
Client-Private Secure Aggregation for
Privacy-Preserving Federated Learning

Parker Newton
Amazon Web Services

pnnewto@amazon.com

Olivia Choudhury
Amazon Web Services

olichou@amazon.com

Bill Horne
Amazon Web Services
bgh@amazon.com

Vidya Ravipati
Amazon Web Services

ravividy@amazon.com

Divya Bhargavi
Amazon Web Services

dbharga@amazon.com

Ujjwal Ratan
Amazon Web Services

ujjwalr@amazon.com

Abstract

Privacy-preserving federated learning (PPFL) is a paradigm of distributed privacy-
preserving machine learning training in which a set of clients, each holding siloed
training data, jointly compute a shared global model under the orchestration of
an aggregation server. The system has the property that no party learns any
information about any client’s training data, besides what could be inferred from
the global model. The core cryptographic component of a PPFL scheme is the
secure aggregation protocol, a secure multi-party computation protocol in which
the server securely aggregates the clients’ locally trained models into an aggregated
global model, which it distributes to the clients. However, in many applications
the global model represents a trade secret of the consortium of clients, which they
may not wish to reveal in the clear to the server. In this work, we propose a novel
model of secure aggregation, called client-private secure aggregation (CPSA), in
which the server computes an encrypted global model which only the clients can
decrypt. We provide three explicit constructions of CPSA which exhibit varying
trade-offs. We also conduct experimental results to demonstrate the practicality of
our constructions in the cross-silo setting when scaled to 250 clients.

1 Introduction

Federated learning (FL) [24] is a paradigm of distributed machine learning (ML) training in which n
clients, each holding siloed training data, jointly compute a shared global model under the orchestra-
tion of an aggregation server, without revealing their training data in the clear. This is particularly
applicable in industries where sensitive data is distributed across silos and centralizing such data for
analysis is infeasible. For example, in the healthcare domain, a consortium of healthcare providers,
each hosting patient-level sensitive data, can contribute towards building a shared machine learning
model to improve patient care, while aiding in complying with regulatory guidelines [10, 11, 12].
Also, in the financial services industry, FL has been applied to leverage data hosted across a consor-
tium of banks to improve their joint ability to detect credit card fraud [32]. In FL, the aggregation
server maintains the current state of the global model so that when new clients join, the global model
can be distributed to the new clients. Additionally, the aggregation server facilitates communication
between the consortium of clients so that the clients need not establish a complete network graph to
directly communicate with each other. In this work, we consider cross-silo FL, in which the clients
are typically fixed institutions (e.g. banks, hospitals, research institutions, etc.), and total in number
on the order of 100.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

FL begins with the server sending the initial global model to all clients. Each client then locally trains
the model on their training data to compute a local model update, which they send to the aggregation
server. The server aggregates the model updates from the clients to compute a global model update,
which it applies to the initial model to compute a new global model. The new global model is then
broadcast to the clients. This process can be repeated until a global optimum is reached.

Note that after an iteration of FL, each party receives the new aggregated global model without any
client sharing their training data in the clear. However, several attacks [31, 33] demonstrate that an
adversary can partially reconstruct the clients’ training data from their local model updates. The
breakthrough work of [3] constructed a secure multi-party computation (MPC) protocol in which the
server computes the sum of the clients’ local model updates, which it then broadcasts to the clients.
The security of the protocol enforces that no party learns any information about any client’s model
update, except for what could be inferred from the sum of the clients’ model updates. FL in which the
plaintext aggregation of clients’ local model updates in replaced with a secure aggregation protocol is
called privacy-preserving federated learning (PPFL). In PPFL, instead of each client supplying their
local model update as input, each client can simply supply their local model weights.

In the standard model of secure aggregation, the server ultimately computes the global model in the
clear, which it then broadcasts to the clients. However, in many cases the global model represents a
trade secret of the consortium of clients, which they may not wish to leak to the server. For example,
consider the case in which a consortium of pharmaceutical companies wish to use PPFL vended by
a cloud service provider (CSP) to aid with drug discovery. In this case, the global model is a trade
secret of the consortium, which they do not wish to leak to the CSP.

In this work, we propose a novel model of secure aggregation, called client-private secure aggregation
(CPSA), in which the server computes an encrypted global model which only the clients can decrypt.
CPSA still enjoys the security of the plain model of secure aggregation (that is, no adversarially
corrupted subset of parties learns any information, beyond the protocol output, about any non-
corrupted client’s input), with the additional security guarantee that an adversarial server learns no
information about any client’s input, not even the protocol output. CPSA can be combined with
differential privacy (DP) to additionally enforce that any information which an adversarially corrupted
subset of clients can infer from the plaintext protocol output about some non-corrupted client’s input
cannot be associated with any particular client. Finally, since in the cross-silo FL setting, the network
availability of the clients is typically not an issue, we don’t seek to address client dropout in our
CPSA model.

Prior Work. Beginning with the foundational work of [3], secure aggregation protocols have been
widely studied in the literature [2, 6, 7, 23, 29]. Various protocols have been constructed which offer
trade-offs with respect to the security model and computational, communication, space, and round
complexity. The original work of [3] constructed a four-round secure aggregation protocol with
semi-honest security (and a five-round variant with malicious security). Their protocol works by each
client choosing a random mask which locally encrypts their input as a one-time pad (OTP), but with
the property that the clients’ masks all together sum to zero. In this way, the server can sum over the
OTP’s from the clients to compute the sum of their inputs.

In [29], the authors construct a natural two-round computationally efficient secure aggregation
protocol with semi-honest security using threshold additive homomorphic encryption (AHE). The
work of [2] employs a simple additive secret sharing approach to achieve a one-round maliciously
secure aggregation protocol. Their protocol is computationally and communication-efficient, but
requires two independent non-colluding servers.

Recall that the security property of a secure aggregation protocol enforces that no party learns
any information about any other party’s input, except for what could be inferred from the protocol
output. This begs the question if we can enforce a privacy guarantee against an adversary inferring
information about a party’s input from the protocol output. Differential privacy (DP) [14, 15] is a
statistical model of privately releasing aggregate data which masks a single party’s contribution to
the aggregate data. That is, DP ensures that no adversary, given access to the differentially private
aggregate data, can infer any information about any particular party’s contribution to the aggregate
data. Several secure aggregation protocols [6, 7, 20] employ DP to construct a protocol in which all
parties compute a differentially private sum of the clients’ inputs.

2

Our Contributions. We introduce a novel model of secure aggregation for PPFL, called client-
private secure aggregation (CPSA), in which the server computes an encrypted global model which
only the clients can decrypt. CPSA protocols combined with differential privacy achieve complete
input privacy for the clients during PPFL, precluding model inversion and membership inference
attacks against all parties. Additionally, this model enforces a stronger security guarantee against the
server, namely that an adversarial server learns no information about any client’s input, not even the
protocol output. We construct three novel CPSA protocols, Π0,Π1,Π2, which are secure against a
semi-honest adversary, and each offer varying trade-offs. If m ∈ N is the dimension of each client’s
input vector to the protocol, then we define m′ = m′(m,n) ∈ N as the dimension of the server’s
output ciphertext vector. Π0 is a two-round protocol, while the other two both require three rounds.
Π1 and Π2 both achieve a constant-rate output ciphertext vector dimension of m′ = m, while Π0

has m′ = O(mn2). Π1 is more communication efficient over Π0 and Π2, but the decryption key
used by the clients in Π1 to decrypt the ciphertext output by the server is not reusable over multiple
iterations of CPSA for PPFL. Consequently, when new clients join the collaboration, the trusted setup
algorithm which distributes the decryption key to the new clients must interact with the protocol
participants to update the decryption key after each iteration. On the other hand, Π2 supports reusable
decryption keys, and so the trusted setup algorithm need not function as an active participant in the
protocol. Finally, we provide an empirical evaluation of our protocols to demonstrate their practicality
when scaled to 250 clients. We remark that we limit the scope of this work to studying the CPSA
protocol itself. A plethora of prior works ([2, 6, 7, 29], and many more) have shown how to use PPFL
with different secure aggregation protocols and DP to train high-quality models on popular standard
datasets, and so it’s clear that CPSA protocols can be similarly applied in this manner.

