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ABSTRACT

Integrating memory components into large language models (LLMs) can improve
the generation quality for long-term conversations. However, existing memory
management methods largely overlook the cognition and regulation of the mem-
ory process, lacking the capability to dynamically manage and utilize memory
on demand. To address this challenge, this paper approaches Meta-Memory for
Memory Management (M*), a novel paradigm that equips LLMs with the ability
for self-monitoring and self-reflective memory management. In long-term conver-
sations, where dialogue history accumulates continuously, the meta-memory ca-
pability of M* enables LLM:s to autonomously 1) identify what knowledge needs
to be memorized; 2) determine how to construct and store memory; 3) monitor
the correctness and validity of the acquired information; and 4) decide when to
learn more and how to retrieve information to refine their responses. Experimen-
tal results on two long-term conversation datasets and one long-term question-
answering dataset demonstrate that our M* significantly enhances the memory
management capacity of LLMs in long-term information learning, achieving more
efficient storage and higher-quality response generation.

1 INTRODUCTION

Large language models (LLMs) have achieved breakthrough progress in a series of natural lan-
guage processing (NLP) tasks (Zhao et al.| 2023), including open-domain conversation. Despite
the remarkable progress made, existing LLMs still have limitations in effectively utilizing long-
term memory to generate responses when facing long-term or multi-session conversations due to the
complexity and excessive length of the historical conversations (Du et al., [2025).

To address this limitation, a series of studies (Xu et al., |2022bsa; |Bae et al., [2022; [Lu et al.| 2023}
Jang et al.| [2023};|Zhang et al., [2023}; Du et al., 2024; Zhong et al.||[2024;|Chen et al.| 2025} |Li et al.,
20255 |Ong et al., [2025; Wang et al.,|2025) have focused on the management of long-term historical
information as memory to generate higher-quality responses for LLM in long-term conversations.
However, existing approaches typically summarize historical dialogues into coarse-grained memory
representations and employ them in an undifferentiated manner during query processing. As a result,
these methods lack the ability to dynamically determine which types of memory to access or how
much memory information to utilize when generating responses.

Therefore, inspired by theories of Metacognition (Dunlosky & Metcalfe, [2008) and Metamem-
ory (Flavell & Wellman, [1975; Nelson, [1990) from cognitive psychology, we introduce the con-
cept of meta-memory into memory management for LLMs, called M4, aiming to enhance LLMs’
autonomous memory management capabilities through four key aspects: 1) Memory learning; 2)
Memory construction; 3) Memory updating; 4) Memory retrieval. This essentially empowers LLMs
with the ability to dynamically preserve and utilize memory information in long-term conversations.

Category-based Memory Learning. Inspired by the memory category that human memory
mechanisms abstract historical information into different natural memory categories as memory
clues (Mandler & Ritcheyl|1977;|Anderson, [2005)), M4 designs a category-based memory extraction
module to learn memory information from conversations. For each conversation session, unlike ex-
isting studies that coarsely summarize conversation into memory, M* prompts LLMs to adaptively
classify conversational information into distinct categories and retain information absent from their
internal knowledge, which effectively prevents redundancy between the model’s inherent knowledge
and external memory components. This enables LLMs to autonomously identify what information
and which types of knowledge need to be memorized.
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Chain-based Memory Construction. Inspired by the method of loci (Yates| [1966), M?* converts
abstract, disorganized, and easily forgotten information into a concrete, structured, and memorable
spatial representation. Specifically, M* represents each memory as a node and anchors the memory
nodes in an orderly and spatially retrievable structure based on the chronological order of the conver-
sation sessions. This enables LLMs to automatically organize different memories into ordered chains
based on memory categories, called memory chains. Meanwhile, M* can form memory graphs by
linking shared memory nodes across memory chains. By drawing the evolutionary trajectory of the
memories, this memory structure provides a foundation for dynamic memory retrieval.

Self-monitoring-based Memory Updating. For each memory chain, "calibrate" and "compress",
two actions are used to perform self-monitoring in memory management, achieving memory consis-
tency and efficiency while ensuring memory scalability. Specifically, M* will perform two actions
for each newly introduced memory information:

* Calibrate: To maintain memory accuracy and consistency, existing memory nodes are calibrated
when a conflict arises with newly introduced information.

