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Abstract001

Social determinants of health (SDOH) extrac-002
tion from clinical text is critical for down-003
stream healthcare analytics. Although large004
language models (LLMs) have shown promise,005
they may rely on superficial cues leading to spu-006
rious predictions. Using the MIMIC portion of007
the SHAC (Social History Annotation Corpus)008
dataset and focusing on drug status extraction009
as a case study, we demonstrate that mentions010
of alcohol or smoking can falsely induce mod-011
els to predict current/past drug use where none012
is present, while also uncovering concerning013
gender disparities in model performance. We014
further evaluate mitigation strategies—such as015
prompt engineering and chain-of-thought rea-016
soning—to reduce these false positives, provid-017
ing insights into enhancing LLM reliability in018
health domains.019

1 Introduction020

SDOH—including substance use, employment,021

and living conditions—strongly influence patient022

outcomes and clinical decision-making (Daniel023

et al., 2018; Himmelstein and Woolhandler, 2018;024

Armour et al., 2005). Extracting SDOH infor-025

mation from unstructured clinical text is increas-026

ingly important for enabling downstream health-027

care applications and analysis (Jensen et al., 2012;028

Demner-Fushman et al., 2009). Although LLMs029

have shown promise in clinical natural language030

processing (NLP) tasks (Hu et al., 2024; Liu et al.,031

2023; Singhal et al., 2023), they often rely on su-032

perficial cues (Tang et al., 2023; Zhao et al., 2017),033

potentially leading to incorrect predictions under-034

mining trust and utility in clinical settings.035

Recent work has highlighted how LLMs can ex-036

hibit "shortcut learning" behaviors (Tu et al., 2020;037

Ribeiro et al., 2020; Zhao et al., 2018), where they038

exploit spurious patterns in training data rather039

than learning causal, generalizable features. This040

phenomenon spans various NLP tasks, from nat-041

ural language inference (McCoy et al., 2019) to 042

question-answering (Jia and Liang, 2017), and in 043

clinical domains can lead to incorrect assumptions 044

about patient conditions (Brown et al., 2023; Jab- 045

bour et al., 2020), threatening the utility of auto- 046

mated systems. 047

We investigate how LLMs produce spurious 048

correlations in SDOH extraction through using 049

drug status time classification (current, past, or 050

none/unknown) as a case study. Using the MIMIC 051

(Johnson et al., 2016) portion of the SHAC (Ly- 052

barger et al., 2021) dataset, we examine zero- 053

shot and in-context learning scenarios across mul- 054

tiple LLMs (Llama (AI, 2024), Qwen (Yang 055

et al., 2024), Llama3-Med42-70B (Christophe 056

et al., 2024)).We explore multiple mitigation strate- 057

gies to address these spurious correlations: ex- 058

amining the causal role of triggers through con- 059

trolled removal experiments, implementing tar- 060

geted prompt engineering approaches like chain- 061

of-thought (CoT) reasoning (Wei et al., 2022), in- 062

corporating warning-based prompts, and augment- 063

ing with additional examples. While these inter- 064

ventions show promise—significant false positive 065

rates persist, highlighting the deep-rooted nature 066

of these biases and the need for more sophisticated 067

solutions. 068

Contributions: 069

1. We present the first comprehensive analysis 070

of spurious correlations in SDOH extraction 071

across multiple LLM architectures, including 072

domain-specialized models. Through exten- 073

sive experiments in zero-shot and ICL settings, 074

we demonstrate how models rely on super- 075

ficial cues and verify their causal influence 076

through controlled ablation studies. 077

2. We uncover systematic gender disparities in 078

model performance, demonstrating another 079

form of spurious correlation where models in- 080
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appropriately leverage patient gender for pre-081