2 Preliminaries

2.1 Notation

If k ∈ N, then we denote by [k] the set {1, 2, . . . , k}. If q ∈ N, then we write Zq for the ring of
integers (mod q). For m ∈ N, we denote vectors in Zm

q by bold lower-case characters x. If x ∈ Zm
q ,

then we denote the ith component of x by xi ∈ Zq. If x1, . . . , xm ∈ Zq, then we write (xi)i∈[m]

for the vector in Zm
q whose ith component is xi. Sets are written as S, algorithms are written as

A, and probabilistic distributions are written as D. Throughout this work, we denote the security
parameter by λ ∈ N. A quantity f(λ) is said to be negligible in λ, written f(λ) = negl(λ), if f(λ)
asymptotically tends to zero faster than any inverse polynomial in λ. A quantity f(λ) is said to be
polynomial in λ if f(λ) = O(λc), for some constant c ∈ N. We say that two distributions X and Y
are statistically indistinguishable, written X ≡ Y, if for every probabilistic algorithm A which gives
output in {0, 1}, it holds that∣∣∣Prx∼X[A(1λ, x) = 1

]
− Pry∼Y

[
A(1λ, y) = 1

]∣∣∣ = negl(λ). (1)

In the aforementioned definition, if we instead restrict A to be a probabilistic polynomial time (PPT)
algorithm, then we say that X and Y are computationally indistinguishable, and write X ≈c Y.

2.2 Key Agreement Scheme

Here, we define a key agreement scheme [8], which is typically used for two parties to agree on a
shared key for a symmetric-key cryptosystem.

Definition 1. A key agreement scheme is a pair of PPT algorithms KA = (Gen,Agree) with the
following syntax, correctness, and security.

Syntax:

• Gen(1λ) takes as input the security parameter λ and outputs a public/secret key pair (pk, sk)
for some user.

• Agree(ski,pkj) takes as input a secret key ski corresponding to some user i, and a public
key pkj , corresponding to some user j ̸= i, and outputs a key ki,j from the key space K.

3

Correctness: Let λ be the security parameter. If (pk1, sk1), (pk2, sk2) ← Gen(1λ), k1,2 =
Agree(sk1,pk2), k2,1 = Agree(sk2,pk1), then k1,2 = k2,1.

Security: Let λ be the security parameter. Define the following distributions:

• D0(1
λ) : Compute (pk1, sk1), (pk2, sk2) ← Gen(1λ), k = Agree(sk1,pk2), and output

(pk1,pk2, k).

• D1(1
λ) : Compute (pk1, sk1), (pk2, sk2)← Gen(1λ), k← K, and output (pk1,pk2, k).

If A is a PPT distinguishing algorithm, then ∀b ∈ {0, 1}, define

PAb (λ) := Pr(pk1,pk2,k)←Db(1λ)

[
A(1λ,pk1,pk2, k) = 1

]
. (2)

Then, for all PPT distinguishing adversaries A,∣∣PA0 (λ)− PA1 (λ)
∣∣ = negl(λ). (3)

2.3 Authenticated Encryption

Authenticated encryption (AE) is a cryptographic primitive that provides confidentiality and integrity
of messages exchanged between two parties which each hold a shared symmetric key.
Definition 2. An authenticated encryption scheme is a triple of PPT algorithms AE =
(Gen,Enc,Dec) with the following syntax, correctness, and security.

Syntax:

• Gen(1λ) takes as input the security parameter λ and outputs a symmetric key k ∈ K in the
key space K.

• Enc(k,m) takes as input a symmetric key k ∈ K, a message m ∈ M in the message space M,
and outputs a ciphertext c = (c′, t) ∈ C of m under k in ciphertext space C. c′ denotes the
actual ciphertext of the message, while t denotes the message authentication code (MAC).

• Dec(k, c) takes as input a symmetric key k ∈ K and a ciphertext c = (c′, t) ∈ C, and
outputs either a message m ∈ M or an error symbol ⊥.

Correctness: Let λ be the security parameter. If k ← Gen(1λ), m ∈ M is a message, c ←
Enc(k,m), then Dec(k, c) = m.

Semantic Security: Let λ be the security parameter. If k ← Gen(1λ), then for every PPT
distinguishing adversary A and distinct messages m0,m1 ∈ M, it holds that∣∣∣Prc←Enc(k,m0)

[
A(1λ,m0,m1, c) = 1

]
− Prc←Enc(k,m1)

[
A(1λ,m0,m1, c) = 1

]∣∣∣ = negl(λ). (4)

Ciphertext Integrity: Let λ be the security parameter. The AE scheme AE = (Gen,Enc,Dec) is
said to provide ciphertext integrity if every PPT adversaryA can only win the following game against
a computationally unbounded challenger C with probability negl(λ):
Setup: C computes k← Gen(1λ).
Query Phase: For all i = 1, . . . , r = poly(λ), A generates a message mi ∈ M and send mi to C. C
then computes and outputs to A the ciphertext ci ← Enc(k,mi).
Challenge Phase: A produces and sends to C a ciphertext c′ ∈ C. A wins if c′ /∈ {c1, . . . , cr} and
Dec(k, c′) ̸= ⊥.

2.4 Pseudorandom Generator

Definition 3. Let r, s ∈ N such that r < s. A pseudorandom generator (PRG) [21, 22] is a PPT
function G : {0, 1}r → {0, 1}s such that G

(
U({0, 1}r)

)
≈c U({0, 1}s), where U({0, 1}r) and

U({0, 1}s) denote the uniform distributions on {0, 1}r and {0, 1}s, respectively.

A PRG G can be used to strecth a random shared symmetric key in the following way. Let K be
a symmetric key space and q,m ∈ N such that log2(|K|) < m log2(q). Then, it is easy to see that
without loss of generality we can define a PRG G : K→ Zm

q .

4

2.5 Additive Secret Sharing

Let n, t, q ∈ N. A (t, n)−secret sharing scheme over Zq is a pair of PPT algorithms (Share,Rec)
with the following properties:

• Share(x) takes as input a secret x ∈ Zq and outputs shares {si}i∈[n] for a set of n users,
indexed by [n].

• Rec({xij}j∈[t]) takes as input a subset {xij}j∈[t] ⊆ Zq of t distinct shares of a secret
x ∈ Zq , and reconstructs and outputs x ∈ Zq .

• Any subset of shares of size less than t is statistically independent of the underlying secret.

Additive secret sharing is a (n, n)−secret sharing scheme over Zq in which Share(x) chooses random
s1, . . . , sn−1 ← Zq, computes sn = x −

∑
i∈[n−1]

si ∈ Zq, and outputs {si}i∈[n]. Rec({si}i∈[n])

simply works by outputting
n∑

i=1

si ∈ Zq . Note that any subset of {si}ni=1 of size k < n is distributed

identically to k uniformly random elements of Zq , hence is statistically independent of the secret x.

2.6 Homomorphic Encryption

Homomorphic encryption (HE) [4, 5, 16, 18, 19, 26, 27] is a cryptographic primitive which enables
computation directly on encrypted data. That is, HE is an encryption scheme which supports
homomorphic addition or multiplication operations, so that a party, holding only ciphertexts of two
messages m1,m2, can apply the homomorphic addition (resp., multiplication) operation to compute a
ciphertext of m1+m2 (resp., m1 ·m2). Since an arbitrary computable function f : {0, 1}∗ → {0, 1}∗
can be expressed as an arithmetic circuit, then theoretically a HE scheme allows a client C, which
holds a private input x ∈ {0, 1}∗, to outsource the computation of f(x) to a server S without
revealing any information about x to S. This works by C encrypting x ∈ {0, 1}∗ and sending the
ciphertext to S, which can homomorphically compute a ciphertext of f(x) which can be decrypted
by C. The semantic security of the HE scheme ensures that S learns no information about x during
the homomorphic evaluation of f(x).

A partially homomorphic encryption (PHE) scheme is an HE scheme that supports either homo-
morphic addition or multiplication operations, but not both. PHE schemes are either additive ho-
momorphic encryption (AHE) schemes or multiplicative homomorphic encryption (MHE) schemes.
An example of an AHE scheme is Paillier Encryption [26], while examples of MHE schemes are
RSA [28] and ElGamal Encryption [17].

