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ABSTRACT

Triplet-based loss functions have been the paradigm of choice for robust deep met-
ric learning (DML). However, conventional triplet-based losses require carefully
tuning a decision boundary, i.e., violation margin. When performing online triplet
mining on each mini-batch, choosing a good global and constant prior value for
violation margin is challenging and irrational. To circumvent this issue, we pro-
pose a novel yet efficient concordance-induced triplet (CIT) loss as an objective
function to train DML models. We formulate the similarity of triplet samples as a
concordance constraint problem, then directly optimize concordance during DML
model learning. Triplet concordance refers to the predicted ordering of intra-class
and inter-class similarities being correct, which is invariant to any monotone trans-
formation of the decision boundary of triplet samples. Hence, our CIT loss is free
from the plague of adopting the violation margin as a prior constraint. In addition,
due to the high training complexity of triplet-based losses, we introduce a partial
likelihood term for CIT loss to impose additional penalties on hard triplet sam-
ples, thus enforcing fast convergence. We extensively experiment on a variety of
DML tasks to demonstrate the elegance and simplicity of our CIT loss against its
counterparts. In particular, on face recognition, person re-identification, as well as
image retrieval datasets, our method can achieve comparable performances with
state-of-the-arts without tuning any hyper-parameters laboriously.

1 INTRODUCTION

Deep metric learning (DML) for visual understanding tasks, e.g., face recognition Schroff et al.
(2015); Taigman et al. (2014), person re-identification (ReID) Shi et al. (2016); Ustinova & Lem-
pitsky (2016), image retrieval Fang et al. (2021); Revaud et al. (2019), aims at learning embedding
representations of images with class-level labels by a ranking loss function Kaya & Bilge (2019);
Sohn (2016); Wang et al. (2017). There are two representative ranking loss functions developed
for DML to minimize between-class similarity and maximize within-class similarity, i.e., pair-based
loss Sun et al. (2014) and triplet-based loss Zhao et al. (2019). Compared to pairwise constraints, the
optimization pattern of triplet-based losses additionally captures the relative similarity information,
thus yielding impressive performances Liang et al. (2021); Zhuang et al. (2016). With triplet con-
straints, images from the same class are projected into neighboring embedding spaces, and images
with different semantic contexts are mapped apart. However, under such an optimization objec-
tive, triplet-based losses suffer from following two problems when training DML models with the
stochastic gradient descent (SGD) algorithm and sampling triplets within a mini-batch.

•Irrational to set an absolute margin. Triplet constraint relies on a decision boundary to partition
the embedding space of intra-class and inter-class, i.e., violation margin for reinforcing optimization
Wang et al. (2018a;b). However, the violation margin is sensitive to scale change, and choosing
an identical absolute value for clusters in different scales of intra-class variation is inappropriate
Wang et al. (2017). Hence, triplet-based losses need to regulate this hyper-parameter attentively
to impose appropriate penalty strength Qian et al. (2019); Sun et al. (2020). The performance of
Circle loss Sun et al. (2020) on the varying circular decision boundary can prove such a claim.
The performance of the same task exhibits a significant difference by setting different violation
margins. And Circle loss with the same violation margin varies from superior to inferior on various
tasks. For circumventing this issue, Angular loss is proposed to push the negative point away from
the center of the positive cluster and drag the positive points closer to each other by constraining
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the upper bound of the angle at the negative point Wang et al. (2017). In hierarchical triplet loss
(HTL) Ge (2018), the violation margin is automatically updated over the constructed hierarchical
tree to identify a margin that generates gradients for violated triplets. However, existing methods of
mitigating the issue still depend on the setting of the decision boundary, only substituting a hyper-
parameter. Angular loss needs to specify the angle degree and HTL needs to design a hierarchical
class tree. Since choosing a global and constant prior value for the decision boundary is irrational,
we innovatively formulate triplet similarity learning as a concordance constraint problem without an
assumed decision boundary.

•Suffering from slow convergence. Triplet-based losses can provide a strong supervisory signal
for training DML models by mining rich and fine-grained inter-sample relations. However, since
the number of tuples (each tuple contains an anchor sample and its positive and negative samples)
increases polynomially with the number of training samples, they suffer from prohibitively high
training complexity, thus causing significantly slow convergence Ebrahimpour et al. (2022); Kim
et al. (2020). Another potential issue for triplet-based losses is that a large amount of tuples make
a limited contribution to the learning algorithm and sometimes even diminishes the quality of the
learned embedding space Wu et al. (2017). Many works have been devoted to studying the effective
triplet sampling strategy within a mini-batch to utilize hard triplet samples that improve convergence
speed or the final discriminative performance Hermans et al. (2017); Oh Song et al. (2016); Sohn
(2016); Wu et al. (2017). For example, HTL Ge (2018) is proposed to automatically collect infor-
mative training triplets via an adaptively-learned hierarchical class structure. However, these hard
triplet sample mining techniques involve tuning hyper-parameters and may occur the risk of over-
fitting when performing online triplet mining within a mini-batch Ebrahimpour et al. (2022); Kim
et al. (2020). Given three tuple types (hard, semi-hard, and easy triplet samples), we need to con-
sider how to achieve the trade-off between them during DML optimization. Leveraging hard triplet
samples alone may occur bad local minima Do et al. (2019). Overwhelming easy triplet samples
affect the training efficiency Schroff et al. (2015). Inspired by SoftTriplet loss Qian et al. (2019)
introduced to learn embeddings without triplet sampling, we explore laying more emphasis on hard
triplet samples by relaxing concordance constraints, thus accelerating convergence speed.

