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ABSTRACT

Large language models (LLMs) have pushed the limits of natural language un-
derstanding and exhibited excellent problem-solving ability. Despite the great
success, most existing open-source LLMs (e.g., LLaMA-2) are still far away from
satisfactory for solving mathematical problems due to the complex reasoning proce-
dures. To bridge this gap, we propose MetaMath, a finetuned language model that
specializes in mathematical reasoning. Specifically, we start by bootstrapping math-
ematical questions by rewriting the question from multiple perspectives, which
results in a new dataset called MetaMathQA. Then we finetune the LLaMA-2
models on MetaMathQA. Experimental results on two popular benchmarks (i.e.,
GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath out-
performs a suite of open-source LLMs by a significant margin. Our MetaMath-7B
model achieves 66.5% on GSM8K and 19.8% on MATH, exceeding the state-of-
the-art models of the same size by 11.5% and 8.7%. Particularly, MetaMath-70B
achieves an accuracy of 82.3% on GSM8K, slightly better than GPT-3.5-Turbo.
We release the MetaMathQA dataset, the MetaMath models with different model
sizes and the training code for public use.

Meta-Question: James buys 5

packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound.

How much did he pay?

MetaMathQA

Answer: He bought 5*4=20

pounds of beef. So he paid 20 * 5.5

= $110. The answer is: 110

Self-Verification Question: James buys x packs of beef that are 4

pounds each. The price of beef is $5.50 per pound. He paid 110. What is

the value of unknown variable x? Answer: ……

Rephrasing Question: What is the total amount that James paid when

he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50

per pound? Answer: ……

FOBAR Question: James buys x packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound. How much did he pay? If we know

the answer to the above question is 110, what is the value of unknown

variable x? Answer: ……

Answer Augment: James buys 5 packs of beef that are 4 pounds each,

so he buys a total of 5 * 4 = 20 pounds of beef. The price of beef is $5.50

per pound, so he pays 20 * $5.50 = $110. The answer is: 110
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Figure 1: Overview of the MetaMathQA dataset and the mathematical problem-solving LLM – MetaMath. We
note that our MetaMath-70B is finetuned by QLoRA [15] due to the computing resource limitation.
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1 INTRODUCTION

Recent years have witnessed the rapid development of large language models (LLMs) which emerge as
the favored approach for various applications and demonstrate multi-dimensional abilities, including
instruction following [7, 38, 55, 67], coding assistance [8, 36, 44, 51], and mathematical problem-
solving [14, 28, 43, 79]. Among various tasks, solving mathematical problems is more challenging
as they often require highly complex and symbolic multi-step reasoning capabilities. Although some
close-sourced models, e.g., GPT-3.5-Turbo [52], GPT-4 [54] and PaLM-2 [70], have demonstrated
promising performance on some mathematical problem-solving benchmarks, it is still a mystery how
these models are trained and what data these models use. Therefore, how to equip open-source LLMs
(e.g., LLaMA [69, 70]) with good mathematical problem-solving skills remains an open challenge.

To tackle this challenge, two popular lines of research to improve the mathematical problem-solving
abilities of LLMs are: prompt-based methods and finetuning-based methods. Prompt-based meth-
ods [20, 74, 75, 77, 78, 84] aim to activate the potential capacities of LLMs by choosing suitable
prompting inputs without modifying the model parameters. Finetuning-based methods update the
open-source LLMs (e.g., LLaMA) under the guidance of some other powerful closed-source LLMs
(e.g., GPT-3.5 [52], GPT-4 [54]). While prompt-based methods are model-dependent and sensi-
tive to many factors, finetuning-based methods, despite being simple and model-agnostic, heavily
rely on effective training data on downstream mathematical questions. Our work aims to improve
finetuning-based methods with a novel method to bootstrap available mathematical questions in
the training set. Specifically, we propose to bootstrap the questions in both forward and backward
reasoning directions. For the forward direction, we have the original and LLM-rephrased questions.
For the backward direction, we have the self-verification question [76] and FOBAR question [32].
To construct backward reasoning questions, we mask a token in a question using an identifier “x”
and ask the model to predict the masked token if the answer is provided. Different from [32, 76]
that apply backward reasoning for inference verification, we use it as a form of question for lan-
guage model fine-tuning. For answers, we adopt an answer augmentation method based on rejection
sampling [79], where diverse reasoning paths are generated and only those with correct answers
are used. After combining both forward and backward mathematical questions with augmented
answers, we construct a new dataset for fine-tuning, called MetaMathQA. By fine-tuning LLaMA-2
on MetaMathQA, we obtain our MetaMath model. Our approach is guided by the insight that a
mathematical question represents merely a single view of the underlying meta-knowledge. Therefore,
question bootstrapping can be viewed as a form of multi-view augmentation in order to enable the
transfer of the meta-knowledge. Leveraging the MetaMathQA dataset, MetaMath demonstrates
exceptional performance in mathematical reasoning, positioning it among the top performers on
widely recognized evaluation benchmarks.
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Figure 2: GSM8K accuracy of LLaMA-2-7B finetuned
on different sizes of answer augmentation data. A larger
diversity gain indicates the question is more diverse com-
pared to the existing questions. Detailed experimental
setup is given in Section 4.1.

Another motivation behind question bootstrap-
ping is to enlarge the question diversity [18]
such that the question distribution can be rich
enough to cover more unseen scenarios. We
quantify the question diversity of the original
questions and our MetaMathQA dataset in Fig-
ure 2. The diversity gain [6] indicates how di-
verse the question is compared to the existing
dataset, and a larger diversity gain means the
new question is more different from the existing
dataset. With question bootstrapping, our Meta-
MathQA dataset is much more diverse than the
original dataset. We also observe that the test
accuracy without bootstrapped questions rapidly
reaches a state of saturation. In contrast, the test
accuracy, when using bootstrapped questions, continues to exhibit a steady increase.

Question bootstrapping also has an intrinsic connection to dataset distillation [73, 82] and machine
teaching [40, 41, 58, 85], where the shared target is to construct a training dataset that best facilitates
generalization. Unlike both methods that focus on optimizing the training empirical risk, question
bootstrapping uses the reasoning diversity of questions as a heuristic proxy and maximizes this
diversity by constructing forward, backward and rephrased questions. MetaMath aims to transfer the
underlying meta-knowledge to enable strong generalization [34]. Our contributions are listed below:
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• We propose a novel question bootstrapping method to augment the training dataset, resulting
in MetaMathQA. Question bootstrapping rewrites questions with both forward and backward
reasoning paths and also leverages LLMs to rephrase the question text.