A fully homomorphic encryption (FHE) scheme is a HE scheme that supports both homomorphic
addition and multiplication operations. First constructed by Craig Gentry in [18], numerous follow-up
works [4, 5, 16, 19] introduced improved constructions of FHE schemes. Most FHE constructions
rely on a computationally expensive bootstrapping operation [1, 9, 13] to refresh the ciphertexts
after a fixed-length consecutive sequence of homomorphic operations. Indeed, these bootstrapping
algorithms continue to serve as the principal bottleneck in achieving FHE as a computationally
practical general-purpose solution to privacy-preserving cloud-outsourced computation.

In this work, we use AHE, and so for completeness we provide a formal definition of AHE below.
Definition 4. An additive homomorphic encryption (AHE) scheme is a quadruple of PPT algorithms
AHE = (Gen,Enc,Dec,Add) with the following syntax, correctness, and security.

Syntax:

• Gen(1λ) takes as input the security parameter λ ∈ N and outputs a public/secret key pair
(pk, sk).

• Enc(pk,m) takes as input a public key pk and message m ∈ M in the message space M,
and outputs a ciphertext c ∈ C in the ciphertext space C.

• Dec(sk, c) takes as input a secret key sk and ciphertext c ∈ C, and outputs a message
m ∈ M.

• Add(c1, c2) takes as input two ciphertexts c1, c2 ∈ C and outputs a ciphertext c3 ∈ C.

5

Correctness of Decryption: Let λ ∈ N be the security parameter, m ∈ M be a message, and
suppose (pk, sk)← Gen(1λ), c← Enc(pk,m). Then, Dec(sk, c) = m.

Correctness of Homomorphic Addition: Let λ ∈ N be the security parameter, m1,m2 ∈ M be a
message, and suppose (pk, sk)← Gen(1λ), ci ← Enc(pk,mi) ∀i ∈ {1, 2}, and c3 ← Add(c1, c2).
Then, Dec(sk, c3) = m1 +m2.

Semantic Security: Let λ ∈ N be the security parameter, and suppose (pk, sk)← Gen(1λ). If A
is a PPT distinguishing algorithm and m0,m1 ∈ M are distinct messages, then ∀b ∈ {0, 1} define

PAb (λ, pk,m0,m1) := Prc←Enc(pk,mb)

[
A(1λ,pk,m0,m1, c) = 1

]
. (5)

Then, for every PPT distinguishing adversary A and distinct messages m0,m1 ∈ M, it holds that∣∣∣PA0 (λ,pk,m0,m1)− PA1 (λ,pk,m0,m1)
∣∣∣ = negl(λ). (6)

2.7 Differential Privacy

Differential privacy (DP) [14, 15] is a statistical model of private aggregate data release which masks
a single party’s contribution to the aggregate data. That is, DP ensures that no adversary, given access
to the differentially private aggregate data, can infer any information about any particular party’s
contribution to the aggregate data. While an adversary may infer be able to infer information about
some client’s contribution to the aggregate data, they can’t associate that inference with a particular
client.

Let X,Y ⊆ R, n,m ∈ N, and f : Xn → Y m be a function. f is meant to model an aggregate
function of data collected from n users which is represented as a database record x ∈ Xn. We define
the function dist(·, ·) : Xn ×Xn → Z as the hamming distance function (i.e., dist(x,x′) = #{i ∈
[n] : xi ̸= x′i}). A differentially private mechanism for f is a PPT algorithmMf which gets oracle
access to f , takes input in Xn, and provides output in Y m. We now provide a formal definition of a
differentially private mechanism below.
Definition 5. Let ε, δ > 0. A PPT algorithm Mf is said to be an (ε, δ)−differentially private
mechanism for f if ∀x,x′ ∈ Xn such that dist(x,x′) = 1, and ∀S ⊆ supp(M),

Pry←Mf (x)

[
y ∈ S

]
≤ eε · Pry′←Mf (x′)

[
y′ ∈ S

]
+ δ. (7)

The parameters (ε, δ) in the definition above are said to be the privacy parameters. It is important to
emphasize that a differentially private mechanismMf does not:

• Guarantee that the outputMf (x) cryptographically hides either the aggregate data f(x) or
the input record x.

• Guarantee that the values ofMf (x) andMf (x′) are the same when dist(x,x′) = 1.

A differentially private mechanismMf does guarantee is if x,x′ ∈ Xn are neighboring databases
(i.e., dist(x,x′) = 1), then the distributions Mf (x) and Mf (x′) are close. Consequently, no
adversary can distinguish between the cases in which it seesMf (x) andMf (x′), thus masking a
particular user’s contribution to the aggregate data. It follows that any information the adversary
could possibly infer fromMf (x) can’t be associated with a particular user i ∈ [n].

All differentially private mechanisms work by introducing controlled error into the output computa-
tion; this error is generally calibrated to the sensitivity1 of the function to be privately released. Two
state-of-the-art differentially private mechanisms are the noise-based constructions of the Laplace
and Gaussian mechanisms; see [15] for details on these constructions, as well as for a more complete
treatment of DP.

1If p ∈ N, then the ℓp−sensitivity of a function f : Xn → Y m is defined as

∆p(f) := max
x,x′∈Xn s.t.
dist(x,x′)=1

{∣∣∣∣f(x)− f(x′)
∣∣∣∣

p

}
,

where || · ||p denotes the ℓp−norm.

6

3 Client-Private Secure Aggregation

In this section, we define our model of client-private secure aggregation and describe its security
model.

Secure Aggregation. Let λ ∈ N be the security parameter and n = n(λ), q = q(λ),m = m(λ). A
secure aggregation protocol is a secure multi-party computation (MPC) protocol executed among a
set of parties P = {C1, . . . , Cn,S} consisting of n clients C1, . . . , Cn and a server S. The protocol
utilizes the star network graph in which each client Ci has an established secure communication
channel with the server S . Each client Ci holds a private input xi ∈ Zm

q , the server has no input, and
all parties securely compute z =

∑
i

xi ∈ Zm
q . In each round of the protocol, every client sends a

message to the server, and the server responds with a message for each client.

Client-Private Secure Aggregation. Here we define a novel model of secure aggregation which
we call client-private secure aggregation (CPSA). The syntax of a CPSA protocol Π is described
in Figure 1. In CPSA, the server outputs a ciphertext c of the sum z =

∑
i

xi of the clients’ inputs,

which only the clients can decrypt to z. Intuitively, the security of the protocol enforces that an
adversarial server learns no information about any client’s input, not even the sum of their inputs.
Additionally, no adversary which corrupts a subset of parties containing at least one client learns any
information about any non-corrupted client’s input, except for what could be inferred from the sum
of the clients’ inputs. We formally define the security model of CPSA in Section 3.1.

Notation: Let λ ∈ N be the security parameter and n = n(λ), q = q(λ),m = m(λ),
m′ = m′(λ) ∈ N. The protocol participants are n clients C1, . . . , Cn and a server S. Let
C be the ciphertext space of an encryption scheme.

Input: Each client Ci (i ∈ [n]) receives as input xi ∈ Zm
q ; the server S has no input.

Output: The server S outputs a vector c ∈ Cm′
to each client Ci; each client Ci then

outputs
n∑

i=1

xi ∈ Zm
q .

Figure 1: The syntax of a client-private secure aggregation protocol Π.