In each triplet sample, the intra-class similarity is naturally higher than the one of inter-class. The
predicted ordering of similarities of intra-class and inter-class needs to be on par with the observed
ordering. Such an ordering concordance not only takes effect on a mini-batch but also on the whole
sample. Such intrinsic concordance constraint is invariant to any monotone transformation of the
decision boundary of triplet samples. Hence, we develop a novel concordance-induced triplet (CIT)
loss function to optimize triplet similarity. Existing triplet-based losses explicitly give a global and
constant violation margin as a decision boundary based on apriori knowledge. Unlike them, our
CIT loss exploits the concordance constraint of triplet similarity to avoid falling into the plague of
tuning the violation margin. It is an elegant, simple, and efficient way to learn the intrinsic simi-
larity between all samples and is insensitive to the triplet sampling within a mini-batch. We further
introduce a partial likelihood term to enforce different penalty strengths on different tuple types, pri-
marily laying more penalties on hard triplet samples. This term mainly helps improve convergence
speed and exhibits a slight impact on performance, thus avoiding the plague of elaborative tuning.
Based on thoroughly and randomly mini-batches and triplet sampling, this term can regulate the
penalty strength keeping consistency with the degree of the discordance or concordance of triplet
similarity. The higher discordance of hard triplet samples brings more penalty strengths, thus arising
more contributions to gradients.

The main contributions of this work are summarized as follows:

• We propose a novel, simple, elegant concordance-induced triplet (CIT) loss function for
deep metric learning (DML). Our CIT loss frees DML training from tuning the decision
boundary by directly maximizing concordance of triplet similarity.

• In addition, we introduce a partial likelihood term to impose loose concordance constraints
to focus on the informativity of hard triplet samples, thus helping speed up convergence.

• Using two popular backbones, we conduct extensive experiments on various DML tasks, in-
cluding face recognition, person re-identification (Reid), and image retrieval. On all tasks,
we demonstrate the effectiveness and elegance of our CIT loss and gained performance on
par with state-of-the-art.
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2 METHODOLOGY

2.1 WARM-UP

Given a training set D = {(xi, yi)}Ni=1 with K classes, xi with label yi ∈ {0, 1, · · · ,K−1} denotes
the feature embedding projected from the i-th image with DML models. Let the feature embedding
of xi ∈ RD be represented as Fθ(Ii), where Ii is the i-th input image, θ indicates the learnable
parameters of a differentiable DML model F , and D is the dimension of feature embedding. With
DML model F , we can map the image space Ii into low-dimension embedding space xi used
for similarity measurement. xi is usually normalized into unit length for the training stability and
comparison simplicity. DML models primarily utilize various ranking loss functions to learn the
embedding space from the image space in a supervised way. Apart from a suitable neural network,
it is essential to design a ranking loss function to optimize the embedding space. Our work aims to
improve triplet-based loss to help DML models train elegantly and efficiently by avoiding tuning the
violation margin and improving convergence speed, and can gain impressive performance.

DML models are commonly trained using online SGD algorithms, where the gradients for optimiz-
ing network parameters are computed locally with mini-batches. Hence, triplet samples are selected
and formed in a mini-batch during each training iteration. Each triplet sample T = (xa,xp,xn)
consists of an anchor sample xa, a positive sample xp and a negative sample xn, whose labels sat-
isfy ya = yp ̸= yn. The goal of triplet-based losses is to push away the negative sample xn from
the anchor sample xa by a violation margin m > 0 compared to the positive sample xp:

San +m ≤ Sap, (1)
We define Sap ∈ [0, 1] as the intra-class similarity of xa and xp, and San ∈ [0, 1] as the inter-class
similarity of xa and xn. We seek to minimize San and maximize Sap. To enforce this constraint in
the embedding space, we define the optimization target of the standard triplet loss as:

Lst =
1

NT

∑
T

[
San − Sap +m

]
+
, (2)

where the operator [·]+ = max(0, ·) represents the hinge function and the symbol NT denotes the
number of all triplet samples in a mini-batch.

According to Equation 2, given a globally constant value for the violation margin m, we can group
all triplet samples into three categories:

• Hard triplet samples: if San > Sap,
• Semi-hard triplet samples: if Sap −m < San < Sap,
• Easy triplet samples: if San +m < Sap.

Among these three tuple types, easy triplet samples generate zero loss, while hard triplet samples
contribute the most losses. An effective sampling strategy combining an appropriate violation mar-
gin can help mine hard triplet samples. In fact, the violation margin in the triplet-based losses plays a
key role to sample selection during model training Ge (2018). However, the violation margin needs
to be carefully tuned. On the other hand, the absolute violation margin is an irrational decision
boundary for multi-classes with different cluster centroids.

2.2 CIT LOSS

Being simple, we intuitively explore no need to consider the violation margin for learning hard
triplet samples effectively. Since the concordance is invariant to any monotone transformation of
the decision boundary of triplet samples, it is natural to formulate the metric learning problem to
maximize the concordance. We turn the predicted similarity correlation of each triplet sample T
into a comparable pairs, i.e., intra-class similarity Sap and inter-class similarity San. The set of
comparable pairs mined from the whole training set D is ET := {(Sap, San)}. The number in this
set is NT . A comparable pair (Sap, San) ∈ ET is concordant if Sap > San. Otherwise, the pair
is discordant with the ground truth. We calculate the ratio of undergoing any pairs by taking the
exponential form of intra-class and inter-class similarities:

R =
1

NT

∑
(Sap,San)∈ET

eSan

eSap
. (3)
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Obviously, the average ratio R lies in the range [e−1, e]. The lower and upper ranges correspond to
complete concordance and discordance of all comparable pairs, respectively. With such bounds, we
define our CIT loss as an exponential lower-bound form:

Le =
1

NT

∑
(Sap,San)∈ET

[
1− e−(San−Sap)

]
+
. (4)

With minimizing CIT loss, we address the metric learning problem as concordance optimization
between the predicted and observed similarity of comparable pairs. Similarity concordance building
in whole triplet samples is invariant to any monotone transformation of the decision boundary of
triplet samples. In other words, concordance optimization pays emphasis on the ordering correlation
of distance without considering the correlation degree, thus avoiding imposing margin constraints.