dictions.082

3. We evaluate multiple prompt-based mitigation083

strategies (CoT, warnings, more examples)084

and analyze their limitations, demonstrating085

that while they provide some reduction in false086

positives, more robust solutions are needed for087

reliable clinical NLP deployments.088

2 Methodology089

2.1 Dataset and Task090

We use the MIMIC-III portion of the SHAC091

dataset (Lybarger et al., 2021), which comprises092

4405 deidentified social history note sections de-093

rived from MIMIC-III (Johnson et al., 2016) and094

the University of Washington clinical notes. SHAC095

is annotated using the BRAT tool (Stenetorp et al.,096

2012), capturing a variety of SDOH event types097

(e.g., Alcohol, Drug, Tobacco) as triggers along098

with associated arguments, including temporal sta-099

tus. To enable demographic analysis, we aug-100

mented the SHAC data by linking it with patient101

demographic information available in the original102

MIMIC-III dataset.103

In this work, we examine spurious correlations104

in SDOH extraction through temporal drug status105

classification (current, past, or none/unknown). We106

adopt a two-step pipeline (Ma et al., 2022, 2023):107

1. Trigger Identification: Given a social history108

note, the model identifies spans corresponding109

to the target event type (e.g., drug use).110

2. Argument Resolution: For each identified111

trigger, the model applies a multiple-choice112

QA prompt to determine the temporal status113

(current/past/none). See Appendix C for de-114

tailed examples of the task and annotation115

schema.116

2.2 Experimental Setup117

Model Configurations We evaluate multiple118

model configurations:119

• Zero-Shot: Models receive only the task in-120

structions and input text, with no examples.121

• In-Context Learning (ICL): Models are pro-122

vided three example demonstrations before123

making predictions on a new instance. Ex-124

amples are selected to maintain balanced125

representation across substance use patterns126

(none/single/multiple) and drug use outcomes 127

(positive/negative). 128

• Fine-Tuning (SFT): We also fine-tune a 129

Llama-3.1-8B model on the MIMIC portion 130

of the SHAC dataset to assess whether domain 131

adaptation reduces spurious correlations. 132

See Appendix B for more details on prompting 133

strategies. 134

We consider Llama-3.1-70B (zero-shot, ICL), 135

Llama-3.1-8B (fine-tuned on MIMIC), Qwen-72B 136

(ICL), Llama3-Med42-70B (ICL), and Llama-3.2- 137

3B (ICL) . These models span various parameter 138

sizes and domain specializations. The fine-tuned 139

Llama-8B model provides insights into whether in- 140

domain adaptation mitigates the observed shortcut 141

learning. 142

Evaluation Framework Our primary evalua- 143

tion metric is the false positive rate (FPR), de- 144

fined as: FPR = FP/(FP + TN) where FP 145

represents false positives (predicted current/past 146

use when ground truth was none/unknown) and 147

TN represents true negatives (correctly predicted 148

none/unknown). 149

To analyze potential spurious correlations, we 150

categorize notes based on their ground truth sub- 151

stance use status: 152

• Substance-positive: Notes documenting cur- 153

rent/past use of the respective substance (alco- 154

hol or smoking) 155

• Substance-negative: Notes where the ground 156

truth indicates no use or unknown status 157

Experimental Settings 158

• Original: Evaluate models on the original 159

notes. 160

• Without Alcohol/Smoking Triggers: Re- 161

move mentions of alcohol/smoking to test 162

their causal role in inducing false positives. 163

3 Results 164

3.1 RQ1: Do Large Language Models Exhibit 165

Spurious Correlations in SDOH 166

Extraction? 167

As shown in Table 1, our analysis in a zero-shot 168

setting with Llama-70B reveals high false positive 169

rates for drug status time classification in alcohol- 170

positive (66.21%) and smoking-positive (61.11%) 171
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Table 1: False Positive Rates (%) Across Different Models and Approaches