Adding Differential Privacy. We briefly describe a generic method to integrate differential privacy
(DP) into CPSA. By adding DP to CPSA, we can enforce the additional security property that any
information which an adversarial subset of parties containing at least one client can infer from
the sum of the clients’ inputs about some client’s input cannot be associated with any particular
client. Following the distributed DP approach outlined in [29], each client Ci can employ the
Gaussian Mechanism Mσ (σ > 0) to perturb their input xi ∈ Zm

q by an independent sample
ei ← Nm

σ encoded component-wise into the domain Zm
q of the protocol2, where Nσ is the Gaussian

distribution with mean 0 and variance σ2. If ε ∈ (0, 1) and δ > 0, then by Theorem 3.22 in [15],
Mσ is (ε, δ)−differentially privacy when σ >

√
∆2(f)/ε ·

(
ln(25δ/16)

)1/4
, where ∆2(f) is the

ℓ2−sensitivity of the sum function f : (Zm
q)n → Rm defined by f

(
(x1, . . . ,xn)

)
=

∑
i

xi. In

order to obtain a reasonable bound on ∆2(f), we can employ the norm clipping technique outlined
in [30]: in PPFL, after each client Ci locally trains their model and obtains a vector vi ∈ Rm of
model weights, they can clip vi by rescaling v′i := vi/max{1, ||vi||/C}. It turns out that we can
now bound ∆2(f) ≤ 2C/k, where C > 0 is the clipping threshold and k ∈ N is the minimum
client dataset size (Lemma 1 of [30]). Since the Gaussian distribution is additive with respect to the
variance of independent samples

(
i.e., if ei ← Nσi ∀i ∈ {1, 2} (σ1, σ2 > 0), then e1 + e2 ← Nσ′

where σ′ =
√
σ2
1 + σ2

2

)
, then each client can locally perturb its input by an independent sample

2This encoding can work, for example, by mapping each component ei,j 7→
⌊
(ei,j/B) · 2τ

⌉
∈ Zq , where

⌊·⌉ denotes the integer rounding function, B > 0 such that each |ei,j | ≤ B, and τ ∈ N is a precision parameter.

7

ei ← Nm
σ for σ >

√
2C/(knε) ·

(
ln(25δ/16)

)1/4
. Then, at the end of the protocol, each client

outputs
∑
i

vi +
∑
i

ei, where
∑
i

ei ← Nσ
√
n and σ

√
n >

√
2C/(kε) ·

(
ln(25δ/16)

)1/4
, as desired.

3.1 Security Model

We next describe the security model of CPSA. Let Π be a CPSA protocol. We define two notions of
security:

S1: No information about any client’s input, other than the protocol output, is revealed to any
other party.

S2: No information about any client’s input, not even the protocol output, is revealed to the
server.

Additionally, we are concerned with the threats:

T1: A subset of colluding clients attempts to learn information about another client’s input.
T2: The server alone attempts to learn information about some client’s input.
T3: A subset of clients collude with the server to attempt to steal information about another

client’s input.

Our security model of client-private secure aggregation enforces S1 against against all threats, and S2
against T2. Since by definition of client-private secure aggregation, each client computes the protocol
output in the clear, then it is not possible to enforce S2 against T3.

We formally prove each notion of security using the standard real/ideal world paradigm. Let A be
a PPT adversary controlling a corrupted subset C ⊆ P of parties. We define the view of A in Π as
the distribution that includes the input and random coins from each P ∈ C, as well as the messages
sent to each P ∈ C from the non-corrupted parties. Let Sim be a PPT simulation algorithm which
simulates the view of A in an ideal execution of Π, without access to the non-corrupted parties’
inputs. The ideal execution of Π is defined in Figure 2. We define the following random variables:

• RealΠ,P,C,A

(
1λ, {xi}i∈[n]

)
is the view of A during a real execution of Π.

• IdealΠ,P,C,A,Sim

(
1λ, {xi}i∈[n] s.t.

Ci∈C

)
is the view of A during an ideal execution of Π.

We say that Π is secure against A controlling C if there exists a PPT simulation algorithm Sim such

that RealΠ,P,C,A

(
1λ, {xi}i∈[n]

)
≈c IdealΠ,P,C,A,Sim

(
1λ, {xi}i∈[n] s.t.

Ci∈C

)
.

There are two types of adversaries we are concerned with: semi-honest and malicious adversaries. A
semi-honest adversary instructs the corrupted parties to follow the protocol honestly, but attempts
to infer information about the non-corrupted parties’ inputs from its view. In contrast, a malicious
adversary can instruct the corrupted parties to deviate from the protocol, sending arbitrary messages
or dishonestly forwarding messages to parties, to attempt to infer information about the non-corrupted
parties from its view. We say that Π is secure in the semi-honest model (resp., secure in the malicious
model), if for every semi-honest (resp., malicious) adversaryA, and every subset C ⊆ P of corrupted
parties, Π is secure against A controlling C.

4 Explicit Constructions of CPSA

In this section, we provide three explicit constructions of CPSA, and discuss their trade-offs. Actually,
our first protocol construction Π0 is just a simple modification of the two-round secure aggregation
protocol of [3] described in [7]: their protocol works by the clients C1, . . . , Cn computing random
elements r1, . . . , rn ← Zq, respectively, such that

∑
i

ri = 0 ∈ Zq. Each client Ci, holding input

xi ∈ Zq , then computes a one-time pad yi := xi + ri ∈ Zq of their input and sends yi to the server S .
S then computes z =

∑
i

yi =
∑
i

xi ∈ Zq , and outputs z to each client. The protocol Π0 simply has

8

Notation: Let λ ∈ N be the security parameter and n = n(λ), q = q(λ),m = m(λ),
m′ = m′(λ) ∈ N. The protocol participants are a set P = {C1, . . . , Cn,S} consisting of
n clients C1, . . . , Cn and a server S. Let (Gen,Enc,Dec) be an encryption scheme with
ciphertext space C. Let A be a PPT adversary which controls a subset C ⊆ P of
corrupted parties, and Sim be a PPT simulation algorithm which simulates the
distribution of messages sent from the non-corrupted parties to the corrupted parties.

Input: Each client Ci ∈ C receives as input xi ∈ Zm
q ; the server S has no input. The

simulation algorithm Sim does not have access to the non-corrupted clients’ inputs.

Output: The server S computes and outputs a vector c ∈ Cm′
to each client Ci; each

client Ci outputs
n∑

i=1

xi ∈ Zm
q .

Simulation: In each round of Π, every corrupted client Ci ∈ C computes its output
message according to A, and sends that message to S. Every non-corrupted client
Cj ∈ {C1, . . . , Cn}\C computes its output message according to Sim, and sends that
message to S. If S is corrupted (resp., non-corrupted), then S computes its output
messages for each client according to A (resp., Sim), and sends each client their
corresponding message.

Figure 2: The ideal execution of Π.

Criterion Π0 Π1 Π2

Rounds 2 3 3
Client Computational Complexity O(mn) O(mn) O(mn)
Server Computational Complexity O(mn2) O(n(m+ n)) O(mn2)
Client Communication Complexity O(mn) O(m+ n) O(mn)
Server Communication Complexity O(mn2) O(n(m+ n)) O(mn2)

Client Storage Complexity O(m+ n) O(m+ n) O(m+ n)
Server Storage Complexity O(mn2) O(m) O(m)
Reusable Decryption Key No No Yes

Table 1: A theoretical comparison of the CPSA protocols of Π0,Π1, and Π2. The reusable decryption
key criterion refers to whether the decryption key which the clients use at the end of the protocol to
decrypt the encrypted sum of their inputs can be used over multiple iterations of CPSA (for PPFL).
For each criterion, the protocol which is optimal with respect to this criterion is displayed in red.

each client Ci use an authenticated encryption scheme to encrypt yi for every other client Cj under a
shared symmetric key ki,j . The server S simply forwards the appropriate ciphertexts to each client,
who can then compute z =

∑
i

yi =
∑
i

xi ∈ Zq . We formally describe the protocol Π0 in Appendix

A.

We now construct two more CPSA protocols: Π1 and Π2. Table 1 provides a theoretical evaluation
and comparison of the three protocols Π0,Π1,Π2. Π1 is optimal with respect to almost every
criterion, except that Π0 is two-round protocol and Π2 supports a reusable decryption key. The latter
point means that the key which the clients use at the end of the protocol to decrypt the encrypted
sum of their inputs can be reused over multiple iterations of CPSA. This is important since when
applied to PPFL, if the decryption key is not reusable and a client joins the collaboration in a future
iteration of PPFL, in order to decrypt the encrypted initial global model from the server, a trusted
setup algorithm would have to distribute the decryption key from the previous iteration of PPFL
to the new client. This requires interaction between the protocol participants and the trusted setup
algorithm to update the decryption key in each iteration of PPFL. On the other hand, CPSA schemes
which support a reusable decryption key allow the trusted setup algorithm to simply distribute a fixed
decryption key to the new client upon joining the collaboration, without the need for interaction
with the protocol participants to update the decryption key after each iteration. Additionally, letting
m′ ∈ N be the dimension of the ciphertext vector which the server computes in the last round of
CPSA, we have m′ = O(mn2) in Π0, while m′ = m in Π1 and Π2. We next proceed to the explicit
constructions of Π1 and Π2.

