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ABSTRACT

Integrating memory components into large language models (LLMs) can improve
the generation quality for long-term conversations. However, existing memory
management methods largely overlook the cognition and regulation of the mem-
ory process, lacking the capability to dynamically manage and utilize memory
on demand. To address this challenge, this paper approaches Meta-Memory for
Memory Management (M4), a novel paradigm that equips LLMs with the ability
for self-monitoring and self-reflective memory management. In long-term conver-
sations, where dialogue history accumulates continuously, the meta-memory ca-
pability of M4 enables LLMs to autonomously 1) identify what knowledge needs
to be memorized; 2) determine how to construct and store memory; 3) monitor
the correctness and validity of the acquired information; and 4) decide when to
learn more and how to retrieve information to refine their responses. Experimen-
tal results on two long-term conversation datasets and one long-term question-
answering dataset demonstrate that our M4 significantly enhances the memory
management capacity of LLMs in long-term information learning, achieving more
efficient storage and higher-quality response generation.

1 INTRODUCTION

Large language models (LLMs) have achieved breakthrough progress in a series of natural lan-
guage processing (NLP) tasks (Zhao et al., 2023), including open-domain conversation. Despite
the remarkable progress made, existing LLMs still have limitations in effectively utilizing long-
term memory to generate responses when facing long-term or multi-session conversations due to the
complexity and excessive length of the historical conversations (Du et al., 2025).

To address this limitation, a series of studies (Xu et al., 2022b;a; Bae et al., 2022; Lu et al., 2023;
Jang et al., 2023; Zhang et al., 2023; Du et al., 2024; Zhong et al., 2024; Chen et al., 2025; Li et al.,
2025; Ong et al., 2025; Wang et al., 2025) have focused on the management of long-term historical
information as memory to generate higher-quality responses for LLM in long-term conversations.
However, existing approaches typically summarize historical dialogues into coarse-grained memory
representations and employ them in an undifferentiated manner during query processing. As a result,
these methods lack the ability to dynamically determine which types of memory to access or how
much memory information to utilize when generating responses.

Therefore, inspired by theories of Metacognition (Dunlosky & Metcalfe, 2008) and Metamem-
ory (Flavell & Wellman, 1975; Nelson, 1990) from cognitive psychology, we introduce the con-
cept of meta-memory into memory management for LLMs, called M4, aiming to enhance LLMs’
autonomous memory management capabilities through four key aspects: 1) Memory learning; 2)
Memory construction; 3) Memory updating; 4) Memory retrieval. This essentially empowers LLMs
with the ability to dynamically preserve and utilize memory information in long-term conversations.

Category-based Memory Learning. Inspired by the memory category that human memory
mechanisms abstract historical information into different natural memory categories as memory
clues (Mandler & Ritchey, 1977; Anderson, 2005), M4 designs a category-based memory extraction
module to learn memory information from conversations. For each conversation session, unlike ex-
isting studies that coarsely summarize conversation into memory, M4 prompts LLMs to adaptively
classify conversational information into distinct categories and retain information absent from their
internal knowledge, which effectively prevents redundancy between the model’s inherent knowledge
and external memory components. This enables LLMs to autonomously identify what information
and which types of knowledge need to be memorized.
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Chain-based Memory Construction. Inspired by the method of loci (Yates, 1966), M4 converts
abstract, disorganized, and easily forgotten information into a concrete, structured, and memorable
spatial representation. Specifically, M4 represents each memory as a node and anchors the memory
nodes in an orderly and spatially retrievable structure based on the chronological order of the conver-
sation sessions. This enables LLMs to automatically organize different memories into ordered chains
based on memory categories, called memory chains. Meanwhile, M4 can form memory graphs by
linking shared memory nodes across memory chains. By drawing the evolutionary trajectory of the
memories, this memory structure provides a foundation for dynamic memory retrieval.

Self-monitoring-based Memory Updating. For each memory chain, "calibrate" and "compress",
two actions are used to perform self-monitoring in memory management, achieving memory consis-
tency and efficiency while ensuring memory scalability. Specifically, M4 will perform two actions
for each newly introduced memory information:

• Calibrate: To maintain memory accuracy and consistency, existing memory nodes are calibrated
when a conflict arises with newly introduced information.

• Compress: To free storage space and reduce memory interference for incoming content, M4 com-
presses distant memory nodes upon the arrival of new information, making memory efficient.

Self-reflection-based Memory Retrieval. Inspired by heuristic search (Bonet & Geffner, 2001;
Minsky, 2007), M4 performs dynamic and adaptive memory retrieval during query processing. It
begins by selecting the most relevant memory node from the query-related category as the root node,
then bidirectionally traverses associated memory chains along nodal connections to retrieve associa-
tive memory nodes, which are chronologically connected and activated to generate a response. At
each retrieval step, M4 employs a self-reflective mechanism that enables LLMs to autonomously
decide whether to adopt/skip the current memory node and continue to retrieve, or stop the retrieval
process, based on the self-evaluation of the generated response.

To evaluate the effectiveness of M4 in memory management, we conduct extensive experiments
on three benchmark datasets, including long-term conversation and long-term question-answering.
Experimental results demonstrate that the proposed M4 can empower LLMs with self-memory ca-
pabilities, outperforming existing state-of-the-art memory management models in all dimensions of
evaluation metrics and economizing storage space by more than 50%.

The contribution of this work can be summarized as follows:

• We propose meta-memory for memory management (M4), a novel framework that equips
LLMs with the ability to adaptively and dynamically acquire and utilize memory in long-
term conversations. This enables LLMs to self-judge for memory learning, self-organize
for memory construction, self-monitor for memory update, and self-reflect for memory
retrieval, significantly enhancing memory management for LLMs.

• We are the first to construct memory chains organized by category to model the evolution-
ary trajectories of memories. Building on this, we introduce a novel retrieval strategy that
employs self-reflective chronological traversal, enabling dynamic and on-demand memory
retrieval for response generation.

• Two actions, "calibrate" and "compress", are employed to enable self-monitoring within
the memory management process, ensuring that memory remains comprehensive, unam-
biguous, and efficient.

• Experiments on automatic and human evaluations show that the proposed M4 significantly
enhances the ability to take advantage of conversation memory and improves the quality of
response generation for LLMs in long-term conversations.

