP-UCB. However, the value of this parameter is determined

heuristically, resulting in a method without theoretical guarantees. The LSE algorithm and TRUVAR have
been theoretically analyzed, but, like GP-UCB, they require increasing the theoretical value of the confidence
parameter according to the iteration t, which makes them conservative. The chaining-based algorithm
can handle continuous spaces through discretization, but it involves many adjustment parameters. The
recommended theoretical values depend on model parameters, including kernel parameters of the surrogate
model, and are known only for specific settings. MILE is designed for cases with a finite number of candidate
points and does not support continuous settings like the chaining-based algorithm.

1.2 Contribution

This study proposes a novel straddle AF called the randomized straddle, which introduces the confidence
parameter randomization technique used in IRGP-UCB and solves the problems described in Section 1.1.
Figure 1 shows a comparison of the confidence parameters in the proposed AF and those in the LSE algorithm.
The contributions of this study are as:

• This study proposes a randomized straddle AF, which replaces βt in the straddle heuristic with
a random sample from the chi-squared distribution with two degrees of freedom (one-parameter
exponential distribution with parameter 1/2). We emphasize that unlike the LSE algorithm, the
confidence parameter in the randomized straddle does not need to increase with the iteration t.
Additionally, β1/2

t in the LSE algorithm depends on the number of candidate points |X |, and β1/2
t

increases as |X | increases, while β1/2
t in the randomized straddle does not depend on |X |, and can

be applied even when X is an infinite set. Furthermore, the expected value of the realized value
of β1/2

t in the randomized straddle is
√

2π/2 ≈ 1.25, which is less conservative than the theoretical
value in the LSE algorithm.

• We show that the randomized straddle guarantees that the expected loss for misclassification in
LSE converges to 0. In particular, for the misclassification loss rt = 1

|X |
∑

x∈X lt(x), the randomized
straddle guarantees E[rt] = O(

√
γt/t), where lt(x) is 0 if the input point x is correctly classified,

and |f(x)− θ|, if misclassified, and γt is the maximum information gain which is a commonly used
sample complexity measure.

• Additionally, we conducted numerical experiments using synthetic and real data, which confirmed
that the proposed method has performance equal to or better than existing methods.

2 Preliminary

Let f : X → R be an expensive-to-evaluate black-box function, where X ⊂ Rd is a finite set, or an infinite
compact set with positive Lebesgue measure Vol(X ). Also let θ ∈ R be a known threshold given by the user.
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Figure 1: Comparison of the confidence parameter β1/2
t in the randomized straddle and LSE algorithms.

The left-hand side figure shows the histogram of β1/2
t when βt is sampled 1,000,000 times from the chi-

squared distribution with two degrees of freedom. The red line in the center and right figure denotes
E[β1/2

t ] =
√

2π/2 ≈ 1.25, the shaded area denotes the 95% confidence interval of β1/2
t , and the black line

denotes the theoretical value of β1/2
t in the LSE algorithm given by β

1/2
t =

√
2 log(|X |π2t2/(6δ)), where

δ = 0.05. The figure in the center shows the behavior of β1/2
t as the number of iterations t increases when

the number of candidate points |X | is fixed at 1000, whereas the figure on the right shows the behavior of
β

1/2
t as the number of candidate points |X | increases when the number of iterations t is fixed at 100.

The aim of this study is to efficiently identify subsets H∗ and L∗ of X defined as

H∗ = {x ∈ X | f(x) ≥ θ}, L∗ = {x ∈ X | f(x) < θ}.

For each iteration t ≥ 1, we can query xt ∈ X , and f(xt) is observed with noise as yt = f(xt) + εt, where εt
follows the normal distribution with mean 0 and variance σ2

noise. In this study, we assume that f is a sample
path from a GP GP(0, k), where GP(0, k) is the zero mean GP with a kernel function k(·, ·). Moreover, we
assume that k(·, ·) is a positive-definite kernel that satisfies k(x,x) ≤ 1 for all x ∈ X , and f, ε1, . . . , εt are
mutually independent.

Gaussian Process Model We use a GP surrogate model GP(0, k) for the black-box function. Given a
dataset Dt = {(xj , yj}tj=1, where t ≥ 1 is the number of iterations, the posterior distribution of f is again a
GP. Then, its posterior mean µt(x) and posterior variance σ2

t (x) can be calculated as:

µt(x) = kt(x)>(Kt + σ2
noiseIt)−1yt,

σ2
t (x) = k(x,x)− kt(x)>(Kt + σ2

noiseIt)−1kt(x),
(1)

where kt(x) is the t-dimensional vector whose i-th element is k(x,xi), yt = (y1, . . . , yt)>, Kt is the t × t
matrix whose (j, k)-th element is k(xj ,xk), It is the t× t identity matrix, with a superscript > that indicates
the transpose of vectors or matrices. In addition, we define D0 = ∅, µ0(x) = 0 and σ2

0(x) = k(x,x).

3 Proposed Method

In this section, we describe a method for estimating H∗ and L∗ based on the GP posterior and an AF for
determining the next evaluation.
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3.1 Level Set Estimation

First, we propose a method to estimate H∗ and L∗. While an existing study (Gotovos et al., 2013) proposes
an estimation method using the lower and upper bounds of a credible interval of f(x), this study proposes
an estimation method using the posterior mean instead of the credible interval.

Definition 3.1 (Level Set Estimation). For each t ≥ 1, we estimate H∗ and L∗ as:

Ht = {x ∈ X | µt−1(x) ≥ θ}, Lt = {x ∈ X | µt−1(x) < θ}. (2)

By definition 3.1, any x ∈ X belongs to either Ht or Lt, and Ht ∪ Lt = X . Therefore, the unknown set, as
in existing study (Gotovos et al., 2013), is not defined in this study.

3.2 Acquisition Function

In this section, we propose an AF for determining the next point to be evaluated. For each t ≥ 1 and x ∈ X ,
we define the upper bound ucbt−1(x) and lower bound lcbt−1(x) in the credible interval of f(x) as

ucbt−1(x) = µt−1(x) + β
1/2
t σt−1(x), lcbt−1(x) = µt−1(x)− β1/2

t σt−1(x),

where β1/2
t ≥ 0 is a user-specified confidence parameter. Here, the straddle heuristic STRt−1(x) proposed

by Bryan et al. (2005) is defined as:

STRt−1(x) = β
1/2
t σt−1(x)− |µt−1(x)− θ|.

Thus, by using ucbt−1(x) and lcbt−1(x), STRt−1(x) can be rewritten as

STRt−1(x) = min{ucbt−1(x)− θ, θ − lcbt−1(x)}.

We consider sampling βt of the straddle heuristic from a probability distribution. In the framework of black-
box function maximization, Takeno et al. (2023) uses a sample from a two-parameter exponential distribution
as the confidence parameter of the original GP-UCB. The two-parameter exponential distribution considered
by Takeno et al. (2023) can be expressed as 2 log(|X |/2)+st, where st follows the chi-squared distribution with
two degrees of freedom. Therefore, we use a similar argument and consider βt of the straddle heuristic as a
sample from the chi-squared distribution with two degrees of freedom, and propose the following randomized
straddle AF.