The empirical error induced by pairwise discordance with respect to DML model Fθ is denoted by
G(Fθ) and defined by:

G(Fθ) =
1

NT

∑
(Sap,San)∈ET

ISap<San
≥ Le, (5)

where the indicator function I = 1 if Sap < San (discordance), and 0 otherwise (concordance).
According to Equation 5, we can estimate the learning parameters θ of the DML model F by mini-
mizing CIT loss Le. We leverage concordance-induced penalty in our CIT loss to optimize the target
pairwise similarity.

We can assume that the violation margin m is 0 in our CIT loss, then there are two tuple types: hard
triplet samples if Sap < San and easy triplet samples if Sap > San. For easy triplet samples, the
DML model F faultlessly predicts the target pairwise ranking, thus leaving penalty-free. And hard
triplet samples contribute to the informativity for gradient-based optimization. To speed up con-
vergence, we further introduce a partial likelihood term for our CIT loss to focus on the discordant
penalty of hard triplet samples. From the standpoint of concordance, the pairwise similarity in each
triplet sample T is not always transitive. The transitivity of concordance-induced order by the DML
model Fθ: Sap > San but may Sap < Spn for each triplet sample T . Spn indicates inter-class sim-
ilarity between xp and xn. Considering transitivity of triangle edge, we define the partial likelihood
form as:

Lp =
∏

(Sap,San)∈ET

eSap

eSan + eSpn
. (6)

Theoretically, the higher proportion of the edge Sap in the three sides can better account for the
concordance and transitivity. Hence, the product of the ratio in Lp can suggest the degree of concor-
dance or discordance. We quantize such a degree to construct a loose concordance constraint term
by placing the negative log partial likelihood of Equation 6:

Lp = − 1

NT

∑
(Sap,San)∈ET

{
Sap − log(eSan + eSpn)

}
. (7)

With Equation 7, the penalty on predictive error for hard triplet samples can be boosted, thus helping
gradient optimization. And the best predictive outcome for easy triplet samples is Sap ≥ log(eSan +
eSpn), there is no penalty. If not, the slight penalty for easy triplet samples can help enhance the
clustering effect within the class. It can be seen from this that this term is subject to the principles
of maximizing inter-class similarity and minimizing intra-class similarity.

Combining Equations 4 and 7, we present our CIT loss as:
Lcit = γLe + (1− γ)Lp, (8)

where the hyper-parameter γ ∈ [0, 1] regulates the loss value between them. Specifically, γ controls
the magnitudes of the two losses at the same level to stabilize the model training. By comparing the
two terms in our CIT loss, we can find that the former term requires a more rigorous concordance.
However, it is impossible to ensure the complete transitivity and concordance. Hence, we can not
fully replace the former term with the latter term. Generally, γ = 0.5 can trade off the discordant
penalty and fast convergence. Schematically, (a) and (b) in Figure 1 show that our CIT loss can
bring fast convergence by utilizing the hyper-parameter γ to boost the contribution of hard triplet
samples to gradient update of network parameters. And it helps reduce the training consumption of
easy triplet samples, thus reaching up to the last performance in advance.
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Figure 1: (a) For hard triplet samples, as the epoch increases, their number significantly decreases,
and the average loss on γ = 0.5 (heavier penalties) gradually approaches γ = 1.0. (b) The con-
vergence speed on γ = 0.5 is faster than γ = 1.0 due to imposing more penalties on hard triple
samples.

3 EXPERIMENTS

3.1 SETTINGS

Datasets. (1) Person ReID aims to spot the appearance of the same person in different cameras or
the same camera on different occasions. We evaluate our method on a popular dataset, Market1501
Zheng et al. (2015), containing 1,501 identities, 12,396 training images, and 19,732 gallery images
captured with six cameras. (2) We use two datasets for evaluation on image retrieval, i.e., Car196
Krause et al. (2013) and In-shop Clothes Liu et al. (2016). The Cars196 dataset is composed of
16,185 car images of 196 classes. And the In-shop Clothes Retrieval dataset has 11,735 classes of
clothing items and 54,642 images. (3) The CASIA-WebFace dataset Yi et al. (2014) with 10,757
real identities and 494,441 face images is the most popular dataset for the training of face recog-
nition. For evaluation, we adopt the face verification results on LFW Huang et al. (2008), AgeDB
Moschoglou et al. (2017), IJB-C Maze et al. (2018), and CFP-FP Sengupta et al. (2016) datasets.

Comparable methods. Five comparable triplet-based loss functions involve (1) standard triplet
loss (Triplet) with a violation margin representing the difference between the anchor-positive dis-
tance and the anchor-negative distance Schroff et al. (2015), (2) Angular loss with an angular prior
used for separating different classes Wang et al. (2017), (3) centroid triplet (CT) loss with a margin
hyper-parameter used as the decision boundary of centroids of positive and negative classes Wiec-
zorek et al. (2021), (4) Circle loss with a relaxation margin used for controlling the radius of the
decision boundary Sun et al. (2020), and (5) soft triple (ST) loss without triplet sampling and viola-
tion margin Qian et al. (2019). Both ST and our CIT are exempt from the violation margin setting.
Our CIT leverages the intrinsic concordance between the predictive and observed similarities of
triplet samples, while ST extends softmax loss with multiple centers for each class.

Implement details. We implement all loss functions on the pytorch-metric-learning Musgrave et al.
(2020) platform and experiment with them on two different network structures. Two networks are
convolutional neural network (CNN) of ResNet50 He et al. (2016) and vision transformer (ViT)
Dosovitskiy et al. (2020). We set the hyper-parameters for comparable methods according to the
default reported in their works, and the default of the hyper-parameter γ in our CIT loss is 1.0, if
not specified. We extract the 512-D feature embeddings for computing distances and use Euclidean
distance as the metric during inferences. We adopt FastReID He et al. (2020) platform to train
the two networks with different loss functions for three DML tasks. The CNN optimizer is Adam
Kingma & Ba (2014), with a learning rate of 3.5e-4, while ViT is SGD, with a learning rate of 8e-3.
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Table 1: Comparison of different loss functions for person ReID task on CNN and ViT networks in
terms of rank-k (k=1,5,10, in %) accuracy, mean average precision (mAP, in %), and mean inverse
negative penalty (mINP, in %).