Cases Llama-70B Llama-8B Llama3-Med42-70B Qwen-72B

Zero-shot ICL CoT Warning Increased-Examples Fine-tuned ICL ICL

Alcohol-positive 66.21 48.28 33.79 40.69 45.52 32.41 66.90 62.76
Smoking-positive 61.11 36.42 25.93 29.63 30.25 36.42 57.41 53.09
Alcohol-negative 28.83 11.71 6.76 5.41 10.81 12.16 16.22 46.85
Smoking-negative 29.76 18.05 10.73 11.22 20.00 7.32 19.51 53.17
Smoking+Alcohol 73.26 51.16 34.88 45.35 39.53 40.70 76.74 56.98

notes. In contrast, alcohol-negative and smoking-172

negative notes show substantially lower false posi-173

tive rates (28.83% and 29.76%, respectively). This174

stark contrast suggests that the mere presence of175

alcohol or smoking triggers biases the model to-176

wards inferring nonexistent drug use. These biases177

likely stem from the pre-training phase, potentially178

reinforcing societal assumptions about correlations179

between different types of substance use.180

3.2 RQ2: Do In-Context Learning and181

Fine-Tuning Reduce These Spurious182

Correlations?183

Providing three in-context examples before pre-184

diction reduces these false positives. For Llama-185

70B, ICL lowers the mismatch in alcohol-positive186

cases from 66.21% to 48.28%. While improved, a187

large gap remains relative to alcohol-negative notes188

(11.71% under ICL). Similarly, smoking-positive189

mismatches decrease from 61.11% to 36.42%, yet190

smoking-negative remains much lower at 18.05%.191

The effectiveness of ICL suggests that explicit ex-192

amples help the model focus on relevant features,193

though the persistence of some bias indicates deep-194

rooted associations from pre-training. Fine-tuning195

Llama-8B on the MIMIC subset (SFT) further re-196

duces these errors; alcohol-positive mismatches197

drop to 32.41%, and smoking-positive to 36.42%,198

while corresponding negatives reach as low as 12%199

for alcohol-negative and 7% for smoking-negative.200

This improvement through domain adaptation indi-201

cates that targeted training data can help override202

some pre-trained biases, though not eliminate them203

entirely.204

3.3 RQ3: Are These Superficial Mentions205

Causally Driving the Model’s Predictions?206

To confirm the causal role of alcohol and smok-207

ing mentions, we remove these triggers from the208

notes. Across models, this consistently lowers209

false positives. For instance, Llama-70B zero-shot210

sees alcohol-positive mismatches fall from 66.21%211

to 55.17% after removing alcohol triggers. Simi- 212

larly, Llama-8B-SFT reduces alcohol-positive er- 213

rors from 32.41% to 26.9%. These decreases con- 214

firm that alcohol and smoking cues spuriously bias 215

the model’s drug-use predictions. 216

3.4 RQ4: Are there systematic demographic 217

variations in these spurious correlations? 218

Beyond substance-related triggers, our analysis (Ta- 219

ble 2) uncovers another concerning form of spu- 220

rious correlation: systematic performance differ- 221

ences based on patient gender. Just as models 222

incorrectly rely on mere mentions of alcohol or 223

smoking to infer substance use, they appear to 224

leverage patient gender as an inappropriate pre- 225

dictive signal. For the base Llama-70B model in 226

zero-shot settings, false positive rates show stark 227

gender disparities - male patients consistently face 228

higher misclassification rates compared to female 229

patients (71.15% vs 53.66% for alcohol-positive 230

cases, and 66.67% vs 50.88% for smoking-positive 231

cases). This pattern persists with in-context learn- 232

ing, with the gender gap remaining substantial 233

(alcohol-positive: 52.88% male vs 36.59% female). 234

Fine-tuned models showed similar disparities, with 235

Llama-8B-SFT maintaining a performance gap of 236

approximately 15 percentage points between gen- 237

ders for alcohol-positive cases. 238

Notably, these gender-based differences exhibit 239

complex interactions with substance-related trig- 240

gers. Cases involving positive substances mentions 241

show the most pronounced disparities, with male 242

patients seeing up to 20 percentage point higher 243

false positive rates. This suggests that the model’s 244

shortcut learning compounds across different di- 245

mensions - gender biases amplify substance-related 246

biases and vice versa. The persistence of these in- 247

teracting biases across model architectures, sizes, 248

and prompting strategies suggests they arise from 249

deeply embedded patterns in both pre-training data 250

and medical documentation practices. 251
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Table 2: Gender-Based Analysis of False Positive Rates (%) Across Models