2 RELATED WORK

Long-term conversation is an emerging task in open-domain conversation (Ritter et al., 2011; Li
et al., 2017; Zhang et al., 2018; Dinan et al., 2018; Rashkin et al., 2019; Baumgartner et al., 2020;
Thoppilan et al., 2022; Gu et al., 2023; Wen et al., 2023). It not only focuses on the long-term
memory of a single session but also needs to consider time intervals between different sessions to
enable long-term interaction. Xu et al. (2022a) first propose a multi-session chat dataset, where each
session has a certain time interval, ranging from a few hours to a few days. Similarly, to reflect the
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Figure 1: Illustration of our M4 framework. Colored circles represent memory nodes. Different
colored circles represent different memory categories, and multiple colored circles represent nodes
belonging to multiple categories. Circles with a solid line and with a dotted line represent memory
nodes from the current conversation session and from previous conversation sessions, respectively.
The numbers inside the circle represent the session number. ✗ represents deleting a node.

changes in information between sessions, Bae et al. (2022) propose a Korean multi-session conver-
sation dataset. More recently, Jang et al. (2023) introduce Conversation Chronicles, which includes
speaker relationships and a larger range of time intervals. However, these works primarily focus
on curating datasets and selecting valuable conversational information to train generation models.
A current trend is to build memory banks (Lu et al., 2023; Zhang et al., 2023; Zhong et al., 2024;
Chen et al., 2025; Li et al., 2025; Ong et al., 2025; Wang et al., 2025) as plug-and-play modules
for LLMs. Lu et al. (2023) propose self-composed memos for consistent conversation. Zhang et al.
(2023) and Ong et al. (2025) pay more attention to the impact of the time interval on generation.
Zhong et al. (2024) design memory forgetting and updating mechanisms to maintain long-term in-
teractions. Recently, Chen et al. (2025) and Li et al. (2025) compress sessions into conversation
summaries and user-specific facts. Wang et al. (2025) update memories iteratively by summarizing
them, which can lead to the accumulation of errors and loss of nuanced information. Unlike these
simplistic update/forgetting mechanisms or iterative summarization studies that are prone to
error accumulation, our M4 introduces an adaptive and dynamic framework for long-term
memory management by integrating meta-memory into LLMs, providing a novel mechanism
for on-demand memory storage and utilization.

3 METHODOLOGY

This section provides a detailed description of the novel Meta-Memory for Memory Management
(M4) framework. As shown in Figure 1, M4 mainly consists of four modules: 1) Category-based
Memory Learning, which autonomously identifies what information and which types of knowl-
edge should be retained from the conversation history. 2) Chain-based Memory Construction,
which organizes memories into ordered chains according to their categories and constructs mem-
ory graphs based on shared memory nodes. 3) Self-monitoring-based Memory Updating, which
performs self-monitoring for memory management by two actions: "calibrate" and "compress". 4)
Self-reflection-based Memory Retrieval, which introduces self-reflection into memory retrieval to
dynamically connect and integrate memory clues in response to specific queries on demand.

3.1 CATEGORY-BASED MEMORY LEARNING

For each conversation session, to determine which information in the historical conversation is
missing from the specific LLM and needs to be memorized, M4 first extracts candidate categories
T = {ti}no

i=1 from the conversational content. Where ti ∈ Rdt is the embedding of the memory
category. Further, to eliminate the ambiguity of memory categories, we perform cosine similarity
on each pair of memory categories (ti, tj) and merge categories with high similarity:
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η = sim(ti, tj) =
ti · tj
∥ti∥∥tj∥

(1)

If η >= γ, categories ti and tj are merged as the same category ti, otherwise ti and tj are regarded
as two independent categories. γ is the similarity threshold. Then, for each memory category ti,
M4 summarizes the conversational content to obtain a corresponding memory clue ci ∈ Rdc , which
retains the key information of ti in the session. Where dc is the dimension of clue embedding.
Building on this, we can obtain a set of memory categories T = {ti}ni=1 and corresponding memory
clues {ci}ni=1, providing the fundamental disordered source for memory construction. Section E.1
shows examples of memory construction’s prompting.

3.2 CHAIN-BASED MEMORY CONSTRUCTION

The essence of memory utilization is the effective extraction, integration, and application of stored
information (Baddeley, 1983). However, when faced with a large amount of conversation history,
it is difficult to obtain an optimal memory integration for the current conversation based on the ex-
tracted disordered memory clues, which essentially constitutes an NP-hard problem. To address this
challenge, M4 introduces memory chains to store and manage memory clues, which is a method
of reducing the computational consumption of disordered memory clue combinations by introduc-
ing ordered memory. This method originates from the "method of loci"(Anderson, 2005), which
states that remembering an ordered sequence of items is important for memory management and
utilization. At the same time, memory chains can effectively preserve the evolutionary trajectory of
memory, enabling better memory activation for utilization.

For each memory category tk and the corresponding memory clue ckst in the new session st, we first
use Eq. 1 to calculate the similarity between tk and each existing memory category ti to obtain the
similarity ηi = sim(tk, ti). Therefore, the maximum similarity ηk and the corresponding index Ik
can be obtained based on the set of similarities:

ηk = max{ηi}n
t

i=1, Ik = argmax{ηi}n
t

i=1 (2)

Where nt represents the number of existing memory categories. Based on this, the new memory
clue ckst serves as a node, which will be used to linked to the corresponding category-based memory
chain CIk

or create a new memory chain for category tk:

CI
k

←

{
fc(CI

k ||ckst) if ηk >= γ,
⟨ckst⟩ otherwise.

(3)

Where fc(i||j) represents linking j to the end of i. Here, nodes belonging to multiple categories will
serve as shared memory to construct memory graphs, which will be used to activate memory clues
for multiple categories simultaneously when responding to complex questions.

3.3 SELF-MONITORING-BASED MEMORY UPDATING

As the conversation progresses, memory information will continue to develop. Therefore, M4 in-
troduces two actions, "calibrate" and "compress", to make memory consistent and efficient while
ensuring scalability.

Calibrate. For each newly added memory node ckst , M4 prompts LLMs to perform a consistency
check across the memory chain Ck, aiming to identify any factual conflicts, updates to previously
stated information, or significant event evolutions. This action is defined as follows:

cku ← LLMu(Ck; ckst), ĉkst ← fm(ckst ; c
k
u), Ck ← fu(Ck; cku), Ck ← fc(Ck||ĉkst) (4)

Where LLMu(·; ·) represents consistency check. cku represents inconstant memory, which can be
one or more nodes, or it can be empty. fm(i; j) represents merging nodes i and j by LLMs to get
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an unambiguous memory node. fu(i; j) represents removing memory node j from memory chain i.
This "calibrate" action ensures that each memory chain maintains internal consistency and reflects
the most current state of information related to its specific category. Section E.3 and E.4 show
examples of the prompting for the "calibrate" action.