Method Margin Network Market1501
R@1 R@5 R@10 mAP mINP

Triplet
m = 0.01

CNN

95.58 98.28 98.87 89.08 67.05
m = 0.05 95.75 98.52 98.87 89.26 67.48
m = 0.1 95.75 98.49 98.99 89.19 66.65

Angular
α = 20 95.61 98.37 99.08 89.74 69.56
α = 40 94.98 98.13 99.05 87.29 62.75
α = 60 67.87 84.02 89.54 61.87 36.15

CT
m = 0.01 95.52 98.37 98.90 88.68 66.11
m = 0.05 95.61 98.31 99.02 89.05 66.28
m = 0.1 95.16 98.22 98.96 88.65 66.27

Circle
m = 0.1 92.10 96.82 97.60 81.84 52.83
m = 0.4 91.18 96.59 97.71 79.65 48.91
m = 0.6 93.05 97.54 98.40 82.37 52.97

ST - 95.43 98.34 98.87 88.66 66.04
CIT (Ours) - 95.87 98.22 98.93 89.41 68.27

Triplet
m = 0.01

ViT

93.62 98.10 99.08 85.07 58.88
m = 0.05 94.06 98.40 99.11 85.87 60.74
m = 0.1 93.68 98.01 99.17 86.02 61.94

Angular
α = 20 93.47 97.71 98.57 85.35 60.70
α = 40 91.95 96.47 97.86 80.68 52.74
α = 60 90.38 96.26 97.65 78.95 51.01

CT
m = 0.01 92.19 97.71 98.96 81.75 51.91
m = 0.05 92.58 97.60 98.96 82.27 52.87
m = 0.1 93.38 97.98 98.93 83.00 54.31

Circle
m = 0.1 87.68 93.88 95.46 72.80 42.64
m = 0.4 93.32 97.71 98.46 85.13 61.62
m = 0.6 92.37 97.92 98.93 80.90 49.63

ST - 91.81 97.51 98.78 80.69 50.00
CIT (Ours) - 93.88 97.74 98.93 86.23 61.88

Specifically, the learning rate is decay scheduled according to cosine annealing strategy Loshchilov
& Hutter (2016). The input size for CNN is 384× 128 and ViT is 256× 128. The batch size of both
CNN and ViT is 64. The parameters of CNN are optimized in 60 epochs, while ViT is 120 epochs.

3.2 PERSON RE-IDENTIFICATION

We evaluate comparable loss functions on the ReID task in Table 1. We can make three observations
from the reported performances. First, we can find that our CIT can achieve competitive perfor-
mances against the state-of-the-art. CIT obtains the best (95.81) on CNN and the second-highest
(93.88) on ViT in terms of R@1. And CIT achieves the best (86.23) on ViT and the second-highest
(89.41) on CNN in terms of mAP . Moreover, mINP of our CIT are on par with the second-highest
methods (underline), showing the competence of staying in the first tier among all methods. Sec-
ond, we report the performances on varying violation margins for those loss functions relying on the
decision boundary (See column Margin in Table 1). We can discern that different violation margins
can bring significant differences in performance, and the most prominent are Angular and Circle.
Angular achieves the best mAP and mINP on CNN when the angle specified in degrees (α) is 20
(its default is 40). But when α = 60, the performance of Angular is pretty bad. In particular, we
conduct repeated experiments to verify the reliability of these results. Such results entail that it is
challenging to choose an appropriate violation margin. Third, both ST and our CIT are free from the
plague of setting the violation margin. In terms of three key metrics, R@1, mAP , and mINP on
CNN and ViT, our CIT exhibits significant advantages against ST. In fact, there is a crucial hyper-
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Table 2: Comparison of different loss functions for image retrieval tasks on CNN and ViT networks
in terms of rank-k (k=1,5,10, in %) accuracy and mAP (in %).

Method Network Cars196 In-shop Clothes
R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Triplet

CNN

90.85 96.84 98.32 51.08 93.37 97.80 98.52 78.47
Angular 89.36 96.70 97.97 43.12 90.34 95.91 97.00 71.71

CT 89.40 96.90 98.03 42.56 93.75 97.87 98.56 79.17
Circle 87.05 95.93 97.27 41.26 87.81 94.90 96.51 70.00

ST 90.05 97.04 98.16 43.95 93.49 97.91 98.64 78.87
CIT (Ours) 90.87 97.63 98.55 46.18 93.68 97.76 98.59 78.93

Triplet

ViT

86.55 95.94 97.81 39.14 92.09 97.37 98.26 73.44
Angular 86.94 96.74 98.13 39.75 91.74 97.05 97.87 72.78

CT 86.93 97.04 98.71 38.52 91.50 97.43 98.30 73.13
Circle 81.55 94.35 96.68 36.67 92.73 97.66 98.32 76.97

ST 87.09 96.83 98.61 36.96 91.10 97.02 98.00 71.12
CIT (Ours) 88.54 96.32 98.00 43.57 92.73 98.03 98.67 76.62

parameter needed to be tuned carefully for ST, i.e., the number of weight vectors per class. By
contrast, our CIT avoids attentively regulating any hyper-parameters. The above three observations
can demonstrate the elegance and effectiveness of our CIT, achieving comparable performance with
the state-of-the-art and no need to tune hyper-parameters carefully.