9

4.1 Protocol Π1

Here, we construct a three-round CPSA protocol Π1 with semi-honest security. At a high level,
the protocol works by each client Ci choosing a uniformly random si ← Zq, and the clients all
jointly computing s :=

∑
i

si ← Zq , which is kept secret from the server S . Then, clients C1, . . . , Cn
compute random vectors r1, . . . , rn ← Zq, respectively, such that

∑
i

ri = 0 ∈ Zq. Each client Ci,

holding input xi ∈ Zq , then computes yi := xi + si + ri ∈ Zq , and sends yi to S . The server S then
computes c :=

∑
i

yi =
∑
i

xi + s ∈ Zq and outputs c to each client. Each client Ci then computes

z := c− s =
∑
i

xi ∈ Zq . Note that the server computes a one-time pad c of z which each client can

decrypt to z. The full protocol description is detailed in Figure 3.

Setup: All parties have access to the security parameter λ ∈ N, a key agreement scheme
KA = (Gen,Agree) with key space K, a pseudorandom generator G : K→ Zm

q , and an
authenticated encryption scheme AE = (Gen,Enc,Dec).

Input: Each client Ci has a private input xi ∈ Zm
q ; the server S has no input.

Output: The server outputs a ciphertext c ∈ Zm
q to each client Ci (i ∈ [n]); each client

Ci then outputs
n∑

i=1

xi ∈ Zm
q .

Round 1:
• Ci → S : Generate (pk

(b)
i , sk

(b)
i)← KA.Gen(1λ), ∀b ∈ {0, 1}, and output

(pk
(0)
i , pk

(1)
i).

• S → Ci : Output
{
(pk

(0)
j , pk

(1)
j)

}
j∈[n]

to each client Ci (i ∈ [n]).

Round 2:
• Ci → S : Choose si ← K and store si. For all j ∈ [n]\{i}, b ∈ {0, 1}, compute

k
(b)
i,j = KA.Agree(sk

(b)
i , pk

(b)
j), and store

{
(k

(0)
i,j , k

(1)
i,j)

}
j∈[n]\{i}

. For all j ∈ [n]\{i},

compute ci,j ← AE.Enc(k
(0)
i,j , si). Output {ci,j}j∈[n]\{i}.

• S → Ci : Output {cj,i}j∈[n]\{i} to each client Ci (i ∈ [n]).

Round 3:
• Ci → S : Receive {cj,i}j∈[n]\{i}, and ∀j ∈ [n]\{i} compute

sj = G
(
AE.Dec(k

(0)
i,j , cj,i)

)
∈ Zm

q . Compute si = G(si), s =
n∑

j=1

sj ∈ Zm
q , and store

s. For all j ∈ [n]\{i}, compute ri,j = G(k
(1)
i,j). Compute and output

yi = xi + si +
∑
j<i

ri,j −
∑
j>i

ri,j ∈ Zm
q .

• S → Ci : Receive {yi}i∈[n]. Compute c′ =
n∑

i=1

yi ∈ Zm
q . Output c′ to each client Ci.

• Ci : Receive c′ ∈ Zm
q . Output c′ − s ∈ Zm

q .

Figure 3: Protocol Π1

Correctness. We now prove the correctness of Π1, captured by Lemma 6 below.
Lemma 6. After an execution of Π1, the server computes and outputs c′ =

∑
i

xi + s ∈ Zm
q , and

each client outputs
∑
i

xi ∈ Zm
q .

Proof. In Round 3, the server computes

c′ =
∑
i

yi =
∑
i

xi + s+
∑
i>j

ri,j −
∑
i<j

ri,j ∈ Zm
q . (8)

10

The key observation is that for each distinct pair (i, j), ri,j = G
(
KA.Agree(sk

(1)
i ,pk

(1)
j)

)
=

G
(
KA.Agree(sk

(1)
j ,pk

(1)
i)

)
= rj,i, hence

∑
i>j

ri,j −
∑
i<j

ri,j = 0 ∈ Zm
q . We thus have that (8) =∑

i

xi + s ∈ Zm
q . Each client, holding both c′ and s, then computes c′ − s =

∑
i

xi ∈ Zm
q .

Security. We now prove the security of P1. Specifically, we prove the security property S1 against
threats T1 and T3 (Lemmas 7 and 8, resp.), and security property S2 against the threat of T2 (Lemma
9).
Lemma 7. Let A be a semi-honest adversary which corrupts a subset C ⊂ {C1, . . . , Cn} of clients.
Then, Π1 is secure against A controlling C.

Proof. Let T = {i ∈ [n] : Ci /∈ C}, and assume WLOG that T ̸= ∅. Observe that in the
protocol Π1, the only messages which fall into the view of A that are dependent on {xi}i∈T
is the computation c′ =

n∑
i=1

xi + s ∈ Zm
q sent from the server to each client in the last round

of the protocol. Since each client holds s ∈ Zm
q , and each corrupted client Ci ∈ C holds

their input xi ∈ Zm
q , then nothing more than z :=

∑
i∈T

xi = c′ −
∑
i/∈T

xi − s ∈ Zm
q is re-

vealed to A. So, the simulation algorithm Sim which is the same as Π1, except that each non-
corrupted client Cj is given input x′j ← Zm

q such that
∑
j∈T

xj = z ∈ Zm
q , is such that the

view of A in this simulation is distributed identically to RealΠ1,P,C,A

(
1λ, {xi}i∈[n]

)
. Hence

we have RealΠ1,P,C,A

(
1λ, {xi}i∈[n]

)
≡ IdealΠ1,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
, which completes the

proof.

Lemma 8. Let A be a semi-honest adversary which corrupts a subset C ⊂ P of parties containing
the server S and at least one client. Then, Π1 is secure against A controlling C.

Proof. Let RealΠ1,P,C,A

(
1λ, {xi}i∈[n]

)
denote the distribution of the view of A in a real execution

of Π1 in which A corrupts C. We’ll construct a PPT simulation algorithm Sim which simulates the
view of A without access to the non-corrupted clients’ inputs. By definition of the ideal execution of
Π1 (Figure 2), this completes the proof. Let T = {i ∈ [n] : Ci /∈ C}. We may assume WLOG that
T ̸= ∅.
We’ll actually make one small modification to the ideal execution of Π1 in this case. Although the
simulation algorithm Sim is not given access to the non-corrupted parties’ inputs, we will endow
Sim with the sum z :=

∑
i∈T

xi +
∑
i∈T

si ∈ Zm
q of the non-corrupted parties’ inputs. Note that this is

without loss of generality since any adversary, given the server’s output
∑

i∈[n]
xi + s ∈ Zm

q , and the

values
{
(xi, si)

}
i/∈T ⊆ Zm

q × Zm
q held by the corrupted parties can efficiently compute z. We thus

replace IdealΠ1,P,C,A,Sim

(
1λ, {xi}i/∈T

)
with IdealΠ1,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

We now proceed by a standard hybrid argument:

• H0 : This hybrid is simply a real execution of Π1.

• H1 : This hybrid is the same asH0 except that in Round 3, for each Ci ∈ {C1, . . . , Cn}\C,
we choose ri ← Zm

q such that
∑
i∈T

ri = z ∈ Zm
q , and Ci instead lets yi := ri ∈ Zm

q . By

Lemma 6.1 in [3], we have thatH0 ≡ H1.

We define Sim by H1, and it follows that RealΠ1,P,C,A

(
1λ, {xi}i∈[n]

)
≡ H0 ≡ H1 ≡

IdealΠ1,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

11

Lemma 9. LetA be a semi-honest adversary which corrupts the server S . Then, Π1 is secure against
A controlling C = {S}.