 Compress: To free storage space and reduce memory interference for incoming content, M* com-
presses distant memory nodes upon the arrival of new information, making memory efficient.

Self-reflection-based Memory Retrieval. Inspired by heuristic search (Bonet & Geftner, 2001}
Minskyl, 2007), M* performs dynamic and adaptive memory retrieval during query processing. It
begins by selecting the most relevant memory node from the query-related category as the root node,
then bidirectionally traverses associated memory chains along nodal connections to retrieve associa-
tive memory nodes, which are chronologically connected and activated to generate a response. At
each retrieval step, M* employs a self-reflective mechanism that enables LLMs to autonomously
decide whether to adopt/skip the current memory node and continue to retrieve, or stop the retrieval
process, based on the self-evaluation of the generated response.

To evaluate the effectiveness of M* in memory management, we conduct extensive experiments
on three benchmark datasets, including long-term conversation and long-term question-answering.
Experimental results demonstrate that the proposed M* can empower LLMs with self-memory ca-
pabilities, outperforming existing state-of-the-art memory management models in all dimensions of
evaluation metrics and economizing storage space by more than 50%.

The contribution of this work can be summarized as follows:

» We propose meta-memory for memory management (M*), a novel framework that equips
LLMs with the ability to adaptively and dynamically acquire and utilize memory in long-
term conversations. This enables LLMs to self-judge for memory learning, self-organize
for memory construction, self-monitor for memory update, and self-reflect for memory
retrieval, significantly enhancing memory management for LLMs.

* We are the first to construct memory chains organized by category to model the evolution-
ary trajectories of memories. Building on this, we introduce a novel retrieval strategy that
employs self-reflective chronological traversal, enabling dynamic and on-demand memory
retrieval for response generation.

* Two actions, "calibrate" and "compress", are employed to enable self-monitoring within
the memory management process, ensuring that memory remains comprehensive, unam-
biguous, and efficient.

» Experiments on automatic and human evaluations show that the proposed M* significantly
enhances the ability to take advantage of conversation memory and improves the quality of
response generation for LLMs in long-term conversations.

2 RELATED WORK

Long-term conversation is an emerging task in open-domain conversation (Ritter et al., [2011; [Li
et al., 2017;[Zhang et al., 2018} Dinan et al.| 2018} |Rashkin et al.| 2019; Baumgartner et al., [2020;
Thoppilan et al., [2022} |Gu et al., |2023; Wen et al., [2023). It not only focuses on the long-term
memory of a single session but also needs to consider time intervals between different sessions to
enable long-term interaction. | Xu et al.| (2022a)) first propose a multi-session chat dataset, where each
session has a certain time interval, ranging from a few hours to a few days. Similarly, to reflect the
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Figure 1: Illustration of our M* framework. Colored circles represent memory nodes. Different
colored circles represent different memory categories, and multiple colored circles represent nodes
belonging to multiple categories. Circles with a solid line and with a dotted line represent memory
nodes from the current conversation session and from previous conversation sessions, respectively.
The numbers inside the circle represent the session number. X represents deleting a node.

changes in information between sessions, |Bae et al.| (2022) propose a Korean multi-session conver-
sation dataset. More recently, Jang et al.[(2023) introduce Conversation Chronicles, which includes
speaker relationships and a larger range of time intervals. However, these works primarily focus
on curating datasets and selecting valuable conversational information to train generation models.
A current trend is to build memory banks (Lu et al [2023; [Zhang et al.| 2023} [Zhong et al., 2024;
Chen et al., 2025; [Li et al., [2025} |Ong et al.| 2025} |Wang et al., [2025) as plug-and-play modules
for LLMs. [Lu et al.| (2023) propose self-composed memos for consistent conversation. [Zhang et al.
(2023) and |Ong et al.| (2025) pay more attention to the impact of the time interval on generation.
Zhong et al.| (2024) design memory forgetting and updating mechanisms to maintain long-term in-
teractions. Recently, |(Chen et al.| (2025) and |L1 et al.| (2025) compress sessions into conversation
summaries and user-specific facts. [Wang et al.| (2025)) update memories iteratively by summarizing
them, which can lead to the accumulation of errors and loss of nuanced information. Unlike these
simplistic update/forgetting mechanisms or iterative summarization studies that are prone to
error accumulation, our M* introduces an adaptive and dynamic framework for long-term
memory management by integrating meta-memory into LLMs, providing a novel mechanism
for on-demand memory storage and utilization.