3.3 IMAGE RETRIEVAL

We evaluate all comparable loss functions adopting default hyper-parameter settings on two image
retrieval datasets, i.e., Cars196 and In-shop Clothes. We compare our CIT against those state-of-
the-art methods in Table 2. Given metrics R@1 and mAP of two datasets on two networks, CIT
gets four number one (bold) and four number two (underline) among all eight. Such results can
again demonstrate the superiority of our CIT to other methods conditioned on no careful decision
boundaries and other hyper-parameters tuning. There are other two interesting points implied in Ta-
ble 2. First, for those comparable methods with the violation margin, Table 1 illustrates that various
violation margins bring significant performance differences on the same dataset. Whereas Table 2
indicates that different datasets with the same violation margin exhibit significant gain differences.
It can be proved by the performance of Circle which gains the best R@1 of 92.73 and mAP of
76.97 on ViT for the In-shop Clothes dataset but achieves the worst on ViT for the Cars196 dataset.
Second, for the Cars196 dataset, our CIT lay a lot behind in mAP on CNN compared to Triplet.
The metric R@1 only measures how many items are hit, while the metric mAP also considers the
rank of the hit items to reflect the ranking quality. From the standpoint of ranking quality, our CIT
fails to quantize the concordance between the predicted and observed similarities. In other words,
CIT implicitly models the relations of Sap and San as inequality, while Triplet explicitly formulates
their relations as an identical equation with the help of the violation margin. If the chosen viola-
tion margin for Triplet fits related tasks, such a prior constraint can help boost performance, and
the obtained result is superior to our CIT. However, choosing an appropriate task-specific violation
margin is challenging and laborious. Our CIT marginally outperforms its counterparts and exhibits
an elegant training manner that does not need to adjust the violation margin elaboratively.

3.4 FACE RECOGNITION

For the face recognition task, according to the ROC curve on TPR (True Positive Rate) at FPR
(False Positive Rate) from 1e-6 to 1, we report AUC performances of four verification datasets
on CNN and ViT in Figure 2. Our CIT gains the four highest AUC among the eight sub-tasks,
including AgeDB on CNN (98.33), CFP-FP on CNN (97.39), IJB-C on ViT (99.32), and CFP-
FP on ViT (96.85). The overall performance of this task can again affirm the availability of our
CIT which directly optimizes the similarity concordance of triplet samples and is free from the
annoyance of introducing the prior of the decision boundary. While regarding those loss functions
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Figure 2: Comparison of different loss functions for LFW Huang et al. (2008), AgeDB Moschoglou
et al. (2017), IJB-C Maze et al. (2018), and CFP-FP Sengupta et al. (2016) datasets on CNN (upper
row) and ViT (down row) networks in terms of AUC (in %).

Table 3: Performance of our CIT loss function with different sizes of the hyper-parameter γ on the
Market1501 and In-shop Clothes datasets.

γ Network Market1501 In-shop Clothes
R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

0.1

CNN

95.72 98.69 99.23 89.51 93.14 97.76 98.43 78.68
0.2 95.25 98.16 98.93 88.92 93.71 97.98 98.54 78.97
0.5 95.34 98.28 98.99 88.78 93.60 97.83 98.52 79.09
0.8 95.34 98.52 99.05 88.88 93.60 97.78 98.51 78.89
1.0 95.87 98.22 98.93 89.41 93.68 97.76 98.59 78.93
0.1

ViT

93.74 97.86 99.02 86.09 92.76 98.02 98.40 76.64
0.2 93.53 97.60 98.72 85.64 92.28 97.57 98.39 75.43
0.5 93.53 97.57 98.66 85.88 92.11 97.48 98.29 75.85
0.8 93.71 97.74 98.75 86.06 92.21 97.66 98.45 75.41
1.0 93.88 97.74 98.93 86.23 92.73 98.03 98.67 76.62

with the violation margin, we must diligently seek good violation margins for specific datasets and
backbones to obtain comparable performance. And for ST without the violation margin, we still
need to find an appropriate number of centers for each class, and the over-large number of centers
raises an efficiency problem. Hyper-parameters are task-specific, so regulating hyper-parameters is
indispensable and de-facto laborious and time-consuming. Based on the concordance relations of
similarity, our CIT exhibits more flexibility in modeling triplet constraints than existing triplet-based
losses. The violation margin enforces constant restrictions for triplet samples, while our CIT only
abides unequal relationship. Without any bells and whistles on tuning hyper-parameters, CIT can
yield advanced performances. And the only hyper-parameter γ in CIT is task-agnostic.

3.5 ABLATION STUDY

Here we want to analyze the impact of the hyper-parameter γ in Equation 8. Table 3 shows that
the hyper-parameter γ in our CIT loss has little effect on the performance. Both accuracy and
mAP on different sizes of γ exhibit consistency and coherence. For two datasets on CNN and ViT,
the best of R@1 and mAP (bold) scatter to varying sizes of γ. Since Equations 4 and 7 can be
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Figure 3: Rank-1 accuracy (R@1) (Market1501 dataset) and mAP (In-shop Clothes dataset) versus
epochs of our CIT with different sizes of the hyper-parameter γ on CNN and ViT.

interchangeable, and the difference is that Equation 7 lays more penalty on hard triplet samples. The
reported stable performance can demonstrate that γ has no impact on learning the concordance of
triplet similarity in the mini-batch sampling. We can claim that this hyper-parameter is task-agnostic.
From the performance perspective, our CIT can pay no attention to this only hyper-parameter. On
the other hand, from the convergence viewpoint, introducing γ aims to help DML models speed up
the convergence by laying emphasis on hard triplet samples. As Figure 3 shows, CIT with lesser
γ can be fast convergence with fewer epochs achieving the last performance. The lesser γ entails
that Equation 7 with more loose concordance contributes more to the loss value. Our CIT pays
more penalty on hard triplet samples and little penalty on easy triplet samples by setting lesser γ,
thus advancing the convergence speed. This ablation study can demonstrate that our CIT with γ can
alleviate the training complexity of triplet-based loss functions.