• Based on the MetaMathQA dataset, MetaMath is finetuned from state-of-the-art open-source LLMs
(e.g., LLaMA-2), showing excellent elementary mathematical problem-solving capability.

• We identify an important factor when creating the MetaMathQA dataset – question diversity. The
diversity is particularly important in reasoning directions, and backward reasoning questions are
very helpful for LLMs to understand mathematical knowledge without memorization.

• We conduct experiments on two standard mathematical reasoning benchmarks: GSM8K [13] and
MATH [23]. MetaMath outperforms existing open-source LLMs by a large margin. MetaMath-7B
has achieved 66.5% on GSM8K (+11.5% compared to the previous best open-source LLM) on
GSM8K and 19.8% on MATH (+8.7% compared to the previous best open-source LLM).

• Our work studies data augmentation for improving the mathematical problem-solving ability of
LLMs. Despite being simple, our method significantly outperforms many intricate methods. Our
results highlight the importance of data augmentation and also shed light on other reasoning tasks.

2 RELATED WORK

Large Language Models (LLMs) [7, 16, 42, 59, 60, 65, 69] have achieved great success in various
natural language processing tasks, e.g., topic classification [31, 33, 47], sentiment classification
[7, 47], translation [7], by few-shot prompting (or in-context learning) [7, 10, 47]. Recently, Wang
et al. [74], Wei et al. [75] show that LLMs with more than 100B parameters (e.g., GPT-3 [7] with
175B, PaLM with 540B [12]) can solve complex tasks by generating multiple reasoning steps towards
the answer when given a few reasoning examples as demonstration. While both GPT-3.5 [52] and
GPT-4 [54] have shown promising reasoning ability for complex mathematical tasks like MATH [23],
the performance of open-source models (e.g., LLaMA-1 [69], LLaMA-2 [70]) is far from satisfactory.
Learning Mathematical Reasoning for complex math tasks like GSM8K [13] and MATH [23] is
one of the most challenging problem in open-source LLMs. Wei et al. [75] enhances the reasoning
ability of LLMs by augmenting the output with a sequence of intermediate steps toward the answer.
A few methods [20, 74, 84] are proposed to improve the quality of reasoning paths. For example,
Complexity-based CoT [20] selects examples with more steps as in-context demonstrations and shows
that prompting with more reasoning steps leads to better performance. Self-Consistency [74] samples
multiple reasoning paths and selects the final answer by majority voting. Another category of work is
finetuning-based methods, which finetunes open-source models (e.g., LLaMA) with the knowledge
from some advanced closed-source LLMs [52, 54]. Magister et al. [45] investigates the transfer of
reasoning capabilities via knowledge distillation. Yuan et al. [79] proposes to apply rejection sampling
finetuning (RFT) to improve mathematical reasoning performance. WizardMath [43] proposes a
reinforced evol-instruct method to enhance reasoning abilities by supervised fine-tuning and PPO
training [62]. MAmmoTH [80] combines CoT and Program-of-Thought [9] rationales for teaching
LLMs to use external tools (e.g., Python interpreter) for solving mathematical problems. Wang et al.
[72] propose a constraint alignment loss to finetune LLMs for calibration.
Knowledge Distillation [21, 24] transfers knowledge from a larger teacher model to a smaller student
model, achieving promising performance in many applications [22, 48, 56, 63], Recently, [19, 25–
27, 37, 45, 64] propose to transfer reasoning abilities from LLMs (e.g., GPT-3.5 [52], PaLM [12]) to
small language models (e.g., T5 [60], GPT-2 [59]). For example, Finetune-CoT [25] samples multiple
reasoning paths from LLMs and finetune the student model with correct ones, while Self-Improve [27]
chooses the one with the highest confidence. Li et al. [37] further feeds the question and ground-truth
label to LLMs for prompting its reasoning path. Shridhar et al. [64] proposes to generate sub-questions
and solution pairs for training. Small models finetuned by knowledge distillation can achieve similar
performance to LLMs [25, 45] on both common sense reasoning (e.g., CommonSenseQA [66]) and
symbol reasoning (e.g., Coin Flip [75]). However, for solving challenging mathematical problems
(e.g., GSM8K [13]), there is still a large performance gap [19, 25, 45].

3 METHOD

The overview of our method is illustrated in Figure 1. Given a meta-question (a sample in the original
mathematical training set), we can generate a series of variants. Specifically, we perform three types
of question bootstrapping. Combined with answer augmentation, we present MetaMathQA, a diverse
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and high-quality mathematical dataset based on GSM8K and MATH. We then present MetaMath, a
family of LLMs finetuned on MetaMathQA focusing on elementary mathematical problem-solving.

3.1 ANSWER AUGMENTATION (ANSAUG)

Generating more reasoning paths is a simple but effective way to augment the training set. For a
question qi, we use few-shot chain-of-thought prompting with temperature sampling to generate
KAnsAug more reasoning paths {(r(j)i , a

(j)
i ) : j = 1, . . . ,KAnsAug}: the question is appended to a few

in-context reasoning examples, then fed to the LLM for generating its reasoning path r
(j)
i and answer

a
(j)
i . We filter out reasoning paths with correct answers as:

DAnsAug = {(qi, r(j)i , a
(j)
i ) : a

(j)
i = a⋆

i ; i = 1, . . . , Nq; j = 1, . . . ,KAnsAug}. (1)

3.2 QUESTION BOOTSTRAPPING BY LLM REPHRASING

Generating more answers for mathematical questions with LLMs is straightforward, but creating
questions is more challenging. Math Questions are written by well-educated teachers. Hence,
enlarging the question set through manual creation is time-consuming and labor-intensive. To address
this issue, we propose rephrasing prompting to generate more questions through the LLM.

Example 3.1: Rephrasing Question

Question: What is the total amount that James paid when he purchased 5 packs of beef, each weighing 4
pounds, at a price of $5.50 per pound?
Answer: Each pack of beef weighs 4 pounds, so 5 packs weigh 4 * 5 = 20 pounds in total. The price per
pound of beef is $5.50, so the total cost for 20 pounds is 20 * $5.50 = $110. ... The answer is: 110.