3 METHODOLOGY

This section provides a detailed description of the novel Meta-Memory for Memory Management
(M*) framework. As shown in Figure [1, M* mainly consists of four modules: 1) Category-based
Memory Learning, which autonomously identifies what information and which types of knowl-
edge should be retained from the conversation history. 2) Chain-based Memory Construction,
which organizes memories into ordered chains according to their categories and constructs mem-
ory graphs based on shared memory nodes. 3) Self-monitoring-based Memory Updating, which
performs self-monitoring for memory management by two actions: "calibrate" and "compress". 4)
Self-reflection-based Memory Retrieval, which introduces self-reflection into memory retrieval to
dynamically connect and integrate memory clues in response to specific queries on demand.

3.1 CATEGORY-BASED MEMORY LEARNING

For each conversation session, to determine which information in the historical conversation is
missing from the specific LLM and needs to be memorized, M* first extracts candidate categories
T = {t;}7'2, from the conversational content. Where ¢; € R% is the embedding of the memory
category. Further, to eliminate the ambiguity of memory categories, we perform cosine similarity
on each pair of memory categories (t;,t;) and merge categories with high similarity:



Under review as a conference paper at ICLR 2026

t; -t

_— 1
B M

n = sim(t;,t;) =

If n >= 7, categories ¢; and ¢; are merged as the same category ¢;, otherwise ¢; and ¢; are regarded
as two independent categories. -y is the similarity threshold. Then, for each memory category ¢;,
M* summarizes the conversational content to obtain a corresponding memory clue ¢’ € R%, which
retains the key information of ¢; in the session. Where d. is the dimension of clue embedding.
Building on this, we can obtain a set of memory categories 7 = {¢;}"_; and corresponding memor
clues {c'}™_,, providing the fundamental disordered source for memory construction. Section
shows examples of memory construction’s prompting.

3.2 CHAIN-BASED MEMORY CONSTRUCTION

The essence of memory utilization is the effective extraction, integration, and application of stored
information (Baddeley, |1983). However, when faced with a large amount of conversation history,
it is difficult to obtain an optimal memory integration for the current conversation based on the ex-
tracted disordered memory clues, which essentially constitutes an NP-hard problem. To address this
challenge, M* introduces memory chains to store and manage memory clues, which is a method
of reducing the computational consumption of disordered memory clue combinations by introduc-
ing ordered memory. This method originates from the "method of loci"(Anderson, [2005), which
states that remembering an ordered sequence of items is important for memory management and
utilization. At the same time, memory chains can effectively preserve the evolutionary trajectory of
memory, enabling better memory activation for utilization.

For each memory category t* and the corresponding memory clue clgt in the new session s, we first
use Eq. to calculate the similarity between t* and each existing memory category t; to obtain the
similarity n; = sim(t*,t;). Therefore, the maximum similarity 7* and the corresponding index Z*
can be obtained based on the set of similarities:

t t
7t = max{n )iy, TF = argmax{n,}, @)

Where n! represents the number of existing memory categories. Based on this, the new memory

clue cft serves as a node, which will be used to linked to the corresponding category-based memory

. k .
chain CT" or create a new memory chain for category t":

. TE 1k ik~
@:%{ﬁw leh,) it n* >=1. .

(k) otherwise.

Where f.(i||7) represents linking j to the end of 7. Here, nodes belonging to multiple categories will
serve as shared memory to construct memory graphs, which will be used to activate memory clues
for multiple categories simultaneously when responding to complex questions.

3.3 SELF-MONITORING-BASED MEMORY UPDATING

As the conversation progresses, memory information will continue to develop. Therefore, M* in-
troduces two actions, "calibrate" and "compress", to make memory consistent and efficient while
ensuring scalability.