Definition 3.2 (Randomized Straddle). For each t ≥ 1, let βt be a sample from the chi-squared distribution
with two degrees of freedom, where β1, . . . , βt, ε1, . . . , εt, f are mutually independent. Then, the randomized
straddle at−1(x) is defined as follows:

at−1(x) = max{min{ucbt−1(x)− θ, θ − lcbt−1(x)}, 0}. (3)

Hence, using at−1(x), the next point to be evaluated is selected by xt = arg maxx∈X at−1(x). Figure 2 shows
the difference in the input points selected when using at−1(x) with different β1/2

t . Takeno et al. (2023) adds
a constant 2 log(|X |/2) , which depends on the number of elements in X , to the sample from the chi-squared
distribution with two degrees of freedom. In contrast, the random sample proposed in this study does not
require the addition of such a constant. As a result, the confidence parameter in the randomized straddle
does not depend on the number of iterations t or the number of candidate points. The only difference between
the straddle heuristic STRt−1(x) and equation 3 is that β1/2

t is randomized, and equation 3 performs a max
operation with 0. We describe in Section 4 that this modification leads to theoretical guarantees. Finally,
we give the pseudocode of the proposed algorithm in Algorithm 1.

5



Published in Transactions on Machine Learning Research (11/2024)

−5 0 5

−
2

0
2

4
Iteration 20

x

f(
x)

−5 0 5

−
2

0
2

4

−5 0 5

−
2

0
2

4

−5 0 5

−
2

0
2

4

Iteration 20

x

f(
x)

−5 0 5

−
2

0
2

4

−5 0 5

−
2

0
2

4

−5 0 5

−
2

0
2

4

Iteration 20

x

f(
x)

−5 0 5

−
2

0
2

4

−5 0 5

−
2

0
2

4

β
1/2
t = 1 β

1/2
t = 10 Proposed

Figure 2: Comparison of points selected by at−1(x) with different β1/2
t . The red line represents the true

black-box function f(x) = 5 exp(−(x + 5)2) + 5 exp(−(x − 5)2) − 2 exp(−x2) − 1, the black line represents
the posterior mean, and the blue crosses represent the observed points. The figures on the left, center and
right show the differences for 20 observation points when using, respectively, β1/2

t = 1, β1/2
t = 10 and βt

which follows the chi-squared distribution with two degrees of freedom, in the calculation of at−1(x), where
x = −5 is chosen as the initial point under the observation noise σ2

noise = 10−2 and threshold θ = 3. Since
STRt−1(x) is represented as STRt−1(x) = β

1/2
t σt−1(x) − |µt−1(x) − θ|, when β

1/2
t = 1, β1/2

t is small so
the second term of STRt−1(x) dominates, and as a result, it can be seen that only values whose posterior
mean are close to the threshold are observed. Conversely, when β1/2

t = 10, β1/2
t is large so the first term of

STRt−1(x) dominates, resulting in the AF that is almost the same as uncertainty sampling, and it can be
seen that the selected inputs are spaced almost equally apart. On the other hand, these behaviors are not
observed with the proposed method.

Algorithm 1 Active Learning for Level Set Estimation Using Randomized Straddle Algorithms
Input: GP prior GP(0, k), threshold θ ∈ R
for t = 1, 2, . . . , T do
Compute µt−1(x) and σ2

t−1(x) for each x ∈ X by equation 1
Estimate Ht and Lt by equation 2
Generate βt from the chi-squared distribution with two degrees of freedom
Compute ucbt−1(x), lcbt−1(x) and at−1(x)
Select the next evaluation point xt by xt = arg maxx∈X at−1(x)
Observe yt = f(xt) + εt at the point xt
Update GP by adding the observed data

end for
Output: Return HT and LT as the estimated sets

4 Theoretical Analysis

In this section, we give theoretical guarantees for the proposed model. First, we define the loss lt(x) for each
x ∈ X and t ≥ 1 as

lt(x) =


0 if x ∈ H∗,x ∈ Ht,
0 if x ∈ L∗,x ∈ Lt,
f(x)− θ if x ∈ H∗,x ∈ Lt,
θ − f(x) if x ∈ L∗,x ∈ Ht

.
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Then, the loss r(Ht, Lt) for the estimated sets Ht and Lt is defined as 2:

r(Ht, Lt) =
{

1
|X |
∑

x∈X lt(x) if X is finite
1

Vol(X )
∫
X lt(x)dx if X is infinite

≡ rt.

We also define the cumulative loss as Rt =
∑t
i=1 ri. Let γt be a maximum information gain3, where γt is

one of indicators for measuring the sample complexity. The maximum information gain γt is often used in
theoretical analysis of BO and LSE using GP (Srinivas et al., 2010; Gotovos et al., 2013), and γt is given by

γt = 1
2 sup
{x̃1,...,x̃t}⊂X

log det(It + σ−2
noiseK̃t), (4)

where x̃1, . . . , x̃t are any elements of X , and K̃t is the t × t matrix whose (j, k)-th element is k(x̃j , x̃k).
Then, the following theorem holds.
Theorem 4.1. Assume that f follows GP(0, k), where k(·, ·) is a positive-definite kernel satisfying k(x,x) ≤
1 for any x ∈ X . For each t ≥ 1, let βt be a sample from the chi-squared distribution with two degrees of
freedom, where β1, . . . , βt, ε1, . . . .εt, f are mutually independent. Then, the following inequality holds:

E[Rt] ≤
√
C1tγt,

where C1 = 4/ log(1 + σ−2
noise), and the expectation is taken with all randomness including f , εt and βt.

From Theorem 4.1, the following theorem holds.
Theorem 4.2. Under the assumptions of Theorem 4.1, the following inequality holds:

E[rt] ≤
√
C1γt
t

,

where C1 is given in Theorem 4.1.

Note that Theorem 4.1 and 4.2 hold whether X is a finite or infinite set. By the definition of the loss lt(x),
lt(x) represents how far f(x) is from the threshold when x is misclassified, and rt represents the average
value of lt(x) across all candidate points. Under mild assumptions, it is known that γt is sublinear (Srinivas
et al., 2010). Therefore, by Theorem 4.1, it is guaranteed that Rt is also sublinear in the expected value
sense. Furthermore, by Theorem 4.2, it is guaranteed that rt converges to 0 in the expected value sense.
Here, we must emphasize that Theorem 4.1 and 4.2 cannot be derived by simply randomizing the confidence
parameters of existing methods. First, although the proposed method is similar to existing methods in
that it randomly samples the confidence parameters of the AF, several issues had to be resolved in order to
derive theoretical guarantees in the LSE setting addressed in this paper. The proposed method is inspired by
IRGP-UCB in Takeno et al. (2023), but they deal with maximization problems in the first place and consider
regret f(x∗)−f(xt), which is the difference between the maximum value f(x∗) and the function value f(xt)
at the observation point xt. They consider a Bayesian cumulative (or simple) regret as an evaluation index
for theoretical analysis, and the theoretical validity of their method is based on the fact that f(x∗) can be
bounded from above with high probability, and as a result, the expected value of f(x∗) can be bounded
above by a certain expected value (Lemma 4.1 and 4.2 in Takeno et al. (2023)), which is achieved by using
UCB. On the other hand, the losses lt(x) and rt(Ht, Lt) of the LSE addressed in this paper are essentially
different from the regret f(x∗)−f(xt) and Bayesian cumulative (or simple) regret in maximization problems.
Therefore, it was not clear whether claims similar to Lemma 4.1 and 4.2 in Takeno et al. (2023) could be
derived by simply randomizing the confidence parameters of some AF of LSE. In addition, in existing LSE

2The discussion of the case where the loss is defined based on the maximum value r(Ht, Lt) = maxx∈X lt(x) is given in
Appendix A.