4 CONCLUSIONS AND DISCUSSIONS

Building on the concordance constraint of triplet similarity, we propose a novel and elegant
concordance-induced triplet (CIT) loss function to simplify the optimization process for deep metric
learning (DML). Our CIT loss can free DML training from the laborious tuning of the violation mar-
gin in conventional triplet-based loss functions and encourage model training fast convergence. The
violation margin is task-specific, while the concordance constraint is task-agnostic and monotonous.
Hence, the concordance between the predicted and observed similarities can help our CIT loss push
far away from the plague of giving prior constraints for decision boundaries. We further utilize the
degree of concordance of triplet samples to pay more penalties on hard triplet samples to speed up
gradient optimization. The extensive experiments on three popular DML tasks with two networks
can demonstrate the elegance and availability of our proposed CIT, yielding performances on par
with other triplet-based loss functions.

It is worthy to emphasize that our CIT loss intends to achieve comparable performance with its
counterparts but not pursue superior performance. CIT can favor DML training simply and elegantly
by modeling the concordance of triplet similarity. When a DML task is challenging to offer the
violation margin and needs to alleviate the training complexity, our CIT loss is a reliable alternative
to conventional triplet-based loss functions. It is interesting to explore the degree of concordance of
triplet samples to bring the best performance in the future. If we can design a method to measure
the degree of concordance, we can avoid the excessive constraints of the partial likelihood term in
our CIT loss.
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A GENERALIZATION BOUND ANALYSIS

Theorem 1. Let L represents a family of loss function associated to Lcit given DML model Fθ.
Then for ∀δ > 0 over ET , each of the following holds for any Lcit ∈ L with probability at least
1− δ.

E[Lcit] ≤ ẼD[Lcit] +RD(L) +

√
ln(1/δ)

2NT
, (9)

where ẼD[Lcit] is the empirical error G(Fθ) in Equation 5 over the training set D (in-of-samples),
and E[Lcit] denotes the generalization or expectation error on out-of-samples. ET with length NT
is sampled from the training set D. RD(L) signifies the Rademacher complexity of L with respect
to the training set D.

Proof Sketch. The generalization error bound based on McDiarmid inequality and Rademacher
complexity for concordance learning can be proved by Theorem 3.5 described in Mohri et al. (2018).

Remark 1. As shown in Equation 9, the supremum of the generalization bound consists of three
terms. The first term is the empirical error relating to training, the lower empirical error brings
a smaller supremum of the generalization bound. And in the third term, the more considerable
amount of triplet samples T can reduce the upper bound of generalization error. The generalization
bound of our loss function Lcit given the DML model Fθ is largely determined by the second term,
Rademacher complexity of L.

Theorem 2. For the hypothesis space L = {L : T → {0, 1}}, we state Lcit(T1, T2, ·, TN ) =(
Lcit(T1),Lcit(T2), · · · ,Lcit(TN )

)
∈ {0, 1}N is a dichotomy. We further define the growth func-

tion of L is ML(NT ) = maxNT

∣∣L(T1, T2, · · · , TN)
|. Then the following holds:

RD(L) ≤

√
2 lnML(NT )

NT
. (10)

Proof Sketch. Relating the Rademacher complexity to the growth function, Equation 10 can be
derived by Theorem 3.7 (Massart’s lemma) and Corollary 3.8 in Mohri et al. (2018).

Remark 2. The Rademacher complexity can be bounded in terms of the growth function, which is
distribution independent and purely combinatorial. The growth function ML(NT ) is the maximum
number of distinct ways in which triplet samples of NT can be predicted as concordance (0) or
discordance (1) by using hypotheses in L. It suggests the number of dichotomies realized by the

12
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hypothesis and its upper bound is 2NT . The growth function ML(NT ) suggests the representation
power of the hypothesis space L, thus reflecting the complexity of the hypothesis space.

Combining Equations 9 and 10, we rewrite the supremum of the generalization error as:

E[Lcit] = sup
D

{
ẼD[Lcit] +ML(NT ) +

√
ln(1/δ)

2NT

}
. (11)

Based on the above theorems, we would like to compare the supremum of the generalization bound
of two items in the loss function Lcit. The relation of triplets is modeled as Sap − San in Equation
4, and we reorganize the modeling relation of Equation 7 with a violation margin, as follows:

Sap − San +
(
San − log(eSan + eSpn)

)︸ ︷︷ ︸
margin

. (12)

Similar to the standard triplet loss in Equation 2, the loss function Lp utilizes a margin to constrain
triplet similarities, as Equation 12 shows. Obviously, from the standpoint of modeling complexity,
the representation power of Lp is stronger than Le.

Corollary 1. Given the same DML model Fθ, we let Le represents a family of loss function as-
sociated to Le and Lp represents a family of loss function associated to Lp. Then the following
holds:

MLe
(NT ) < MLp

(NT ) ≤ 2NT . (13)

For any hypothesis set L, the trivial bound is 2NT . The growth function measures the richness or
complexity of the hypothesis set L. Hence, the growth function MLe(NT ) for the hypothesis set Le

is smaller than the growth function MLp(NT ) for the hypothesis set Lp.

Corollary 2. By virtue of Theorem 1 and Theorem 2, we further bound the difference between the
empirical error and generalization error for loss functions Le and Lp associated to the DML model
Fθ.

E[Le]− ẼD[Le] ≤ MLe(NT ) +

√
ln(1/δ)

2NT
. (14)

E[Lp]− ẼD[Lp] ≤ MLp
(NT ) +

√
ln(1/δ)

2NT
. (15)

With Equation 13, we can obtain:

E[Le]− ẼD[Le] ≤ E[Lp]− ẼD[Lp]. (16)

Supposing the amount of triplet samples is enough to make both expectation errors theoretically
infinite close. Then, we can further derive ẼD[Lp] ≤ ẼD[Le].

Remark 3. Due to Lp introducing an extra decision boundary, the complexity of modeling triplet
similarities can better fit the training set, thus helping speed training convergence. Compared to the
loose constraint of Lp, Le enforces a tight constraint on triplet similarities. As shown in in (b) of
Figure 1, our loss function Lcit fulfills lower loss by setting γ = 0.5.