Specifically, for a question qi, we append it to the prompt, which is then fed to the LLM for generating
the rephrased question. Example 3.1 shows a generated rephrased question and the complete prompt
is shown in Appendix A.1. We adopt temperature sampling to sample Krephrase rephrased questions
for each meta-question. For the rephrased questions, it is time-consuming to manually check the
consistency compared with the original questions. We propose a supervised method to evaluate the
correctness between the rephrased questions and the meta-questions. For each rephrased question q̂

(j)
i ,

we use few-shot Chain-of-Thought prompting to generate its reasoning path r̂
(j)
i and answer â(j)i ,

which is compared with the ground-truth answer a⋆i . The accuracy of Complexity-based CoT [20]
for answering the rephrased question by GPT-3.5-Turbo is 76.30%, which is comparable to that
of answering the original training questions (80.74%). This suggests that the quality of rephrased
questions is preserved high while the question diversity is improved. We collect the rephrased
questions with correct answers (i.e., â(j)i = a⋆i ) as the augmented data:

Drephrase = {(q̂i, r̂(j)i , â
(j)
i ) : â

(j)
i = a⋆

i ; i = 1, . . . , Nq; j = 1, . . . ,Krephrase}. (2)

3.3 QUESTION BOOTSTRAPPING BY BACKWARD REASONING

Backward reasoning plays an important role in answering many mathematical questions, i.e., starting
with a given condition and thinking backward to determine an unknown variable in the question. One
specific example between a question and a backward question is illustrated in Example 3.2. However,
existing methods (SFT, RFT, WizardMath) have significantly lower accuracy on backward questions,
as shown in Figure 6, motivating us to bootstrap backward questions to improve the reasoning ability.

Example 3.2: Question and Backward Question

Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How
much did he pay? Answer: He bought 5*4=20 pounds of beef. He paid 20*5.5=$110. The answer is: 110 ✓
Backward Question: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per
pound. How much did he pay? If we know the answer to the above question is 110, what is the value of
unknown variable x? Answer: The total weight of the beef is 4*x because 4*5.5 = 22. ... The answer is: 27 ✗

To improve the backward reasoning ability of finetuned models, we generate more questions which
can be solved in a backward manner: a number in the question qi is masked by “x”, while the LLM is
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asked to predict the value of “x” when its answer a⋆i is provided. Different from forward reasoning,
which generates explicit intermediate steps towards the final answer, backward reasoning starts with
the answer and generates multiple reasoning steps to predict the masked number. Representative
backward reasoning methods include Self-Verification [76] and FOBAR [32].

In Self-Verification (SV) [76], the question with the answer is first rewritten into a declarative
statement, e.g., “How much did he pay?” (with the answer 110) is rewritten into “He paid $10”.
Then, a question for asking the value of x is appended, e.g., “What is the value of unknown variable
x?”. Example 3.3 gives an augmented example. We collect the new questions and their generated
reasoning paths with correct answers as the augmented data:

DSV = {(q̃(j)i , r̃
(j)
i , ã

(j)
i ) : ã

(j)
i = a⋆

i ; i = 1, . . . , Nq; j = 1, . . . ,KSV}. (3)

Example 3.3: Self-Verification [76] Question

Question: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. He paid
110. What is the value of unknown variable x?
Answer: To solve this problem, we need to determine the value of x, which represents the number of packs
of beef that James bought. Each pack of beef weighs 4 pounds and ... The value of x is 5.

Example 3.4: FOBAR [32] Question

Question: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How
much did he pay? If we know the answer to the above question is 110, what is the value of unknown variable x?
Answer: James buys x packs of beef that are 4 pounds each, so he buys a total of 4x pounds of beef. The
price of beef is $5.50 per pound, so the total cost of the beef is 5.50 * 4x = 22x. ... The value of x is 5.

Self-Verification needs to rewrite the question with an answer into a declarative statement, which is
challenging for complex questions. To address this issue, FOBAR [32] proposes to directly append
the answer to the question, i.e., “If we know the answer to the above question is {a⋆i } , what is the
value of unknown variable x?” Example 3.4 shows an example. We collect the new questions along
with their correct answers as our augmented data:

DFOBAR = {(q̄(j)i , r̄
(j)
i , ā

(j)
i ) : ā

(j)
i = a⋆

i ; i = 1, . . . , Nq; j = 1, . . . ,KFOBAR}. (4)

3.4 FINETUNING OBJECTIVE FUNCTIONS

We merge all the augmented data, including answer-augmented data and bootstrapped questions
(Rephrasing, Self-Verification, FOBAR) as DMetaMathQA = DAnsAug ∪ Drephrase ∪ DSV ∪ DFOBAR. We
finetune a LLM model (parameterized by θ) on DMetaMathQA to obtain the MetaMath model
by maximizing the log likelihood of the reasoning path conditioned on the question, i.e.,
L(θ) =

∑
(q,r,a)∈DMetaMathQA

logP(r | q;θ). Although we only consider LLaMA-2 here, MetaMathQA
can also be used to finetune other LLMs.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP
Dataset AnsAug Rephrasing SV FOBAR Overall

MetaMathQA-GSM8K 80K 80K 40K 40K 240K
MetaMathQA-MATH 75K 50K 15K 15K 155K

MetaMathQA 155K 130K 55K 55K 395K

Table 1: Number of samples in the proposed MetaMathQA.

Datasets. We use two popular
mathematical reasoning bench-
marks: (i) GSM8K [13] is a
dataset consisting of high-qual-
ity grade school math problems,
containing 7,473 training sam-
ples and 1,319 testing samples; and (ii) MATH [23] dataset consists of high school math competition
problems that span seven subjects including Prealgebra, Algebra, Number Theory, Counting and
Probability, Geometry, Intermediate Algebra, and Precalculus. It contains 7,500 and 5,000 samples
for training and testing, respectively. Questions in GSM8K [13] take between 2 and 8 steps to reach
the answer, while MATH is much more challenging.
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Model #params GSM8K MATH
closed-source models

