
TFG: Unified Training-Free Guidance
for Diffusion Models

Haotian Ye1∗ Haowei Lin2∗ Jiaqi Han1∗ Minkai Xu1 Sheng Liu1

Yitao Liang2 Jianzhu Ma3 James Zou1

Stefano Ermon1

1Stanford University 2Peking University 3Tsinghua University

Abstract

Given an unconditional diffusion model and a predictor for a target property
of interest (e.g., a classifier), the goal of training-free guidance is to generate
samples with desirable target properties without additional training. Existing
methods, though effective in various individual applications, often lack theoretical
grounding and rigorous testing on extensive benchmarks. As a result, they could
even fail on simple tasks, and applying them to a new problem becomes unavoidably
difficult. This paper introduces a novel algorithmic framework encompassing
existing methods as special cases, unifying the study of training-free guidance into
the analysis of an algorithm-agnostic design space. Via theoretical and empirical
investigation, we propose an efficient and effective hyper-parameter searching
strategy that can be readily applied to any downstream task. We systematically
benchmark across 7 diffusion models on 16 tasks with 40 targets, and improve
performance by 8.5% on average. Our framework and benchmark offer a solid
foundation for conditional generation in a training-free manner.1

1 Introduction

Recent advancements in generative models, particularly diffusion models [61, 21, 62, 66], have
demonstrated remarkable effectiveness across vision [65, 48, 52], small molecules [74, 73, 24],
proteins[1, 72], audio [35, 29], 3D objects [40, 41], and many more. Diffusion models estimate the
gradient of log density (i.e., Stein score, [67]) of the data distribution [65] via denoising learning
objectives, and can generate new samples via an iterative denoising process. With impressive
scalability to billions of data [58], future diffusion models have the potential to serve as foundational
generative models across a wide range of applications. Consequently, the problem of conditional
generation based on these models, i.e., tailoring outputs to satisfy user-defined criteria such as labels,
attributes, energies, and spatial-temporal information, is becoming increasingly important [63, 2].

Conditional generation methods like classifier-based guidance [66, 7] and classifier-free guidance [23]
typically require training a specialized model for each conditioning signal (e.g., a noise-conditional
classifier or a text-conditional denoiser). This resource-intensive and time-consuming process greatly
limits their applicability. In contrast, training-free guidance aims to generate samples that align with
certain targets specified through an off-the-shelf differentiable target predictor without involving any
additional training. Here, a target predictor can be any classifier, loss function, probability function,
or energy function used to score the quality of the generated samples.

In classifier-based guidance [66, 7], where a noise-conditional classifier is specifically trained to
predict the target property on both clean and noisy samples, incorporating guidance in the diffusion

∗Equal contribution. Corresponding to mailto:haotianye@stanford.edu.
1Code is available at https://github.com/YWolfeee/Training-Free-Guidance.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:haotianye@stanford.edu
https://github.com/YWolfeee/Training-Free-Guidance


Figure 1: (a) Illustration of the unified search space of our proposed TFG, where the height (color)
stands for performance. Existing algorithms search along sub-manifolds, while TFG results in
improved guidance thanks to its extended search space. (b) The label accuracy (higher the better) and
Fréchet inception distance (FID, lower the better) of different methods for the label guidance task on
CIFAR10 [30], averaged across ten labels. Ours (TFG-4) performs much closer to training-based
methods. (c∼h) TFG generated samples across various tasks in vision, audio, and geometry domains.

process is straightforward since the gradient of the classifier is an unbiased driving term. Training-
free guidance, however, is fundamentally more difficult. The primary challenge lies in leveraging
a target predictor trained solely on clean samples to offer guidance on noisy samples. Although
various approaches have been proposed [18, 63, 6, 2, 78] and are effective for some individual tasks,
theoretical grounding and comprehensive benchmarks are still missing. Indeed, existing methods
fail to produce satisfactory samples for label guidance even on simple datasets such as CIFAR10
(Figure 1). Moreover, the lack of quantitative comparisons between these methods makes it difficult
for practitioners to identify an appropriate algorithm for a new application scenario.

This paper proposes a novel and general algorithmic framework for (and also named as) Training Free
Guidance (TFG). We show that existing approaches are special cases of the TFG as they correspond
to particular hyper-parameter subspace in our unified space. In other words, TFG naturally simplifies
and reduces the study of training-free guidance, as well as the comparisons between existing methods,
into the analysis of hyper-parameter choices in our unified design space. Within our framework, we
analyze the underlying theoretical motivation of each hyper-parameter and conduct comprehensive
experiments to identify their influence. Our systematic study offers novel insights into the principles
behind training-free guidance, allowing for a transparent and efficient survey of the problem.

2



Based on the framework, we propose a hyper-parameter searching strategy for general downstream
tasks. We comprehensively benchmark TFG and existing algorithms across 16 tasks (ranging
from images to molecules) and 40 targets. TFG achieves superior performance across all datasets,
outperforming existing methods by 8.5% on average. In particular, it excels in generating user-
required samples in various scenarios, regardless of the complexity of targets and datasets.

In summary, we (1) propose TFG that unifies existing algorithms into a design space, (2) theoretically
and empirically analyze the space to propose an effective space-searching strategy for general
problems, and (3) benchmark all methods on numerous qualitatively different tasks to present the
superiority of TFG and the guideline for future research in training-free conditional generation
algorithms. This advancement demonstrates the efficacy of TFG and establishes a robust and
comprehensive benchmark for future research in training-free conditional generation algorithms.

2 Background

Generative diffusion model. A generative diffusion model is a neural network that can be used to
sample from an unconditional distribution p0(x) with the support on any continuous sample space
X [21, 62, 64, 27]. For instance, X could be [−1, 1]d×d×3 representing the RGB colors of d × d
images [4, 22], or R3d representing the 3D coordinates of molecules with d atoms [24, 74, 73]. Given
a data x0 sampled from p0(x), a time step t ∈ [T ] ≜ {1, · · · , T}, a corresponding noisy datapoint
is constructed as xt =

√
ᾱtx0 +

√
1− ᾱtϵ where ϵ ∼ N (0, I) and {ᾱt}Tt=1 is a set of pre-defined

monotonically decreasing parameters used to control the noise level. Following [21], we further define
αt = ᾱt/ᾱt−1 for t > 1 and α1 = ᾱ1. The diffusion model ϵθ : X × [T ] 7→ X parameterized by θ is
trained to predict the noise ϵ that was added on xt with p.d.f pt(xt) =

∫
x0

p0(x0)pt|0(xt|x0)dx0
2.

In theory, this corresponds to learning the score of pt(x) [65], i.e.,

argmin
ϵθ

T∑
t=1

Ex0∼p0(x0),ϵ∼N (0,I)∥ϵθ(xt, t)− ϵ∥ = −
√
1− ᾱt∇ log pt. (1)

For sampling, we start from xT ∼ N (0, I) and gradually sample xt−1 ∼ pt−1|t(xt−1|xt). This
conditional probability is not directly computable, and in practice, DDIM [62] samples xt−1 via

xt−1 =
√
ᾱt−1x0|t +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0|t√

1− ᾱt
+ σtϵ, (2)

where {σt}Tt=1 are DDIM parameters, ϵ ∼ N (0, I), and

x0|t = m(xt) ≜
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
(3)

is the predicted sample given xt. According to the Tweedie’s formula [11, 51], x0|t equals to the
conditional expectation E[x0|xt] under perfect optimization of ϵθ in Equation (1). It has been theo-
retically established that the above sampling process results in x0 ∼ p(x) under certain assumptions.

Target predictor. For a user required target c, we use a predictor fc(x) : X 7→ R+ ∪ {0} 3 to
represent how well a sample x is aligned with the target (higher the better). Here fc(x) can be
a conditional probability p0(c|x) for a label c [62, 14], a Boltzmann distribution exp−ec(x) for
any pre-defined energy function ec [31, 63, 38], the similarity of two features [47], or even their
combinations. The goal is to samples from the conditional distribution

p0(x|c) ≜
p0(x)fc(x)∫

x̃
p0(x̃)fc(x̃)dx̃

. (4)

2In this paper, we use p(x) to represent the probability density function (p.d.f.), and pt(x), pt|s(x|x̃) to
represent the probability at time step t and the conditional probability of x at time step t given x̃ at time step s.

3Here c can has any mathematical form. We assume in this paper that fc(x) has finite two norm, i.e.∫
x∈X [f2

c (x)] < +∞, such that the probabilistic explanation is well-defined.

3



Training-based guidance for diffusion models. [66] proposes to train a time-dependent classifier to
fit fc(xt, t) ≜ Ex0∼p0|t(·|xt)fc(x0). This can be regarded as a predictor over noisy samples. Since

∇xt
log pt(xt|c) = ∇xt

log

∫
x0

pt|0(xt|x0)p0(x0|c)dx0

= ∇xt
log

∫
x0

pt(xt)p0|t(x0|xt)fc(x0)dx0

= ∇xt log pt(xt) +∇xt log fc(xt, t), (5)

if we denote the trained classifier as f(xt) (that implicitly depends on c and model parameters),
we can replace ϵθ(xt, t) in Equation (3) by ϵθ(xt, t) −

√
1− ᾱt∇xt

log f(xt) upon sampling to
obtain unbiased sample x0 ∼ p0(x0|c). On the other hand, [23] proposes the classifier-free diffusion
guidance approach. Instead of training a time-dependent predictor f , it encodes conditions c directly
into the diffusion model as ϵθ(x, c, t) and trains this condition-aware diffusion model with sample-
condition pairs. Both methods have been proven effective when training resources are available.

This paper in contrast focuses on conditional generation in a training-free manner: given a diffusion
model ϵθ(x, t) and an off-the-shelf target predictor f(x) (we omit the subscript c below), we aim
to generate samples from p0(x|c) without any additional training. Unlike training-based methods
that can accurately estimate f(xt, t), training-free guidance is significantly more difficult since it
involves guiding a noisy data xt using f(x) defined over the clean data space.

2.1 Existing algorithms

Most existing methods take advantage of the predicted sample x0|t defined in Equation (3) and use the
gradient of f(x) for guidance. We review and summarize five existing approaches below, and provide
a schematic and a copy of pseudo-code in Appendix B for the sake of reference. Due to the variety in
underlying intuitions and implementations, coupled with a lack of quantitative comparisons among
these methods, it is challenging to discern which operations are crucial and which are superfluous, a
problem we address in Section 3.

DPS [6] was initially proposed to solve general noisy inverse problems for image generation: for a
given condition y and a transformation operator A, we aim to generate image x such that ∥A(x)−y∥2
is small. For instance, in super-resolution task [71], the operator A is a down-sampling operator, and
y is a low-resolution image. DPS replaces ∇ log f(xt, t) in Equation (5) by ∇xt

log f(m(xt)). As
suggested in [63], this corresponds to a point estimation of the conditional density p0|t(x0|xt).

LGD [63] replaces the point estimation in DPS and proposes to estimate f(xt, t) with a Gaussian
kernel Ex∼N (x0|t,σ

2
t I)

f(x, t), where the expectation is computed using Monte-Carlo sampling [59].

FreeDoM [78] generalizes DPS by introducing a “recurrent strategy” (called “time-travel strat-
egy” [39, 10, 70]) that iteratively denoises xt−1 from xt and adds noise to xt−1 to regenerate xt back
and forth. This strategy empirically enhances the strength of the guidance at the cost of additional
computation. FreeDoM also points out the importance of altering guidance strength at different time
steps t, but a comprehensive study on which schedule is better is not provided.

MPGD [18] is proposed for manifold preserving tasks, e.g., the target predictor is supposed to
generate samples on a given manifold. It computes the gradient of log f(x0|t) to x0|t instead of
xt, i.e., ∇x0|t log f(x0|t) to avoid the back-propagation through the diffusion model ϵθ that is
highly inefficient. This strategy is effective in manifold-preserving problems, but whether it can be
generalized to general training-free problems is unclear. In addition to the computation difference,
theoretical understanding on the difference between gradients to x0|t and xt is missing.4

UGD [2] builds on FreeDoM, with the difference that it additionally solves a backward optimization
problem ∆0 = argmax∆ f(x0|t+∆) and guides x0|t and xt simultaneously. UGD also implements
the “recurrent strategy” to further improve generation quality.