Llama-70B Zero-shot Llama-70B ICL Llama-8B SFT Qwen-72B

Cases Female Male Female Male Female Male Female Male

Alcohol-positive 53.66 71.15 36.59 52.88 21.95 36.54 68.29 60.58
Smoking-positive 50.88 66.67 28.07 40.95 24.56 42.86 49.12 55.24
Alcohol-negative 29.13 28.42 9.45 14.74 9.45 15.79 47.24 46.32
Smoking-negative 27.03 32.98 9.91 27.66 6.31 8.51 54.05 52.13
Smoking+Alcohol 81.82 84.62 54.55 58.97 27.27 53.85 27.27 30.77

4 Mitigation Strategies and Results252

We explore several mitigation techniques to address253

the spurious correlations identified in our analysis:254

Chain-of-Thought (CoT) As shown in Table 1,255

instructing the model to reason step-by-step before256

producing an answer leads to substantial reductions.257

For Llama-70B, CoT reduces alcohol-positive mis-258

matches from 66.21% (zero-shot) to 33.79%. Sim-259

ilar improvements are seen in smoking-positive260

cases, where false positives decrease from 61.11%261

to 25.93%. CoT thus helps the model avoid super-262

ficial cues and focus on the explicit information263

provided.264

Warning-Based Instructions We prepend ex-265

plicit instructions cautioning the model not to266

assume drug use without evidence and to treat267

each factor independently. With Llama-70B, these268

warnings lower alcohol-positive mismatches from269

66.21% to approximately 40.69%, and also benefit270

smoking-positive scenarios. While not as strong271

as CoT, these warnings still yield meaningful im-272

provements.273

Increased Number of Examples Providing274

more than three examples—up to eight—further275

stabilizes predictions. For Llama-70B, increasing276

the number of examples reduces false positive rates277

considerably. For example, with eight examples,278

alcohol-positive mismatches fall closer to 45.52%279

(compared to 66.21% zero-shot), and smoking-280

positive mismatches also decrease. Although not281

as dramatic as CoT, additional examples help guide282

the model away from faulty heuristics.283

5 Discussion284

Our findings highlight a key challenge in apply-285

ing large language models to clinical information286

extraction: even when models achieve strong per-287

formance on average, they can rely on superficial288

cues rather than a genuine understanding of the un-289

derlying concepts. The mere presence of alcohol-290

or smoking-related mentions biased the model to 291

infer drug use incorrectly, and these shortcuts per- 292

sist across Llama variants, Qwen, and Llama3- 293

Med42-70B, indicating they are not unique to any 294

particular architecture or training paradigm. The 295

effectiveness of mitigation strategies like chain- 296

of-thought reasoning, warning-based instructions, 297

and additional examples, underscores the impor- 298

tance of careful prompt design. While these in- 299

terventions help reduce spurious correlations by 300

guiding the model to focus on explicit evidence, 301

their partial success suggests the need for more 302

robust approaches - integrating domain-specific 303

knowledge, implementing adversarial training, or 304

curating more balanced datasets. Our demographic 305

analysis reveals that these spurious correlations 306

are not uniformly distributed across patient groups, 307

raising fairness concerns for clinical deployment. 308

Addressing such disparities requires both algorith- 309

mic improvements and careful consideration of de- 310

ployment strategies. Clinicians and stakeholders 311

must be aware of these limitations before deploy- 312

ing LLMs in clinical decision-support systems, and 313

careful evaluation, ongoing monitoring, and con- 314

tinuous refinement are critical to ensure these tools 315

add value to healthcare rather than introduce new 316

risks. 317

6 Conclusion 318

This work presents the first systematic exploration 319

of spurious correlations in SDOH extraction, re- 320

vealing how contextual cues can lead to incorrect 321

and potentially harmful predictions in clinical set- 322

tings. Beyond demonstrating the problem, we’ve 323

evaluated several mitigation approaches that, while 324

promising, indicate the need for more sophisticated 325

solutions. Future work should focus on developing 326

robust debiasing techniques, leveraging domain ex- 327

pertise, and establishing comprehensive evaluation 328

frameworks to ensure reliable deployment across 329

diverse populations. 330
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7 Limitations331