However, we need to make a trade-off between the training error and generalization error on the
complexity of the hypothesis space. The larger complexity of the hypothesis space easily leads to
higher generalization errors. Such as, one of the popular strategies for controlling the complexity
to avoid over-fitting is introducing regularization terms. Therefore, it is not that the higher the
complexity and the smaller the training error can surely bring the better generalization.

Table 3 can account for the necessity of holding the trade-off between the training error and gen-
eralization error. Increasing complexity by setting γ < 1.0, i.e., introducing Lp in Lcit favors the
In-shop Clothes dataset with 11,735 classes. On the contrary, the best performances of the Mar-
ket1501 dataset containing 1,501 identities are achieved by setting γ = 1.0, i.e., without Lp.

Through generalization bound and experiment result analysis, we can conclude:

• To free DML training from tuning the decision boundary, we present a tight constraint on
triplet similarities and achieve comparable performances with its counterparts.
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• We further introduce a loose strategy to increase the complexity of the hypothesis space to
speed convergence.

• Increasing complexity is favorable to a large amount of training set. When the number
of triplet samples is enough, we can regulate a relatively small γ to enjoy two benefits
simultaneously: speeding convergence and better generalization.

B GRADIENTS ON SIMILARITIES OF COMPARABLE PAIRS

The partial derivatives of our CIT loss in Equation 8 with respect to Sap and San can be written as
Equations 17 and 18, and the schematics of both corresponding gradients are shown in Figure 4.

∂Lcit

∂San
= γe−(San−Sap) − (1− γ)

eSan

(eSan + eSpn) ln
. (17)

∂Lcit

∂Sap
= −γe−(San−Sap) + (1− γ), (18)

Figure 4: Gradients of CIT Loss Function with respect to Sap and San. CIT loss lays emphasize on
hard samples by setting γ = 0.5 compared to γ = 1.0.

C PERFORMANCE OF FACE RECOGNITION

In Figure 2, we show the full ROC curves for comparable loss functions. Here, we additionally
report their true accepted rate (TAR) at 1e-5 and 1e-3 false accepted rate (FAR) in Tables 4 and 5.
Besides, we also compare their face verification accuracy in Table 6.

D EMBEDDING SPACE METRIC

An image can be encoded into an embedding feature by a differentiable DML model trained by a
triplet loss function. In Tables 7 and 8, we report performances for Triplet and CT on Market1501
and In-shop Clothes datasets by tuning more margins. Besides, we also provide two metrics to
measure embedding space, i.e., normalized mutual information (NMI), spectral variance (SV) Roth
et al. (2020). Lower values of SV indicate more directions of significant variance and suggest more
discriminative embedding features.
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Table 4: Comparison of different loss functions for LFW Huang et al. (2008), AgeDB Moschoglou
et al. (2017), IJB-C Maze et al. (2018), and CFP-FP Sengupta et al. (2016) datasets on CNN in terms
of TAR@FAR (in %).

Method LFW AgeDB IJB-C CFP-FP

@CNN TAR@FAR TAR@FAR TAR@FAR TAR@FAR
1e-5 1e-3 1e-5 1e-3 1e-5 1e-3 1e-5 1e-3

Triplet 92.73 98.87 64.07 74.00 80.20 92.77 67.89 80.23
Angular 88.07 98.57 65.30 67.93 80.80 93.05 77.54 82.03

CT 95.37 97.97 53.77 74.33 81.24 93.04 72.97 84.69
Circle 91.43 98.27 51.27 73.13 80.82 92.93 79.03 83.97

ST 92.57 98.17 56.30 70.20 81.75 93.08 80.37 83.00
CIT (Ours) 91.67 98.33 71.37 74.70 82.23 93.24 76.09 84.46

Table 5: Comparison of different loss functions for LFW Huang et al. (2008), AgeDB Moschoglou
et al. (2017), IJB-C Maze et al. (2018), and CFP-FP Sengupta et al. (2016) datasets on ViT in terms
of TAR@FAR (in %).

Method LFW AgeDB IJB-C CFP-FP

@ViT TAR@FAR TAR@FAR TAR@FAR TAR@FAR
1e-5 1e-3 1e-5 1e-3 1e-5 1e-3 1e-5 1e-3

Triplet 87.13 97.80 56.63 62.90 67.01 87.96 54.94 69.63
Angular 86.00 98.53 40.30 53.17 68.02 88.43 49.54 76.57

CT 87.07 97.57 35.10 41.67 68.49 88.62 39.06 73.54
Circle 91.17 98.03 42.83 49.70 68.10 88.23 59.29 70.43

ST 91.50 98.30 50.50 63.33 70.40 88.74 42.00 75.46
CIT (Ours) 83.77 98.53 51.93 58.70 72.45 90.43 60.89 65.40

Table 6: Comparison of different loss functions for LFW Huang et al. (2008), AgeDB Moschoglou
et al. (2017), IJB-C Maze et al. (2018), and CFP-FP Sengupta et al. (2016) datasets on CNN and
ViT networks in terms of face verification accuracy (in %).

Method CNN ViT
LFW AgeDB IJB-C CFP-FP LFW AgeDB IJB-C CFP-FP

Triplet 99.37 93.97 98.23 94.93 99.27 92.12 98.25 92.90
Angular 99.10 93.65 98.27 94.80 99.07 91.50 98.24 92.30

CT 99.30 94.25 98.52 94.83 99.40 92.77 98.28 93.39
Circle 99.35 94.22 98.32 93.99 99.26 92.63 98.35 93.19

ST 99.37 94.52 98.28 95.19 99.35 93.07 97.99 93.27
CIT (Ours) 99.40 94.57 98.40 94.76 99.37 93.18 98.39 93.34

E CONVERGENCE CURVES

Figure 5 and 6 help analyze the convergence of loss functions.

F QUALITATIVE RESULTS

In Figure 7, we exhibit some retrieval cases for our CIT loss on different datasets.