3 According to equation 4, γt should be called the supremum information gain, but since the term maximum information
gain is also used when using a sup operator (see, e.g., Vakili et al. (2023)), in the rest of this paper we will continue to call γt

the maximum information gain.
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studies such as Gotovos et al. (2013), the classification rule includes the posterior mean, posterior standard
deviation, and βt, and the loss function depends on the classification rule. Therefore, since the classification
rule includes βt, theoretical analysis based on randomization was difficult. On the other hand, although the
loss of the proposed method is based on the classification rule, unlike theirs, the classification rule itself does
not include βt because the classification rule uses only the posterior mean, and as a result, randomization
analysis became possible.

On the other hand, it is challenging to directly compare the proposed method with GP-based methods such
as the LSE algorithm and TRUVAR in terms of theoretical analysis. This difficulty arises because, first, the
proposed method and these methods use different approaches to estimate H∗ and L∗, and second, the criteria
for evaluating the quality of the estimated sets differ. However, it is important to note that the proposed
method has theoretical guarantees, and the confidence parameter β1/2

t does not depend on the number of
iterations t or the input space X , making it applicable whether X is finite or infinite. Additionally, since
E[β1/2

t ] =
√

2π/2 ≈ 1.25, the realized values of β1/2
t are not conservative. To the best of our knowledge,

no existing method satisfies all of these properties. Moreover, we confirm in Section 5 that the practical
performance of the proposed method is equal to or better than existing methods.

Finally, we give a theorem on high-probability bounds for Rt and rt when using the proposed method. Since
Theorem 4.1 and 4.2 provide bounds on the expected values of Rt and rt, we can easily derive high-probability
bounds by using Markov’s inequality, P(|X| ≥ a) ≤ E[|X|]

a , where X is a random variable and a is a positive
number. If Rt is used as X, then since |Rt| = Rt, using Theorem 4.1 and Markov’s inequality the inequality
P(Rt ≥ a) ≤

√
C1tγt

a holds. Therefore, for a given δ ∈ (0, 1), if we set a = δ−1√C1tγt, then Rt ≤ δ−1√C1tγt
holds with probability at least 1 − δ. Similarly, for rt, if we set a = δ−1

√
C1γt/t, then rt ≤ δ−1

√
C1γt/t

holds with probability at least 1− δ. We summarize these results in Theorem 4.3.
Theorem 4.3. Let δ ∈ (0, 1) and C1 = 4/ log(1+σ−2

noise). For each t ≥ 1, under the assumptions of Theorem
4.1, the following inequalities hold with probability at least 1− δ:

Rt ≤ δ−1
√
C1tγt, rt ≤ δ−1

√
C1γt
t

.

From Theorem 4.3, it is possible to derive high-probability bounds for Rt and rt, but the problem of the
right-hand side not being tight remains. Specifically, the term δ−1 remains in the right-hand side. On the
other hand, in many studies that deal with high-probability bounds such as Srinivas et al. (2010), the term√

log(δ−1) appears in the bound, which is tighter than δ−1. Therefore, one of the issues for the future is to
improve δ−1 in Theorem 4.3 to

√
log(δ−1).

5 Numerical Experiments

We confirm the practical performance of the proposed method using synthetic functions and real-world data.

5.1 Synthetic Data Experiments when X is Finite

In this section, the input space X was defined as a set of grid points that uniformly cut the region [l1, u1]×
[l2, u2] into 50× 50. In all experiments, we used the following Gaussian kernel:

k(x,x′) = σ2
f exp

(
−‖x− x′‖2

2
L

)
.

As black-box functions, we considered the following three synthetic functions:

Case 1 The black-box function f(x1, x2) is a sample path from GP(0, k), where k(·, ·) is given by

k(x,x′) = exp(−‖x− x′‖2
2/2).
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Table 1: Experimental parameters for each setting in Section 5.1
Black-box function l1 u1 l2 u2 σ2

f L σ2
noise θ

GP sample path −5 5 −5 5 1 2 10−6 0.5
Sinusoidal function 0 1 0 2 exp(2) 2 exp(−3) exp(−2) 1

Himmelblau’s function -5 5 -5 5 exp(8) 2 exp(4) 0

Case 2 The black-box function f(x1, x2) is the following sinusoidal function:

f(x1, x2) = sin(10x1) + cos(4x2)− cos(3x1x2).

Case 3 The black-box function f(x1, x2) is the following shifted negative Himmelblau function:

f(x1, x2) = −(x2
1 + x2 − 11)2 − (x1 + x2

2 − 7)2 + 100.

Furthermore, we used the normal distribution with mean 0 and variance σ2
noise for the observation noise.

The threshold θ and the parameters used for each setting are summarized in Table 1. The settings for the
sinusoidal and Himmelblau functions are the same as those used in Zanette et al. (2019). The performance
was evaluated using the loss rt and Fscoret, where Fscoret is the F-score calculated by

Pret = |Ht ∩H∗|
|Ht|

,Rect = |Ht ∩H∗|
|H∗|

,Fscoret = 2× Pret × Rect
Pret + Rect

.

Then, we compared the following six AFs:

(Random) Select xt by using random sampling.

(US) Perform uncertainty sampling, that is, xt = arg maxx∈X σ
2
t−1(x).

(Straddle) Perform the straddle heuristic proposed by Bryan et al. (2005), that is, xt = arg maxx∈X STRt−1(x).

(LSE) Perform the LSE algorithm using the LSE AF a
(LSE)
t−1 (x) proposed by Gotovos et al. (2013), that is,

xt = arg maxx∈X a
(LSE)
t−1 (x).

(MILE) Perform the MILE algorithm proposed by Zanette et al. (2019), that is, xt = arg maxx∈X a
(MILE)
t−1 (x),

where, a(MILE)
t−1 (x) is the same as the robust MILE, another AF proposed by Zanette et al. (2019),

with the tuning parameters ε and γ set to 0 and −∞, respectively.

(Proposed) Select xt by using equation 3, that is, xt = arg maxx∈X at−1(x).

In all experiments, the classification rules were the same for all six methods, and only the AF was
changed. We used β

1/2
t = 3 as the confidence parameter required for MILE and Straddle, and β

1/2
t =√

2 log(2500× π2t2/(6× 0.05)) for LSE. Under this setup, one initial point was taken at random and the
algorithm was run until the number of iterations reached 300. This simulation was repeated 100 times, and
the average rt and Fscoret at each iteration were calculated, where in Case 1, f was generated for each
simulation from GP(0, k).

As shown in Fig. 3, the proposed method consistently performs as well as or better than the comparison
methods in all three cases, in terms of both the loss rt and the Fscoret.