GPT-4 [54] - 92.0 42.5
GPT-3.5-Turbo [53] - 80.8 34.1
PaLM [12] 8B 4.1 1.5
PaLM [12] 62B 33.0 4.4
PaLM [12] 540B 56.5 8.8
PaLM-2 [2] 540B 80.7 34.3
Flan-PaLM 2 [2] 540B 84.7 33.2
Minerva [35] 8B 16.2 14.1
Minerva [35] 62B 52.4 27.6
Minerva [35] 540B 58.8 33.6

open-source models (1-10B)
LLaMA-2 [70] 7B 14.6 2.5
MPT [49] 7B 6.8 3.0
Falcon [57] 7B 6.8 2.3
Code-LLaMA [61] 7B 25.2 13.0
InternLM [29] 7B 31.2 -
GPT-J [71] 6B 34.9 -
ChatGLM 2 [81] 6B 32.4 -
Qwen [1] 7B 51.6 -
Baichuan-2 [4] 7B 24.5 5.6
SFT [70] 7B 41.6 -
RFT [79] 7B 50.3 -
MAmooTH-CoT [80] 7B 50.5 10.4
WizardMath [43] 7B 54.9 10.7
MetaMath 7B 66.5 19.8

open-source models (11-50B)
LLaMA-2 [70] 13B 28.7 3.9
LLaMA-2 [70] 34B 42.2 6.2
MPT [49] 30B 15.2 3.1
Falcon [57] 40B 19.6 2.5
GAL [68] 30B - 12.7
Platypus [50] 13B 25.7 2.5
Orca-Platypus [50] 13B 38.4 3.0
Vicuna [11] 13B 27.6 -
Code-LLaMA [61] 13B 36.1 16.4
Baichuan-2 [4] 13B 52.8 10.1
SFT [70] 13B 50.0 -
RFT [79] 13B 54.8 -
MAmooTH-CoT [80] 13B 56.3 12.9
WizardMath [43] 13B 63.9 14.0
MetaMath 13B 72.3 22.4

open-source models (51-70B)
LLaMA-2 [70] 70B 56.8 13.5
RFT [79] 70B 64.8 -
Platypus [50] 70B 70.6 15.6
MAmooTH-CoT [80] 70B 72.4 21.1
WizardMath [43] 70B 81.6 22.7
MetaMath‡ 70B 82.3 26.6

Table 2: Comparison of testing accuracy to existing LLMs
on GSM8K and MATH. ‡Due to the computing resource
limitation, we finetune MetaMath-70B using QLoRA [15].

Models. We use the current state-of-the-
art open-source model LLaMA-2 [70], in-
cluding three different parameter sizes:
7B, 13B, and 70B, as the base model for
fine-tuning. GPT-3.5-Turbo is used for
rephrasing questions as well as generating
answers in all four augmentations, where
the temperature is set to 0.7 as in [74].
The LLaMA-2-7B and LLaMA-2-13B are
trained by fully fine-tuning. LLaMA-2-
70B is finetuned by QLoRA [15] for com-
putational efficiency. More experimental
details can be seen in Appendix B.

Baselines. The proposed methods are
compared with (i) closed-source models
such as GPT-3.5-Turbo [53], PaLM [12];
(ii) open-source models such as LLa-
MA-1 [69], LLaMA-2 [70]; (iii) Super-
vised Fine-Tuning (SFT), which uses the
training set of the original GSM8K or
MATH datasets; (iv) Rejection sampling
Fine-Tuning (RFT) [79] generates and
collects correct reasoning paths as aug-
mented data for fine-tuning; (v) Wizard-
Math [43] which generates samples and
trains two reward models using ChatGPT
1 to select samples for fine-tuning.

Diversity Gain. We use the diversity
gain [6] to measure to what extent a new
dataset added to a basic dataset can im-
prove the overall data diversity. For a base
dataset Dbase = {xi = (qi, ri, ai)}Ni=1
with N samples, and a new dataset
Dnew = {xi = (qi, ri, ai)}Mi=1 with M
samples, the diversity gain is defined
as: Dnew relative to Dbase as: dgain =
1
M

∑
xi∈Dnew

minxj∈Dbase(∥f(xi) −
f(xj)∥22), where f is the feature extractor
and we use the OpenAI Embedding
API text-embedding-ada-002 for feature
extraction. For Figure 2, we change the
data size of base data and select a fixed
set of 20K new data points that the model
has not encountered to form Dnew.

4.2 RESULTS
ON GSM8K AND MATH

Table 1 illustrates the detailed descrip-
tion of our MetaMathQA collection and
Table 2 shows the testing accuracy on
GSM8K and MATH. As can be seen, for
open-source models with 1-10B parame-
ters, MetaMath achieves the state-of-the-
art performance. Compared to the previ-
ous best LLM, MetaMath achieves a large

1https://openai.com/
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Method
GSM8K MATH

AnsAug Rep. SV FOBAR GSM8K MATH AnsAug Rep. SV FOBAR GSM8K MATH
SFT [70] ✗ ✗ ✗ ✗ 41.6 3.0 ✗ ✗ ✗ ✗ 13.8 4.7

MetaMath

✓ ✗ ✗ ✗ 59.6 4.4 ✓ ✗ ✗ ✗ 28.4 12.9
✗ ✓ ✗ ✗ 59.7 4.4 ✗ ✓ ✗ ✗ 30.4 12.4
✓ ✓ ✗ ✗ 60.6 4.4 ✓ ✓ ✗ ✗ 29.1 15.3
✓ ✓ ✓ ✓ 64.4 5.7 ✓ ✓ ✓ ✓ 34.6 17.7

Table 3: Effect of different question augmentation with LLaMA-2-7B finetuned on GSM8K or MATH.

improvement of 11.6% on GSM8K and 9.1% on MATH in testing accuracy, showing that finetuning
on our MetaMathQA data is effective.

As for LLMs with 11-50B parameters, the proposed MetaMath performs the best. Particularly, on
both GSM8K and MATH, MetaMath achieves higher accuracy than SFT, RFT, and WizardMath by a
large margin (+7%), demonstrating the effectiveness of the MetaMath data in improving mathematical
reasoning ability. Furthermore, for LLMs with 51-70B parameters, again, MetaMath achieves the
highest testing accuracy. Particularly, MetaMath is better than GPT-3.5-Turbo on GSM8K, which is
used for generating augmented data for finetuning.

4.3 EFFECT OF AUGMENTATIONS

In this section, we conduct experiments to study the effect of augmentations in MetaMath. We first
finetune the LLaMA-2-7B model on augmented GSM8K (MetaMath-GSM8K) data, and test the
finetuned model on GSM8K and MATH. Table 3 shows the testing accuracy of different combinations
of augmentations, where we mix all augmented data together for each model. As can be seen,
on GSM8K, the models trained on answer augmentation (AnsAug) or rephrasing augmentation
achieve much higher accuracy than SFT, which is only trained on the training set. Combing answer
augmentation and rephrasing augmentation data for fine-tuning leads to a slightly higher accuracy,
which is further improved by about 4% through merging the FOBAR and SV augmentation data.
As for MATH, MetaMath trained only on MetaMahQA-GSM8K data performs better than SFT,
suggesting its effectiveness in generalizing to unseen mathematical tasks.