Our analysis relied exclusively on the MIMIC por-332

tion of the SHAC dataset, which constrains the333

generalizability of our findings. While we observe334

consistent gender-based performance disparities,335

a more diverse dataset could help establish the336

breadth of these biases. We also focused solely on337

open-source large language models (e.g., LLaMA,338

Qwen). Extending the evaluation to additional data339

sources, closed-source models, and other domain-340

specific architectures would help verify the robust-341

ness of our conclusions. Additionally, while we342

identified various spurious correlations, our miti-343

gation strategies could not completely address the344

problem, leaving room for future work on address-345

ing these issues.346
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A Related Work555

Previous work on extracting SDOH from clinical556

text spans a progression from rule-based methods557

to fine-tuned neural models, leveraging annotated558

corpora for tasks like substance use and employ-559

ment status extraction (Hatef et al., 2019; Patra560

et al., 2021; Yu et al., 2022; Han et al., 2022;561

Uzuner et al., 2008; Stemerman et al., 2021; Ly-562

barger et al., 2023). More recent efforts have ex-563

plored prompt-based approaches with LLMs, in-564

cluding GPT-4, to reduce reliance on extensive an-565

notations (Ramachandran et al., 2023). While these566

approaches achieve competitive performance, stud-567

ies across NLP tasks have shown that both fine-568

tuned and prompting-based methods often exploit569

spurious correlations or superficial cues (Ribeiro570

et al., 2020; Geirhos et al., 2020; Tu et al., 2020).571

Prior investigations have focused largely on spuri-572

ous correlations in standard NLP tasks and super-573

vised scenarios (McCoy et al., 2019; Zhao et al.,574

2018). In contrast, our work examines how these575

issues manifest in zero-shot and in-context SDOH576

extraction settings, and we propose prompt-level577

strategies to mitigate these correlations.578

B Prompting Strategies579

All prompting approaches share a base system mes-580

sage identifying the model’s role as "an AI assistant581

specialized in extracting and analyzing social his-582

tory information from medical notes." Each strat-583

egy then builds upon this foundation with specific584

modifications:585

Zero-Shot586

The baseline approach uses a minimal prompt struc-587

ture: System: AI assistant specialized in social588

history extraction User: For the following social589

history note: [Clinical note text] [Task instruction]590

[Options if applicable] This setup evaluates the591

model’s ability to perform extraction tasks using592

only its pre-trained knowledge, without additional593

guidance or examples.594

In-Context Learning (ICL) 595

This approach augments the base prompt with three 596

carefully selected demonstration examples. Each 597

example follows a structured JSON format: json 598

"id": "example-id", "instruction": "Extract all Drug 599

text spans...", "input": "Social History: Patient 600

denies drug use...", "options": "[Multiple choice 601

options if applicable]", "output": "Expected extrac- 602

tion or classification" 603

Chain-of-Thought (CoT) 604

Building upon ICL, this method explicitly guides 605

the model through a structured reasoning process: 606

Please approach this task step-by-step: 1. Carefully 607

read the social history note 2. Identify all relevant 608

information related to the question 3. Consider the 609

examples provided 4. Explain your reasoning pro- 610

cess 5. Provide your final answer This approach 611

aims to reduce spurious correlations and shortcut 612

learning by encouraging explicit articulation of the 613

reasoning process before arriving at the final ex- 614

traction or classification. 615

Warning-Based 616

This specialized approach incorporates explicit 617

rules and warnings in the system message: Im- 618

portant Guidelines: 1. Evaluate each factor in- 619

dependently - never assume one behavior implies 620

another 2. Extract only explicitly stated informa- 621