5.2 Synthetic Data Experiments when X is Infinite

In this section, we used the region [−5, 5]5 ⊂ R5 as X and the same kernel as in Section 5.1. As black-box
functions, we used the following three synthetic functions:
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Figure 3: Averages for the loss rt and Fscoret for each AF over 100 simulations across different settings when
the input space is finite. The top row shows rt, and the bottom row shows Fscoret. Error bars represent six
times the standard error.

Case 1 The black-box function f(x1, x2, x3, x4, x5) is the following shifted negative sphere function:

f(x1, x2, x3, x4, x5) = 41.65518−
( 5∑
d=1

x2
d

)
.

Case 2 The black-box function f(x1, x2, x3, x4, x5) is the following shifted negative Rosenbrock function:

f(x1, x2, x3, x4, x5) = 53458.91−
[ 4∑
d=1

{
100(xd+1 − x2

d)2 + (1− xd)2}] .
Case 3 The black-box function f(x1, x2, x3, x4, x5) is the following shifted negative Styblinski-Tang function:

f(x1, x2, x3, x4, x5) = −20.8875−
∑5
d=1(x4

d − 16x2
d + 5xd)

2 .

Additionally, we used the normal distribution with mean 0 and variance σ2
noise for the observation noise. The

threshold θ and parameters used for each setting are summarized in Table 2. The performance was evaluated
using rt and Fscoret. For each simulation, 100,000 points were randomly selected from [−5, 5]5, which were
used as the input point set X̃ to calculate rt and Fscoret. The values of rt and Fscoret in X̃ were calculated
as approximations of the true values. As AFs, we compared five methods used in Section 5.1, except for
MILE, which does not handle continuous settings. We used β1/2

t = 3 as the confidence parameter required
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Table 2: Experimental parameters for each setting in Section 5.2
Black-box function σ2

f L σ2
noise θ

Sphere 900 40 10−6 9.6
Rosenbrock 300002 40 10−6 14800

Styblinski-Tang 752 40 10−6 12.3

for Straddle, and β1/2
t =

√
2 log(1015 × π2t2/(6× 0.05)) for LSE. Here, the original LSE algorithm uses the

intersection of ucbt−1(x) and lcbt−1(x) in the previous iterations given below to calculate the AF:
˜ucbt−1(x) = min

1≤i≤t
ucbi−1(x), ˜lcbt−1(x) = max

1≤i≤t
lcbi−1(x).

Conversely, we did not perform this operation in the infinite set setting, and calculated the AF instead using
˜ucbt−1(x) = ucbt−1(x) and ˜lcbt−1(x) = lcbt−1(x). Under this setup, one initial point was chosen at random

and the algorithm was run for 500 iterations. This simulation was repeated 100 times and the average rt
and Fscoret at each iteration were calculated.

From Fig 4, it can be confirmed that the proposed method has performance equal to or better than the com-
parison methods in terms of both rt and Fscoret in the sphere function setting. In the case of the Rosenbrock
function setting, the proposed method exhibited performance equivalent to or better than the comparison
method in terms of rt. Moreover, in terms of Fscoret, the Random method showed the best performance up
to 250 iterations, but the proposed method matched or outperformed the comparison methods by the end of
the iterations. In the Styblinski-Tang function setting, Random performed best in terms of rt and Fscoret
up to around 300 iterations, but the proposed method equaled or surpassed the comparison methods by the
final iterations.

5.3 Real-world Data Experiments

In this section, we conducted experiments using the carrier lifetime value, a measure of the quality per-
formance of silicon ingots used in solar cells (Kutsukake et al., 2015). The data we used include the
two-dimensional coordinates x = (x1, x2) ∈ R2 of the sample surface and the carrier lifetime values
f̃(x) ∈ [0.091587, 7.4613] at each coordinate, where x1 ∈ {2a + 6 | 1 ≤ a ≤ 89}, x2 ∈ {2a + 6 | 1 ≤ a ≤ 74}
and |X | = 89 × 74 = 6586. In quality evaluation, identifying defective regions, known as red zones areas
where the value of f̃(x) falls below a certain threshold is crucial. In this experiment, the threshold was set
to 3, and we focused on identifying regions where f̃(x) is 3 or less. We considered f(x) = −f̃(x) + 3 as
the black-box function and performed experiments with θ = 0. Additionally, the experiment was conducted
assuming there was no noise in the observations. Moreover, to stabilize the posterior distribution calculation,
σ2

noise = 10−6 was used in the calculation. We used the following Matérn 3/2 kernel:

k(x,x′) = 4
(

1 +
√

3‖x− x′‖2

25

)
exp

(
−
√

3‖x− x′‖2

25

)
.

The performance was evaluated using the loss rt and Fscoret. As AFs, we compared six methods used in
Section 5.1. We used β

1/2
t = 3 as the confidence parameter required for MILE and Straddle, and β

1/2
t =√

2 log(6586× π2t2/(6× 0.05)) for LSE. Under this setup, one initial point was chosen at random and the
algorithm was run for 200 iterations. Because the observation noise was set to 0, the experiment was
conducted under the setting that a point that had been observed once would not be observed thereafter.
This simulation was repeated 100 times and the average rt and Fscoret at each iteration were calculated.

As shown in Fig. 5, the proposed method demonstrates performance that is equal to or better than the
comparison methods in terms of both loss rt and Fscoret.

6 Conclusion

In this study, we proposed a novel method called the randomized straddle algorithm, an extension of the
straddle algorithm for LSE problems in black-box functions. The proposed method replaces the value of
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Figure 4: Averages of the loss rt and Fscoret for each AF over 100 simulations for each setting when the
input space is infinite. The top row shows rt, the bottom row shows Fscoret, and each error bar length
represents the six times the standard error.
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Figure 5: Averages of the loss rt and Fscoret for each AF over 100 simulations using the carrier lifetime
data. The left figure shows rt, while the right figure shows Fscoret, with error bars representing six times
the standard error.

βt in the straddle algorithm with a random sample from the chi-squared distribution with two degrees of
freedom, performing LSE based on the GP posterior mean. As mensioned in Section 4, by considering an
appropriate AF for an appropriate loss function and solving the difficult problem of appropriately designing
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the distribution of the confidence parameters, we proved non-trivial theoretical results that the expected
value of the loss in the estimated sets and that of the sum of losses are O(

√
γt/t) and O(

√
tγt), respectively.

Compared to existing methods, the proposed approach offers three key advantages. First, most theoretical
analyses of existing methods involve confidence parameters that depend on the number of candidate points
and iterations, whereas such terms are not present in the proposed method. Second, existing methods
either do not apply to continuous search spaces or require discretization, with parameters for discretization
often being unknown. In contrast, the proposed method is applicable to continuous search spaces without
requiring algorithmic adjustments, providing the same theoretical guarantees as for finite search spaces.
Third, while confidence parameters in existing methods tend to be overly conservative, the expected value
of the confidence parameter in the proposed method is

√
2π/2 ≈ 1.25, which is not excessively conservative.

Furthermore, numerical experiments demonstrated that the performance of the proposed method is equal to
or better than that of existing methods. This indicates that the proposed method performs comparably to
heuristic methods while offering the added benefit of theoretical guarantees.