We also conduct an experiment by fine-tuning LLaMA-2-7B on the augmented MATH (MetaMathQA-
MATH) data then evaluate the model on GSM8K and MATH. Table 3 shows the testing accuracy.
Again, MetaMath trained on AnsAug or rephrasing augmentation data performs much better than SFT.
Furthermore, merging all augmented data together for fine-tuning is better than merging AnsAug
and rephrasing augmentation data, demonstrating the effectiveness of SV and FOBAR augmentation
data in improving mathematical reasoning ability. Moreover, for the unseen GSM8K task, MetaMath
trained on MetaMathQA-MATH data is significantly better than SFT (+20%).

4.4 DISCUSSION FROM A PERPLEXITY PERSPECTIVE

According to the Superficial Alignment Hypothesis proposed by Zhou et al. [83], the capability
of a model is rooted in pretraining, and data from downstream tasks acts to activate the inherent
ability of LLMs that has been learned during pretraining. There are two important questions that
arise from such a hypothesis: (i) what kind of data is most effective at activating possible latent
knowledge, and (ii) why is one dataset better than another at such activation? Our empirical results
suggest that, in the mathematical tasks we consider, our MetaMathQA dataset may serve as a superior
activator of mathematical knowledge. Yet, why MetaMath yields superior performance than training
on the data of correct answer-only or GSM8K CoT is unclear. We speculate that perhaps it is
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the simplicity of the data that matters. As shown in Figure 3, we compute the perplexity [46, 72]
for the under-finetuned LLaMA-2-7B model, in terms of answer-only data, GSM8K CoT, and the
subsections of MetaMathQA data. The perplexity of MetaMathQA is significantly lower than the
other two datasets. This highlights its inherently easy-to-learn nature, which may be more conducive
to eliciting bolstered problem-solving abilities from an LLM. This is also aligned with the findings
with TinyStories [18], where short and easy story data can help LLMs generate content fluently.

4.5 DISCUSSION FROM A DIVERSITY PERSPECTIVE

As shown in Figure 2, naively prompting GPT-3.5-Turbo for answer augmentation leads to a clear
accuracy saturation. After accuracy saturation, increasing the AnsAug data only yields a limited
performance gain. For instance, using 80K answer augmentation data to train a LLaMA-2 7B model
leads to a 59.6% accuracy, adding new 20K AnsAug data would only take 0.1% performance gain.
This is due to the homogeneity of the additional samples, contributing to a diversity gain of only
0.05 (shown in Figure 4). In comparison, adding the same amount of data generated by question
bootstrapping leads to a significant performance boost, which is due to the noticeable diversity
gain brought by question bootstrapping. As shown in Figure 4, adding 20K data from Rephrasing,
FOBAR, or SV takes an increasing diversity gain, thus causing a 0.4%, 2.3%, and 2.6% accuracy
gain, respectively. This experiment demonstrates a positive correlation (the Pearson coefficient is
0.972) between the diversity brought by the bootstrapping methods and accuracy. This is also aligned
with the success of MetaMath, which is trained with the diverse MetaMathQA dataset including 4
kinds of data reflecting both the forward and backward reasoning paths.

4.6 EVALUATING THE REVERSAL MATHEMATICAL CAPABILITY

The Reversal Curse [5], where LLMs trained from a sentence “A is B” are not able to generalize to
answer “B is A”, also aligns with the observation in this paper that LLMs lack backward mathematical
reasoning ability. To evaluate the backward mathematical capability, we propose a GSM8K-Backward
test set, including 1270 backward questions by using SV and FOBAR to augment the original GSM8K
test set (as shown in Example 3.3 and Example 3.4). Figure 6 shows the accuracy comparison of
different 7B mathematical LLMs between the GSM8K and GSM8K-Backward datasets. As can
be seen, existing LLMs struggle to solve mathematical problems in backward rationales and our
MetaMath has a significant improvement on both datasets. Specifically, the ways where different
LLMs solve the backward mathematical problem are illustrated through examples in Appendix C.

4.7 REASONING PATHS WITH INCORRECT ANSWER CAN ALSO BE USEFUL

Data Accuracy
GSM8K [13] 41.6

Incorrect Answers 43.6
Correct Answers 52.2

Table 4: Testing accuracy on
GSM8K of LLaMA-2-7B trained
on different data.

We conduct experiments on GSM8K using LLaMA-2-7B to study
whether the answer augmentation samples with incorrect answers are
helpful for finetuning the LLM. We randomly choose 7,473 reasoning
paths with incorrect answers from the generated answers, and we
ensure that the size is the same as that of the original training set.
From Table 4, we observe that the model finetuned on the augmented
data with incorrect answers is still better than SFT, which is counter-
intuitive. We hypothesize that although the final answer is incorrect,
some intermediate reasoning steps are correct (see Example 4.1). These reasoning steps can still be
useful supervision signals. Our results are also aligned with [39], where they discover the importance
of intermediate process supervision for reasoning.
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Example 4.1: A Reasoning Path with Incorrect Answer

Question: Tonya is in a hamburger eating contest. Each hamburger is 4 ounces. Last year the winner ate 84
ounces. How many hamburgers does she have to eat to beat last year’s winner? (Ground-truth answer is 22)
Generated Answer: If each hamburger is 4 ounces and last year’s winner ate 84 ounces, then Tonya needs to
eat 84/4 = 21 hamburgers to beat last year’s winner. The answer is: 21

4.8 MORE DATA IS NOT ALWAYS BETTER

There are also previous works that augment mathematical reasoning data for fine-tuning [43, 79]. An
interesting question is whether combining existing augmented datasets with our MetaMathQA can
improve the overall mathematical problem-solving performance. We select the RFT [79] dataset as
the external dataset. Figure 5 shows that merging the RFT data into MetaMathQA actually hurts the
performance, indicating that the RFT data may not be beneficial to MetaMath. Such a phenomenon
is consistently observed in the MetaMathQA dataset under different sizes (from 20K to 100K), and
the added RFT dataset is about 47K. The performance drop implies that more augmented data does
not always help the generalization.