4MPGD additionally proposed to use an auto-encoder to improve the quality of x0|t. However, an auto-
encoder is usually inaccessible or requires training; thus, we don’t apply it in our training-free scenario.

4



3 TFG: A Unified Framework for Training-free Guidance

Despite the array of algorithms available and their reported successes in various applications, we
conduct a case study on CIFAR10 [30] to illustrate the challenging nature of training-free guidance
and the insufficiency of existing methods. Specifically, for each of the ten labels, we use the pretrained
diffusion model and classifiers from [7, 9] to generate 2048 samples, where the hyper-parameters
are selected via a grid search for the fairness of comparison. We compute the FID and the label
accuracy evaluated by another classifier [20] and present results in Figure 1. Even in such a relatively
simple setting, all training-free approaches significantly underperform training-based guidance,
with a significant portion of generated images being highly unnatural (when guidance is strong) or
irrelevant to the label (when guidance is weak). These findings reveal the fundamental challenges
and highlight the necessity of a comprehensive study. Unfortunately, comparisons and analyses of
existing approaches are missing or primarily qualitative, limiting deeper investigation in this field.

3.1 Unification and extension

This sections introduces our unified framework for training-free guidance (TFG, Algorithm 1) and
formally defines its design space in Definition 3.1. We demonstrate the advantage of TFG by drawing
connections between TFG and other algorithms to show that existing algorithms are encompassed as
special cases. Based on this, all comparisons and studies of training-free algorithms automatically
become the study within the hyper-parameter space of our framework. This allows us to analyze the
techniques theoretically and empirically, and choose an appropriate hyper-parameter for a specific
downstream task efficiently and effectively, as shown in Section 4.

Algorithm 1 Training-Free Guidance
1: Input: Unconditional diffusion model ϵθ , target predictor f , guidance strength ρ,µ, γ̄, number of steps

T,Nrecur, Niter
2: xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: Define function f̃(x) = Eδ∼N (0,I)f(x+ γ̄

√
1− ᾱtδ)

5: for r = 1, · · · , Nrecur do
6: x0|t = (xt −

√
1− ᾱtϵθ(xt, t))/

√
ᾱt ▷ Obtain the predicted data

7: ∆t = ρt∇xt log f̃(x0|t)

8: ∆0 = ∆0 + µt∇x0|t log f̃(x0|t +∆0) ▷ Iterate Niter times starting from ∆0 = 0

9: xt−1 = Sample(xt,x0|t, t) + ∆t/
√
αt +

√
ᾱt−1∆0 ▷ Sample follows Equation (2)

10: xt ∼ N (
√
αtxt−1,

√
1− αtI) ▷ Recurrent strategy

11: end for
12: end for
13: Output: Conditional sample x0

Definition 3.1. Given a denoising step T , the hyper-parameter space (design space) of Algorithm 1
is defined as

HTFG = {(Nrecur, Niter, γ̄,ρ,µ) : Nrecur, Nrecur ∈ N, γ̄ ≥ 0,ρ,µ ∈
(
R+ ∪ {0}

)T }. (6)

We use HTFG to represent the complete hyper-parameter space and HTFG(Nrecur = N0) to represent
the subspace constrained on Nrecur = N0.

Definition 3.1 defines the hyper-parameter space spanned by TFG, where one hyper-parameter in
HTFG is an instantiation of the framework. Intuitively, Nrecur controls the recurrence of the algorithm,
Niter controls the iterating when computing ∆0 (Line 8), γ̄ controls the extent we smooth the original
guidance function f (Line 4), and ρ,µ control the strength of two types of guidance (Lines 7 and 8).
A comprehensive explanation of the effect of each hyper-parameter can be found in Section 3.2.

Below is the major theorem showing that all algorithms presented in Section 2.1 correspond to special
cases of TFG, thus unifying them into our framework and obviating the need for separate analyses.
Theorem 3.2. The hyper-parameter space of

• MPGD [18] HMPGD is equivalent to HTFG(Nrecur = Niter = 1,ρ = 0, γ̄ = 0).

• LGD [63] HLGD is equivalent to HTFG(Nrecur = 1, Niter = 0,µ = 0).

5



• UGD [2] HUGD is equivalent to HTFG(γ̄ = 0).

• DPS [6] HDPS is equivalent to HTFG(Nrecur = 1, Niter = 0,µ = 0, γ̄ = 0).

• FreeDoM [78] HFreeDoM is equivalent to HTFG(Niter = 0,µ = 0, γ̄ = 0).

The complete analysis and proof of Theorem 3.2 is postponed to Appendix C. It implies that existing
algorithms are limited in expressivity, covering only a subset of HTFG. In contrast, TFG covers the
entire space and is guaranteed to perform better. In addition, TFG streamlines nuances between
existing methods, allowing for a unified way to compare and study different techniques. Consequently,
the versatile framework that TFG provides can simplify its adaptation to various applications.

3.2 Algorithm and design space analysis

We now present a concrete analysis of TFG and its design space H in detail. Similar to standard
classifier-based guidance, TFG guides xt at each denoising step t. To provide appropriate and
informative guidance, TFG essentially leverages four techniques for guidance: Mean Guidance
(Line 8) controlled by Niter,µ, Variance Guidance (Line 7) controlled by ρ, Implicit Dynamic
(Line 4) controlled by γ̄, and Recurrence (Line 5) controlled by Nrecur.

Mean Guidance computes the gradient of f̃(x) to x0|t and is the most straightforward approach.
However, this method can yield inaccurate guidance. To show this, notice that under perfect optimiza-
tion we have x0|t = E[x0|xt], and when p0(E[x0|xt]) is close to zero, the predictor has rarely been
trained on data from the region close to x0|t, making the gradient unstable and noisy. To mitigate this,
one can iteratively add gradients of f̃(x) to x0|t, encouraging x0|t to escape low-probability regions.

Variance Guidance provides an alternative approach for improving the gradient estimation. The
reason why we dub it variance guidance might be ambiguous, as the only difference is that the
gradient is taken with respect to xt (Line 7) instead of x0|t (Line 8). The lemma below demonstrates
that this essentially corresponds to a covariance re-scaled guidance.
Lemma 3.3. If the model is optimized perfectly, i.e., ϵθ(x, t) = −

√
1− ᾱt∇ log pt(x), we have

∆t =

√
ᾱt

1− αt
Σ0|t∇x0|t f̃(x0|t), (7)

where Σ0|t ≜
∫
x
p0|t(x|xt)(x− E[x0|xt])(x− E[x0|xt])

⊤dx is the covariance of x0|xt.

Lemma 3.3 suggests that variance guidance refines mean guidance by incorporating the second-
order information of x0|xt, specifically considering the correlation among components within x0|t.
Consequently, positively correlated components could have guidance mutually reinforced, while
negatively correlated components could have guidance canceled. This also implies that mean guidance
and variance guidance are intrinsically leveraging different orders of information for guidance. In
TFG, variance guidance is controlled by ρt.

Table 1: Influence of the number of
Monte-Carlo samples in estimating the
expectation of Line 4. Both the FID and
the accuracy remain unchanged when
#Samples varies, suggesting that the
number of samples is less important.
More details are in Appendix E.1.

#Samples Variance only Mean only
FID Acc(%) FID Acc(%)

1 90.6 65.8 101 36.2
2 91.0 65.2 100 35.6
4 90.7 64.9 99.7 36.2

Implicit Dynamic transforms the predictor f into its con-
volution via a Gaussian kernel N (0, γ̄(1 − ᾱt)I). This
operation is initially introduced by LGD [63] to estimate
p0|t(x0|xt). However, it is unclear why the form is pre-
selected as a Gaussian distribution. We argue that this tech-
nique is effective because it creates an implicit dynamic
on x0|t. Specifically, starting from x0|t, it iteratively adds
noise to x0|t, evaluates gradient, and moves x0|t based
on the gradient. The repeating process converges to the
density proportional to f(x) when Niter goes to infinity,
driving x0|t to high-density regions. This explanation is
justified by Table 1: the performance remains nearly un-
changed as we gradually decrease the number of Monte-Carlo samples in estimating the expectation
(Line 4) down to 1, implying that the preciseness of estimation is not essential, but adding noises is.

Recurrence helps strengthen the guidance by iterating the previous three techniques to obtain xt−1

and resample xt back and forth. This can be understood as an Ornstein–Uhlenbeck process[42] on
xt−1 where Line 6∼9 corresponds to the drift term and xt−1 → xt (Line 10) the white noise term.
Intuitively, it finds a trade-off between the error inherited from previous steps (the more you recur, the

6



increase
decrease
constant

Nrecur=4
Nrecur=2
Nrecur=1

0.25 0.5 1.0 2.0 4.0

increase
decrease
constant

Nrecur=4
Nrecur=2
Nrecur=1

0.25 0.5 1.0 2.0 4.0

FIDFID

CIFAR10 ImageNet

A
cc

ur
ac

y

A
cc

ur
ac

y

CIFAR10 ImageNet

increase
decrease
constant

Niter=4
Niter=2
Niter=1

0.25 0.5 1.0 2.0 4.0

FID

increase
decrease
constant

Niter=4
Niter=2
Niter=1

0.25 0.5 1.0 2.0 4.0

FID

A
cc

ur
ac

y

A
cc

ur
ac

y

Figure 2: Comparison of three structures in Equation (8) of ρ and µ on CIFAR10 and ImageNet, under
different choices of the rest hyper-parameters in HTFG. We set ρ = 0, γ̄ = 0 when studying structures
of µ, and similarly for ρ. Results are averaged across all labels. The comparative relationship between
structures remains unchanged when the rest of the parameters vary.

less previous error stays) and the accumulated error in this step (the more you recur, the more error in
the current guidance you suffer). Empirically, we also find that the generation quality improves and
then deteriorates as we increase Nrecur.

4 Design Space of TFG: Analysis and Searching Strategy

Admittedly, a more extensive design space only yields a better performance if an effective and
robust hyper-parameter searching strategy can be applied. For example, arbitrarily complex neural
networks are guaranteed to have better optimal performance than simple linear models, but finding
the correct model parameters is significantly more difficult. This section dives into this core problem
by comprehensively analyzing the hyper-parameter space structure of HTFG, and further proposing a
general searching algorithm applicable for any general downstream tasks.

The hyper-parameters of HTFG can be categorized into two parts: time-dependent vectors ρ,µ,
and time-independent sacalars Nrecur, Niter, γ̄. While a grid search can potentially result in the
best performance, performing such an extensive search in HTFG is highly impractical, especially
considering the vector parameters ρ,µ. Fortunately, below we demonstrate that, if we decompose
ρ into ρ̄ · sρ(t) (same for µ) where ρ̄ is a scalar and sρ(t) is a “structure” (a non-negative function)
such that

∑
t sρ(t) = T , then some structures are consistently better than others regardless of the

other hyper-parameters. This allows us to pre-locate an appropriate structure for the given task and
efficiently optimize the rest of the scalar hyper-parameters. Our analysis is conducted on the label
guidance task on CIFAR-10 [30] and ImageNet [55], with experimental settings identical to Section 3.

Structure analysis. Motivated by the default structure selected in UGD and LGD, we consider three
structures for both sρ(t) and sµ(t) as

s(t) =
αt∑T
t=1 αt

(increase), s(t) =
(1− αt)∑T
t=1(1− αt)

(decrease), s(t) = 1(constant). (8)

These structures are selected to be qualitatively different, while each is justified to be reasonable
under certain conditions [18, 78, 2]. We leave the study of more structures to future works. The
rest of the parameters are grid-searched for the comprehensiveness of the analysis. For sρ(t), we
set Nrecur = {1, 2, 4} and ρ̄ = {0.25, 0.5, 1.0, 2.0, 4.0}; and for sµ(t), we set Niter = {1, 2, 4} and
µ̄ = {0.25, 0.5, 1.0, 2.0, 4.0}. We run label guidance for each configuration and each of the ten labels
on CIFAR10 (four labels on ImageNet, due to computation constraints).