On the other hand, the proposed method has three drawbacks and limitations. First, since the proposed
method does not make any significant changes other than adding randomization to the existing straddle, the
practical performance is not dramatically improved compared to the case of using a fixed βt. For example,
if the next point is selected as the point at which E[r(Ht, Lt)] is the largest, practical performance can
be expected to improve, but theoretical analysis in this case is not easy. Second, as mentioned in Section
4, the high-probability bounds derived by Theorem 4.3 are not tight. Finally, it is not easy to extend to
other settings. As mentioned in Section 4, the theoretical analysis of the proposed method was achieved
by appropriately selecting the loss, AF, and distribution of the confidence parameter. Therefore, simply
replacing the parameters used in some AF with a chi-square distribution cannot directly apply the method
to, for example, cases where the F-score is used as an evaluation index or to other problem settings. However,
the insight gained from derivation of the theoretical results in this paper is that even if the problem setting
is different and the evaluation index considered changes, if an AF is designed that can bound the evaluation
index with high probability, it can be expected to be extended to other problem settings. In particular, both
the results of Takeno et al. (2023) and the results of this paper use the property that some loss function can
be bounded from above by β1/2

t σt−1(xt) with high probability. Therefore, it can be said that the key point
of the theoretical analysis is to consider a combination of AF and loss that satisfies this property.

Future work includes resolving the above-mentioned drawbacks and limitations. In addition, since BO
and LSE for black-box functions become difficult to handle when the input variables are high-dimensional,
extending the proposed method to high-dimensional settings is also one of future work.
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Algorithm 2 Randomized Straddle Algorithms for Max-value Loss in the Finite Setting
Input: GP prior GP(0, k), threshold θ ∈ R
for t = 1, 2, . . . , T do
Compute µt−1(x) and σ2

t−1(x) for each x ∈ X by equation 1
Estimate Ht and Lt by equation 2
Generate ξt from the chi-squared distribution with two degrees of freedom
Compute βt = ξt + 2 log(|X |), ucbt−1(x), lcbt−1(x) and ãt−1(x)
Select the next evaluation point xt by xt = arg maxx∈X ãt−1(x)
Observe yt = f(xt) + εt at the point xt
Update GP by adding the observed data

end for
Output: Return HT̂ and LT̂ as the estimated sets, where T̂ is given by equation 6

A Extension to Max-value Loss

In this section, we consider the following max-value loss defined based on the maximum value of lt(x):

r(Ht, Lt) = max
x∈X

lt(x) ≡ r̃t.

When X is finite, we need to modify the definition of the AF and the estimated sets returned at the end of
the algorithm. Conversely, if X is an infinite set, the definitions of Ht and Lt should be modified in addition
to the above. Therefore, we discuss the finite and infinite cases separately.

A.1 Proposed Method for Max-value Loss when X is Finite

When X is finite, we propose the following AF with a modified distribution that βt follows.
Definition A.1 (Randomized Straddle for Max-value Loss). For each t ≥ 1, let ξt be a random sample
from the chi-squared distribution with two degrees of freedom, where ξ1, . . . , ξt, ε1, . . . , εt, f are mutually
independent. Define βt = ξt+2 log(|X |). Then, the randomized straddle AF for the max-value loss, ãt−1(x),
is defined as:

ãt−1(x) = max{min{ucbt−1(x)− θ, θ − lcbt−1(x)}, 0}. (5)

By using ãt−1(x), the next point to be evaluated is selected by xt = arg maxx∈X ãt−1(x). Additionally, we
change estimation sets returned at the end of iterations T in the algorithm to the following instead of HT

and LT :
Definition A.2. For each t, define

t̂ = arg min
1≤i≤t

Et[r̃i], (6)

where Et[·] represents the conditional expectation given Dt−1. Then, at the end of iterations T , we define
HT̂ andLT̂ to be the estimated sets.

Finally, we give the pseudocode of the proposed algorithm in Algorithm 2.

A.1.1 Theoretical Analysis for Max-value Loss when X is Finite

For the max-value loss, the following theorem holds under Algorithm 2.
Theorem A.1. Let f be a sample path from GP(0, k), where k(·, ·) is a positive-definite kernel satisfying
k(x,x) ≤ 1 for any x ∈ X . For each t ≥ 1, let ξt be a random sample from the chi-squared distribution with
two degrees of freedom, where ξ1, . . . , ξt, ε1, . . . .εt, f are mutually independent. Define βt = ξt + 2 log(|X |).
Then, the following holds for R̃t =

∑t
i=1 r̃i:

E[R̃t] ≤
√
C̃1tγt,
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where C̃1 = (4 + 4 log(|X |))/ log(1 + σ−2
noise) and the expectation is taken with all randomness including f, εt

and βt.

From Theorem A.1, the following theorem holds.
Theorem A.2. Under the assumptions of Theorem A.1, the following inequality holds:

E[rt̂] ≤

√
C̃1γt
t

,

where t̂ and C̃1 are given in equation 6 and Theorem A.1, respectively.

Comparing Theorems 4.1 and A.1, when considering the max-value loss, βt should be 2 log(|X |) larger than
in the case of rt, and the constant that appears in the upper bound of the expected value of the cumulative
loss has the relationship C̃1 = (1 + log(|X |))C1. Note that while the upper bound for rt does not depend
on X , it depends on the logarithm of the number of elements in X for the max-value loss. Also, when
comparing Theorem 4.2 and A.2, it is not necessary to consider t̂ in rt, whereas it is necessary to consider t̂
in the max-value loss. For the max-value loss, it is difficult to analytically derive Et[r̃i], and hence, it is also
difficult to precisely calculate t̂. Nevertheless, because the posterior distribution of f given Dt−1 is again a
GP, we can generate M sample paths from the GP posterior distribution and calculate the realization r̃(j)

i

of r̃i from each sample path f (j), and calculate the estimate ť of t̂ as

ť = arg min
1≤i≤t

1
M

M∑
j=1

r̃
(j)
i .

A.2 Proposed Method for Max-value Loss when X is Infinite

In this section, we assume that the input space X ⊂ Rd is a compact set and satisfies X ⊂ [0, r]d, where
r > 0. Furthermore, we assume the following additional assumption for f :
Assumption A.1. Let f be differentiable with probability 1. Assuming positive constants a, b exist, such
that

P
(

sup
x∈X

∣∣∣∣ ∂f∂xj
∣∣∣∣ > L

)
≤ a exp

(
−
(
L

b

)2
)
, j ∈ [d],

where xj is the j-th element of x and [d] ≡ {1, . . . , d}.

Next, we provide a LSE method based on the discretization of the input space.

A.2.1 Level Set Estimation for Max-value Loss when X is Infinite

For each t ≥ 1, let Xt be a finite subset of X . Also, for any x ∈ X , let [x]t be the element of Xt that has the
shortest L1 distance from x4 Then, we define Ht and Lt as

Ht = {x ∈ X | µt−1([x]t) ≥ θ}, Lt = {x ∈ X | µt−1([x]t) < θ}. (7)

A.2.2 Acquisition Function for Max-value Loss when X is Infinite

We define a randomized straddle AF based on Xt:
Definition A.3. For each t ≥ 1, let ξt be a random sample from the chi-squared distribution with two
degrees of freedom, where ξ1, . . . , ξt, ε1, . . . , ξt, f are mutually independent. Define βt = 2 log(|Xt|) + ξt.
Then, the randomized straddle AF for the max-value loss when X is infinite, ǎt−1(x), is defined as:

ǎt−1(x) = max{min{ucbt−1(x)− θ, θ − lcbt−1(x)}, 0}.