Example 4.2: Case Study in Test Set of GSM8K

Question: Darrell and Allen’s ages are in the ratio of 7:11, If their total age now is 162, calculate Allen’s age
10 years from now. (Ground-truth answer is 109)
SFT Answer: The total ratio representing their ages is 7+11=<<7+11=18>>18. The fraction representing
Darrell’s age is 7/18, and since their total age now is 162, Darrell’s age is 7/18*162 = <<7/18*162=60>>60.
The fraction representing Allen’s age is 11/18, and since their total age now is 162, Allen’s age is 11/18*162
= <<11/18*162=84>>84. Ten years from now, Allen’s age will be 84 + 10 = <<84+10=94>>94.
RFT Answer: The total ratio representing Darrell and Allen’s ages is 7+11 = <<7+11=18>>18. The
fraction representing Darrell’s age from the total ratio is 7/18, and since their total age is 162, Darrell is
7/18*162 = 100 years old. Allen’s age, from the total ratio, is 11/18, and since Darrell is 100, Allen is
11/18*109 = <<11/18*100=66>>66 years old. Ten years from now, Allen will be 66 + 10 = 76 years old.
WizardMath Answer: We know Darrell and Allen’s ages are in the ratio of 7:11, which means the total ratio
representing their ages is 7+11 = 18. If their total age now is 162, we can calculate Darrell’s age by using the
ratio. Specifically, Darrell’s age is 7/18 of 162, which is 7/18*162 = 49 years old. ... The answer is: 76.
Our Answer: The ratio of Darrell’s age to Allen’s age is 7:11. Let’s assume Darrell’s age is 7x and Allen’s
age is 11x. The total age of Darrell and Allen is 7x + 11x = 18x. We are given that the total age is 162, so
18x = 162. Dividing both sides by 18, we get x = 9. Therefore, Allen’s age is 11x = 11 * 9 = 99. 10 years
from now, Allen’s age will be 99 + 10 = 109.

4.9 ERROR ANALYSIS

We have demonstrated that – across multiple scales – our MetaMath models can achieve stellar
problem-solving performance. Yet, it is important to consider the characteristics of problems that
induce errors in MetaMath and existing open-source mathematical models. In particular, we consider
the relationship between question length and model performance. To investigate, we divide the
GSM8K test set into three equally-sized subsets based on the different lengths of questions and
calculate the accuracy of the models over each subset. We find in Figure 7 that, MetaMath and related
methods struggle under longer questions. However, excitingly, MetaMath always obtains superior
performance. We see the study of improving model performance with longer question lengths – for
instance, by further augmenting the MetaMathQA dataset – as ripe grounds for future work.

5 CONCLUDING REMARKS

In this paper, we focus on improving the mathematical problem-solving abilities of open-source
LLMs. By bootstrapping mathematical questions on GSM8K and MATH, we present a high-quality
and diverse dataset MetaMathQA, involving forward reasoning and backward reasoning samples.
Our family of LLMs finetuned on MetaMathQA, called MetaMath, have achieved state-of-the-art on
mathematical benchmarks among all open-source LLMs. Remarkably, MetaMath-7B reaches 66.5%
on GSM8K and 19.8% on MATH, surpassing previous open-source LLMs by a significant margin.
Our work further emphasizes the importance of the characteristics of the training data on boosting
LLM problem-solving capabilities.
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A PROMPTS

A.1 REPHRASING PROMPTS

Example A.1: Prompt for Rephrasing GSM8K Questions

You are an AI assistant to help me rephrase questions. Follow the given examples.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Rephrase the above question: What is the amount of money that Olivia has left after purchasing five bagels
for $3 each, if she initially had $23?

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
Rephrase the above question: After losing 23 golf balls on Tuesday and an additional 2 on Wednesday, how
many golf balls does Michael have left if he initially had 58 golf balls?

Question: Angelo and Melanie want to plan how many hours over the next week they should study together
for their test next week. They have 2 chapters of their textbook to study and 4 worksheets to memorize.
They figure out that they should dedicate 3 hours to each chapter of their textbook and 1.5 hours for each
worksheet. If they plan to study no more than 4 hours each day, how many days should they plan to study
total over the next week if they take a 10-minute break every hour, include 3 10-minute snack breaks each
day, and 30 minutes for lunch each day?
Rephrase the above question: Angelo and Melanie need to study 2 chapters in their textbook and 4
worksheets for their upcoming test. They have planned to dedicate 3 hours for each chapter and 1.5 hours for
each worksheet. They can study for a maximum of 4 hours each day, taking into account 10-minute breaks
every hour, 3 10-minute snack breaks per day, and 30 minutes for lunch. How many days do they need to
study in total over the next week to complete their study plan?

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
Rephrase the above question: If Leah had 32 chocolates and her sister had 42, and they both consumed 35
chocolates, what is the total number of chocolates that they have left?

Question: There were nine computers in the server room. Five more computers were installed each day,
from monday to thursday. How many computers are now in the server room?
Rephrase the above question: If there were initially nine computers in the server room and five more
computers were added each day from Monday to Thursday, what is the current total number of computers in
the server room?

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
Rephrase the above question: If Jason initially had 20 lollipops and now has 12 after giving some to Denny,
how many lollipops did he give to Denny?

Question: Sam bought a dozen boxes, each with 30 highlighter pens inside, for $10 each box. He rearranged
five of these boxes into packages of six highlighters each and sold them for $3 per package. He sold the
rest of the highlighters separately at the rate of three pens for $2. How much profit did he make in total, in
dollars?
Rephrase the above question: Sam purchased 12 boxes, each containing 30 highlighter pens, at $10 per
box. He repackaged five of these boxes into sets of six highlighters and sold them for $3 per set. He sold
the remaining highlighters individually at a rate of three pens for $2. What is the total profit he made in dollars?

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
Rephrase the above question: If there were initially 15 trees in the grove and the grove workers are planning
to plant more trees today, resulting in a total of 21 trees, how many trees did the workers plant today?

Question: {Q}
Rephrase the above question:
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A.2 REWRITING QUESTION WITH ANSWER INTO A DECLARATIVE STATEMENT

Example A.2: Prompts for Rewriting Question with Answer into a Declarative Statement

You are an AI assistant to help me rewrite question into a declarative statement when its answer is provided.
Follow the given examples and rewrite the question.

Question: How many cars are in the parking lot? The answer is: 5.
Result: There are 5 cars in the parking lot.
...
Question: {Q} The answer is: {A}.
Result:

B EXPERIMENTAL DETAILS

Training Details. For the fully fine-tuning setting, we use the AdamW optimizer to train the model
with 3 epochs and the batch size is 128. We use 8 NVIDIA A100 GPUs to train the 7B and 13B
models, the learning rate is set as 2e-5 with a 3% learning rate warmup. For the 70B model QLoRA
fine-tuning, the LoRA rank and alpha are 96 and 16, with a 0.05 dropout between the two matrices.
The LoRA matrices are append in both the attention layer and the mlp layer. We use the same AdamW
optimizer but with a 1e-4 learning rate and without a learning rate warmup. The Training Prompt 1
are basically from Alpaca [67], where the instruction is replaced by the MetaMathQA question.