As presented in Figure 2, the relationship between different structures remains unchanged when the
rest of the parameters vary. For instance, on both datasets, the Validity-FID performance curves
consistently move top-left (implying a better performance) when we switch from “decrease” structure
(red lines) to “constant” structure (yellow lines) to “increase” structure (blue lines) for both ρ,µ and
different values of Nrecur and Niter. This invariant relationship is essential as it allows for an efficient
hyper-parameters search in HTFG by first determining appropriate structures for sρ(t), sµ(t) under a
simple subspace, and then selecting the rest scalar parameters.

7



Table 2: List of 14 task types we benchmark. Each task is run with multiple individual targets (38 in total). We
evaluate the guidance validity (how well a sample is aligned with the target predictor) and the guidance fidelity
(how well a sample is aligned with the unconditional distribution) according to the task type.
Diffusion Model Task-ID Targets Guidance Validity Guidance Fidelity

Cat-DDPM Gaussian deblur \ LPIPS ↓ FID ↓
Super-resolution \ LPIPS ↓ FID ↓

CelebA-DDPM Combined guidance (gender+age) 2 genders × 2 ages Accuracy (%) ↑ KID (log) ↓
Combined guidance (gender+hair) 2 genders × 2 hair colors Accuracy (%) ↑ KID (log) ↓

CIFAR10-DDPM Label guidance (CIFAR10) 10 labels (0, · · · , 9) Accuracy (%) ↑ FID ↓

ImageNet-DDPM Label guidance (ImageNet) 4 labels (111, · · · , 444) Accuracy (%) ↑ FID ↓
Fine-grained guidance 4 labels (111, · · · , 444) Accuracy (%) ↑ FID ↓

Stable-Diffusion Style transfer 4 styles Style score ↓ CLIP score ↑
Molecule-EDM Quantum Properties (×6) Property distribution MAE ↓ Valid ratio ↑

Audio-Diffusion Audio declipping \ DTW (%) ↓ FAD ↓
Audio inpainting \ DTW (%) ↓ FAD ↓

A
cc

ur
ac

y

Ti
m

e 
C

os
t (

s /
 2

56
 sa

m
pl

es
)

FID

Nrecur=4 Niter=4
Niter=2
Niter=1

Nrecur=1 Nrecur=2 Nrecur=4

Nrecur=2
Nrecur=1

Niter=4
Niter=2
Niter=1

0.25 0.5 1.0 2.0 4.0

Figure 3: Accuracy and FID on CIFAR10 under
different Nrecur and Niter. sρ(t), sµ(t) are fixed
to “increase” structure, and ρ = γ = 0.

Computation cost analysis. Among the scalars
parameters, Nrecur and Niter directly influence the
total computational cost, while ρ̄, µ̄, γ̄ do not.
With a certain range, performance increases when
the value of Nrecur, Niter increase5, and the trade-
off between generation quality and computation
time is presented in Figure 3: recurrence leads to
a Nrecur times cost with clear performance gain;
iteration (on x0|t) results in less increase of com-
putation time, and its effect plateaus. In practice,
users can determine their values based on compu-
tation resources, but an upper bound of 4 suffices
to unlock a near-optimal performance.

Searching strategy. The above analysis successfully simplify the task-specific hyper-parameter
search problem without significant performance sacrifice. It remains to be decided the scalar values
ρ̄, µ̄, γ̄. Here we propose a strategy based on beam search to effectively and efficiently select their
values. Specifically, our searching strategy starts with an initial set T = {(ρ̄init, µ̄init, γ̄init)}, where
these initial values are small enough to approximate TFG as an unconditional generation. At each
searching step, for each tuple in T , we separately double the values of ρ̄, µ̄, and γ̄ to generate up to
3|T | new configurations. We conduct a small-sized generation trial for each new configuration and
update T to be the top K configurations with the highest evaluation results that are determined by
user requirements (e.g., accuracy, FID, or a combination). This iterative process is repeated until T
stabilizes or the maximum number of search steps is reached. Notice that this process is conducted
with a much smaller sample size, and consequently, the computation time is highly controllable.

5 Benchmarking

This section comprehensively benchmarks training-free guidance under the TFG framework and the
design searching strategy in Section 4. We consider 7 datasets, 16 different tasks, and 40 individual
targets with a total experimental cost of more than 2,000 A100 GPU hours. For comparison, we also
run experiments for each of the existing methods (where the design searching is conducted in the
corresponding subspace). All methods, tasks, search strategies, and evaluations are unified in our
codebase, with details specified in Appendices D and E.

5.1 Settings

Diffusion models. (1) CIFAR10-DDPM [48] is a U-Net [54] model trained on CIFAR10 [30]
images. (2) ImageNet-DDPM [7] is an larger U-Net model trained on ImageNet-1k [55] images. (3)
Cat-DDPM is trained on Cat [12] images. (4) CelebA-DDPM is trained on CelebA-HQ dataset [26]
that consists millions of human facial images. (5) Molecule-EDM [24] is an equivariant diffusion

5We notice that the FID worsens when Nrecur or Niter are too large (e.g., 10).

8



Table 3: Benchmarking TFG and existing algorithms on 16 task types and 40 individual targets. Each cell
presents the guidance validity/generation fidelity averaged across multiple targets in the task (e.g., labels, image
styles). The best guidance validity is bold, and the second best underline. The relative improvement of guidance
validity is computed between TFG and the existing method with the highest guidance validity.

Task-ID DPS LGD FreeDoM MPGD UGD TFG Rel. Improvement
Deblur (↓, ↓) 0.390 / 98.3 0.270 / 85.1 0.245 / 87.4 0.177 / 69.3 0.200 / 69.3 0.150 / 64.5 +15.3%

Super resolution (↓, ↓) 0.420 / 109 0.360 / 96.7 0.191 / 74.5 0.283 / 82.0 0.249 / 75.9 0.190 / 65.9 +0.524%
Gender+Age (↑, ↓) 71.6 / -4.26 52.0 / -5.10 68.7 / -3.89 68.6 / -4.79 75.1 / -4.37 75.2 / -3.86 +0.133%
Gender+Hair (↑, ↓) 73.0 / -3.90 55.0 / -5.00 67.1 / -3.50 63.9 / -4.33 71.3 / -4.12 76.0 / -3.60 +4.11%

CIFAR10 (↑, ↓) 50.1 / 172 32.2 / 102 34.8 / 135 38.0 / 88.3 45.9 / 94.2 52.0 / 91.7 +3.59%
ImageNet (↑, ↓) 38.8 / 193 11.5 / 210 19.7 / 200 6.80 / 239 25.5 / 205 40.9 / 176 +5.41%

Fine-grained (↑, ↓) 0.00 / 348 0.48 / 246 0.58 / 258 0.58 / 249 1.07 / 255 1.27 / 256 +18.7%
Style Transfer (↓, ↑) 5.06 / 31.7 5.42 / 31.3 5.26 / 31.2 4.08 / 31.5 4.97 / 31.5 3.16 / 29.0 +22.5%

Polarizability α (↓, ↑) 51169.7 / 92.3 7.155 / 84.3 5.922 / 88.0 4.26 / 88.4 5.45 / 73.8 3.90 / 84.2 +8.45%
Dipole µ (↓, ↑) 63.2 / 77.3 1.51 / 86.6 1.35 / 89.5 1.51 / 73.5 1.56 / 57.6 1.33 / 74.9 +1.48%

Heat capacity Cv (↓, ↑) 5.26 / 78.4 3.77 / 77.1 2.84 / 90.9 2.86 / 86.1 3.02 / 84.0 2.77 / 85.5 +2.57%
Highest MO energy ϵHOMO (↓, ↑) 0.744 / 83.8 0.664 / 66.4 0.623 / 62.3 0.554 / 53.4 0.582 / 58.2 0.568 / 77.3 -2.53%
Lowest MO energy ϵLUMO (↓, ↑) NA / NA 1.20 / 90.9 1.16 / 90.2 1.06 / 82.2 1.27 /85.1 0.984 / 80.1 +7.17%

MO energy gap ϵ∆ (↓, ↑) 1.38 / 75.7 1.19 / 85.3 1.17 / 88.5 1.07 / 72.5 1.15 / 75.7 0.893 / 62.5 +16.7%
Audio declipping (↓, ↓) 633 / 3.60 157 / 2.33 126 / 0.173 178 / 0.402 150 / 0.262 101 / 0.172 +19.8%
Audio inpainting (↓, ↓) 643 / 4.71 103 / 2.22 41.3 / 0.08 608 / 4.63 116 / 0.53 36.3 / 0.06 +12.1%

model pretrained on molecule dataset QM9 [50] that performs molecule generation from scratch.
(6) Stable-Diffusion (v1.5) [53] is a latent text-to-image model that generate images with text
prompts. (7) Audio-Diffusion6 is a audio diffusion model based on DDPM trained to generate mel
spectrograms of 256x256 corresponding to 5 seconds of audio.

Tasks. Our tasks (Table 2) cover a wide range of interests, including Gaussian deblur, super-resolution,
label guidance, style transfer, molecule property guidance, audio declipping, audio inpainting, and
guidance combination. Each task is run on multiple datasets or with multiple targets (e.g., different
labels, molecular properties, styles).

Other settings. We consistently set the time step T = 100 and the DDIM parameter η = 1. We
consider Nrecur = 1, Niter = 4 and use a single sample for Implicit Dynamic (Line 4) throughout
all experiments and methods for fair comparison. For TFG, the structures of ρ and µ are set to
“increase” and the scalars ρ̄, µ̄, γ̄ are determined via our searching strategy. We follow the setting in
original papers if they specify their hyper-parameters. blueFor specific tricks in the code that are not
mentioned in papers, we choose to align with original papers. Otherwise, values are determined via
searching with 1/8 of the sample size and a maximum search step of 6. For fairness of comparison,
we use accuracy as the metric during the search and compare different algorithms on the metric, but
we report both accuracy and FID.

5.2 Benchmarking results

We compare all six methods in Table 3. TFG outperforms existing algorithms in 13 over 14 settings,
achieving an average guidance validity improvement of 7.4% compared to the best existing algorithm.
Notice that we do not compare with the best algorithm in terms of generation fidelity because
obtaining high realness samples is not our objective in training-free guidance, and an unconditional
model suffices to generate high realness samples (with extremely low validity). Interestingly, different
methods achieve the second best performance on different tasks, suggesting the variance of these
methods, while TFG is consistent thanks to the unification.

We want to highlight that despite the superior performance of TFG, the key intention of our ex-
periments is not restrained to comparing TFG with existing methods, but more importantly to
systematically benchmark under the training-free guidance setting to see how much we have achieved
in various tasks with different difficulties. Below we go through each task separately and conduct
relevant ablation studies to provide a more fine-grained analysis.

Fine-grained label guidance. In addition to the standard label guidance, we for the first time study
the out-of-distribution fine-grained label guidance under the training-free setting, a problem where
no existing training-based methods are available. We consider the bird-species guidance using an

6https://huggingface.co/teticio/audio-diffusion-256

9

https://huggingface.co/teticio/audio-diffusion-256


EfficienNet trained to classify 525 fine-grained bird species. This problem remains highly difficult
for leading text-to-image generative models such as DALLE. Under recurrence, TFG can generate at
most 2.24% of accurate birds, compared with the unconditional generation rate of 0.

Table 4: The accuracy / FID for TFG with
different recurrence step Nrecur on three label
guidance datasets, averaged across all labels.