The next point to be evaluated is selected by xt = arg maxx∈X ǎt−1(x). Finally, we give the pseudocode of
the proposed algorithm in Algorithm 3.

4If there are multiple x ∈ Xt with the shortest L1 distance, determine the one that is unique. For example, we first choose
the option with the smallest first component. If a unique determination is not possible, we then select the option with the
smallest second component. This process is repeated up to the d-th component to achieve a unique determination.
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Algorithm 3 Randomized Straddle Algorithms for Max-value Loss in the Infinite Setting
Input: GP prior GP(0, k), threshold θ ∈ R, discretized sets X1, . . . ,XT
for t = 1, 2, . . . , T do
Compute µt−1(x) and σ2

t−1(x) for each x ∈ X by equation 1
Estimate Ht and Lt by equation 7
Generate ξt from the chi-squared distribution with two degrees of freedom
Compute βt = ξt + 2 log(|Xt|), ucbt−1(x), lcbt−1(x) and ãt−1(x)
Select the next evaluation point xt by xt = arg maxx∈X ǎt−1(x)
Observe yt = f(xt) + εt at the point xt
Update GP by adding the observed data

end for
Output: Return HT̂ and LT̂ as the estimated sets, where T̂ = arg min1≤i≤T ET [r̃i]

A.2.3 Theoretical Analysis for Max-value Loss when X is Infinite

Under Algorithm 3, the following theorem holds.
Theorem A.3. Let X ⊂ [0, r]d be a compact set with r > 0. Assume that f is a sample path from GP(0, k),
where k(·, ·) is a positive-definite kernel satisfying k(x,x) ≤ 1 for any x ∈ X . Also assume that Assumption
A.1 holds. Moreover, for each t ≥ 1, let τt = dbdrt2(

√
log(ad) +

√
π/2)e, and let Xt be a finite subset of X

satisfying |Xt| = τdt and

‖x− [x]t‖1 ≤
dr

τt
, x ∈ X .

Suppose that ξt is a random sample from the chi-squared distribution with two degrees of freedom, where
ξ1, . . . , ξt, ε1, . . . , εt, f are mutually independent. Define βt = 2d log(dbdrt2(

√
log(ad) +

√
π/2)e) + ξt. Then,

the following holds for R̃t =
∑t
i=1 r̃i:

E[R̃t] ≤
π2

6 +
√
C1tγt(2 + st),

where Č1 = 2/ log(1 +σ−2
noise) and st = 2d log(dbdrt2(

√
log(ad) +

√
π/2)e), and the expectation is taken with

all randomness including f, εt and βt.

From Theorem A.3, the following holds.
Theorem A.4. Under the assumptions of Theorem A.3, define

t̂ = arg min
1≤i≤t

Et[r̃i].

Then, the following holds:

E[r̃t̂] ≤
π2

6t +

√
Č1γt(2 + st)

t
,

where Č1 and st are given in Theorem A.3.

B Proofs

B.1 Proof of Theorem 4.1

Proof. Let δ ∈ (0, 1). For any t ≥ 1, Dt−1 and x ∈ X , from the proof of Lemma 5.1 in Srinivas et al. (2010),
the following holds with probability at least 1− δ:

lcbt−1,δ(x) ≡ µt−1(x)− β1/2
δ σt−1(x) ≤ f(x) ≤ µt−1(x) + β

1/2
δ σt−1(x) ≡ ucbt−1,δ(x), (8)
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where βδ = 2 log(1/δ). Here, we consider the case where x ∈ Ht. If x ∈ H∗, we have lt(x) = 0. In contrast,
if x ∈ L∗, noting that lcbt−1,δ(x) ≤ f(x) by equation 8 we get

lt(x) = θ − f(x) ≤ θ − lcbt−1,δ(x).

Moreover, the inequality µt−1(x) ≥ θ holds because x ∈ Ht. Hence, from the definition of lcbt−1,δ(x) and
ucbt−1,δ(x), we obtain

θ − lcbt−1,δ(x) ≤ ucbt−1,δ(x)− θ.

Therefore, we get

lt(x) ≤ θ − lcbt−1,δ(x) = min{ucbt−1,δ(x)− θ, θ − lcbt−1,δ(x)}
≤ max{min{ucbt−1,δ(x)− θ, θ − lcbt−1,δ(x)}, 0} ≡ at−1,δ(x).

Similarly, we consider the case where x ∈ Lt. If x ∈ L∗, we obtain lt(x) = 0. Thus, because at−1,δ(x) ≥ 0,
we get lt(x) ≤ at−1,δ(x). Moreover, if x ∈ H∗, noting that f(x) ≤ ucbt−1,δ(x) by equation 8, we obtain

lt(x) = f(x)− θ ≤ ucbt−1,δ(x)− θ.

Here, the inequality µt−1(x) < θ holds because x ∈ Lt. Therefore, from the definition of lcbt−1,δ(x) and
ucbt−1,δ(x), we obtain

ucbt−1,δ(x)− θ ≤ θ − lcbt−1,δ(x).

Thus, the following inequality holds:

lt(x) ≤ ucbt−1,δ(x)− θ = min{ucbt−1,δ(x)− θ, θ − lcbt−1,δ(x)} ≤ at−1,δ(x).

Therefore, for all cases, the inequality lt(x) ≤ at−1,δ(x) holds. This indicates that the following inequality
holds with probability at least 1− δ:

lt(x) ≤ at−1,δ(x) ≤ max
x̃∈X

at−1,δ(x̃). (9)

Next, we consider the conditional distribution of lt(x) given Dt−1. Note that this distribution does not
depend on βδ. Let Ft−1(·) be a distribution function of lt(x) given Dt−1. Then, from equation 9 we have

Ft−1

(
max
x̃∈X

at−1,δ(x̃)
)
≥ 1− δ.

Hence, by considering the generalized inverse function of Ft−1(·) for both sides, the following inequality
holds:

F−1
t−1(1− δ) ≤ max

x̃∈X
at−1,δ(x̃).

Here, if δ follows the uniform distribution on the interval (0, 1), then 1− δ follows the same distribution. In
this case, the distribution of F−1

t−1(1− δ) is equal to the distribution of lt(x) given Dt−1. This implies that

Et[lt(x)] ≤ Eδ
[
max
x∈X

at−1,δ(x)
]
,

where Eδ[·] means the expectation with respect to δ. Furthermore, because 2 log(1/δ) and βt follow the
chi-squared distribution with two degrees of freedom, the following holds:

Et[lt(x)] ≤ Eβt
[at−1(xt)] .

Thus, if X is finite, from the definition of rt we obtain

Et[rt] = Et

[
1
|X |

∑
x∈X

lt(x)
]

= 1
|X |

∑
x∈X

Et[lt(x)] ≤ 1
|X |

∑
x∈X

Eβt [at−1(xt)] = Eβt [at−1(xt)] .
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Similarly, if X is infinite, from the definition of rt and non-negativity of lt(x), using Fubini’s theorem we get

Et[rt] = Et
[

1
Vol(X )

∫
X
lt(x)dx

]
= 1

Vol(X )

∫
X
Et[lt(x)]dx ≤ 1

Vol(X )

∫
X
Eβt

[at−1(xt)] dx = Eβt
[at−1(xt)] .