Proof. Let Sim be the simulation algorithm which is the same as Π1, except that in Round 3, each
client Ci chooses ui ← Zm

q and instead sends yi := ui+si ∈ Zm
q to the server. Since the distribution

of each si is computationally indistinguishable from the uniform distribution on Zm
q , it follows that

RealΠ1,P,C,A

(
1λ, {xi}i∈[n]

)
≈c IdealΠ1,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

4.2 Protocol Π2

We now construct a second novel CPSA protocol Π2 which achieves semi-honest security. While the
computational and communication complexity of Π2 is greater than Π1, in Π2 the server computes a
ciphertext of the sum of the clients’ inputs under an asymmetric key pair shared by the clients, which
can be reused over multiple iterations of CPSA for PPFL. At a high level, the protocol works by
each client Ci first receiving a public/secret key pair (pk, sk) for an additive homomorphic encryption
(AHE) scheme from a trusted setup algorithm. Next, each client Ci splits their input xi ∈ Zq into n
additive secret shares {si,j}j∈[n] ⊆ Zq , one for every client, and distributes each share si,j to Client
Cj by way of the server. Now, each client Ci holds shares {sj,i}j∈[n] ⊆ Zm

q , and sums over the shares
to compute ti =

∑
j∈[n]

sj,i ∈ Zq, which is a share of the sum z =
∑

r∈[n]
xr ∈ Zq. Each client Ci then

uses the AHE scheme to encrypt their share ti under pk to obtain a ciphertext ci which they send
to the server. The server homomorphically reconstructs z by homomorphically adding {ci}i∈[n],
obtaining a ciphertext c′ of z. The server then outputs c′ to each client, which uses sk to decrypt c′ to
z. The full protocol description is detailed in Figure 4.

Remark. Note that in our protocol Π2, each client Ci holds the same AHE secret key sk. Although
this is not typical in homomorphic encryption solutions to MPC when the number of parties is greater
than 2, in this application the AHE scheme is used to hide the protocol output, which can be viewed
as a secret shared by all clients, from the server. If an adversary controlling the server corrupts a
client, then the AHE secret key sk falls into the view of the adversary. Thus the adversary learns all
of the clients’ shares of the sum z ∈ Zm

q , and hence the plaintext sum z falls into the adversary’s
view. But, since the adversary has corrupted the client, then z already falls into its view, and so no
further information about any non-corrupted client’s input is revealed to the adversary.

Correctness. We now prove the correctness of Π2, captured by Lemma 10 below.
Lemma 10. After an execution of Π2, the server outputs a vector of ciphertexts c′′ ∈ Cm to each
client, and each client outputs

∑
i

xi ∈ Zm
q .

Proof. After the end of Round 1, each client Ci holds their secret key ski and a public key pkj from
every other client Cj (j ̸= i) for the key agreement scheme KA. So, in Round 2, each client Ci
computes a shared symmetric key ki,j with every other client Cj . Ci then splits its private input
into additive secret shares {si,j}j∈[n] ⊆ Zm

q for every client, encrypts each Cj’s share si,j (j ̸= i)
with the authenticated encryption scheme AE under the shared symmetric key ki,j , and sends the
resulting ciphertexts to the server. The server then forwards to each client Ci ciphertexts of its shares
sj,i from every other client Cj , which it decrypts in Round 3 to obtain {sj,i}j∈[n]. Ci then computes
ti =

∑
j∈[n]

sj,i ∈ Zm
q , which it follows is a share of z :=

∑
j∈[n]

xi ∈ Zm
q . Finally, Ci uses the additive

homomorphic encryption scheme AHE to encrypt ti under pk, obtaining a ciphertext c′i, which it
sends to the server. By definition of additive secret sharing, it follows that

∑
i∈[n]

ti = z ∈ Zm
q . So, the

server, each holding AHE ciphertext vectors c′1, . . . , c
′
n of t1, . . . , tn, respectively, component-wise

homomorphically adds {c′1, . . . , c′n} to obtain a ciphertext c′′ of z, which it outputs to each client.
Each client then computes z = AHE.Dec(sk, c′′).

Security. We now prove that Π2 is secure with respect to S1 and S2 in the semi-honest model.
Let A be a semi-honest adversary controlling a subset C ⊆ P of corrupted parties. First, we note

12

Setup: All parties have access to the security parameter λ ∈ N, a key agreement scheme
KA = (Gen,Agree) with key space K, an authenticated encryption scheme
AE = (Gen,Enc,Dec), and an additive homomorphic encryption scheme
AHE = (Gen,Enc,Dec,Add) with plaintext space Zq and ciphertext space C. As part of
a one-time trusted setup phase, a trusted setup algorithm generates
(pk, sk)← AHE.Gen(1λ) and sends (pk, sk) to each client Ci (i ∈ [n]).

Input: Each client Ci has a private input xi ∈ Zm
q ; the server S has no input.

Output: The server outputs a ciphertext c′′ ∈ Cm to each client Ci (i ∈ [n]); each client

then outputs
n∑

i=1

xi ∈ Zm
q .

Round 1:
• Ci → S : Generate (pki, ski)← KA.Gen(1λ), and output pki.

• S → Ci : Output {pkj}nj=1.

Round 2:
• Ci → S : For each j ∈ [n]\{i}, compute ki,j = KA.Agree(ski,pkj). For all
j ∈ [n− 1], choose si,j ← Zm

q , and let si,n = xi −
∑

j∈[n−1]

si,j ∈ Zm
q .

For each j ∈ [n]\{i}, perform the following:
For all k ∈ [m], compute ci,j,k ← AE.Enc(ki,j , si,j,k), and let ci,j = (ci,j,k)k∈[m].
Output {ci,j}j∈[n]\{i}.

• S → Ci : Receive {ci,j}j∈[n]\{i} from each client Ci (i ∈ [n]). Output
{cj,i}j∈[n]\{i} to each client Ci.

Round 3:
• Ci → S : For each j ∈ [n]\{i}, perform the following:
For all k ∈ [m], compute sj,i,k = AE.Dec(ki,j , ci,j,k), and let sj,i = (sj,i,k)k∈[m].
Compute ti =

∑
j∈[n]

sj,i ∈ Zm
q . For each k ∈ [m], compute c′i,k ← AHE.Enc(pk, ti,k).

Output c′i := (c′i,k)k∈[m] ∈ Cm.

• S → Ci : Initialize c′′ := c′1. For all i ∈ {2, . . . , n}, perform the following:
For all k ∈ [m], update c′′k ← AHE.Add(c′′k , c

′
i,k).

Output c′′ to each client Ci.

• Ci : Receive c′′. For all k ∈ [m], compute zk = AHE.Dec(sk, c′′k).
Output z := (zk)k∈[m] ∈ Zm

q .

Figure 4: Protocol Π2

that the security S2 of Π2 when C = {S} follows immediately from the semantic security of the
authenticated encryption and additive homomorphic encryption schemes. It thus suffices to prove the
security S1 of Π2 when there exists some client Ci ∈ C. Lemma 11 below completes the proof of
security.

Lemma 11 (Security). Let A be a semi-honest adversary which corrupts a subset C ⊂ P of parties
containing at least one client. Then, Π2 is secure against A controlling C.

Proof. We may assume without loss of generality that T := {i ∈ [n] : Ci /∈ C} ̸= ∅. Let
z =

∑
i∈T

xi ∈ Zm
q . We’ll actually make one small modification to the ideal execution of Π2

in this case. Although the simulation algorithm Sim is not given access to the non-corrupted
parties’ inputs, we will endow Sim with the sum z :=

∑
i∈T

xi ∈ Zm
q of the non-corrupted parties’

inputs. Note that this is without loss of generality since any adversary, given the protocol output∑
i∈[n]

xi ∈ Zm
q and the corrupted parties inputs {xi}i/∈T ⊆ Zm

q can efficiently compute z. We thus

replace IdealΠ2,P,C,A,Sim

(
1λ, {xi}i/∈T

)
with IdealΠ2,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
. We now proceed

by a standard hybrid argument.

13

Client Server
n Π0 Π1 Π2 Π0 Π1 Π2

50 0.458 0.243 16.763 0.000690 0.00191 0.195
100 0.934 0.482 16.990 0.00659 0.00497 0.415
250 2.334 1.234 18.0570 0.0342 0.0198 1.0150

Table 2: Client and server running times for n ∈ {50, 100, 250} (m = 100).