Recurrence 1 2 4

CIFAR10 52.0 / 91.7 66.8 / 88.7 77.1 / 73.9
ImageNet 40.9 / 177 52.3 / 163 59.8 / 165

Fine-grained 1.27 / 256 1.66 / 259 2.24 / 259

Recurrence on label guidance. We go back to the
failure case we study in Section 3, i.e., the stan-
dard label guidance problem on CIFAR10 where the
training-based method offers an 85% accuracy, while
the accuracy of TFG without recurrence accuracy is
52% only. As presented in Table 4, increasing Nrecur
significantly closes the gap from 33% to 8%. Similar
improvement is observed in other datasets as well.

Table 5: The accuracy of multi-label guid-
ance on CelebA, where labels 0 and 1 cor-
respond to female and male (gender), non-
blonde and blonde (hair color), and young
and old (age). The accuracy is lower for mi-
nority groups, indicating an implicit bias in
the generation process. Despite this, it is still
much higher than unconditional generation.

Target label 0+0 0+1 1+0 1+1

gender + hair 92.2 72.7 89.8 46.7
gender + age 92.9 73.6 93.6 69.1

Multiple guidance and bias mitigation. We next
consider the scenario with multiple targets: control
the generation of human faces based on gender and
hair color (or age) using two predictors. It is well
known that the label imbalance in CelebA-HQ causes
classifiers to focus on spurious correlations [76], such
as using hair colors to classify gender, a biased feature
we aim to avoid. The stratified performance of TFG
on “gender + age” and “gender + hair” guidance are
presented in Table 5. Despite the highly disparate
performance, training-free guidance largely alleviates
the imbalance: only 1% of images in CelebA are “male
+ blonde hair”, while the generated accuracy is 46.7%.

Molecule property guidance. To our knowledge, we are the first to study training-free guidance
for molecule generation. We interestingly find in Table 3 that TFG is effective in guiding molecules
towards desirable properties, yielding the highest guidance validity on 5 out of 6 targets with 5.64%
MAE improvement over existing methods, verifying the generality of our approach as a unified
framework in completely unseen domains. Notice that, unlike images, molecules with better validity
usually have lower generation fidelity, a finding reflected in previous work [3].

Audio Guidance. We extend our investigation to the audio modality, where TFG achieves significant
relative improvements over existing methods. Given that the audio domain is rarely explored in
training-free guidance literature, our benchmarks will contribute to future research in this area.

6 Discussions and Limitations

Recently, training-free guidance for diffusion models has gained increasing attention and has been
adopted in various applications. TFG is based on an extensive literature review over ten algorithmic
papers for different purposes, including images, audio, molecules, and motions [34, 8, 43, 32, 19, 13,
16, 15, 45, 38, 68]. While we incorporate several key algorithms into our framework, we acknowledge
that encompassing all approaches is impossible, as it would make the unification bloated and less
practical. We seek to find a balance point by unifying most representative algorithms while keeping
the techniques clear and easily studied.

An often discussed problem is why we care about training-free guidance, given the ever-growing
community of language-based generative models such as the image generator of GPT4. In practice,
there are countless conditional generation tasks where the conditions are hard to accurately convey
to or represent by language encoders. For instance, it can fail to under a complex property of a
molecule or generate CelebA-style faces. We give an illustrative analysis in Appendix A.1. Despite
that training-free guidance is important, this paper does not systematically analyze what types of
conditional generation are, in general, more suitable for the framework and what types are for
language-based models. That said, training-free guidance is fundamentally difficult due to the
misalignment between the training objective of target predictors and the diffusion, with a more
detailed discussion in Appendix A.2. This paper does not comprehensively analyze this misalignment,
and the gap between training-based and TFG remains high in some tasks like molecule property
guidance. We hope that future works can analytically dive into these problems.

10



References
[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pages 1–3, 2024.

[2] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 843–852,
2023.

[3] Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant
energy-guided SDE for inverse molecular design. In The Eleventh International Conference on
Learning Representations, 2023.

[4] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

[5] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
mmd gans. arXiv preprint arXiv:1801.01401, 2018.

[6] Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. Medical
image analysis, 80:102479, 2022.

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[8] Kieran Didi, Francisco Vargas, Simon V Mathis, Vincent Dutordoir, Emile Mathieu, Urszula J
Komorowska, and Pietro Lio. A framework for conditional diffusion modelling with applications
in motif scaffolding for protein design, 2024.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and mcmc. In International
conference on machine learning, pages 8489–8510. PMLR, 2023.

[11] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[12] Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared Saul. Asirra: A captcha that exploits
interest-aligned manual image categorization. In Proceedings of 14th ACM Conference on
Computer and Communications Security (CCS). Association for Computing Machinery, Inc.,
October 2007.

[13] Daniel Geng and Andrew Owens. Motion guidance: Diffusion-based image editing with
differentiable motion estimators. arXiv preprint arXiv:2401.18085, 2024.

[14] Alexandros Graikos, Srikar Yellapragada, and Dimitris Samaras. Conditional generation from
unconditional diffusion models using denoiser representations. arXiv preprint arXiv:2306.01900,
2023.

[15] Jiatao Gu, Qingzhe Gao, Shuangfei Zhai, Baoquan Chen, Lingjie Liu, and Josh Susskind.
Control3diff: Learning controllable 3d diffusion models from single-view images. In 2024
International Conference on 3D Vision (3DV), pages 685–696. IEEE, 2024.

[16] Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, and Dongsheng Li. Training-
free multi-objective diffusion model for 3d molecule generation. In The Twelfth International
Conference on Learning Representations, 2023.

11



[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[18] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim,
Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon.
Manifold preserving guided diffusion. In The Twelfth International Conference on Learning
Representations, 2024.

[19] Carlos Hernandez-Olivan, Koichi Saito, Naoki Murata, Chieh-Hsin Lai, Marco A Martínez-
Ramirez, Wei-Hsiang Liao, and Yuki Mitsufuji. Vrdmg: Vocal restoration via diffusion posterior
sampling with multiple guidance. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 596–600. IEEE, 2024.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[22] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim
Salimans. Cascaded diffusion models for high fidelity image generation. Journal of Machine
Learning Research, 23(47):1–33, 2022.

[23] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[24] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International conference on machine learning, pages
8867–8887. PMLR, 2022.

[25] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 694–711. Springer, 2016.

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[27] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

[28] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\’echet audio dis-
tance: A metric for evaluating music enhancement algorithms. arXiv preprint arXiv:1812.08466,
2018.

[29] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[31] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

[32] Jean-Marie Lemercier, Julius Richter, Simon Welker, Eloi Moliner, Vesa Välimäki, and Timo
Gerkmann. Diffusion models for audio restoration. arXiv preprint arXiv:2402.09821, 2024.

[33] Anat Levin, Yair Weiss, Fredo Durand, and William T Freeman. Understanding and evaluating
blind deconvolution algorithms. In 2009 IEEE conference on computer vision and pattern
recognition, pages 1964–1971. IEEE, 2009.

[34] Mark Levy, Bruno Di Giorgi, Floris Weers, Angelos Katharopoulos, and Tom Nickson. Con-
trollable music production with diffusion models and guidance gradients. arXiv preprint
arXiv:2311.00613, 2023.

12



[35] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

[36] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s, 2022.

[37] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018.

[38] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.

[39] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
11461–11471, June 2022.

[40] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2837–2845, 2021.

[41] Zhaoyang Lyu, Zhifeng Kong, Xudong Xu, Liang Pan, and Dahua Lin. A conditional point
diffusion-refinement paradigm for 3d point cloud completion. arXiv preprint arXiv:2112.03530,
2021.

[42] Ross A Maller, Gernot Müller, and Alex Szimayer. Ornstein–uhlenbeck processes and exten-
sions. Handbook of financial time series, pages 421–437, 2009.

[43] Eloi Moliner, Jaakko Lehtinen, and Vesa Välimäki. Solving audio inverse problems with a
diffusion model. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[44] Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pages
69–84, 2007.

[45] Nithin Gopalakrishnan Nair, Anoop Cherian, Suhas Lohit, Ye Wang, Toshiaki Koike-Akino,
Vishal M Patel, and Tim K Marks. Steered diffusion: A generalized framework for plug-and-
play conditional image synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 20850–20860, 2023.

[46] Kamal Nasrollahi and Thomas B Moeslund. Super-resolution: a comprehensive survey. Machine
vision and applications, 25:1423–1468, 2014.

[47] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[48] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.

[49] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[50] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

[51] Herbert E Robbins. An empirical bayes approach to statistics. In Breakthroughs in Statistics:
Foundations and basic theory, pages 388–394. Springer, 1992.

[52] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

13



[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June
2022.

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[56] Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015.

[57] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. arXiv preprint arXiv:2102.09844, 2021.

[58] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022.

[59] Alexander Shapiro. Monte carlo sampling methods. Handbooks in operations research and
management science, 10:353–425, 2003.

[60] Herbert A Simon. Spurious correlation: A causal interpretation. Journal of the American
statistical Association, 49(267):467–479, 1954.

[61] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[62] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[63] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,
Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable
generation. In International Conference on Machine Learning, pages 32483–32498. PMLR,
2023.

[64] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

[65] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[66] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[67] Charles Stein. A bound for the error in the normal approximation to the distribution of a sum of
dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 2: Probability Theory, volume 6, pages 583–603. University
of California Press, 1972.

[68] Haoyuan Sun, Bo Xia, Yongzhe Chang, and Xueqian Wang. Generalizing alignment paradigm
of text-to-image generation with preferences through f -divergence minimization. arXiv preprint
arXiv:2409.09774, 2024.

14



[69] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention, 2021.

[70] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. In The Eleventh International Conference on Learning Representations,
2023.

[71] Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A
survey. IEEE transactions on pattern analysis and machine intelligence, 43(10):3365–3387,
2020.

[72] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[73] Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric
latent diffusion models for 3d molecule generation. In International Conference on Machine
Learning, pages 38592–38610. PMLR, 2023.

[74] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

[75] Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan
Hendrycks, Yixuan Li, and Ziwei Liu. Openood: Benchmarking generalized out-of-distribution
detection. 2022.

[76] Haotian Ye, James Zou, and Linjun Zhang. Freeze then train: Towards provable representation
learning under spurious correlations and feature noise. In International Conference on Artificial
Intelligence and Statistics, pages 8968–8990. PMLR, 2023.

[77] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive
models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5,
2022.

[78] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
free energy-guided conditional diffusion model. Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

[79] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based r-cnns for fine-
grained category detection. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 834–849. Springer,
2014.

[80] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

15



A The Motivation of Studying Training-free Guidance

In this section, we argue that training-free guidance using off-the-shelf models is a crucial and timely
research problem deserving more attention and effort. We begin by providing an illustrative analysis
that highlights the limitations of current strong text-to-image generative models, underscoring the
necessity for training-free guidance. Furthermore, we assert that training-free guidance remains a
significant challenge, with previous literature underestimating its complexity. Given its necessity and
inherent difficulties, we call for increased focus from the research community on this problem and
offer our benchmarks and code base to help accelerate progress in this area.

A.1 Failure case of image generation with GPT4

Figure 4: Prompting GPT4 to generate property guided molecules. It is hard for the image
generator to understand the target and generate faithful samples. In this dialog, GPT4 claims to
generate a benzene molecule but the sample is apparently not a benzene. There are also many invalid
carbon atoms with more than 4 bonds and the polarizability target is not achieved.

It’s hard for GPT4 to understand targets. In Figure 4, we ask GPT-4 to generate a molecule with
polarizability α = 3, which is a task we use to evaluate training-free guidance (refer to Figure 16
for visualization). We found that the GPT-4 generated molecule is apparently invalid and unrealistic:
the generated molecule contains many carbon atoms with more than 4 bonds (the maximum allowed
number is 4); and the generated molecule is apparently not a benzene which is claimed by the text
outputs. From this case we may understand that it is hard to follow diverse user-defined instructions
for the foundational generative models, where the user-defined targets may be subtle, fine-grained,
combinatorial, and open-ended.