Calibrate. For each newly added memory node c.’jt, M* prompts LLM:s to perform a consistency

check across the memory chain C*, aiming to identify any factual conflicts, updates to previously
stated information, or significant event evolutions. This action is defined as follows:

ek LLM,(CF;cl), b « fm(chick), CF« fu(CFick), CF« f.CMlel) @

s St u u

Where LLM,,(-; -) represents consistency check. c¥ represents inconstant memory, which can be
one or more nodes, or it can be empty. f,(i; ) represents merging nodes ¢ and j by LLMs to get
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an unambiguous memory node. f,(i; j) represents removing memory node j from memory chain 1.
This "calibrate" action ensures that each memory chain maintains internal consistency and reflects
the most current state of information related to its specific category. Section [E.3] and show
examples of the prompting for the "calibrate" action.

Compress. Inspired by Ebbinghaus Forgetting Curve (Ebbinghaus, |2013)), which states that hu-
man memory will decay to a stable level after more than a few weeks, we design a "compress"
action to make room for new memory and alleviate the interference of distant information when us-
ing memory. Specifically, for a memory node ¢; that has not been used for more than a few weeks,
we employ LLMLingua (Pan et al.| |2024), a compressor to keep the important tokens for it and
derive a compressed representation:

¢;°™ = LLMLingua(c;) (5)

Note that this action is iterative, and the "few weeks" interval is provided by the dataset; other-
wise, we will execute this action at one-week intervals. That is, multiple compressing actions will
be performed on a memory clue that has not been used for a long time. However, as described in
Ebbinghaus Forgetting Curve, human memory will decay rather than disappear completely. There-
fore, in the iterative compression process, we introduce LLM to automatically determine whether
the compressed memory node c{°"* can recover the main tokens to understand the memory infor-
mation. When LLMs are unable to recover the key meanings, the compression will be stopped, and
the compressed memory node from the previous step is regarded as the final representation of this
memory. Section[E.5|shows examples of the prompting for the "compress" action.

3.4 SELF-REFLECTION-BASED MEMORY RETRIEVAL

Unlike existing work that directly uses query-related memory information when generating re-
sponses, M* introduces a dynamic memory retrieval algorithm to retrieve and integrate contributory
memories for response generation. For each query ¢, we first perform prompting to obtain the set
of memory categories K7, and then use Eq. [I]to obtain a list of memory categories 7 that exist in
memory chains. Afterwards, when the LLM lacks confidence in responding to the current query g,
M* conducts the following steps:

Step 1:  For each memory category t? in 7%, we use Eq. to obtain the most relevant memory clue
¢} from memory chain C? of the memory category t] and integrate it to the retrieved memory chain
M: M < ¢ >.

Step 2:  Starting from ¢, we perform a gradual bidirectional search through neighboring memory
nodes, integrating a node into M if the self-evaluation of LLM determines that it would improve the
response quality:

fC(M||cZ+1) if LLM,«e(cZH),

- 6
folel_J|IM) if LLM,.(c}]_,). (6)

M {
Where LLM,..(¢) represents that the integration of memory node ¢ into /M can improve the response
quality according to the self-evaluation of LLM. Note that memory remains in its original order dur-
ing integration, which allows for perception of the evolution of memory categories and characteri-
zation of memory traces. The retrieved memory M is fed into LLMs for response generation when
M is updated each time:

r = LLM(q, M) @)

The retrieval terminates when LLMs deem that the current M is confident to respond to query
q without laboriously exploring the entire memory space. The procedure of Self-reflection-based
Memory Retrieval is depicted in Algorithm[I} In addition, when the memory chains of all relevant
categories have been traversed but cannot answer the current query, LLM will automatically locate
the shared node and continue to retrieve relevant memory clues according to the above steps. Sec-
tion shows examples of the prompting for response generation, which prompts LLMs to pay
more attention to the order and evolution of the memorized explicitly.
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Table 1: Automatic evaluation of response quality (average of sessions). "Bold Font" means the
highest results. "Context" denotes feeding history information directly into the long context of
LLMs. *B-4 = BLEU-4, R-L = ROUGE-L, and Bert = BertScore.