Compress. Inspired by Ebbinghaus Forgetting Curve (Ebbinghaus, 2013), which states that hu-
man memory will decay to a stable level after more than a few weeks, we design a "compress"
action to make room for new memory and alleviate the interference of distant information when us-
ing memory. Specifically, for a memory node ci that has not been used for more than a few weeks,
we employ LLMLingua (Pan et al., 2024), a compressor to keep the important tokens for it and
derive a compressed representation:

ccomi = LLMLingua(ci) (5)

Note that this action is iterative, and the "few weeks" interval is provided by the dataset; other-
wise, we will execute this action at one-week intervals. That is, multiple compressing actions will
be performed on a memory clue that has not been used for a long time. However, as described in
Ebbinghaus Forgetting Curve, human memory will decay rather than disappear completely. There-
fore, in the iterative compression process, we introduce LLM to automatically determine whether
the compressed memory node ccomi can recover the main tokens to understand the memory infor-
mation. When LLMs are unable to recover the key meanings, the compression will be stopped, and
the compressed memory node from the previous step is regarded as the final representation of this
memory. Section E.5 shows examples of the prompting for the "compress" action.

3.4 SELF-REFLECTION-BASED MEMORY RETRIEVAL

Unlike existing work that directly uses query-related memory information when generating re-
sponses, M4 introduces a dynamic memory retrieval algorithm to retrieve and integrate contributory
memories for response generation. For each query q, we first perform prompting to obtain the set
of memory categories Kq , and then use Eq. 1 to obtain a list of memory categories T q that exist in
memory chains. Afterwards, when the LLM lacks confidence in responding to the current query q,
M4 conducts the following steps:

Step 1: For each memory category tqi in T q , we use Eq. 1 to obtain the most relevant memory clue
cqk from memory chain Cq of the memory category tqi and integrate it to the retrieved memory chain
M:M←< cqk >.

Step 2: Starting from cqk, we perform a gradual bidirectional search through neighboring memory
nodes, integrating a node intoM if the self-evaluation of LLM determines that it would improve the
response quality:

M←
{
fc(M||cqk+1) if LLMre(c

q
k+1),

fc(c
q
k−1||M) if LLMre(c

q
k−1).

(6)

Where LLMre(i) represents that the integration of memory node i intoM can improve the response
quality according to the self-evaluation of LLM. Note that memory remains in its original order dur-
ing integration, which allows for perception of the evolution of memory categories and characteri-
zation of memory traces. The retrieved memoryM is fed into LLMs for response generation when
M is updated each time:

r = LLM(q,M) (7)

The retrieval terminates when LLMs deem that the current M is confident to respond to query
q without laboriously exploring the entire memory space. The procedure of Self-reflection-based
Memory Retrieval is depicted in Algorithm 1. In addition, when the memory chains of all relevant
categories have been traversed but cannot answer the current query, LLM will automatically locate
the shared node and continue to retrieve relevant memory clues according to the above steps. Sec-
tion E.7 shows examples of the prompting for response generation, which prompts LLMs to pay
more attention to the order and evolution of the memorized explicitly.
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Table 1: Automatic evaluation of response quality (average of sessions). "Bold Font" means the
highest results. "Context" denotes feeding history information directly into the long context of
LLMs. *B-4 = BLEU-4, R-L = ROUGE-L, and Bert = BertScore.

Backbone Methods CC MSC

B-4 R-L Mauve Bert B-4 R-L Mauve Bert

Qwen2.5

Context 1.31 14.52 54.72 45.71 1.05 13.83 54.31 48.23
MemoChat (Lu et al., 2023) 0.74 11.13 47.88 44.23 0.66 11.21 54.02 46.50

MemoryBank (Zhong et al., 2024) 1.19 14.00 53.25 45.85 0.96 13.25 55.72 48.08
COMEDY (Chen et al., 2025) 0.69 11.38 47.71 44.92 0.64 11.21 55.25 47.07

Rsum (Wang et al., 2025) 1.05 13.65 48.91 45.88 0.83 12.84 56.61 47.86
THEANINE (Ong et al., 2025) 1.04 13.57 59.99 44.47 1.02 13.32 41.57 47.20

M4 (Ours) 1.90 16.73 69.54 46.81 1.26 14.15 64.88 48.29

Llama3

Context 1.08 13.60 57.75 45.25 0.89 13.63 59.34 47.26
MemoChat (Lu et al., 2023) 0.81 11.43 30.19 43.42 0.67 11.95 48.45 46.08

MemoryBank (Zhong et al., 2024) 0.81 12.27 53.94 45.45 0.70 12.20 59.86 46.91
COMEDY (Chen et al., 2025) 0.54 9.45 48.12 44.03 0.53 10.32 55.86 45.94

Rsum (Wang et al., 2025) 1.10 13.86 47.89 45.21 0.70 12.52 59.51 47.34
THEANINE (Ong et al., 2025) 0.67 11.83 47.19 44.35 0.72 12.59 53.81 47.10

M4 (Ours) 2.00 17.79 66.63 45.60 1.09 14.81 64.02 47.52

ChatGPT

Context 2.36 17.85 67.82 48.27 1.20 14.83 59.24 47.39
MemoChat (Lu et al., 2023) 1.71 15.22 50.98 46.13 1.04 13.52 58.32 46.57

MemoryBank (Zhong et al., 2024) 0.78 10.79 46.90 42.53 0.59 10.15 54.77 43.75
COMEDY (Chen et al., 2025) 0.92 12.55 41.33 45.77 0.76 12.43 54.28 46.99

Rsum (Wang et al., 2025) 1.16 13.86 50.58 45.70 0.78 11.85 57.53 45.69
THEANINE (Ong et al., 2025) 1.01 14.40 57.55 45.41 1.12 13.99 45.18 47.75

M4 (Ours) 3.00 19.49 78.26 48.88 1.36 15.36 65.13 48.37

GPT-4o

Context 1.79 17.41 55.11 47.79 1.21 15.12 54.51 49.17
MemoChat (Lu et al., 2023) 1.71 15.22 50.98 46.13 0.83 12.63 53.41 47.93