Client
Comm Overhead (KB) Space Overhead (KB)

Π0 868.029 21.303
Π1 14.099 29.411
Π2 925.239 21.391

Server
Comm Overhead (MB) Space Overhead (MB)

Π0 87.751 86.791
Π1 2.3603 0.0044
Π2 92.996 5.720

Table 3: Client and server communication and space overhead (n = 100,m = 100).

• H0 : This hybrid is simply a real execution of Π2.

• H1 : This hybrid is the same as H0, except that for each non-corrupted client Ci ∈
{C1, . . . , Cn}\C, in Round 2, for each Cj ∈ C, we set si,j ← Zm

q . Since the view of
the adversary after Round 2 contains {si,j}i∈T

j /∈T
, then by the security of the additive secret

sharing scheme we have thatH0 ≡ H1.

• H2 : In this hybrid, it will be more convenient to index the non-corrupted clients by
Ci1 , . . . , Cir . For each j ∈ [r − 1], in Round 2, Cij generates shares {sij ,t}t∈[n] of 0, while
Cir generates shares {sir,t}t∈[n] of z′. Similarly, by the security of the additive secret
sharing scheme we have thatH1 ≡ H2.

We define Sim by H2, and it follows that RealΠ2,P,C,A(1
λ, {xi}i∈[n]) ≡ H0 ≡ H1 ≡ H2 ≡

IdealΠ2,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

5 Experimental Results

In this section, we empirically evaluate our CPSA protocols Π0,Π1,Π2 with respect to their running
time, communication overhead, and space overhead. We implemented both protocols in Python,
using Elliptic Curve Diffie-Hellman for a key agreement scheme, AES-GCM for an authenticated
encryption scheme, AES-CTR for a pseudorandom generator, and Paillier Encryption [26] for
an additive homomorphic encryption scheme. For each protocol construction, we conducted the
following experiments:

• Measure running time for client and server for number n of clients, dimension m of clients’
input vector, and modulus q, when n ∈ {50, 100, 250}, m = 100, q = 2128.

• Measure communication and space overhead for client and server when n = 100,m =
100, q = 2128.

All experiments were run on a MacBook Pro with Intel Core i7 6-core 2.6 GHz CPU, and each
party was simulated as a sub-process. Our experiments only measure the local performance of the
protocol, and in particular ignore network latency. Table 2 compares the running times vs. number
n ∈ {50, 100, 250} of clients between the three protocols for the client and server, respectively.
Our experiments indicate that the running times of Π1 are most performant. We can see that while
our theoretical analysis of the computational complexity of protocols Π2 and Π0 indicates they are

14

identical, in reality the running time of Π2 for both the client and server is noticeably higher than that
of Π0. This is due to the cost of the homomorphic operations of Paillier Encryption. However, note
that the running times for Π2 are still practical, with the client and server obtaining running times
less than 19 s and 2 s, respectively, even when scaled to 250 clients.

Table 3 displays the client and server communication and space overhead for each protocol con-
struction when n = 100 and m = 100. Again, our experiments indicate that Π1 is generally most
performant with respect to both communication and space overhead; this confirms our theoretical
analysis (Table 1) which shows that Π1 achieves linear communication complexity. Between Π0

and Π2, we remark that for both the client and server, the communication and space overhead
are quite comparable, except that the server’s space overhead of 5.72 MB in Π2 is significantly
lower than for Π0 (86.791 MB). This is because in Π2, the server outputs to each client a single
m−dimensional vector of ciphertexts, while in Π0, the server outputs to each client an (n− 1)−sized
set of m−dimensional ciphertext vectors.

6 Conclusions and Future Work

In this work, we propose a novel model of secure aggregation, called client-private secure aggregation
(CPSA), in which the server computes an encrypted global model that can only be decrypted by the
clients. When composed with differential privacy, the security property is that no party learns any
information beyond the global model about any client’s dataset, and any possibly inferred information
from the global model cannot be associated with any particular client. In particular, the server learns
no information about any client’s dataset, not even the global model. We provide three explicit
constructions of CPSA, each with varying trade-offs, and prove correctness and security in the
semi-honest model for each construction. Finally, we empirically evaluate our three constructions to
demonstrate their practicality and illustrate the trade-offs offered by each protocol.

There are several elements of future work which we seek to incorporate into the full version of this
work. First, we believe it’s possible to prove that (a simple modification to) each of these protocols
is secure against a malicious adversary. Also, we believe we can employ techniques to mitigate the
client and server running time of our implementation of Π2. For example, it may be possible to
use the additive homomorphic version of ElGamal Encryption [17], which works over small input
domains, and is more computationally efficient than Paillier Encryption. Alternatively, we wish to
investigate packing Paillier ciphertexts, following [25], to improve the client and server running
times.

Acknowledgements. We thank Xianrui Meng for fruitful conversations and feedback on this work.
Additionally, we thank the anonymous reviewers of FL-NeurIPS’22 for their helpful suggestions and
feedback.

References
[1] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In J. A. Garay

and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616
of Lecture Notes in Computer Science, pages 297–314. Springer, 2014.

[2] C. Beguier and E. W. Tramel. SAFER: sparse secure aggregation for federated learning. CoRR,
abs/2007.14861, 2020.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In
B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1175–1191. ACM, 2017.

[4] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

15

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. Electron. Colloquium Comput. Complex., page 111, 2011.

[6] D. Byrd, V. Mugunthan, A. Polychroniadou, and T. H. Balch. Collusion resistant federated
learning with oblivious distributed differential privacy. CoRR, abs/2202.09897, 2022.

[7] D. Byrd and A. Polychroniadou. Differentially private secure multi-party computation for
federated learning in financial applications. In T. Balch, editor, ICAIF ’20: The First ACM
International Conference on AI in Finance, New York, NY, USA, October 15-16, 2020, pages
16:1–16:9. ACM, 2020.

[8] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In B. Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science,
pages 453–474. Springer, 2001.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In J. H. Cheon and T. Takagi, editors, Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 3–33, 2016.

[10] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and A. Das.
Differential privacy-enabled federated learning for sensitive health data. CoRR, abs/1910.02578,
2019.

[11] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and A. Das.
Anonymizing data for privacy-preserving federated learning. CoRR, abs/2002.09096, 2020.

[12] O. Choudhury, Y. Park, T. Salonidis, A. Gkoulalas-Divanis, I. Sylla, and A. Das. Predicting
adverse drug reactions on distributed health data using federated learning. In AMIA 2019, Amer-
ican Medical Informatics Association Annual Symposium, Washington, DC, USA, November
16-20, 2019. AMIA, 2019.

[13] L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than
a second. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture
Notes in Computer Science, pages 617–640. Springer, 2015.

[14] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science, pages 265–284. Springer, 2006.

[15] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

[16] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol.
ePrint Arch., page 144, 2012.

[17] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In G. R. Blakley and D. Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO

’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture
Notes in Computer Science, pages 10–18. Springer, 1984.

[18] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178. ACM, 2009.

16

[19] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 75–92. Springer, 2013.

[20] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A client level
perspective. CoRR, abs/1712.07557, 2017.

[21] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions (extended
abstract). In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach,
Florida, USA, 24-26 October 1984, pages 464–479. IEEE Computer Society, 1984.

[22] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In D. S. Johnson,
editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17,
1989, Seattle, Washington, USA, pages 25–32. ACM, 1989.

[23] Y. Guo, A. Polychroniadou, E. Shi, D. Byrd, and T. Balch. Microfedml: Privacy preserving
federated learning for small weights. IACR Cryptol. ePrint Arch., page 714, 2022.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In A. Singh and X. J. Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of
Machine Learning Research, pages 1273–1282. PMLR, 2017.

[25] T. D. T. Nguyen and M. T. Thai. Preserving privacy and security in federated learning. CoRR,
abs/2202.03402, 2022.

[26] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

[27] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, volume 4, pages 169–180, 1978.

[28] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[29] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. A hybrid
approach to privacy-preserving federated learning. In L. Cavallaro, J. Kinder, S. Afroz, B. Biggio,
N. Carlini, Y. Elovici, and A. Shabtai, editors, Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security, AISec@CCS 2019, London, UK, November 15, 2019, pages
1–11. ACM, 2019.