16



To this end, training-free guidance offers two key advantages: (1) It allows for greater specificity in
target requirements by enabling the use of a differentiable objective function, making the generation
process more steerable; (2) The objective function is plug-and-play, facilitating the addition of new
targets and tasks to a pre-trained generative model. Since there is no need to retrain the diffusion or
prediction models, this approach makes the generative process lightweight and applicable to various
downstream tasks.

It’s hard for GPT4 to capture the targeted distribution. Another important metrit for training-
free guidance is the flexibility of choosing diffusion models. For the same target, we can switch from
different diffusion models to change the unconditional background distribution. For example, it is
hard for GPT4 to generate CelebA-like samples though it “knows CelebA dataset very well”:

Figure 5: Prompting GPT4 to generate CelebA-like images. We first prompt ChatGPT to probe
its knowledge of CelebA dataset and then ask it to generate a young man figure in CelebA style.
However, the generated figure is apprently not in the distribution of CelebA (refer to Figure 12) for
comparison.

The flexibility to use different diffusion models provides an opportunity to generate a wider range
of user-defined targets. With training-free guidance, individuals can select their preferred diffusion
model to establish the background distribution and use the prediction model to steer the generation
towards specific properties. This approach may represent a future direction for human-AI interaction.

17



Figure 6: (Left) The accuracy and FID of different methods under different settings on CIFAR10 [30],
average across ten labels and 2048 samples per label. The suffix number in UGD and FreeDoM
represents recurrent step Nrecur, and (fake) stands for a synthetic setting where we apply a training-
based classifier but set t = 0 and use the same training-free guidance methods. A huge performance
gap between different settings suggests the intrinsic difficulty of training-free guidance. (Right)
Illustration of generated “ship” using MPGD under different settings (top) and the sampling trajectory
of the predicted clean image x0|t (down).

A.2 The fundamental challenge of training-free guidance

Despite the array of algorithms available and their reported successes in various applications, we
conduct a case study on CIFAR10 [30] to illustrate the challenging nature of training-free guidance
and the insufficiency of existing methods. Specifically, we compare the training-based approach and
training-free approach for the label guidance task on CIFAR10, with the diffusion model pretrained
by [7], the training-based time-dependent classifier f(x, t) by [7], and the training-free standard
label classifier f(x) pretrained only on clean CIFAR10 by [9]. and a “fake” training-free classifier
defined as f(x, t)|t=0. The first serves as the oracle benchmark, while the second corresponds to
the standard training-free guidance. The third setting, as considered in LGD [63], uses a “fake”
training-free classifier since its parameters are shared across different time steps t during training,
resulting in an implicit regularization that is not available for practical predictors. This setting serves
as a comparison to help identify the difficulty of training-free guidance.

Quantitative and qualitative results are shown in Figure 6. All training-free approaches significantly
under-perform training-based guidance, with a significant portion of generated images being highly
unnatural (when guidance is strong) or irrelevant to the label (when guidance is weak). A more clear
illustration on this can be found in Figure 7. In terms of “fake” classifiers, it leads to a remarkable
difference from real training-free classifiers even under identical experimental settings. It generates

Figure 7: Illustration on CIFAR10 dogs generated with different algorithms. Compared with training-
based method, training-free methods fall behind but TFG significantly outperforms existing methods.

18



much less messy images due to the implicit regularization from the training process, where noisy
images are also “seen” (although t is fixed to 0 upon guidance). Unfortunately, such types of
predictors are inaccessible in practice (otherwise, we can use classifier-based guidance directly).
From the comparison, we know that the key challenge of training-free guidance is the lack of a
“smoothing” classifier that can produce faithful guidance in the “unseen” noisy image space.

The observation largely uncovers the essential difficulties of training-free guidance, and motivates us
to systematically study techniques that can improve generation quality. Unfortunately, comparisons
between existing techniques are ambiguous since different methods are tested on distinct and primarily
qualitative applications, which in turn hinders the in-depth study in this field. To this end, we resolve
to revisit this complicated scenario and design a clear and comprehensive framework for training-free
guidance.

19



B Pseudo-code and schematics

We have presented the pseudo-code of TFG in Algorithm 1. Below, we provide a copy of the DPS
(Algorithm 2), MPGD (Algorithm 3), FreeDoM (Algorithm 4), UGD (Algorithm 5), and LGD
(Algorithm 6). Notice that LGD does not provide a pseudo-code, and we present their algorithm
following their paper as a modification of DPS. We do not change the original algorithms’ notations
for reference. Please see the proof in Appendix C for the equivalence analysis. We provide a
schematic of existing algorithms in Figure 8.

Algorithm 2 DPS - Gaussian

Require: N , y, {ζi}Ni=1, {σ̃i}Ni=1

xN ∼ N (0, I)
for i = N − 1 to 0 do

ŝ← sθ(xi, i)
x̂0 ← 1√

ᾱi
(xi + (1− ᾱi)ŝ)

z ∼ N (0, I)

x′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃iz

xi−1 ← x′
i−1 − ζi∇xi∥y −A(x̂0)∥22

end for
return x̂0

Algorithm 3 MPGD for pixel diffusion models

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵt ∼ N (0, I)
4: x0|t =

1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))

5: if requires manifold projection then
6: x0|t = gM(x0|t, L(x0|t; y), ct)
7: else
8: x0|t = x0|t − ct∇x0|tL(x0|t; y)
9: end if

10: xt−1 =
√
ᾱt−1x0|t

11: +
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵt

12: end for
13: return x0

Algorithm 4 FreeDoM + Efficient Time-Travel Strategy
Require: condition c, unconditional score estimator s(·, t), time-independent distance measuring function Dθ(c, ·), pre-defined parameters
βt, ᾱt, learning rate ρt, and the repeat times of time travel of each step {r1, · · · , rT }.
xT ∼ N (0, I)
for t = T, ..., 1 do

for i = rt, ..., 1 do
ϵ1 ∼ N (0, I) if t > 1, else ϵ1 = 0.
xt−1 = (1 + 1

2βt)xt + βts(xt, t) +
√
βtϵ1

x0|t = 1√
ᾱt

(xt + (1 − ᾱt)s(xt, t))

gt = ∇xtDθ(c,x0|t(xt)))
xt−1 = xt−1 − ρtgt

if i > 1 then
ϵ2 ∼ N (0, I)
xt =

√
1 − βtxt−1 +

√
βtϵ2

end if
end for

end for
return x0

20



Algorithm 5 Universal Guidance (its α is our ᾱ)
Parameter: Recurrent steps k, gradient steps m for backward guidance and guidance strength s(t),
Required: zT sampled from N (0, I), diffusion model ϵθ , noise scales {αt}Tt=1, guidance function f , loss
function ℓ, and prompt c
for t = T, T − 1, . . . , 1 do

for n = 1, 2, . . . , k do
Calculate ẑ0 as zt−(

√
1−αt)ϵθ(zt,t)√

αt

ϵ̂θ(zt, t) = ϵθ(zt, t) + s(t) · ∇ztℓ(c, f(ẑ0))
if m > 0 then

Calculate ∆z0 by minimizing ℓ(c, f(ẑ0 +∆)). with m steps of gradient descent
Perform backward universal guidance by ϵ̂θ ← ϵ̂θ −

√
αt/(1− αt)∆z0

end if
zt−1 ← S(zt, ϵ̂θ, t)
ϵ′ ∼ N (0, I)

zt ←
√

αt/αt−1zt−1 +
√

1− αt/αt−1ϵ
′

end for
end for

Algorithm 6 LGD (from DPS)

Require: N , y, {ζi}Ni=1, {σ̃i}Ni=1, n
xN ∼ N (0, I)
for i = N − 1 to 0 do

ŝ← sθ(xi, i)
x̂0 ← 1√

ᾱi
(xi + (1− ᾱi)ŝ)

z ∼ N (0, I)

xi−1 ←
√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃iz

xi−1 ← xi−1 − ζi∇xi log
(

1
n

∑n
j=1 exp(−ℓy(x

(j)
i )

)
▷ x

(j)
i sampled i.i.d. fromN (x̂0,

σ2
i

1+σ2
i
I)

end for
return x̂0

�� ���

������ ������

��
����

���� ���

������ ����

��

the �-th step

(a)

(b)

iterate

�∇���logf(����)

�∇���logf(����)�� ���� ����DPS

Diffusion
sampling
process

�∇���logf(����)�� ���� ����UGD

LGD

�� ����
MPGD

�� ���� ����FreeDoM
logf(����)

logf(����)

logf(����)

����

����

����

����

���� ������ �∇���logΣ��f(����)

iterate
�∇�����logf(����)���� ����

���� ���� ����
�∇����� �∇�����

Figure 8: (a) The reversed diffusion process. (b) Illustration of different training-free guidance
algorithms at the t-th reversed diffusion step.

21



C Proofs

We prove Theorem 3.2 and Lemma 3.3 below.

C.1 Proof of Theorem 3.2

Proof. For each algorithm, we prove the equivalence of design space separately below. Notice that
when γ̄ = 0, f̃ degrades back to f .

MPGD (Algorithm 3). Below we demonstrate that any hyper-parameter {ct}Tt=1 in Algorithm 3 is
equivalent to the TFG with f(x0|t) = exp{−L(x0|t; y)} and hyper-parameter

Nrecur = 1, Niter = 1, γ̄ = 0,ρ = 0,µ = (c1, · · · , cT )⊤.

To show this, notice that since both ρ and γ̄ are zero, Line 4 and Line 7 take no effect. When using
the identical sampling function (Line 9), TFG generates xt−1 using

xt−1 = Sample(xt,x0|t, t) + ct
√
ᾱt−1∇x0|t log f(x0|t)

=
√
ᾱt−1x0|t +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0|t√

1− ᾱt
+ σtϵt + ct

√
ᾱt−1∇x0|t log f(x0|t)

=
√
ᾱt−1(x0|t − ct∇x0|tL(x0|t; y)) +

√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σtϵt,

which is exactly the formula used in MPGD.

DPS (Algorithm 2) and FreeDoM (Algorithm 4). We prove both algorithms together as DPS is
a special case of FreeDoM (without recurrence). Specifically, any hyper-parameter {ρt}Tt=1, time
travel step r and distance function D(c, ·) in Algorithm 4 is equivalent to TFG with f(x0|t) =
exp{−D(c,x0|t)} and hyper-parameter

Nrecur = r,Niter = 0, γ̄ = 0,ρ = (
√
α1ρ1, · · · ,

√
αT ρT )

⊤,µ = 0.

To show this, notice that both algorithms have the identical resampling step from xt−1 to xt, so it
suffices to prove that the formula to generate xt−1 in each recurrent step is the same. For FreeDoM,
we have

xt−1 = Sample(xt,x0|t, t)− ρt∇xt
D(c,x0|t)

= Sample(xt,x0|t, t)− (
√
αtρt)∇xt log f(x0|t)/

√
αt,

and the last line equals the combination of Line 7 and Line 7 in TFG.

LGD (Algorithm 6). Any hyper-parameter {ζt}Tt=1, n in LGD is equivalent to TFG with f(x) =
exp{−ℓy(x)}, sample size n in Line 4, and hyper-parameter

Nrecur = 1, Niter = 0, γ̄ = 1,ρ = 0,µ = (ζ1, · · · , ζT )⊤.

Notice that ᾱt in TFG equals 1/(1 + σ2
t ) in the DPS algorithm. With this, the equivalence is clear

from the pseudo-code of both algorithms.

UGD (Algorithm 5). Any hyper-parameter k,m, s(t) in UGD is equivalent to TFG with f(x) =
exp{−ℓ(c, f(x))} and hyper-parameter

Nrecur = k,Niter = m, γ̄ = 0,

ρ = (−
√
α1s(1)δ1, · · · ,−

√
αT s(T )δT )

⊤,µ = (−
√

α1

1− ᾱ1
δ1, · · · ,−

√
αT

1− ᾱT
δT )

⊤,

where δt is the coefficient of ϵθ(xt, t) in sampler S in the UGD algorithm (which is negative). To show
this, notice that ∆t = ρt∇xt

log f̃(x0|t) = −ρt∇xt
ℓ(c, f(x0|t)) =

√
αts(t)δt∇xt

ℓ(c, f(x0|t)). By
replacing this into Line 9, the equivalence of guidance Variance Guidance can be easily observed. A
similar deduction can be made for the mean guidance as well.