MemoryBank (Zhong et al., 2024) 1.08 15.14 45.95 47.27 1.03 13.74 45.30 48.39
COMEDY (Chen et al., 2025) 0.67 11.30 39.51 46.18 0.60 11.07 48.86 47.19

Rsum (Wang et al., 2025) 1.01 14.57 46.51 47.12 0.97 13.99 51.99 48.43
THEANINE (Ong et al., 2025) 1.25 14.42 56.13 45.19 0.94 13.57 54.14 47.52

M4 (Ours) 2.03 18.07 66.59 47.84 1.29 15.39 58.22 49.08

4 EXPERIMENTS

In this section, we first evaluate the performance of the proposed M4 compared with existing state-
of-the-art (SOTA) baselines in long-term conversation. Then, we present a detailed analysis of our
M4 to demonstrate its effectiveness in memory management for LLMs.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct extensive experiments on two long-term conversation datasets: MSC (Xu
et al., 2022a) and CC (Jang et al., 2023), each comprising 5 sessions with approximately 50 con-
versational turns per sample. Moreover, we also evaluate the robustness for long-term memory
capacity of M4 on a long-term question-answering at LONGMEMEVAL (Wu et al., 2025) dataset.
Appendix A for more details about datasets.

Models and Baselines. We evaluate on four mainstream LLMs: 1) Qwen2.5-7B (Yang et al.,
2024), the Qwen2.5-7B-Instruct version. 2) Llama3-8B (Touvron et al., 2023), the Meta-Llama-3-
8B-Instruct version. 3) ChatGPT (OpenAI, 2023), the GPT-3.5-Turbo-0125 version. 4) GPT-4o
(OpenAI, 2024a), the GPT-4o-2024-08-06 version. For response generation and question answering,
we compare our method with five strong baselines: MemoChat (Lu et al., 2023), MemoryBank
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(Zhong et al., 2024), Rsum (Wang et al., 2025), COMEDY (Chen et al., 2025), THEANINE (Ong
et al., 2025), and LMEBOT (Wu et al., 2025). For the embedding model, we use text-embedding-
3-large (OpenAI, 2024b). More details of baselines are shown in Appendix B.

In addition, we design various variants to present an ablation study of our M4: 1) To study the ef-
fectiveness of the proposed chain-based memory construction, we provide "w/o Chain" to construct
memories in random order. 2) To evaluate the effectiveness of the Self-monitoring-based Memory
Updating, we provide "w/o Calibrate" and "w/o Compress" to analyze the importance of these two
actions. 3) We provide "w/o Self-reflection" as directly using all query-related memory in response
generation without self-reflection during memory retrieval.

Evaluation Metrics. We comprehensively evaluate our M4 on three types of metrics. 1) Auto-
matic Metrics. Following Ong et al. (2025), we use BLEU-4 (Papineni et al., 2002), ROUGE-L
(LIN, 2004), Mauve (Pillutla et al., 2021), and BertScore (Zhang et al., 2019) to automatically
evaluate response generation. Following Wu et al. (2025), accuracy is used for comparison with
LMEBOT on LONGMEMEVAL. 2) G-Eval Metrics. Following Xu et al. (2022b) and Jang et al.
(2023), we use GPT-4o to evaluate dialogue generation on five dimensions: Engagingness, Hu-
manness, Coherence, Consistency, and Memorability. Appendix D for details about these metrics.
3) Human Metrics. Following Ong et al. (2025), humans evaluate the winning performance of
different methods on response generation and memory retrieval.

4.2 EXPERIMENTAL RESULTS

Main results. The experimental results presented in Table 1 compellingly demonstrate the supe-
rior performance of our proposed M4 framework in long-term conversation. Our M4 framework
consistently outperform all baseline models on both long-term conversation datasets across all eval-
uation metrics. Further, M4 outperforms all the memory management baselines, demonstrating that
endowing LLMs with autonomous memory management ability by exploring meta-memory is more
effective in long-term information learning compared to laborious mining of memory information
from historical conversations.

Table 2: Ablation study of M4 on ChatGPT.

Datasets Methods B-4 R-L Mauve Bert

CC

M4 (Ours) 3.00 19.49 78.26 48.88
w/o Chain 2.40 17.67 72.57 48.30

w/o Calibrate 2.89 19.28 76.37 48.77
w/o Compress 2.90 19.06 74.38 48.79

w/o Self-reflection 2.90 19.18 76.79 49.26

MSC

M4 (Ours) 1.36 15.36 65.13 48.37
w/o Chain 1.24 14.88 62.41 48.07

w/o Calibrate 1.27 15.00 63.35 48.11
w/o Compress 1.26 14.97 64.21 48.10

w/o Self-reflection 1.31 15.21 64.73 48.14

Ablation Study. To further analyze the im-
pact of each module of our M4 on performance,
we conduct an ablation study on various vari-
ants of M4 with the ChatGPT backbone and re-
port the results in Table 2. The removal of the
memory chain ("w/o Chain") significantly de-
creases the performance on all metrics. This in-
dicates that the inherent order within memory
chains enables the LLM to better understand
temporal dependencies, narrative flow, and the
evolution of memory, leading to more contex-
tually appropriate responses compared to a dis-
ordered set of memories. Further, ablation of
either the "calibrate" or "compress" action results in a considerable performance degradation. This
denotes that, compared to static memory storage, updating stored memories appropriately can im-
prove memory management and thus enhance text generation for long-term conversations. The
inferior performance of the "w/o Self-reflection" variant highlights the importance of self-reflection
in dynamically retrieving relevant memories, which facilitates memory learning and elicits higher-
quality responses compared to the direct use of stored memories.

4.3 ANALYSIS OF OUR M4

M4 improves both LLMs’ memory management and response quality. To further evaluate the
quality of response generation beyond automatic metrics, we perform a comprehensive G-Eval (Liu
et al., 2023) on five key dimensions. As shown in Figure 2 (a) and (b), compellingly demonstrate
the superior performance of our proposed method compared to six baselines. Notably, our method
exhibits substantial advantages in Memorability, suggesting its effectiveness in recalling and appro-
priately utilizing long-term historical information. It also excels in Engagingness, Coherence, and
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(a) G-Eval on CC (b) G-Eval on MSC (c) Human evaluation

Figure 2: Evaluation of response quality by G-Eval metrics (a and b) and human evaluation (c).