G GRADIENTS ON FEATURES OF TRIPLET SAMPLES

In Figure 8, we visualize the gradients of three features xa, xp, xn. The three features may be-
long to different classes under randomly mini-batch sampling, thus incomparable. Hence, from this
visualization, we can not discern the contributions of features to DML optimization.
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Table 7: Comparison of Triplet and CT with different margins for the Market1501 dataset on CNN
and ViT networks in terms of rank-1 (in %) accuracy, normalized mutual information (NMI, in %),
spectral variance (SV, in %), mean average precision (mAP, in %), and mean inverse negative penalty
(mINP, in %).

Method Margin Network Market1501
R@1 mAP mINP SV NMI

Triplet

m = 0.0

CNN

95.64 88.73 66.60 44.37 95.59
m = 0.01 95.58 89.08 67.05 44.45 95.56
m = 0.05 95.75 89.26 67.48 44.44 95.69
m = 0.1 95.75 89.19 66.65 43.83 95.50
m = 0.5 95.40 88.78 66.46 45.86 95.57
m = 1.0 95.37 88.73 66.64 49.08 95.62

CT

m = 0.0 95.81 88.77 66.32 44.02 95.54
m = 0.01 95.52 88.68 66.11 44.54 95.55
m = 0.05 95.61 89.05 66.28 44.84 95.61
m = 0.1 95.16 88.65 66.27 46.90 95.51
m = 0.5 95.43 88.79 67.07 44.81 95.51
m = 1.0 95.64 88.74 66.24 44.10 95.65

CIT (Ours) - 95.87 89.41 68.27 43.62 95.70

Triplet

m = 0.0

ViT

93.56 84.76 57.45 38.00 95.15
m = 0.01 93.62 85.07 58.88 38.18 95.19
m = 0.05 94.06 85.87 60.74 36.25 95.32
m = 0.1 93.68 86.02 61.94 36.96 95.19
m = 0.5 93.82 84.76 60.60 36.86 95.27
m = 1.0 93.68 84.64 58.81 37.95 95.20

CT

m = 0.0 92.37 81.79 51.82 51.79 95.01
m = 0.01 92.19 81.75 51.91 54.50 95.08
m = 0.05 92.58 82.27 52.87 47.84 95.11
m = 0.1 93.38 83.00 54.31 38.24 95.06
m = 0.5 92.99 84.62 60.03 48.71 95.31
m = 1.0 93.47 84.16 58.44 46.43 95.22

CIT (Ours) - 93.88 86.23 61.88 36.65 95.38
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Table 8: Comparison of Triplet and CT with different margins for the In-shop Clothes dataset on
CNN and ViT networks in terms of rank-1 (in %) accuracy, normalized mutual information (NMI,
in %), spectral variance (SV, in %), mean average precision (mAP, in %), and mean inverse negative
penalty (mINP, in %).

Method Margin Network In-shop Clothes
R@1 mAP mINP SV NMI

Triplet

m = 0.0

CNN

93.53 78.21 61.71 47.99 94.48
m = 0.01 93.44 78.60 62.34 47.83 94.47
m = 0.05 93.37 78.47 62.58 47.91 94.54
m = 0.1 93.66 78.36 62.09 47.63 94.51
m = 0.5 93.39 78.61 62.40 48.85 94.54
m = 1.0 93.37 78.07 61.57 50.31 94.39

CT

m = 0.0 93.44 78.73 62.37 48.72 94.53
m = 0.01 93.37 78.33 61.88 50.45 94.45
m = 0.05 93.75 79.17 62.87 46.64 94.62
m = 0.1 93.44 78.27 61.87 48.33 94.51
m = 0.5 93.57 78.33 61.92 48.31 94.46
m = 1.0 93.61 78.43 62.12 48.09 94.49

CIT (Ours) - 93.68 78.93 62.92 46.76 94.58

Triplet

m = 0.0

ViT

92.31 74.84 56.50 40.00 93.59
m = 0.01 92.52 75.97 57.95 37.81 93.93
m = 0.05 92.09 73.44 55.62 39.66 93.81
m = 0.1 92.70 76.58 59.19 37.62 93.93
m = 0.5 92.55 75.84 58.64 38.99 93.85
m = 1.0 92.45 74.50 56.82 38.33 93.59

CT

m = 0.0 91.35 72.43 53.40 39.54 93.12
m = 0.01 91.49 72.63 53.63 38.99 93.19
m = 0.05 91.50 73.13 54.40 38.49 93.30
m = 0.1 91.67 74.08 55.52 38.40 93.50
m = 0.5 92.64 75.43 58.01 38.16 93.75
m = 1.0 92.47 74.65 56.91 38.37 93.64

CIT (Ours) - 92.73 76.62 59.83 37.51 93.94
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Figure 5: Convergence curves of CNN for different loss functions on the Market1501 dataset. Left
shows that our CIT can achieve the same convergence effect as Triplet and CT, smoother than Circle,
ST, and Angular, which need tuning more hyper-parameters. And right plot again proves that the
hyper-parameter can help speed the convergence of our CIT. k signifies the angle factor of a straight
line and is used to measure the decline speed of loss curves roughly.

Figure 6: Convergence curves of CNN for our CIT and Triplet loss functions on CNN for the Mar-
ket1501 and In-shop Clothes dataset. Triplet of m = 0.0 falls into the local optimum prematurely by
observing occurrence epochs of the zero loss. Triplet of m=0.0 has the same mining strategy as our
CIT, but its L1 form is weaker than CIT in the exponential form in driving DML model optimization
due to insufficient exploitation of hard triplet samples. By setting γ < 1.0, our CIT building on
similarity concordance can approach the convergence of Triplet with m=0.05.
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Figure 7: Qualitative results of our CIT loss for (a) Market1501 dataset on CNN, (b) Market1501
dataset on ViT, (c) In-shop Clothes dataset on CNN, and (d) In-shop Clothes dataset on ViT. For
each query image (leftmost), top 4 retrievals are exhibited. The results with red boundaries are false
cases but they are substantially similar to the query images in terms of appearance.
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Figure 8: Gradients on features of triplet samples.
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