22



C.2 Proof of Lemma 3.3

Proof. Recall that x0|t =
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
. According to a simple chain rule, we have

∆t = ρt∇xt
log f̃(x0|t) (9)

= ρt
I −

√
1− ᾱt∇xtϵθ(xt, t)√

ᾱt
∇x0|t log f̃(x0|t). (10)

The perfect optimization assumption implies the relationship between ϵθ and the score of pt(xt),
which we leverage and obtain

∆t = ρt
I −

√
1− ᾱt∇xt

ϵθ(xt, t)√
ᾱt

∇x0|t log f̃(x0|t) (11)

= ρt
I + (1− ᾱt)∇2

xt
log pt(xt)√

ᾱt
∇x0|t log f̃(x0|t). (12)

Thus, it remains to draw a connection between the conditional covariance between Σ0|t and
∇2

xt
log pt(xt). Omit the subscript xt in ∇xt , we have

∇2 log pt(xt) =
∇2pt(xt)

pt(xt)
−∇ log pt(xt)(∇ log pt(xt))

⊤ (13)

=
1

pt(xt)

∫
x0∈X

p0(x0)∇2pt|0(xt|x0)dx0 −∇ log pt(xt)(∇ log pt(xt))
⊤ (14)

(15)

Notice that

∇2pt|0(xt|x0) = pt|0(xt|x0)∇2 log pt|0(xt|x0) +
1

pt|0(xt|x0)
∇pt|0(xt|x0)(∇pt|0(xt|x0))

⊤

= −
pt|0(xt|x0)

1− ᾱt
I + pt|0(xt|x0)(

xt −
√
ᾱtx0

1− ᾱt
)(
xt −

√
ᾱtx0

1− ᾱt
)⊤.

Replacing the LHS in the above equation in Equation (14), and noticing that E[x0|xt] =
xt+(1−ᾱt)∇ log pt(xt)√

ᾱt
, we have

∇2 log pt(xt) = − 1

1− ᾱt
I +

∫
x0∈X

p0|t(x0|xt)(
xt −

√
ᾱtx0

1− ᾱt
)(
xt −

√
ᾱtx0

1− ᾱt
)⊤dx0

−∇ log pt(xt)(∇ log pt(xt))
⊤

= − 1

1− ᾱt
I +

∫
x0∈X

p0|t(x0|xt)(
xt −

√
ᾱtx0

1− ᾱt
)(
xt −

√
ᾱtx0

1− ᾱt
)⊤dx0

−
(√ᾱtE[x0|xt]− xt

1− ᾱt

)(√ᾱtE[x0|xt]− xt

1− ᾱt

)⊤
= − 1

1− ᾱt
I + Cov

[√ᾱtx0 − xt

1− ᾱt
|xt

]
= − 1

1− ᾱt
I +

ᾱt

(1− αt)2
Σ0|t.

The proof is finished by substituting ∇2 log pt(xt) in Equation (12) by the above result.

23



D Task details

D.1 Gaussian Deblur

In computer vision, the Gaussian deblur task addresses the challenge of restoring clarity to images
that have been blurred by a Gaussian process. Gaussian blur, a common image degradation, simulates
effects such as out-of-focus photography or atmospheric disturbances. It is characterized by the
convolution of an image with a Gaussian kernel, a process that spreads the pixel values outwards,
leading to a smooth, uniform blur [33]. The deblurring task seeks to reverse this effect, aiming to
retrieve the original sharp image.

Guidance target. Specifically, we apply a 61 × 61 sized Gaussian blur with kernal intensity
3.0 to original 256 × 256 images. A random noise with a variance of σ2 = 0.052 is added to
the noisy images. If we denote the above process as a blurring operator Ablur : x → y, where
x ∈ R256×256×3,y ∈ R256×256×3 are original images and noisy images, then the target of Gaussian
Deblur is to generate a clean image x0 such that:

max
x0

p(x0) = max
x0

exp(−∥Ablur(x0)− y∥2),

which means if we project the generated image into the noisy space, the noisy samples Ablur(x)
should be similar to the ground truth noisy images y.

Evaluation metrics. In our experiments, we evaluate each guidance method on a set of 256 samples
generated by Cat-DDPM. We apply the FID [26] to assess the fidelity, Learned Perceptual Image
Patch Similarity (LPIPS) [80] to evaluate the guidance validity.

24



Figure 9: Quantitative comparison of different training-free guidance methods on Gaussian deblur
task. Our TFG method can produce clean images without background noise (unlike FreeDoM and
UGD), faithful image features (unlike DPS) and vivid image details (compared to LGD). Nrecur is set
to 1 for all methods.

25



D.2 Super Resolution

Super-resolution in computer vision refers to the process of enhancing the resolution of an imaging
system, aimed at reconstructing a high-resolution image from one or more low-resolution observa-
tions. This technique is fundamental in overcoming the inherent limitations of imaging sensors and
improving the detail and quality of digital images. Super-resolution has broad applications, ranging
from satellite imaging and surveillance to medical imaging and consumer photography [46].

Guidance target. Specifically, we simply down-sample to original 256 × 256 images to the
resolution of 64 × 64. A random noise with a variance of σ2 = 0.052 is also added to the noisy
images. If we denote the above process as a degradation operator Adown : x → y, where x ∈
R256×256×3,y ∈ R256×256×3 are original images and down-sampled images, then the target of super-
is to generate a high resolution image x0 such that:

max
x0

p(x0) = max
x0

exp(−∥Adown(x0)− y∥2),

which means if we project the generated image into the downsampled image space, the downsampled
samples Adown(x) should be similar to the ground truth downsampled images y.

Evaluation metrics. Similar to Gaussian Deblur, we evaluate each guidance method on a set of
256 samples generated by Cat-DDPM. We apply FID [26] to assess the fidelity, Learned Perceptual
Image Patch Similarity (LPIPS) [80] to evaluate the guidance validity.

26



Figure 10: Quantitative comparison of different training-free guidance methods on super-resolution
task. Our TFG method can produce clean images, faithful image features (unlike DPS, MPGD) and
vivid image details (compared to LGD, UGD). Nrecur is set to 1 for all methods.

27



D.3 Label Guidance

Label guidance is a standard task for conditional generation studied in previous literature [7, 23].
The target is to generate images conditioned on a certain label. We found this standard task is
rarely studied in training-free guidance work and there exist an evident performance gap between
training-based guidance and existing training-free guidance as shown in Section 3.

Label sets. In our experiments, we studied labels from CIFAR10 [30] and ImageNet [55]. We
average the results on 10 labels from CIFAR10 if there is no extra explanation. For ImageNet, which
is resource-hungry to do comprehensive inference, we randomly select 4 labels (111, 222, 333, 444)
to evaluate the methods. The corresponding label-ID and their names are as follows:

Table 6: CIFAR-10 Dataset Labels
Label-ID Label Name

0 Airplane
1 Automobile
2 Bird
3 Cat
4 Deer
5 Dog
6 Frog
7 Horse
8 Ship
9 Truck

Table 7: Selected ImageNet-1K Dataset Labels
Label-ID Label Name

111 nematode, nematode worm, roundworm
222 Kuvasz
333 Hamster
444 bicycle-built-for-two, tandem bicycle, tandem

Guidance target. For each dataset, we use the output probability of a pre-trained classifier h(·) as
the target probability. Our target is to maximize the certain classification probability of a given label,
i.e.,

max
x0

p(x0) = max
x0

softmax(h(x0))i,

where i is the label-ID of the target label, and h(·) is the logits of x0 produced by the pre-trained
classifier. For CIFAR10 and ImageNet, we use a pre-trained classifier based on ResNet [17] and
VIT [9] that are provided from [75] and [9] respectively. The image resolution for CIFAR10 and
ImageNet are 32× 32 and 256× 256 respectively.

Evaluation metrics. We follow the image generation literature to use Fréchet inception distance
(FID) [20] to assess the fidelity of generated images. The reference images are filtered from the entire
dataset of CIFAR10 or ImageNet with the target label, and we set sample sizes as 2560 and 256 for
CIFAR and ImageNet respectively. For validity, we use another pre-trained classifier to compute
accuracy other than the one used in providing guidance to avoid over-confidence:

accuracy =
#classified as target label

#generated samples

For CIFAR10, we use a pre-trained ConvNeXT [36] downloaded from HuggingFace Hub7. And for
ImageNet, we use the pre-trained DeiT [69] downloaded from HuggingFace Hub8.

7https://huggingface.co/ahsanjavid/convnext-tiny-finetuned-cifar10
8https://huggingface.co/facebook/deit-small-patch16-224

28

https://huggingface.co/ahsanjavid/convnext-tiny-finetuned-cifar10
https://huggingface.co/facebook/deit-small-patch16-224


Figure 11: Quantitative comparison of different training-free guidance methods on ImageNet label
guidance (with target = 222, Kuvasz). The suffix of FreeDoM, UGD, TFG represents the number
of recurrence Nrecur. Notice that all the samples are generated based on the same seed and we do
not conduct cherry-picking. It is apprent that TFG generates the most valid samples among all the
compared methods.

29



D.4 Combined Guidance

An interesting scenario for conditional generation is to assign multiple targets for a single sam-
ple. Conditional generation with multiple conditions is crucial in machine learning for enhancing
the relevance and applicability of AI across complex, real-world scenarios. It enables models to
produce more contextually appropriate and personalized outputs, crucial for fields requiring high
customization.

Motivations. Combined guidance is to use multiple target functions to guide the same sample
towards multiple targets for the same sample. It is more efficient for training-free guidance to
do combined guidance as the space of combinatorial targets is potentially huge, which makes it
unrealistic to train all target combinations for training-based guidance. We also find it related to
the topic of spurious correlations [60], where certain combinations of attributes may dominant the
other combinations. For example, hair color may have a strong correlation with gender in CelebA
dataset [37]. It is beneficial to explore training-free guidance on reducing the bias of generation
models trained on these biased data and address the concerns related to fairness and equality.

Guidance target. We study combined guidance on CelebA-DDPM, which is trained on CelebA-
HQ [26] dataset. The image resolution is 256× 256. We choose two settings of combined guidance
with two attributes: (gender, hair color) and (gender, age). Each attribute has two labels, where
gender∈ {male, female}, age∈ {young, old}, and hair color∈ {black, blonde}. We have a binary
classifier for each attribute that is downloaded from HuggingFace Hub91011. The target is to sample
images that maximize the marginal probability:

max
x0

pcombined(x0) = max
x0

ptarget1(x0)ptarget2(x0),

where ptarget(x0) is computed using label guidance as shown in Appendix D.3.

Evaluation metrics. As it is hard to filter many reference images for combined targets in CelebA-
HQ dataset, we adopt Kernel Inception distance (KID) [5] to assess fidelity of generated samples
using 1,000 random sampled images of CelebA-HQ as reference images. We generate 256 samples
for each evaluated method. We follow MPGD [18] to use the logarithm of KID, i.e. KID (log). For
validity, we use another three attribute classifiers to compute the accuracy considering the conjunction
of attributes:

accuracy =
# ∧target label (classified as target label)

#generated samples

The evaluation classifiers are also downloaded from HuggingFace Hub121314.