Consistency, crucial for maintaining logical and contextually sound conversations. In addition, we
additionally implement a human evaluation. As shown in Figure 2 (c), the human evaluation results
overwhelmingly favor our M4. In terms of "Generation" quality, M4 are preferred by human evalu-
ators in a significant majority of cases. The winning rate exceeds 68% across all the baselines. For
the evaluation of "Memory" utilization, M4 demonstrates significant advantages compared with the
baseline models. Human evaluation demonstrates that our M4 not only excels in automatic metrics
but also produces responses that are qualitatively superior in terms of both generation quality and
the effective use of long-term conversational memory.

-3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25
0.0

0.5

1.0

1.5

2.0
Group 1
Group 2
Group 3
Centers

Figure 3: t-SNE visualization of
memories retrieved based on dif-
ferent queries. Queries in groups 1
and 2 contain similar topics, while
group 3 involves different topics.

Memory categories can enhance the ability of LLM to re-
trieve relevant memory information. To further explore
the benefit of the proposed M4 in enhancing the capabil-
ity of memory utilization, we manually select three control
groups for the experiment, each group consisting of 10 re-
trieved memory embedding combinations based on queries.
The topics mentioned in the queries of the two groups are
similar, while the remaining group is unrelated to these two
groups. The t-SNE visualization in Figure 3 reveals a clear dis-
tinction: retrieved memories for content-related queries form
coherent clusters, while those for unrelated queries are widely
dispersed. This indicates that memories retrieved by content-
related queries are highly correlated, while those from unre-
lated queries are uncorrelated. That is, M4 can dynamically
retrieve task-relevant memories for different queries, leading
to more accurate and contextually appropriate responses.

235.7

114.4

339.3

158.5

0

100

200

300

CC MSC

w/o Compress w/ Compress

2.06X

2.14X

Figure 4: Memory usage com-
parison of ChatGPT.

The "compress" action can substantially reduce token con-
sumption for memory storage. Figure 4 illustrates the mem-
ory usage (tokens per conversation) of our M4 with and without
the "compress" action on both long-term conversation datasets.
The results clearly show a substantial reduction in token con-
sumption when compressing is applied, decreasing the memory
space by more than 50% on both datasets. This significant de-
crease in token requirements highlights the effectiveness of our
Compressing action in creating concise yet informative memory
representations, which is crucial for managing long conversa-
tional histories efficiently, especially given the token limits and
computational costs associated with LLMs.

Parameter Sensitivity of γ. We further analyze the sensitivity of our M4 framework to the simi-
larity threshold γ, a crucial parameter governing the relevance assessment for memory linking, with
results presented in Figure 5. The performance only fluctuates slightly for different values, indicat-
ing that M4 can fit different similarity thresholds when computing the relevant memory information.
Further, the results suggest that a moderately selective similarity threshold strikes an effective bal-
ance without being overly lenient (introducing noise) or overly strict (missing useful context).
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Figure 5: Experimental results of parameter sensitivity analysis about similarity threshold γ.

Table 3: Question answering accuracy (%) on
LONGMEMEVAL compared to baselines. MR =
Multi-Session Reasoning, KU = Knowledge Up-
date, and TR = Temporal Reasoning.

Backbone Methods MR KU TR

Qwen2.5
Context 47.38 50.00 40.87

LMEBOT (Wu et al., 2025) 51.88 56.41 45.11
M4 (Ours) 53.89 64.10 51.88

Llama3
Context 49.62 53.85 47.37

LMEBOT (Wu et al., 2025) 53.38 64.95 54.89
M4 (Ours) 55.41 67.95 56.39

ChatGPT
Context 31.58 35.90 33.08

LMEBOT (Wu et al., 2025) 54.86 53.85 40.60
M4 (Ours) 58.65 57.69 43.60

Analysis of task robustness. To further an-
alyze the robustness of M4 in other long-term
information learning tasks. We experiment on
a long-term question-answering dataset and re-
port the results in Table 3. We can see that M4

consistently outperforms both the Context-only
baseline and LMEBOT across all three chal-
lenging tasks. This demonstrates the efficacy of
M4 in utilizing memory dispersed across multi-
ple conversational turns. For the knowledge up-
date task, this strong result underscores the ef-
fectiveness of our Memory Evolution action in
maintaining an accurate and up-to-date knowl-
edge base. Moreover, the result of temporal rea-
soning indicates that the inherent sequential or-
ganization of our memory chains aids in understanding and reasoning about the temporal relation-
ships between events and information presented across different sessions.

(a) w/o M4

(b) w/ M4

eventually takes out trash.

... eventually the speaker
takes out the trash ...

Start

Session 1
Can’t you take
out the trash? ...
I always have to
take out the trash.

Session 2

...I know you asked me to take out the trash
earlier and was hesitant,but I’ll do it now...

A Few Hours A Few Days A Few Days

Session 4
... eventually the speaker

takes out the trash ...

Now

... Maybe we could even find one that
has some cool motorcycle-related art
to incorporate both of our interests.

I’m glad we can continue to support
each other in our daily tasks,even the
small ones like taking out the trash.

Sure! Let’s make sure that you get
everything done that needs to be
done before we plan our next ...

Figure 6: Case study on ChatGPT compared to w/ and w/o M4.

Case Study. Figure 6 depicts a multi-session scenario where a user complaint in Session 1 is
resolved in Session 2 when the speaker agrees to do so. Our M4 framework, through its Mem-
ory Evolution action, updates the relevant memory chain to reflect this resolution (symbolized by
"...eventually the speaker takes out the trash..."). Subsequently, the Compressing action distills this
evolved memory into its core essence ("eventually takes out trash") for efficient long-term storage.
Moreover, M4 leverages the accurately evolved and efficient memory, generates a response ("...
even the small ones like taking out the trash") that not only addresses the current interaction but also
subtly acknowledges the past resolved issue.