Therefore, the inequality Et[rt] ≤ Eβt [at−1(xt)] holds for both cases. Moreover, from the definition of
at−1(x), the following inequality holds:

at−1(xt) ≤ β1/2
t σt−1(xt)

Hence, we get the following inequality:

E[Rt] = E

[
t∑
i=1

ri

]
≤ E

[
t∑
i=1

β
1/2
i σi−1(xi)

]

Cauchy-Schwarz inequality−−−−−−−−−−−−−−−−−→ ≤ E

( t∑
i=1

βi

)1/2( t∑
i=1

σ2
i−1(xi)

)1/2
Hölder’s inequality−−−−−−−−−−−−→ ≤

√√√√E

[
t∑
i=1

βi

]√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

E[βi]=2−−−−−→ =
√

2t

√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

≤
√

2t

√
E
[

2
log(1 + σ−2

noise)
γt

]
=
√
C1tγt,

where the last inequality is derived by the proof of Lemma 5.4 in Srinivas et al. (2010).

B.2 Proof of Theorem 4.2

We first give three lemmas to prove Theorem 4.2. Theorem 4.2 is proved by Lemma B.1 and B.3.
Lemma B.1. Under the assumptions of Theorem 4.1, let

t̂ = arg min
1≤i≤t

Et[ri].

Then, the following inequality holds:

E[rt̂] ≤
√
C1γt
t

.

Proof. From the definition of t̂, the inequality Et[rt̂] ≤
∑t

i=1
Et[ri]
t holds. Therefore, we obtain

E[rt̂] ≤
∑t
i=1 E[ri]
t

=
E
[∑t

i=1 ri

]
t

= E[Rt]
t

.

By combining this and Theorem 4.1, we get the desired result.

Lemma B.2. For any t ≥ 1, i ≤ t and x ∈ X , the expectation Et[li(x)] can be calculated as follows:

Et[li(x)] =
{
σt−1(x) [φ(−α) + α {1− Φ(−α)}] if x ∈ Li
σt−1(x) [φ(α)− α {1− Φ(α)}] if x ∈ Hi

,

where α = µt−1(x)−θ
σt−1(x) , and φ(z) and Φ(z) are the density and distribution function of the standard normal

distribution, respectively.
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Proof. From the definition of li(x), if x ∈ Li, li(x) can be expressed as li(x) = (f(x)− θ)1l[f(x) ≥ θ], where
1l[·] is the indicator function which takes 1 if the condition · holds, otherwise 0. Furthermore, the conditional
distribution of f(x) given Dt−1 is the normal distribution with mean µt−1(x) and variance σ2

t−1(x). Thus,
from the definition of Et[·], the following holds:

Et[li(x)] =
∫ ∞
θ

(y − θ) 1√
2πσ2

t−1(x)
exp

(
− (y − µt−1(x))2

2σ2
t−1(x)

)
dy

=
∫ ∞
θ

σt−1(x)
(
y − µt−1(x)
σt−1(x) + µt−1(x)− θ

σt−1(x)

)
1√

2πσ2
t−1(x)

exp
(
− (y − µt−1(x))2

2σ2
t−1(x)

)
dy

=
∫ ∞
−α

σt−1(x) (z + α) 1√
2π

exp
(
−z

2

2

)
dz

= σt−1(x)
∫ ∞
−α

(z + α)φ(z)dz = σt−1(x){[−φ(z)]∞−α + α(1− Φ(−α))}

= σt−1(x) [φ(−α) + α {1− Φ(−α)}] .

Similarly, if x ∈ Hi, li(x) can be expressed as li(x) = (θ − f(x))1l[f(x) < θ]. Then, we obtain

Et[li(x)] =
∫ θ

−∞
(θ − y) 1√

2πσ2
t−1(x)

exp
(
− (y − µt−1(x))2

2σ2
t−1(x)

)
dy

=
∫ θ

−∞
σt−1(x)

(
θ − µt−1(x)
σt−1(x) + µt−1(x)− y

σt−1(x)

)
1√

2πσ2
t−1(x)

exp
(
− (y − µt−1(x))2

2σ2
t−1(x)

)
dy

=
∫ α

∞
σt−1(x) (z − α) 1√

2π
exp

(
−z

2

2

)
(−1)dz

= σt−1(x)
∫ ∞
α

(z − α)φ(z)dz = σt−1(x){[−φ(z)]∞α − α(1− Φ(α))}

= σt−1(x) [φ(α)− α {1− Φ(α)}] .

Lemma B.3. Under the assumptions of Theorem 4.1 the equality t̂ = t holds.

Proof. Let x ∈ X . If x ∈ Ht, the inequality µt−1(x) ≥ θ holds. This implies that α ≥ 0. Hence, from
Lemma B.2 we obtain

Et[lt(x)] = σt−1(x) [φ(α)− α {1− Φ(α)}] .
Thus, since α ≥ 0, the following inequality holds:

σt−1(x) [φ(α)− α {1− Φ(α)}] ≤ σt−1(x) [φ(−α) + α {1− Φ(−α)}] .

Therefore, from the definition of Et[li(x)], we get

Et[lt(x)] = σt−1(x) [φ(α)− α {1− Φ(α)}] ≤ Et[li(x)].

Similarly, if x ∈ Lt, using the same argument we have

Et[lt(x)] = σt−1(x) [φ(−α) + α {1− Φ(−α)}] ≤ Et[li(x)].

Here, if X is finite, from the definition of ri we obtain

Et[rt] = Et

[
1
|X |

∑
x∈X

lt(x)
]

= 1
|X |

∑
x∈X

Et[lt(x)] ≤ 1
|X |

∑
x∈X

Et[li(x)] = Et[ri].

Similarly, if X is infinite, by using the same argument and Fubini’s theorem, we get Et[rt] ≤ Et[ri]. Therefore,
for all cases the inequality Et[rt] ≤ Et[ri] holds. This implies that t̂ = t.

From Lemma B.1 and B.3, we get Theorem 4.2.

21



Published in Transactions on Machine Learning Research (11/2024)

B.3 Proof of Theorem A.1

Proof. Let δ ∈ (0, 1). For any t ≥ 1 and Dt−1, from the proof of Lemma 5.1 in Srinivas et al. (2010), with
probability at least 1− δ, the following holds for any x ∈ X :

lcbt−1,δ(x) ≡ µt−1(x)− β1/2
δ σt−1(x) ≤ f(x) ≤ µt−1(x) + β

1/2
δ σt−1(x) ≡ ucbt−1,δ(x),

where βδ = 2 log(|X |/δ). Here, by using the same argument as in the proof of Theorem 4.1, the inequality
lt(x) ≤ ãt−1,δ(x) holds. Hence, the following holds with probability at least 1− δ:

r̃t = max
x∈X

lt(x) ≤ max
x∈X

ãt−1,δ(x). (10)

Next, we consider the conditional distribution of r̃t given Dt−1. Note that this distribution does not depend
on βδ. Let Ft−1(·) be a distribution function of r̃t given Dt−1. Then, from equation 10, we obtain

Ft−1

(
max
x∈X

ãt−1,δ(x)
)
≥ 1− δ.