Backbone Methods cc MSC
B-4 R-L Mauve Bert B-4 R-L Mauve Bert
Context 1.31 14.52 5472 4571 1.05 13.83 54.31 48.23

MemoChat (Lu et al., [2023) 0.74 11.13 47.88 4423 0.66 11.21 54.02 46.50
MemoryBank (Zhong et al}|2024) 1.19 14.00 53.25 45.85 0.96 13.25 55.72 48.08
COMEDY (Chen et al.[[2025)  0.69 11.38 47.71 4492 0.64 11.21 55.25 47.07

Quwen2.5 Rsum (Wang etall2025)  1.05 13.65 4891 4588 0.83 12.84 56.61 47.86
THEANINE (Ong et al,2025) 1.04 13.57 59.99 4447 1.02 13.32 4157 47.20

M* (Ours) 190 1673 69.54 46.81 126 14.15 64.88 d8.29

Context 108 13.60 57.75 4525 0.89 13.63 5934 47.26
MemoChat (Lu etal}2023)  0.81 11.43 30.19 4342 0.67 1195 4845 46.08
MemoryBank (Zhong et al, 2024) 0.81 12.27 53.94 4545 0.70 1220 59.86 4691

Lmas  COMEDY (Chenetal[p025) 054 945 48.12 4403 053 1032 5586 45.94
Rsum (Wang etal 2025)  1.10 13.86 47.89 4521 070 1252 59.51 4734
THEANINE (Ong et al,2025)  0.67 11.83 47.19 4435 0.72 1259 53.81 47.10

M* (Ours) 200 1779 66.63 45.60 1.09 14.81 64.02 47.52

Context 236 17.85 67.82 4827 120 1483 5924 47.39
MemoChat (Lu etal}2023) 171 1522 5098 46.13 1.04 13.52 5832 46.57
MemoryBank (Zhong et al2024) 0.78 10.79 46.90 42.53 059 10.15 5477 43.75
chagpy  COMEDY (Chenetal[2025) 092 1255 4133 4577 076 1243 5428 46.99
Rsum (Wang ctal}2025)  1.16 13.86 50.58 4570 0.78 11.85 57.53 45.69
THEANINE (Ong etal,2025) 1.01 1440 5755 4541 1.12 1399 45.18 47.75

M* (Ours) 3.00 1949 7826 d48.88 136 1536 65.13 4837

Context 179 1741 55.11 4779 121 1512 5451 49.17
MemoChat (Lu etal}2023) 171 1522 5098 46.13 0.83 12.63 5341 47.93
MemoryBank (Zhong et al, 2024) 1.08 15.14 4595 4727 1.03 13.74 4530 4839

Gprao  COMEDY (Chenetallp025)  0.67 1130 39.51 4618 0.60 11.07 48.86 47.19

Rsum (Wang et al.| 2025) 1.01 14.57 46.51 47.12 097 1399 5199 4843
THEANINE (Ong et al.,[2025) 1.25 14.42 56.13 45.19 094 13.57 54.14 47.52
M* (Ours) 2.03 18.07 66.59 47.84 1.29 15.39 58.22 49.08

4 EXPERIMENTS

In this section, we first evaluate the performance of the proposed M* compared with existing state-
of-the-art (SOTA) baselines in long-term conversation. Then, we present a detailed analysis of our
M* to demonstrate its effectiveness in memory management for LLMs.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct extensive experiments on two long-term conversation datasets: MSC (Xu
et al., 2022a)) and CC (Jang et al., |2023), each comprising 5 sessions with approximately 50 con-
versational turns per sample. Moreover, we also evaluate the robustness for long-term memory
capacity of M* on a long-term question-answering at LONGMEMEVAL (Wu et al., 2025) dataset.
Appendix [A]for more details about datasets.

Models and Baselines. We evaluate on four mainstream LLMs: 1) Qwen2.5-7B (Yang et al.,
2024), the Qwen2.5-7B-Instruct version. 2) Llama3-8B (Touvron et al., 2023)), the Meta-Llama-3-
8B-Instruct version. 3) ChatGPT (OpenAl, 2023)), the GPT-3.5-Turbo-0125 version. 4) GPT-40
(OpenAlL [2024a), the GPT-40-2024-08-06 version. For response generation and question answering,
we compare our method with five strong baselines: MemoChat (Lu et al., [2023), MemoryBank
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(Zhong et al.,2024), Rsum (Wang et al., 2025), COMEDY (Chen et al.,[2025), THEANINE (Ong
et al., 2025), and LMEBOT (Wu et al., 2025). For the embedding model, we use text-embedding-
3-large (OpenAl 2024b). More details of baselines are shown in Appendix [B]

In addition, we design various variants to present an ablation study of our M*: 1) To study the ef-
fectiveness of the proposed chain-based memory construction, we provide "w/o Chain" to construct
memories in random order. 2) To evaluate the effectiveness of the Self-monitoring-based Memory
Updating, we provide "w/o Calibrate" and "w/o Compress" to analyze the importance of these two
actions. 3) We provide "w/o Self-reflection” as directly using all query-related memory in response
generation without self-reflection during memory retrieval.