5 CONCLUSIONS

In this paper, we propose M4, a novel framework for LLMs’ long-term memory learning. By lever-
aging meta-memory into memory management, M4 enables LLMs to dynamically manage and uti-
lize memory during response generation. Through comprehensive experiments on multiple bench-
marks, we demonstrate that M4 consistently outperforms existing baselines in long-term conversa-
tion tasks. Further analysis shows that through the introduction of self-monitoring and self-reflection
mechanisms, our M4 achieves superior memory utilization and generates higher-quality responses.
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Ethical Statement This research strictly adheres to data usage regulations; all experiments are
based on public datasets, with a commitment not to process any private information. While the cur-
rent work does not delve into ethical topics like transparency and inclusivity, we acknowledge their
value and believe future advancements can be integrated into our memory learning framework. We
encourage the academic community to work together to enhance the understanding and implemen-
tation of responsible AI.

Reproducibility Statement To facilitate the reproduction of our results, Section 4 and the Ap-
pendix provide a thorough description of our experimental setup, evaluation metrics, and imple-
mentation specifics. The source code and scripts will be made publicly available upon this paper’s
acceptance. We have also listed all required external libraries and dependencies. To demonstrate
the broad applicability of our approach, we have validated it on both open-source and commercial
models.

REFERENCES

John R Anderson. Cognitive psychology and its implications. Macmillan, 2005.

Alan David Baddeley. Working memory. Philosophical Transactions of the Royal Society of London.
B, Biological Sciences, 302(1110):311–324, 1983.

Sanghwan Bae, Donghyun Kwak, Soyoung Kang, Min Young Lee, Sungdong Kim, Yuin Jeong,
Hyeri Kim, Sang-Woo Lee, Woomyoung Park, and Nako Sung. Keep me updated! memory
management in long-term conversations. In Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pp. 3769–3787, 2022.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The
pushshift reddit dataset. In Proceedings of the international AAAI conference on web and social
media, volume 14, pp. 830–839, 2020.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129(1-2):5–33,
2001.

Nuo Chen, Hongguang Li, Jianhui Chang, Juhua Huang, Baoyuan Wang, and Jia Li. Compress to
impress: Unleashing the potential of compressive memory in real-world long-term conversations.
In Proceedings of the 31st International Conference on Computational Linguistics, pp. 755–773,
2025.

LMDeploy Contributors. Lmdeploy: A toolkit for compressing, deploying, and serving llm.
https://github.com/InternLM/lmdeploy, 2023.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of
wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811.01241, 2018.

Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong
Wang, and Kam-Fai Wong. PerLTQA: A personal long-term memory dataset for memory
classification, retrieval, and fusion in question answering. In Kam-Fai Wong, Min Zhang,
Ruifeng Xu, Jing Li, Zhongyu Wei, Lin Gui, Bin Liang, and Runcong Zhao (eds.), Pro-
ceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), pp.
152–164, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.sighan-1.18/.

Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
future directions. arXiv preprint arXiv:2505.00675, 2025.

John Dunlosky and Janet Metcalfe. Metacognition. Sage Publications, 2008.

Hermann Ebbinghaus. [image] memory: A contribution to experimental psychology. Annals of
neurosciences, 20(4):155, 2013.

John H Flavell and Henry M Wellman. Metamemory. 1975.

10

https://github.com/InternLM/lmdeploy
https://aclanthology.org/2024.sighan-1.18/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxian Gu, Jiaxin Wen, Hao Sun, Yi Song, Pei Ke, Chujie Zheng, Zheng Zhang, Jianzhu Yao,
Lei Liu, Xiaoyan Zhu, et al. Eva2. 0: Investigating open-domain chinese dialogue systems with
large-scale pre-training. Machine Intelligence Research, 20(2):207–219, 2023.

Jihyoung Jang, Minseong Boo, and Hyounghun Kim. Conversation chronicles: Towards diverse
temporal and relational dynamics in multi-session conversations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 13584–13606, 2023.

Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
LLM-powered personalized agent for long-term dialogue. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 5259–5276, 2025.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings of the Eighth International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 986–995, 2017.

CY LIN. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, pp. 74–81, 2004.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike Noseworthy, Laurent Charlin, and Joelle
Pineau. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2122–2132, 2016.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 2511–2522, 2023.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
arXiv preprint arXiv:2308.08239, 2023.

Jean M Mandler and Gary H Ritchey. Long-term memory for pictures. Journal of Experimental
Psychology: Human Learning and Memory, 3(4):386, 1977.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 2007.

Thomas O Nelson. Metamemory: A theoretical framework and new findings. In Psychology of
learning and motivation, volume 26, pp. 125–173. Elsevier, 1990.

Kai Tzu-iunn Ong, Namyoung Kim, Minju Gwak, Hyungjoo Chae, Taeyoon Kwon, Yohan Jo,
Seung-won Hwang, Dongha Lee, and Jinyoung Yeo. Towards lifelong dialogue agents via
timeline-based memory management. In Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 8631–8661, April 2025.

OpenAI. Chatgpt. [Online], 2023. https://openai.com/index/chatgpt.

OpenAI. Gpt-4o. [Online], 2024a. https://platform.openai.com/docs/models/
gpt-4o.

OpenAI. Openai’s text embeddings. [Online], 2024b. https://platform.openai.com/
docs/guides/embeddings.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Rühle, Yuqing Yang, Chin-Yew Lin, et al. Llmlingua-2: Data distillation for efficient
and faithful task-agnostic prompt compression. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 963–981, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

11

https://openai.com/index/chatgpt
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
gence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. Towards empathetic open-
domain conversation models: A new benchmark and dataset. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 5370–5381, 2019.

Alan Ritter, Colin Cherry, and William B Dolan. Data-driven response generation in social media.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 583–593, 2011.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
summarizing enables long-term dialogue memory in large language models. Neurocomputing,
pp. 130193, 2025.

Jiaxin Wen, Hao Zhou, Jian Guan, Jie Zhou, and Minlie Huang. Re3dial: Retrieve, reorganize
and rescale conversations for long-turn open-domain dialogue pre-training. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 9878–9894, 2023.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
Benchmarking chat assistants on long-term interactive memory. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=pZiyCaVuti.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
conversation. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5180–5197, 2022a.

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang Wang.
Long time no see! open-domain conversation with long-term persona memory. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2639–2650, 2022b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Frances Amelia Yates. The Art of Memory. Routledge and Kegan Paul, 1966.