Prompt 1: Training Prompt

Below is an instruction that describes a task. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\n{instruction}\n\n### Response:

Prompt 2: Evaluation Prompt

Below is an instruction that describes a task. Write a response that appropriately completes the re-
quest.\n\n### Instruction:\n{instruction}\n\n### Response: Let’s think step by step.

Evaluation Prompting. Different from the few-shot prompting evaluation for closed-source models,
we find that zero-shot prompting is better for finetuned LLMs, which also saves more inference
costs. Hence, MetaMath uses the zero-shot Evaluation Prompt 2 for GSM8K and MATH, where the
instruction is replaced by the testing question. We set the temperature as 0 for fine-tuned LLaMA
model.

Answer Extraction. Different from the Wei et al. [75], where they use complex string rules to extract
the final answer. In line with WizardMath [43], MetaMath only extracts the string behind The answer
is: as the final answer. To teach the model this extraction method, we append The answer is: {gold
answer} to the end of answers in the MetaMathQA dataset, where the gold answer is replaced by the
respective question’s answer.
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C HOW DO DIFFERENT LLMS SOLVE REVERSAL MATHEMATICAL PROBLEMS?

Example C.1: Case study about Reverse Mathematical problem

Question: A robe takes 2 bolts of blue fiber and x% that much white fiber. It takes a total of 3 bolts. What is
the value of unknown variable x? (Ground-truth answer is 50)
SFT Answer: We know that the robe takes 2 * x% = 3 bolts. So 2 * x% = 3. So x% = 3/2 = 60%. So x = 60.
#### 60. The answer is: 60
RFT Answer: We know that the robe takes 2 bolts of blue fiber and x% that much white fiber, so it takes 2 *
0.01 = 0.02 bolts of white fiber. So in total, it takes 2 + 0.02 = ¡¡2+0.02=2.02¿¿2.02 bolts of blue and white
fiber. Since we know that it takes 3 bolts in total, we can write the equation 2.02 = 3. We can solve for x by
multiplying both sides by 3, getting 6.04 = 3 * 0.02. We can then write the equation 6.04 = 3, and solve for x
by dividing both sides by 6.04, getting x = 0.02. #### 2 The answer is: 2
WizardMath Answer: Step 1: Define the variables. Let x% of the blue fiber be represented by the variable
y. Then, the robe takes 2y bolts of blue fiber. Step 2: Set up the equation. Since the robe takes a total of 3
bolts, we can write the equation as follows: 2y + xy = 3 Step 3: Simplify the equation. We can simplify the
equation by combining the terms with y: 2y + xy = 3 3y + xy = 3 Step 4: Solve for x. To solve for x, we need
to isolate xy on one side of the equation. We can do this by subtracting 3y from both sides: 3y + xy - 3y = 3 -
3y xy = 3 - 3y Step 5: Find the value of x. Now, we need to find the value of x. We know that xy = 3 - 3y, and
we want to express y in terms of x. To do this, we can divide both sides of the equation by x: (3 - 3y) / x = y
Step 6: Solve for y. Now, we can solve for y by multiplying both sides of the equation by x: 3 - 3y = xy 3 -
3y = x(3 - 3y) Step 7: Simplify the equation. We can simplify the equation by expanding and combining like
terms: 3 - 3y = 3 - 3y Step 8: Find the value of x. Now, we can see that y = 0, which means that x% of the
blue fiber is 0%. Since we are dealing with a percentage, the only possible value for x is 0. Therefore, the
value of unknown variable x is 0. Final Answer: x = 0. The answer is: x
Our Answer: The robe takes 2 bolts of blue fiber. It takes x% of that much white fiber, which means it takes
(x/100) * 2 bolts of white fiber. In total, it takes 3 bolts. So, we can write the equation as: 2 + (x/100) * 2 = 3
Let’s simplify and solve for x: 2 + (2x/100) = 3 To isolate x, we subtract 2 from both sides of the equation: 2
+ (2x/100) - 2 = 3 - 2 (2x/100) = 1 To solve for x, we multiply both sides of the equation by 100/2: (2x/100) *
(100/2) = 1 * (100/2) x = 50 The value of x is 50. #### 50 The answer is: 50

D GENERALIZATION TO GAME OF 24

The core idea of the proposed bootstrapping approach is to diversifying the questions in both forward
and backward reasoning directions, where our approach can be extended to other reasoning tasks
easily. We conducted an additional experiment to show a successful application of our bootstratpping
method to the Game of 24, which involves multi-hop reasoning steps to attain 24 given 4 numbers.
Given an original question with 4 numbers (2,3,4,12), its answer (2*3-4)*12 is an mathematical
expression that includes the 4 numbers and uses basic arithmetic operations (+, -, *, /) to reach 24. In
Game of 24, We can also apply answer augmentation and question bootstrapping to generate more
question-answer pairs to diversify the training data. The details of answer augmentation and question
bootstrapping for Game of 24 is as following:

Answer Augmentation. The solutions of obtaining 24 given 4 numbers may not be unique, e.g.,
(23-4)12 = 24 and 212(4-3) = 24 are two different solutions for the given numbers (2,3,4,12). In
Answer Augmentation, we enumerate all the correct solutions for the given question with 4 numbers
and collect all the solutions as the Answer Augmentation data, which exactly matches the core idea
of Answer Augmentation in GSM8K & MATH: Augment data by diversifying the paths of answers
without altering the question.

Question Bootstrapping. Game of 24 can be extended to Game of n, i.e., given 4 numbers (one
number is 24), the goal is to obtain n using basic arithmetic operations (+, -, , /). We use Game of n
for question bootstrapping. We replace a number in the original question with 24 and the question
is to obtain the substituted number. This idea is similar to create backward questions in our paper,
i.e., masking a number in the question and asking the LLM to predict the number. For a Game of 24
question, we can bootstrap it and obtain 4 Game of n questions, as an example show in Table 5.