Therefore, by taking the generalized inverse function for both sides, we get

F−1
t−1(1− δ) ≤ max

x∈X
ãt−1,δ(x).

Here, if δ follows the uniform distribution on the interval (0, 1), 1 − δ follows the same distribution. Fur-
thermore, since the distribution of F−1

t−1(1− δ) is equal to the conditional distribution of r̃t given Dt−1, we
have

Et[r̃t] ≤ Eδ
[
max
x∈X

ãt−1,δ(x)
]
.

Moreover, noting that 2 log(|X |/δ) and βt follow the same distribution, we obtain

Et[r̃t] ≤ Eβt
[ãt−1(xt)] .

Additionally, from ãt−1(x), the following inequality holds:

ãt−1(xt) ≤ β1/2
t σt−1(xt).

Therefore, since E[βt] = 2 + 2 log(|X |)), the following inequality holds:

E[R̃t] = E

[
t∑
i=1

r̃i

]
≤ E

[
t∑
i=1

β
1/2
i σi−1(xi)

]

≤ E

( t∑
i=1

βi

)1/2( t∑
i=1

σ2
i−1(xi)

)1/2
≤

√√√√E

[
t∑
i=1

βi

]√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

≤
√
t(2 + 2 log(|X |))

√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

≤
√
t(2 + 2 log(|X |))

√
E
[

2
log(1 + σ−2

noise)
γt

]
=
√
C̃1tγt.
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B.4 Proof of Theorem A.2

Proof. Theorem A.2 is proved by using the same argument as in the proof of Lemma B.1.

B.5 Proof of Theorem A.3

Proof. Let x ∈ X . If x ∈ H∗ ∩ Ht or x ∈ L∗ ∩ Lt, the equality lt(x) = 0 holds. Hence, the following
inequality holds:

lt(x) ≤ lt([x]t) ≤ lt([x]t) + |f(x)− f([x]t)|.

We consider the case where x ∈ H∗ and x ∈ Lt, that is, lt(x) = f(x)− θ. Here, since x ∈ Lt, the inequality
µt−1([x]t) < θ holds. This implies that [x]t ∈ Lt. If [x]t ∈ H∗, noting that lt([x]t) = f([x]t)− θ we get

lt(x) = f(x)− θ = f(x)− f([x]t) + f([x]t)− θ ≤ f([x]t)− θ + |f(x)− f([x]t)| = lt([x]t) + |f(x)− f([x]t)|.

Similarly, if [x]t ∈ L∗, noting that f([x]t) < θ and 0 ≤ lt([x]t) we obtain

lt(x) = f(x)− θ = f([x]t)− θ + f(x)− f([x]t) ≤ 0 + f(x)− f([x]t) ≤ lt([x]t) + |f(x)− f([x]t)|.

Next, we consider the case where x ∈ L∗ and x ∈ Ht, that is, lt(x) = θ − f(x). Here, since x ∈ Ht, the
inequality µt−1([x]t) ≥ θholds. This implies that [x]t ∈ Ht. If [x]t ∈ L∗, noting that lt([x]t) = θ − f([x]t),
we have

lt(x) = θ − f(x) = θ − f([x]t) + f([x]t)− f(x) ≤ lt([x]t) + |f(x)− f([x]t)|

Similarly, if [x]t ∈ H∗, noting that f([x]t) ≥ θ and 0 ≤ lt([x]t), we get

lt(x) = θ − f(x) = θ − f([x]t) + f([x]t)− f(x) ≤ 0 + f([x]t)− f(x) ≤ lt([x]t) + |f(x)− f([x]t)|.

Therefore, for all cases the following inequality holds:

lt(x) ≤ lt([x]t) + |f(x)− f([x]t)|.

Here, let Lmax = supj∈[d] supx∈X

∣∣∣ ∂f∂xj

∣∣∣. Then, the following holds:

|f(x)− f([x]t)| ≤ Lmax‖x− [x]t‖1 ≤ Lmax
dr

τt
.

Thus, noting that

lt(x) ≤ lt([x]t) + Lmax
dr

τt

we obtain

r̃t = max
x∈X

lt(x) ≤ Lmax
dr

τt
+ max

x∈X
lt([x]t) ≡ Lmax

dr

τt
+ max

x̃∈Xt

lt(x̃) ≡ Lmax
dr

τt
+ řt.

In addition, from Lemma H.1 in Takeno et al. (2023), the following inequality holds:

E[Lmax] ≤ b(
√

log(ad) +
√
π/2).

Hence, we get

E
[
Lmax

dr

τt

]
≤
b(
√

log(ad) +
√
π/2)

τt
dr =

b(
√

log(ad) +
√
π/2)

dbdrt2(
√

log(ad) +
√
π/2)e

dr

≤
b(
√

log(ad) +
√
π/2)

bdrt2(
√

log(ad) +
√
π/2)

dr = 1
t2
.
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Therefore, the following inequality holds:

E[R̃t] = E

[
t∑
i=1

r̃i

]
≤

t∑
i=1

1
i2

+ E

[
t∑
i=1

ři

]
≤ π2

6 + E

[
t∑
i=1

ři

]
.

Here, ři is the maximum value of the loss li(x̃) restricted on Xi, and since Xi is a finite set, by replacing X
with Xi in the proof of Theorem A.1 and performing the same proof, we obtain Ei[ři] ≤ Eδ[maxx̃∈Xt

ǎi−1(x̃)].
Furthermore, since the next point to be evaluated is selected from X , the following inequality holds:

Ei[ři] ≤ Eδ[max
x̃∈Xt

ǎi−1(x̃)] ≤ Eδ[max
x∈X

ǎi−1(x)].

Therefore, we have

E

[
t∑
i=1

ři

]
≤ E

[
t∑
i=1

β
1/2
i σi−1(xi)

]

≤ E

( t∑
i=1

βi

)1/2( t∑
i=1

σ2
i−1(xi)

)1/2
≤

√√√√E

[
t∑
i=1

βi

]√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

≤
√
tE[βt]

√√√√E

[
t∑
i=1

σ2
i−1(xi)

]

≤
√
t(2 + 2d log(dbdrt2(

√
log(ad) +

√
π/2)e))

√
E
[
Č1γt

]
=
√
Č1tγt(2 + st).

B.6 Proof of Theorem A.4

Proof. Theorem A.4 is proved by using the same argument as in the proof of Lemma B.1.

24


	Introduction
	Related Work
	Contribution

	Preliminary
	Proposed Method
	Level Set Estimation
	Acquisition Function

	Theoretical Analysis
	Numerical Experiments
	Synthetic Data Experiments when X is Finite
	Synthetic Data Experiments when X is Infinite
	Real-world Data Experiments

	Conclusion
	Extension to Max-value Loss
	Proposed Method for Max-value Loss when X is Finite
	Theoretical Analysis for Max-value Loss when X is Finite

	Proposed Method for Max-value Loss when X is Infinite
	Level Set Estimation for Max-value Loss when X is Infinite
	Acquisition Function for Max-value Loss when X is Infinite
	Theoretical Analysis for Max-value Loss when X is Infinite


	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem A.1
	Proof of Theorem A.2
	Proof of Theorem A.3
	Proof of Theorem A.4