[30] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek, and H. V. Poor.
Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans.
Inf. Forensics Secur., 15:3454–3469, 2020.

[31] B. Zhao, K. R. Mopuri, and H. Bilen. idlg: Improved deep leakage from gradients. CoRR,
abs/2001.02610, 2020.

[32] W. Zheng, L. Yan, C. Gou, and F.-Y. Wang. Federated meta-learning for fraudulent credit card
detection. In Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pages 4654–4660, 2021.

[33] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 14747–
14756, 2019.

17

A Protocol Π0

The protocol Π0, described below, achieves a client-private secure aggregation protocol with semi-
honest security through a simple modification to the two-round semi-honest secure variant of [3] (the
two-round variant is described in [7]). At a high level, the protocol works by each client Ci computing
a quasi-one-time pad of its private input xi ∈ Zm

q as yi := xi + ri ∈ Zm
q , where the clients’ random

masks r1, . . . , rn ← Zm
q are chosen such that

∑
i

ri = 0 ∈ Zm
q . Each client Ci then simply encrypts

yi for every other client Cj under a shared symmetric key ki,j , and sends the ciphertexts to the server,
which routes them to the appropriate clients. Each client Ci then has a set of one-time pads {yj}j∈[n]
whose random masks sum to zero, hence the client computes z :=

∑
j∈[n]

yj =
∑

j∈[n]
xj , as desired.

Figure 4 contains the full protocol description of Π0.

Setup: All parties have access to the security parameter λ ∈ N, a key agreement scheme
KA = (Gen,Agree) with key space K, a pseudorandom generator G : K→ Zm

q , and an
authenticated encryption scheme AE = (Gen,Enc,Dec) with ciphertext space C.

Input: Each client Ci has a private input xi ∈ Zm
q ; the server S has no input.

Output: The server outputs ciphertexts (cj,i)j∈[n]\{i} ∈ Cm(n−1) to each client Ci
(i ∈ [n]); each client then outputs

n∑
i=1

xi ∈ Zm
q .

Round 1:
• Ci → S : Generate (pk

(b)
i , sk

(b)
i)← KA.Gen(1λ), ∀b ∈ {0, 1}, and output

(pk
(0)
i , pk

(1)
i).

• S → Ci : Output
{
(pk

(0)
j , pk

(1)
j)

}n

j=1
.

Round 2:
• Ci → S : For all j ∈ [n]\{i}, b ∈ {0, 1}, compute k

(b)
i,j = KA.Agree(sk

(b)
i , pk

(b)
j).

For all j ∈ [n]\{i}, compute ri,j = G(k
(1)
i,j). Let yi = xi +

∑
j<i

ri,j −
∑
j>i

ri,j ∈ Zm
q .

For all j ∈ [n]\{i}, k ∈ [m], compute ci,j,k ← AE.Enc(k
(0)
i,j , yi,k). For all j ∈ [n]\{i},

let ci,j = (ci,j,k)k∈[m] ∈ Cm. Output {ci,j}j∈[n]\{i}.

• S → Ci : Store
{
{cj,i}j∈[n]\{i}

}
i∈[n]

. Output {cj,i}j∈[n]\{i} to each client Ci.

• Ci : For all j ∈ [n]\{i}, k ∈ [m], compute wj,k = AE.Dec(k
(0)
i,j , cj,i,k). For all

j ∈ [n], let wj = (wj,k)k∈[m] ∈ Zm
q if j ̸= i, or wj = yi otherwise. Output

z =
∑

j∈[n]

wj ∈ Zm
q .

Figure 5: Protocol Π0

Correctness. We prove the correctness of Π0 in Lemma 12 below.

Lemma 12 (Correctness). After an execution of Π0, the server outputs to each client Ci (i ∈ [n])
ciphertexts {cj,i}j∈[n]\{i} ∈ Cm(n−1), and each client outputs

∑
i

xi ∈ Zm
q .

Proof. In Round 1, each client Ci uses the key agreement scheme to generate two sets of public/secret
key pairs

(
(pk

(b)
i , sk

(b)
i)

)
b∈{0,1}, and sends (pk(0)i ,pk

(1)
i) to the server. The server then forwards

(pk
(0)
i ,pk

(1)
i)i∈[n] to each client. For each pair of clients (Ci, Cj) (i ̸= j), and for each b ∈ {0, 1}, Ci

(resp., Cj) uses their secret key sk
(b)
i (resp., sk(b)j) and the public key pk

(b)
j (resp., pk(b)i) of client Cj

(resp., Ci) to compute a shared random key k
(b)
i,j = k

(b)
j,i .

18

Now, each client Ci computes ri,j = G(k
(1)
i,j), ∀j ∈ [n]\{i}, yi = xi +

∑
j<i

ri,j −
∑
j>i

ri,j ∈ Zm
q ,

uses the authenticated encryption scheme to encrypt each component of yi under k(0)i,j to obtain a
vector of ciphertexts ci,j , ∀j ∈ [n]\{i}, and outputs {ci,j}j∈[n]\{i} to the server. The server forwards
{cj,i}j∈[n]\{i} to each client Ci.
Now, each client Ci uses the authenticated encryption scheme to decrypt the components of each cj,i,
using k

(0)
i,j , to recover yj ∈ Zm

q , ∀j ∈ [n]\{i}. Ci then computes z =
∑

j∈[n]
yj =

∑
j∈[n]

xj +
∑
j<k

rj,k +∑
j>k

rj,k =
∑

j∈[n]
xj +

∑
j<k

rj,k −
∑
j>k

rk,j =
∑

j∈[n]
xj , since each rj,k = rk,j .

Security. We now prove that Π0 is secure with respect to S1 and S2 in the semi-honest model.
Let A be a semi-honest adversary controlling a subset C ⊆ P of corrupted parties. First, we note
that the security S2 of Π0 when C = {S} follows immediately from the semantic security of the
authenticated encryption scheme. So, it suffices to prove the security S1 of Π0 when there exists
some client Ci ∈ C. Lemma 13 below completes the security proof.
Lemma 13 (Security). Let A be a semi-honest adversary which corrupts a subset C ⊆ P of parties
such that some client Ci ∈ C. Then, Π0 is secure against A controlling C.

Proof. Let C ⊆ P , and RealΠ0,P,C,A(1
λ, {xi}i∈[n]) denote the distribution of the view of A in a

real execution of Π0 in which A corrupts C. We’ll construct a PPT simulation algorithm Sim which
simulates the view of A without access to the non-corrupted clients’ inputs. By definition of the ideal
execution of Π0 (Figure 2), this completes the proof. Let T = {i ∈ [n] : Ci /∈ C}. We may assume
WLOG that T ̸= ∅.
Just as in the proof of Lemma 11, we may endow Sim with the sum z :=

∑
i∈T

xi ∈ Zm
q

of the non-corrupted parties’ inputs. We thus replace IdealΠ0,P,C,A,Sim

(
1λ, {xi}i/∈T

)
with

IdealΠ0,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

We now proceed by a standard hybrid argument.

• H0 : This hybrid is simply a real execution of Π0.

• H1 : For each Ci ∈ {C1, . . . , Cn}\C, we choose ri ← Zm
q such that

∑
i∈T

ri = z ∈ Zm
q , and

Ci instead lets yi := ri ∈ Zm
q . Note that since the adversary corrupts some client Cj , then

each symmetric key k
(0)
i,j (i ∈ [n] s.t. Ci /∈ C) falls into the adversary’s view, hence so does

each yi. By Lemma 6.1 in [3], we have thatH0 ≡ H1.

We define Sim by H1, and it follows that RealΠ0,P,C,A(1
λ, {xi}i∈[n]) ≡ H0 ≡ H1 ≡

IdealΠ0,P,C,A,Sim

(
1λ, {xi}i/∈T , z

)
.

19

	Introduction
	Preliminaries
	Notation
	Key Agreement Scheme
	Authenticated Encryption
	Pseudorandom Generator
	Additive Secret Sharing
	Homomorphic Encryption
	Differential Privacy

	Client-Private Secure Aggregation
	Security Model

	Explicit Constructions of CPSA
	Protocol 1
	Protocol 2

	Experimental Results
	Conclusions and Future Work
	Protocol 0