Game of 24 Setup. We randomly select 1362 Game of 24 questions from www.4nums.com, where
681 questions are for training and the remaining 681 questions are held-out for testing. We apply the
above augmentation methods to generate more training data from the 681 questions: (i) apply answer
augmentation by enumerating all the correct forward solutions and obtain an AnsAug datasets consists
of 6052 question-answer pairs; (ii) apply question bootstrapping to obtain bootstrapping dataset
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Bootstrapping1 Bootstrapping2 Bootstrapping3 Bootstrapping4
Input (4 numbers) 24, 3, 4, 12 2, 24, 4, 12 2, 3, 24, 12 2, 3, 4, 24
Target (n) 2 3 4 12
Solution (4-3)/(12/24) = 2 (24/12+4)/2 = 3 24/12*3-2 = 4 (24/4-2)*3 = 12

Table 5: Illustration of question bootstrapping: from Game of 24 to Game of n.

Method #Samples Accuracy
SFT 681 1.8
AnsAug 6052 10.2
AnsAug + Bootstrapping 6052 12.0

Table 6: Accuracy comparison on Game of 24 between our bootstrapping method and ansaug.

(consists of 2724 Game of n question-answer pairs). To verify the effectiveness of the bootstrapping
approach, we randomly sample 4000 question-answer pairs (Game of 24) from the AnsAug datasets,
and 2052 backward question-answer pairs (Game of n) from the bootstrapping dataset. We finetune
LLaMA-2-7B on AnsAug data and the mixed data separately for comparison.

Results on Game of 24. Table 6 shows the testing accuracy. As can be seen, our proposed
augmentation approaches (AnsAug and AnsAug+Bootstrapping) have higher accuracy than SFT,
which trains on the original 681 question-answer pairs. Furthermore, using question bootstrapping
for augmentation can boost the performance of AnsAug. Hence, the proposed bootstrapping method
is also effective for other multi-hop reasoning tasks, such as Game of 24.

Results on Game of n. For each question-answer pair in the testing set of Game of 24, we create 4
more testing questions of Game of n using the above question boostrapping method. In total, we
obtain 3405 testing questions. Table 7 shows the testing accuracy. Again, using our augmentation
methods (both AnsAug and Bootstrapping) perform better than SFT by a large margin. Furthermore,
AnsAug + Bootstrapping performs the best, demonstrating our proposed method is also useful for
Game of n.

Method #Samples Accuracy
SFT 681 0.8
AnsAug 6052 3.0
AnsAug + Bootstrapping 6052 8.1

Table 7: Accuracy comparison on Game of n between our bootstrapping method and ansaug.
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E MORE EXPERIMENTAL RESULTS

E.1 METAMATHQA IS USEFUL FOR DIFFERENT BASE MODELS

We conduct additional experiments to verify the generalizability of the MetaMathQA dataset across
different base models. In addition to LLaMA-2-7B and LLaMA-2-13B, We finetune two more
powerful base models Mistral-7B [30] and Llemma-7B [3] on MetaMathQA. Table 8 shows the
testing accuracy on GSM8K and MATH. As can be seen, our proposed MetaMathQA is consistently
useful for all four base models. Moreover, the improvements brought by MetaMathQA are large.

Base Model MetaMathQA GSM8K MATH

LLaMA-2-7B [70]
✗ 14.6 2.5
✓ 66.5 19.8

LLaMA-2-13B [70]
✗ 28.7 3.9
✓ 72.3 22.4

Llemma-7B [3]
✗ 36.4 18.0
✓ 69.2 30.0

Mistral-7B [30]
✗ 52.2 13.1
✓ 77.7 28.2

Table 8: Effectiveness of MetaMathQA on different base models.

E.2 TESTING ACCURACY UNDER DIFFERENT AUGMENTATION DATA SIZE

In Figure 2, we have shown the proposed question bootstrapping method can boost the testing accuracy
by a large margin, while the AnsAug method would quickly reach a state of saturation. We increase
the AnsAug data to 240K and compare the performance of LLaMA-2-7B finetuned on AnsAug data
(i.e., w/o Question Bootstrapping) and MetaMathQA-GSM8K with question bootstrapping (i.e., w/
Question Bootstrapping). We also conduct additional experiments on a larger model LLaMA-2-13B
and Mistral-7B with a different architecture. Figures 8, 9, and 10 show the trends using LLaMA-2-7B,
LLaMA-2-13B, and Mistral-7B, respectively. For all three models, we can see that finetuning on
AnsAug rapidly reaches a state of accuracy saturation and continually increasing AnsAug data is hard
to boost performance. In contrast, the test accuracy, when using bootstrapped questions, continues to
exhibit a steady increase when AnsAug quickly saturates.
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Figure 8: LLaMA-2-7B.
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Figure 9: LLaMA-2-13B.
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Figure 10: Mistral-7B.
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E.3 ABLATION STUDY ON A LARGER MODEL LLAMA-2-13B

In addition to the ablation study on LLaMA-2-7B (Table 3), we conducted an addition experiment to
study the effect of augmentations in MetaMath using a larger model LLaMA-2-13B. Table 9 shows
the testing accuracy. We can see that the observations are consistent with that of LLaMA-2-7B in
Section 4.3: (i) Combing answer augmentation and rephrasing augmentation data for fine-tuning
leads to a slightly higher accuracy. (ii) The accuracy can be further improved by merging the FOBAR
and SV augmentation data.

Method AnsAug Rep. SV FOBAR GSM8K MATH
SFT [70] ✗ ✗ ✗ ✗ 50.9 4.5

MetaMath

✓ ✗ ✗ ✗ 66.0 5.5
✗ ✓ ✗ ✗ 67.5 5.9
✓ ✓ ✗ ✗ 68.1 5.8
✓ ✓ ✓ ✓ 72.3 7.2

Table 9: Effect of different question augmentations with LLaMA-2-13B finetuned on GSM8K.

E.4 OUT-OF-DISTRIBUTION ABILITY

#Params Accuracy (Exact Match)
SFT 7B 25.8
RFT 7B 26.7

WizardMath 7B 31.5
MetaMath 7B 37.1

WizardMath 13B 46.4
MetaMath 13B 49.5

WizardMath 70B 63.1
MetaMath 70B 72.3

Table 10: Exact Match Accuracy on DROP using zero-shot evaluation.

To investigate Out-of-Distribution ability of different models, we perform zero-shot evaluation
on DROP [17] to compare MetaMath with baseline models. Since all these models targets at
mathematical reasoning, we only consider the DROP questions with numerical answers. Table 10
shows the testing accuracy. As can be seen, MetaMath-7B and MetaMath-13B still outperform the
baseline models by a large margin, demonstrating MetaMath does not suffer a benchmark hacking on
GSM8K and MATH.
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