tion - don’t make assumptions based on demo- 622

graphics or other factors 3. If information isn’t 623

mentioned, use [none] or select "not mentioned" 624

option These guidelines specifically address the 625

challenge of false positives in substance use detec- 626

tion by discouraging inference-based conclusions 627

without explicit textual evidence. The warnings 628

are designed to counteract the model’s tendency 629

to make assumptions based on superficial cues or 630

demographic factors. 631

C Dataset Details 632

C.1 Data Format and Annotation Process 633

The SHAC dataset originally consists of paired text 634

files (.txt) containing social history notes and an- 635

notation files (.ann) capturing SDOH information. 636

We convert these into a question-answering for- 637

mat to evaluate LLMs. Below we demonstrate this 638

process with a synthetic example: 639

Raw Note (.txt) 640

SOCIAL HISTORY: 641
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Patient occasionally uses alcohol.642

Denies any illicit drug use.643

BRAT Annotations (.ann)644

T1 Alcohol 24 31 alcohol645

T2 Drug 47 50 drug646

T3 StatusTime 8 19 occasionally647

T4 StatusTime 32 37 denies648

649

E1 Alcohol:T1 Status:T3650

E2 Drug:T2 Status:T4651

652

A1 StatusTimeVal T3 current653

A2 StatusTimeVal T4 none654

Here, T1 and T2 are triggers - spans of text that655

indicate the presence of SDOH events (e.g., "alco-656

hol" for substance use). The annotations also cap-657

ture arguments - additional information about these658

events, such as their temporal status represented659

by T3 and T4. For example, T3 ("occasionally")660

indicates a temporal status of current for alcohol661

use.662

We transform these structured annotations into663

two types of questions:664

Trigger Identification Questions about identi-665

fying relevant event spans:666

{"id": "0001-Alcohol",667

"instruction": "Extract all Alcohol668

text spans as it is from the note.669

If multiple spans present, separate670

them by [SEP]. If none, output671

[none].",672

"input": "SOCIAL HISTORY: Patient673

occasionally uses alcohol. Denies674

any illicit drug use.",675

"output": "alcohol"}676

Argument-Resolution Questions about deter-677

mining event properties:678

{"id": "0001-Alcohol_StatusTime",679

"instruction": "Choose the best680

StatusTime value for the <alcohol>681

(Alcohol) from the note:",682

"input": "SOCIAL HISTORY: Patient683

occasionally uses alcohol. Denies684

any illicit drug use.",685

"options": "Options: (a) none.686

(b) current. (c) past.687

(d) Not Applicable.",688

"output": "(b) current."}689

D Model Fine-tuning and Computational 690

Resources 691

We fine-tuned Llama-8B using LoRA with rank 692

64 and dropout 0.1. Key training parameters in- 693

clude a learning rate of 2e-4, batch size of 4, and 694

5 training epochs. Training was conducted on 2 695

NVIDIA A100 GPUs for approximately 3 hours 696

using mixed precision (FP16). For our main ex- 697

periments, we used several large language models: 698

Llama-70B (70B parameters), Qwen-72B (72B pa- 699

rameters), Llama3-Med42-70B (70B parameters), 700

and our fine-tuned Llama-8B (8B parameters). The 701

inference experiments across all models required 702

approximately 100 GPU hours on 2 NVIDIA A100 703

GPUs. This computational budget covered all ex- 704

perimental settings including zero-shot, in-context 705

learning, and the evaluation of various mitigation 706

strategies. 707
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E Trigger Removal Experiments708

Table 3: Impact of Trigger Removal on Llama 3.1 Mod-
els False Positive Rates (%)

Llama 3.1 70b Zero-shot Llama 3.1 8b SFT

Cases Full Without Alcohol Without Smoking Full Without Alcohol Without Smoking

Alcohol-positive 66.21 55.17 64.14 32.41 26.90 33.10
Smoking-positive 61.11 54.94 56.79 36.42 32.10 31.48
Alcohol-negative 28.83 25.23 23.87 12.16 12.16 8.11
Smoking-negative 29.76 22.93 26.34 7.32 6.83 7.32
Smoking+Alcohol 73.26 65.12 72.09 40.70 32.56 41.86
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