Qiang Zhang, Jason Naradowsky, and Yusuke Miyao. Mind the gap between conversations for
improved long-term dialogue generation. In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 10735–10762, 2023.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-
sonalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2204–2213, 2018.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

12

https://openreview.net/forum?id=pZiyCaVuti
https://openreview.net/forum?id=pZiyCaVuti


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A MORE DETAILS OF DATASETS

Datasets # Sessions (train) # of Sessions Time Interval RelationHours Days Weeks Months Years
MSC (Xu et al., 2022a) 4 16K ! ! % % % %

CC (Jang et al., 2023) 5 1M ! ! ! ! ! !

Table 4: Comparison between MSC and CC. The latter considers longer time intervals and speaker
relationships.

We evaluate our method on two long-term multi-session conversation datasets: Conversation
Chronicles (CC) Jang et al. (2023) and Multi-Session Chat (MSC) Xu et al. (2022a). Following
Ong et al. (2025)’s settings, we randomly select 50 episodes from the test set of each dataset, a total
of 250 sessions for generation experiments in this paper. The statistics of each data set are shown
in Table 4. For additionally LONGMEMEVAL dataset, which focuses on question answering, we
select full LONGMEMEVALS (50 sessions per question, total 500 questions) for our experiments
to evaluate three subtasks: Multi-Session Reasoning, Knowledge Update, and Temporal Reasoning.

B COMPARED BASELINES

There are five strong summary-based baselines in the paper for comparison with our method:

• MemoChat (Lu et al., 2023): This work summarizes different topics separately and stores
them in memory by constructing structured memos.

• MemoryBank (Zhong et al., 2024): This work creates a memory bank based on the Eisen-
haus forgetting curve to manage the memory of user portraits and summaries.

• COMEDY (Chen et al., 2025): This work uses user profiles, relationship descriptions, and
events from past conversations as compressed summaries to prompt LLMs (i.e, ChatGPT).

• Rsum (Wang et al., 2025): This work uses LLM itself to iteratively summarize past con-
versations as memory to store. Specifically, after each summary, the old memory and the
current context are summarized into a new memory.

• THEANINE (Ong et al., 2025): This work manages memories by linking them into time-
lines based on temporal and cause-effect relationships, instead of deleting old ones.

For a fair comparison with our approach, we select the same environment named LMDeploy (Con-
tributors, 2023) for inference on Qwen2.5-7B and Llama3-8B. For ChatGPT, we call OpenAI’s API
service for inference. We set temperature to 0.80 and γ to 0.5 for generation.

C THE PROCEDURE OF SELF-REFLECTION-BASED MEMORY RETRIEVAL

We have included pseudocode (Algorithm 1) to ensure that readers can readily grasp the intricate
details and flow of our algorithm.

D G-EVAL METRICS

With the development of open-domain conversation based on LLM, traditional overlap metrics such
as BLEU (Papineni et al., 2002), ROUGE (LIN, 2004), etc. face great challenges. The reason is that
a wide range of response generation can be considered as appropriate responses (Liu et al., 2016).
To this end, we refer to G-Eval (Liu et al., 2023) and use GPT-4o to evaluate episodes. In our paper,
we follow the metrics set in Xu et al. (2022b) and Jang et al. (2023):
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Algorithm 1 Self-reflection-based Memory Retrieval

Input: Query q, query-related category set T q = {tqi }
nq

i=1 and corresponding memory chain set {Cqi }
nq

i=1,
self-evaluation function of the response LLMconfident(·), self-evaluation function of the newly retrieved
node LLMre(·), traversal pointers pf and pb for each memory chain
Output: Retrieved memoryM

1: M← ∅
2: for all tqi ∈ T

q do
3: A ← LLMconfident(q,M) # Determine whether LLM is confident in the current response
4: if A == True then
5: Break
6: k ← argmax

{
sim(cqj , q)

}|Cq
i |

j=1
# Obtain the index of the most relevant memory clue by computing

the similarity between each cqj and q

7: M← fc(M||cqk) # Integrate cqk intoM
8: pf ← k + 1, pb ← k − 1 # Initialize the index of traversal pointers
9: A ← LLMconfident(q,M)

10: while A == False do
11: if pf < |Cqi | − 1 then
12: Bf ← LLMre(c

q
pf ) # Determine whether the response quality is improved by integrating

memory node cqpf intoM
13: else
14: Bf ← False # All the forward nodes in memory chain Cqi have been traversed
15: if pb > 0 then
16: Bb ← LLMre(c

q
pb) # Determine whether the response quality is improved by integrating

memory node cqpb intoM
17: else
18: Bb ← False # All the backward nodes in memory chain Cqi have been traversed
19: if Bf == True then
20: M← fc(M||cqpf )
21: A ← LLMconfident(q,M)

22: if Bf == True then
23: M← fc(c

q
pb ||M)

24: A ← LLMconfident(q,M)

25: if pf == |Cqi | − 1 and pb == 0 then
26: Break # All the nodes in memory chain Cqi have been traversed
27: if pf < |Cqi | − 1 then
28: pf ← pf + 1

29: if pb > 0 then
30: pb ← pb − 1

31: returnM

• Engagingness: The assistant can have rich interactions with users that go beyond simple
conversations. For example, the assistant can generate interesting and immersive responses
based on the current context.

• Humanness: The assistant can communicate with users like a real human would, display-
ing emotional understanding like empathy and human thought processes.

• Coherence: The assistant can generate responses that match current and historical contexts
based on the context.

• Consistency: The assistant need to maintain consistent responses with their persona in
long-term conversations.

• Memorability: The assistant can correctly recall more what happened in past sessions.

Each metric is scored on a scale of 1-5, with 1 being the worst and 5 being the best. Normalisation
is taken in G-Eval experimental results to maintain a better visualisation.
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Prompt for Category-based Memory

"""
You are an AI assistant with a Category-based Memory module. Your task is to extract and
categorize new information from conversations to remember for future interactions. This
process is designed to prevent redundancy by focusing only on information absent from
your general knowledge.

Here is a conversation:
{Conversation}

Please analyze the conversation and identify distinct pieces of information that are important
to memorize.

Focus exclusively on details specific to the speakers or the situation (e.g., personal prefer-
ences, plans, specific events, relationships) and avoid summarizing common knowledge you
already possess. This enables you to autonomously identify what needs to be memorized.

For each identified piece of memory, classify it into a distinct and natural memory category
and provide a concise summary.

Return a JSON array of objects, where each object represents a memory item.

Example JSON Response:
"""
{"Category": "{YOUR_CATEGORY}", "Summary": "{YOUR_SUMMARY}"},
{"Category": "{YOUR_CATEGORY}", "Summary": "{YOUR_SUMMARY}"}

Now, for the given conversation, provide the JSON response without any reasoning:
"""

Figure 7: Prompt for Category-based Memory.