9Age: https://huggingface.co/nateraw/vit-age-classifier
10Gender: https://huggingface.co/rizvandwiki/gender-classification-2
11Hair color: https://huggingface.co/enzostvs/hair-color
12Age (Evaluation): ibombonato/swin-age-classifier
13Gender (Evaluation): https://huggingface.co/rizvandwiki/gender-classification
14Age (Evaluation): https://huggingface.co/londe33/hair_v02

30

https://huggingface.co/nateraw/vit-age-classifier
https://huggingface.co/rizvandwiki/gender-classification-2
https://huggingface.co/enzostvs/hair-color
ibombonato/swin-age-classifier
https://huggingface.co/rizvandwiki/gender-classification
https://huggingface.co/londe33/hair_v02


Figure 12: Quantitative comparison of different training-free guidance methods on combined guidance
task (male+young). Our TFG method can produce images with high fidelity and validity compared
to all the baselines. Notice that we use the fixed seed for all the methods in this figure and do not
conduct cherry picking. Nrecur is set to 1 for all methods.

D.5 Fine-grained Guidance

Fine-grained classification is a specialized task in computer vision that focuses on distinguishing
between highly similar subcategories within a larger, general category. This task is particularly
challenging due to the subtle differences among the objects or entities being classified. For example,
in the context of animal species recognition, fine-grained classification would involve not just
distinguishing a bird from a cat, but identifying the specific species of birds, such as differentiating
between a crow and a raven [79].

Studying fine-grained generation in the context of generative models like Stable Diffusion or DALL-E
presents unique challenges due to the inherent complexity of generating highly detailed and specific
images. Fine-grained generation involves creating images that not only belong to a broad category
but also capture the subtle nuances and specific characteristics of a narrowly defined subcategory.
For example, generating images of specific dog breeds in distinct poses or environments requires the
model to understand and replicate minute details that distinguish one breed from another.

31



Motivations. To develop personalized AI, it is important to explore if the foundational generative
models can synthesize fine-grained, accurate target samples according to user-defined target. However,
this usually requires high-quality and detailed training data, and the model should be highly sensitive
to small variations in input to accurately produce the desired output, which can be difficult for strong
text2image generation models DALL-E15 or Imagen16. We first study this problem in a training-free
guidance scenario.

Guidance target. We study the out-of-distribution fine-grained label guidance on ImageNet-DDPM,
which learns the generation of some species of birds but not comprehensively. We use an EfficientNet
trained to classify 525 fine-grained bird species downloaded from HuggingFace Hub.17 The classifier
is trained on Bird Species dataset on Kaggle18. We follow the same way in label-guidance to maximize
softmax probability for target fine-grianed label. We randomly sample 4 labels (111, 222, 333, 444)
in Bird Species dataset, which are:

Table 8: Selected Bird Species Dataset Labels
Label-ID Label Name

111 Brown headed cowbird
222 Fairy tern
333 Lucifer hummingbird
444 Scarlet macaw

Evaluation metrics. Similar to label guidance, we use FID to evaluate generation fidelity by
filtering data of the target label as reference images. We also compute the FID with 256 sampled
images. For accuracy, we adopt another downloaded pre-trained classifier trained on Bird Species
dataset from HuggingFace Hub.19.

15https://openai.com/index/dall-e-2/
16https://deepmind.google/technologies/imagen-2/
17https://huggingface.co/chriamue/bird-species-classifier
18https://www.kaggle.com/datasets/gpiosenka/100-bird-species/data
19https://huggingface.co/dennisjooo/Birds-Classifier-EfficientNetB2

32

https://openai.com/index/dall-e-2/
https://deepmind.google/technologies/imagen-2/
https://huggingface.co/chriamue/bird-species-classifier
https://www.kaggle.com/datasets/gpiosenka/100-bird-species/data
https://huggingface.co/dennisjooo/Birds-Classifier-EfficientNetB2


Figure 13: The sampled 256 images for fine-grained guidance with target label 222 (fairy tern) by
ImageNet-DDPM with TFG. A key feature of fairy tern is its black-colored head. We observe that
TFG generally samples images with black, round shapes and successfully generates some birds with
target feature (red circled).

D.6 Style Transfer

Style transfer is a significant task in computer vision (CV) that focuses on applying the stylistic
elements of one image onto another while preserving the content of the target image. This task is
pivotal because it bridges the gap between artistic expression and technological innovation, allowing
for the creation of novel and aesthetically pleasing visual content. Applications of style transfer
are vast, ranging from enhancing user engagement in digital media and advertising to aiding in
architectural design by visualizing changes in real-time.

Guidance target. The target in our experiments is to guide a text-to-image latent diffusion model
Stable-Diffusion-v-1-5 [53]20 to generate images that fit both the text input prompts and the style
of the reference images. The guidance objective involves calculating the Gram matrices [25] of
the intermediate layers of the CLIP image encoder for both the generated images and the reference
style images. The Frobenius norm of these matrices serves as the metric for the objective function.
Specifically, for a reference style image xref and a decoded image D(z0|t) generated from the

20https://huggingface.co/runwayml/stable-diffusion-v1-5

33

https://huggingface.co/runwayml/stable-diffusion-v1-5


estimated clean latent variable z0|t, we compute the Gram matrices G(xref) and G(D(z0|t)). These
matrices are derived from the features of the 3rd layer of the image encoder, in accordance with
the methodologies described in MPGD [18] and FreeDoM [78]. The target function is computed as
follows:

max
x0

pstyle(x0) = max
x0

exp(−∥G(xref)−G(D(z0|t))∥2F ),

where ∥ · ∥2F denotes the Frobenius norm of a matrix.

Evaluation metrics. We use Style score and CLIP score to assess the guidance validity and fidelity,
respectively. For reference style images and text prompts, we select 4 images from WikiArt [56]
that are also used by MPGD [18], and 64 text prompts from Partiprompts [77]. For each style, we
generate 64 images based on the 64 different text prompts. To avoid over-confidence of CLIP score,
we use two different CLIP models downloaded from HuggingFace Hub to compute guidance and
evaluation metrics, respectively.2122. The style images and examplar prompts are shown as follows.

Figure 14: Four style images used in style transfer task.

Table 9: Examples for used prompts for style transfer tasks.
Content Description Content Description
A book with the words ’Don’t Panic!’
written on it

Ground view of the Great Pyramids and
Sphinx on the moon’s surface, Earth in the
sky

A canal in Venice A white towel
Portrait of a tiger wearing a train
conductor’s hat and holding a skateboard

Downtown Shanghai at sunrise, detailed
ink wash

Background pattern with alternating roses
and skulls

A smiling sloth holding a quarterstaff and a
book, VW van parked on grass

A pickup truck Concept of energy
h A shoe with a sock draped over it A kitchen without a refrigerator
Times Square during the day A squirrel
A turkey walking in the kitchen A bowl
The Statue of Liberty in Minecraft A man with wild hair looking into a crystal

ball
Concentric circles A fire hydrant with graffiti on it

21Guidance: https://huggingface.co/openai/clip-vit-base-patch16
22Evaluation: https://huggingface.co/openai/clip-vit-base-patch32

34

https://huggingface.co/openai/clip-vit-base-patch16
https://huggingface.co/openai/clip-vit-base-patch32


Figure 15: Quantitative comparison of different training-free guidance methods on style transfer task
with the target image as The Starry Night by Von Gogh. Our TFG generates the images with the most
faithful style, while DPS, LGD, FreeDoM, and UGD fail to capture the target style. The images of
MPGD is also of good quality, but the style score is also inferior than TFG by a large margin. We set
Nrecur = 1 for all methods.

35



D.7 Molecule Property Guidance

Setup. Our benchmark setup generally follows [24, 3] but with certain specifications to guarantee the
overall framework abides by the training-free regime. For dataset, we employ QM9 [50] and adopt
the split in [24] with 100,000 training samples. Following [24] and [3], the training set is further
split into two halves that guarantees there is no data leakage. The first half is leveraged to train a
property prediction network with EGNN [57] as the backbone, which serves as the ground truth
oracle to provide the label used for MAE computation. We reuse the checkpoints released by [3]
for the labeling network for all 6 properties. The second half is used to train the diffusion model
as well as the guidance network. We adopt the unconditional generation version of EDM [24] as
the diffusion model. The guidance network in general takes the same architecture as defined by [3]
that, again, features EGNN as the backbone but outputs a single scalar as the predicted quantum
mechanics property. The only difference lies in at training time we mask the diffusion time step by
zeros and always use the original clean molecule structure as input, ensuring training-free objective.
All the pretrained models are trained separately for different properties. At sampling time, we employ
DDIM [62] sampler with 100 sampling steps, as opposed to [24, 3] that take 1000 sampling steps.

Guidance target. We study training-free guided generation of molecules on 6 quantum mechanics
properties, including polarizability (α), dipole moment (µ), heat capacity (Cv), highest orbital energy
(ϵHOMO), lowest orbital energy (ϵLUMO) and their gap (∆ϵ). Denote the oracle property prediction
network as E . Our guidance target in this case is given by

f(x, c) := exp(−∥E(x)− c∥22), (16)

where x is the input molecule and c is the target property value.

Evaluation metrics. We use Mean Absolute Error (MAE) and validity as our evaluation metrics.
In particular, MAE is computed between the target value and the predicted value gathered from the
labeling network. Validity is computed by RDKit which measures whether the molecule is chemically
feasible. We generate 4096 molecules for each property for evaluation.

36



40 60 80 100

TFG
(Ours)

DPS

LGD

MPGD

FreeDoM

UGD

Polarizability (𝛼)

Figure 16: Quanlitative comparison of different training-free guidance methods on molecule genera-
tion task with the target property α (polarizability). Our TFG generates valid molecules with better
design target, while baselines often fail to produce valid molecules or offer poor guidance towards the
design target. The molecules generated by our approach are increasingly polarizable as α goes up.

37



D.8 Audio Declipping

Audio declipping is a task in digital audio restoration where distorted audio signals are repaired.
Clipping occurs when the amplitude or frequency of an audio signal exceeds the maximum limit that
the recording system can handle, leading to a harsh, distorted sound with portions of the waveform
“cut off.” Declipping aims to reconstruct the missing parts of these clipped waveforms, restoring the
audio’s original dynamics and reducing distortion. This process improves the quality and clarity of
the audio, making it more pleasant to listen to while preserving the original sound’s integrity.

Guidance target. Specifically, we apply a distortion operation to zero out the high frequency and
low frequency (for the highest and lowest 40 dimensions) signal in the space of mel spectrograms.
If we denote the above process as a blurring operator Ablur : x → y, where x ∈ R256×256,y ∈
R256×256 are mel spectrograms and noisy mel spectrograms for 5s audios, then the target of Audio
Declipping is to generate a clean audio x0 such that:

max
x0

p(x0) = max
x0

exp(−∥Ablur(x0)− y∥2,

which means if we project the generate mel spectrogram into the noisy space, the noisy samples
Ablur(x) should be similar to the ground truth noisy mel spectrogram y.

Evaluation metrics. In our experiments, we evaluate each guidance method on a set of 256 samples
generated by Audio-diffusion. We apply the Dynamic time warping (DTW) [44] to assess the
guidance validity, and Fréchet Audio Distance (FAD) [28] to assess the generation fidelity.

38



D.9 Audio Inpainting

Audio inpainting is a digital audio restoration task that involves filling in missing or corrupted
segments of an audio signal. Similar to image inpainting in the visual domain, this technique
reconstructs the missing portions of sound by analyzing the surrounding context and seamlessly
restoring the lost information. Applications of audio inpainting range from repairing damaged
recordings to reconstructing gaps in audio streams due to data loss. The goal is to produce a
natural-sounding result that preserves the continuity and overall quality of the original audio.

Guidance target. Specifically, we apply a distortion operation to zero out the middle 80 dimensions
in the space of mel spectrograms. If we denote the above process as a blurring operator Ablur : x → y,
where x ∈ R256×256,y ∈ R256×256 are mel spectrograms and noisy mel spectrograms for 5s audios,
then the target of Audio Declipping is to generate a clean audio x0 such that:

max
x0

p(x0) = max
x0

exp(−∥Ablur(x0)− y∥2,

which means if we project the generate mel spectrogram into the noisy space, the noisy samples
Ablur(x) should be similar to the ground truth noisy mel spectrogram y.