Prompt for Category Retrieval

"""
Given the current utterance/query:
{Utterance}
Please analyze the utterance and determine which categories it is relevant to.
Return a JSON array of objects, where each object represents a category that is relevant to
the utterance.

Example JSON Response:
"""
{"Category": "{YOUR_CATEGORY}"},
{"Category": "{YOUR_CATEGORY}"}

Based on the utterance, please provide the JSON response with the relevant categories with-
out any reasoning:
"""

Figure 8: Prompt for Category Retrieval.
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Prompt for Conflict Detection

"""
The following are summaries given in conversational order:
Previous_summary:
{Previous_summary} New_summary:
{New_summary}
Please understand their differences carefully and judge whether there is a conflict or update
between them, such as a change in the speaker’s identity, the development of events, and a
change in attitude (interest, etc.).
If you think there is a conflict between them, then please output 1, otherwise output 0 without
any reasoning:
"""

Figure 9: Prompt for Conflict Detection.

Prompt for Memory Updating

"""
The following are some summaries given in conversational order:
Previous_summary:
{Previous_summary}
New_summary:
{New_summary}
Please understand their differences carefully and focus on the changes or updates between
contents, such as the change of the speaker’s identity, the development of events, and the
change of attitude (interest, etc.), etc., and merge the two into a new summary without any
reasoning:
"""

Figure 10: Prompt for Memory Updating.

Prompt for Compression Detection

"""
The following is an original text and its compressed text:
Original_text:
{Original_text}
Compressed_text:
{Compressed_text}
Please be careful to understand the differences and make an honest judgement as to whether
most of the key information in the original text can be restored from the compressed text.
If you think you can decompress or restore it, then please output 1, otherwise output 0
without any reasoning:
"""

Figure 11: Prompt for Compression Detection.

E GENERATION PROMPTS

E.1 CATEGORY-BASED MEMORY PROMPT

As shown in Figure 7, we prompt LLMs to complete the category-based memory of each historical
session.
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Prompt for Memory Judgment

"""
The following are user’s query/utterance and candidate memories:
Query/Utterance:
{Query/Utterance}
Memories:
{Memories}
Please be very honest in your judgement as to whether you can generate the best response
based on the known memories.
If you can please output 1 and conversely if you need more memories then output 0 without
any reasoning:
"""

Figure 12: Prompt for Memory Judgment.

Prompt for Response Generation

"""
The following are user’s query/utterance and related memories:
Query/Utterance:
{Query/Utterance}
Memories:
{Memories}
Generate the most plausible answer based memories without any reasoning. Each line in
the memory represents a timeline chain of topics. Please pay attention to the sequence, the
evolution of these memories.
Do not put too much information in the next response.
"""

Figure 13: Prompt for Response Generation.

E.2 CATEGORY RETRIEVAL PROMPT

As shown in Figure 8, we prompt LLMs to select possible categories that are more relevant to the
current utterance.

E.3 CONFLICT DETECTION PROMPT

As shown in Figure 9, we prompt LLMs to check for conflicts in the memory before the undergo-
ing session. If conflicts are found between memorizes of the same topic in different sessions, the
memory needs to be updated.

E.4 MEMORY UPDATTING PROMPT

As shown in Figure 10, we prompt LLMs to merge previous memories with present ones. The point
is to fuse the contents as a new conflict-free memory.

E.5 COMPRESSION DETECTION PROMPT

As shown in Figure 11, we prompt LLMs to determine whether most of the key information of the
original text can be restored based on the currently compressed text.
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Prompt for G-Eval

"""
This a conversation:
{Conversation}
You are an impartial evaluator. Please evaluate this conversation based on the following five
metrics:
1. Engagingness: Two speakers should interact to create responses that are not only interest-
ing but also well-immersed in the given context of the conversation.
2. Humanness: Two speakers should have a conversation that demonstrates emotional un-
derstanding (e.g., empathy) and the use of natural language and thought processes that are
typical of human beings.
3. Memorability: If two Speakers recall past events correctly by retaining information from
previous sessions.
4. Coherence: Whether the whole conversation is relevant and consistent with the context.
5. Consistency: Whether responses are relevant and consistent with previous persona.
The score for each metric is 1-5, with 1 being the lowest score and 5 being the highest score.
Write down your score for each metric without any explanation, e.g. Engagingness: {YOUR
SCORE}, Humanness: {YOUR SCORE}, Memorability: {YOUR SCORE}, Coherence:
{YOUR SCORE}, Consistency: {YOUR SCORE}"
"""

Figure 14: Prompt for G-Eval.

E.6 MEMORY JUDGMENT PROMPT

As shown in Figure 12, we prompt LLMs to determine whether current memories can provide suf-
ficient information to respond based on the current query/utterance.

E.7 RESPONSE GENERATION PROMPT

As shown in Figure 13, we prompt LLMs to pay more attention to the order and evolution of the
memorizes explicitly.

F EVALUATION PROMPT

As shown in Figure 14, we prompt LLMs to evaluate all generated responses according to the defined
metrics.

G LIMITATIONS

Our work introduces M4, a novel paradigm for dynamic memory management in long-term conver-
sations, establishing a foundational framework for more autonomous AI systems. While our exper-
iments demonstrate the significant potential of this approach, we also recognize several promising
avenues for future exploration that can further enhance its capabilities and robustness.

The effectiveness of the M4 framework is closely intertwined with the underlying capabilities of the
base LLM, as it relies on the model’s reasoning for critical sub-tasks such as memory categoriza-
tion, conflict detection, and self-reflective retrieval. Future research could explore the development
of more specialized and lightweight mechanisms for these components. This could not only improve
computational efficiency but also enhance the overall system’s resilience by reducing the potential
for cascading errors originating from a single judgment by the base model. Furthermore, the cur-
rent implementation employs a set of effective heuristics for memory retrieval and organization. A
valuable next step would be to investigate adaptive methods that allow the model to dynamically
adjust these strategies based on the specific conversational context or task, moving towards a more
sophisticated and self-optimizing memory management system.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs to assist with proofreading and lan-
guage polishing. The authors have reviewed and edited all suggested changes to ensure the scientific
accuracy and clarity of the content, and take full responsibility for the final manuscript.
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