Evaluation metrics. In our experiments, we evaluate each guidance method on a set of 256 samples
generated by Audio-diffusion. We apply the Dynamic time warping (DTW) [44] to assess the
guidance validity, and Fréchet Audio Distance (FAD) [28] to assess the generation fidelity.

39



E Experimental Details

E.1 Details of Table 1

In Table 1, we study the effect of Monte-Carlo sample sizes in estimating the expectation of Line 4 in
TFG algorithm. As the noise is added on both Mean Guidance (∆0) and Variance Guidance (∆t), we
decouple the effect into adding noise solely on ∆0 (Mean only) or ∆t (Variance only). In the setting
of Variance only, we set µ = 0, Niter = 0, Nrecur = 4, sρ(t) = “increase”, and pick the best ρ̄ and γ̄
via hyper-parameter search. In the setting of Mean only, we set ρ = 0, Niter = 4, Nrecur = 1, sµ(t) =
“increase”, and pick the best µ̄ and γ̄ via hyper-parameter search. We found that the sample size
used in Monte-Carlo method play a neglect-able role on the performance if we set the optimal
hyper-parameter. It is also noteworthy that the Monte-Carlo sampling does affect the performance
of generated quality. For example, we can find that different targets shown in Appendix E.3 have
different searched γ̄. This indicates that the best γ̄ for many targets are apparently not zero.

E.2 Comparison with grid search

We compare the performance of our beam search parameters with the full grid search ones on CIFAR-
10 label guidance task (Table 10). Overall, the performance of both search methods is identical,
while grid search is much slower than our search strategy, indicating that our beam search strategy is
effective and efficient.

Table 10: The searched (ρ̄, µ̄, γ̄) of exhaustive grid search and our beam search strategy on the
CIFAR-10 label guidance task. We show the validity metric of the corresponding results and the gap
∆ = ∥validitybeam − validitygrid∥. Overall, the performance of both methods is identical.

Target 0 1 2 3 4 5 6 7 8 9 Avg.
(ρ̄, µ̄, γ̄)grid (1,2,0.001) (0.25,2,0.001) (2,0.25,1) (4,0.5,0.1) (1,0.5,0.001) (2,0.25,0.001) (0.25,0.5,1) (1,0.5,0.001) (1,0.25,0.001) (0.5,2,0.001)
validitygrid 80.44% 35.38% 28.25% 56.32% 29.57% 41.70% 52.66% 42.14% 83.35% 73.22% 52.30%

(ρ̄, µ̄, γ̄)beam (1,2,0.001) (0.25,2,0.001) (2,0.25,1) (4,0.25,0.01) (1,0.5,0.001) (2,0.25,0.001) (0.25,0.5,1) (1,0.5,0.001) (1,0.25,0.001) (0.5,2,0.001)
validitybeam 80.44% 35.38% 28.25% 52.81% 29.57% 41.70% 52.66% 42.14% 83.35% 73.22% 51.95%

∆ 0.00% 0.00% 0.00% 3.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.35%

E.3 Detailed results of each target and hyper-parameters

In this section, we present the hyper-parameters searched via the strategy introduced in Section 4 and
the corresponding experimental results for TFG as shown in Table 11. We list several observations
below.

• Overall, optimal parameters vary widely between problems and datasets. For example, even
with the same model and objective (e.g., label classifier on ImageNet or CIFAR10), the
best hyperparameters vary widely from target to target. This highlights the importance of
hyperparameter search.

• The improvement of TFG over existing methods depends heavily on the difference between
the optimal parameters and the subspaces of existing methods. For example, the ρ̄ for UGD
is the same as TFG for gender-age guidance task, where TFG only has 0.133% validity
improvement over UGD. On the contrary, their values differ on the fine-grained classification
task, and TFG has an 18.7% validity improvement over UGD. Overall, we suppose this
depends on whether the optimal parameter lies in the subspace that existing methods can
find.

• Though the baselines mentioned in our paper should be a special case of TFG, the results for
the highest MO energy guidance in Table 3 show that MPGD outperforms TFG slightly. We
want to point out that the reason TFG could occasionally have slightly worse performance
in practice is due to the beam search computation limit we currently pose. More specifically,
we allow TFG to search at most six steps (for all hyper-parameters) and all other methods
for seven steps (in their subspaces). For the MO energy task, the searched parameter for
MPGD is that µ̄ = 0.016 (this is the only parameter that we need to search for MPGD),
where the best (and last step) of TFG is that µ̄ = 0.004 (because it uses one step to double
another parameter). If we allocate more computational budget for the beam search steps,
TFG will outperform MPGD on this target (in fact, eight steps suffice).

40



Table 11: The parameter (ρ̄, µ̄, γ̄) selected by beam search strategy for all methods, tasks, and targets.
The search space of each method can be found in Section 3.1. For the detailed semantics of each task,
please refer to Appendix D.

DPS LGD MPGD FreeDoM UGD TFG
Target ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄

CIFAR-10 label guidance
0 1 0 0 16 0 1 0 2 0 1 0 0 2 2 0 1 2 0.001
1 8 0 0 16 0 1 0 4 0 0.5 0 0 4 4 0 0.25 2 0.001
2 1 0 0 16 0 1 0 0.25 0 1 0 0 0.25 0.25 0 2 0.25 1
3 4 0 0 8 0 1 0 8 0 2 0 0 1 1 0 4 0.25 0.01
4 0.5 0 0 2 0 1 0 0.25 0 0.5 0 0 4 4 0 1 0.5 0.001
5 4 0 0 0.25 0 1 0 0.25 0 1 0 0 4 4 0 2 0.25 0.001
6 1 0 0 4 0 1 0 0.5 0 16 0 0 4 4 0 0.25 0.5 1
7 2 0 0 0.5 0 1 0 0.5 0 0.5 0 0 4 4 0 1 0.5 0.001
8 2 0 0 16 0 1 0 2 0 1 0 0 4 4 0 1 0.25 0.001
9 4 0 0 0.5 0 1 0 2 0 1 0 0 4 4 0 0.5 2 0.001

ImageNet label guidance
111 2 0 0 2 0 1 0 8 0 1 0 0 8 8 0 2 0.5 0.1
222 2 0 0 2 0 1 0 0.25 0 0.5 0 0 2 2 0 0.5 1 0.1
333 2 0 0 2 0 1 0 0.25 0 0.25 0 0 8 8 0 1 4 1
444 4 0 0 4 0 1 0 4 0 1 0 0 4 4 0 0.5 2 0.1

Fine-grained guidance
111 0.25 0 0 0.25 0 1 0 0.25 0 0.25 0 0 0.25 0.25 0 0.5 0.5 0.01
222 0.25 0 0 1 0 1 0 0.25 0 0.5 0 0 4 4 0 0.5 0.5 0.01
333 0.25 0 0 0.25 0 1 0 0.5 0 0.25 0 0 4 4 0 0.5 0.5 0.01
444 0.25 0 0 0.25 0 1 0 0.25 0 1 0 0 1 1 0 0.5 0.5 0.01

Combined Guidance (gender & hair)
(0,0) 4 0 0 0.25 0 1 0 16 0 1 0 0 16 16 0 1 2 0.01
(0,1) 4 0 0 16 0 1 0 16 0 0.5 0 0 8 8 0 2 8 0.01
(1,0) 4 0 0 16 0 1 0 16 0 0.25 0 0 4 4 0 1 1 0.01
(1,1) 2 0 0 0.25 0 1 0 8 0 2 0 0 2 2 0 0.5 1 0.1

Combined Guidance (gender & age)
(0,0) 8 0 0 0.25 0 1 0 0.25 0 1 0 0 1 1 0 1 2 0.01
(0,1) 1 0 0 16 0 1 0 16 0 1 0 0 0.5 0.5 0 0.5 8 1
(1,0) 4 0 0 0.25 0 1 0 8 0 0.5 0 0 0.5 0.5 0 0.5 2 0.01
(1,1) 2 0 0 0.25 0 1 0 16 0 0.25 0 0 1 1 0 1 0.5 0.1

Super-resolution
\ 16 0 0 16 0 1 0 16 0 16 0 0 8 8 0 4 2 0.01

Gaussian Deblur
\ 16 0 0 16 0 1 0 16 0 16 0 0 16 16 0 1 8 0.01

Style Transfer
0 2 0 0 1 0 1 0 4 0 0.25 0 0 1 1 0 0.25 8 0.01
1 4 0 0 0.25 0 1 0 4 0 0.5 0 0 1 1 0 0.25 2 0.1
2 2 0 0 0.25 0 1 0 8 0 0.25 0 0 1 1 0 0.25 8 0.1
3 2 0 0 2 0 1 0 2 0 0.25 0 0 0.25 0.25 0 0.25 8 0.01

Molecule Property
α 0.005 0 0 0.005 0 1 0 0.01 0 0.01 0 0 0.02 0.02 0 0.016 0.001 0.0001
µ 0.02 0 0 0.01 0 1 0 0.005 0 0.02 0 0 0.005 0.005 0 0.001 0.002 0.1
Cv 0.005 0 0 0.005 0 1 0 0.005 0 0.005 0 0 0.005 0.005 0 0.004 0.001 0.001

ϵHOMO 0.005 0 0 0.005 0 1 0 0.01 0 0.005 0 0 0.005 0.005 0 0.002 0.004 0.001
ϵLUMO 0.005 0 0 0.01 0 1 0 0.01 0 0.005 0 0 0.005 0.005 0 0.016 0.002 0.0001
∆ 0.005 0 0 0.01 0 1 0 0.01 0 0.01 0 0 0.005 0.005 0 0.032 0.001 0.001

Audio Declipping
\ 1 0 0 16 0 1 0 16 0 4 0 0 4 4 0 1 1 0.1

Audio Inpainting
\ 16 0 0 16 0 1 0 16 0 4 0 0 16 16 0 0.25 2 0.1

E.4 Tricks implemented in FreeDoM codebase

In the codebase of FreeDoM23, the schedule of guidance strength for different applications is different.
For example, the guidance strength has a schedule coefficient

√
ᾱt for face generation, and the

schedule for style transfer is complex and involves a correction term, the mean of gradients’ norm,
and a specific constant coefficient 0.2. The paper does not mention this particular schedule, leaving

23https://github.com/vvictoryuki/FreeDoM

41

https://github.com/vvictoryuki/FreeDoM


the rationale for choosing these schedules unclear. We choose not to include the tricks and find that
with our unified hyper-parameter searching strategy, the performance of FreeDoM is similar.

E.5 Hardware and Software

We run most of the experiments on clusters using NVIDIA A100s. We implemented our experiments
using PyTorch [49] and the HuggingFace library.24 Overall, we estimated that a total of 2,000 GPU
hours were consumed.

24https://huggingface.co/

42

https://huggingface.co/


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have both theoretically and empirically justified our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

43



Justification: See Sec. C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

44



Answer: [Yes]

Justification: See supplementary file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Sec. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiment is conducted on an extensively large scale, and existing works
of the same line were not reported since the numbers are stable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

45

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

46

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is not applicable to the concern of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the related papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

47

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not include new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve human subjects and studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48


	Introduction
	Background
	Existing algorithms

	TFG: A Unified Framework for Training-free Guidance
	Unification and extension
	Algorithm and design space analysis

	Design Space of TFG: Analysis and Searching Strategy
	Benchmarking
	Settings
	Benchmarking results

	Discussions and Limitations
	The Motivation of Studying Training-free Guidance
	Failure case of image generation with GPT4
	The fundamental challenge of training-free guidance

	Pseudo-code and schematics
	Proofs
	Proof of thm:equiv
	Proof of lemma:xt

	Task details
	Gaussian Deblur
	Super Resolution
	Label Guidance
	Combined Guidance
	Fine-grained Guidance
	Style Transfer
	Molecule Property Guidance
	Audio Declipping
	Audio Inpainting

	Experimental Details
	Details of tab:mcsample
	Comparison with grid search
	Detailed results of each target and hyper-parameters
	Tricks implemented in FreeDoM codebase
	Hardware and Software