Evaluation Metrics. We comprehensively evaluate our M* on three types of metrics. 1) Auto-
matic Metrics. Following Ong et al.| (2025), we use BLEU-4 (Papineni et al., 2002), ROUGE-L
(LIN} 2004), Mauve (Pillutla et al., 2021), and BertScore (Zhang et al.l |2019) to automatically
evaluate response generation. Following Wu et al.| (2025)), accuracy is used for comparison with
LMEBOT on LONGMEMEVAL. 2) G-Eval Metrics. Following Xu et al.| (2022b)) and Jang et al.
(2023)), we use GPT-4o0 to evaluate dialogue generation on five dimensions: Engagingness, Hu-
manness, Coherence, Consistency, and Memorability. Appendix D] for details about these metrics.
3) Human Metrics. Following (Ong et al| (2025), humans evaluate the winning performance of
different methods on response generation and memory retrieval.

4.2 EXPERIMENTAL RESULTS

Main results. The experimental results presented in Table |1| compellingly demonstrate the supe-
rior performance of our proposed M* framework in long-term conversation. Our M* framework
consistently outperform all baseline models on both long-term conversation datasets across all eval-
uation metrics. Further, M* outperforms all the memory management baselines, demonstrating that
endowing LL.Ms with autonomous memory management ability by exploring meta-memory is more
effective in long-term information learning compared to laborious mining of memory information
from historical conversations.

Ablation Study. To further analyze the im- Table 2: Ablation study of M* on ChatGPT.
pact of each module of our M* on performance,

we conduct an ablation study on various vari- Datasets Methods B-4 R-L Mauve Bert
ants of M* with the ChatGPT backbone and re- __M'(Ours) 300 1949 7826 48.88
port the results in Table 2] The removal of the . _ WoChain 240 1767 72.57 48.30_

. ) Lo cc w/o Calibrate ~ 2.89 19.28 7637 48.77
memory chain ("w/o Chain") significantly de-
ry ( ) g y w/o Compress ~ 2.90 19.06 74.38 48.79

creases the performance on all metrics. This in- “wo Self-reflection” 390 1918~ 7679 29.26°

dicates that the inherent order within memory M® (Ous) 136 1536 65.13 4837
chains enables the LLM to better understand T T WioChain 124 1488 6241 48.07
temporal dependencies, narrative flow, and the MSC ~ wioCalibrate 127 15.00 6335 48.11
evolution of memory, leading to more contex- _ wloCompress  1.26 14.97 6421 48.10
tually appropriate responses compared to a dis- wlo Self-reflection  1.31 15217 64.73 48.14

ordered set of memories. Further, ablation of

either the "calibrate" or "compress" action results in a considerable performance degradation. This
denotes that, compared to static memory storage, updating stored memories appropriately can im-
prove memory management and thus enhance text generation for long-term conversations. The
inferior performance of the "w/o Self-reflection" variant highlights the importance of self-reflection
in dynamically retrieving relevant memories, which facilitates memory learning and elicits higher-
quality responses compared to the direct use of stored memories.

4.3 ANALYSIS OF OUR M*

M* improves both LLMs’ memory management and response quality. To further evaluate the
quality of response generation beyond automatic metrics, we perform a comprehensive G-Eval (Liu
et al., [2023) on five key dimensions. As shown in Figure [2| (a) and (b), compellingly demonstrate
the superior performance of our proposed method compared to six baselines. Notably, our method
exhibits substantial advantages in Memorability, suggesting its effectiveness in recalling and appro-
priately utilizing long-term historical information. It also excels in Engagingness, Coherence, and
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Figure 2: Evaluation of response quality by G-Eval metrics (a and b) and human evaluation (c).

Consistency, crucial for maintaining logical and contextually sound conversations. In addition, we
additionally implement a human evaluation. As shown in Figure[2](c), the human evaluation results
overwhelmingly favor our M*. In terms of "Generation" quality, M* are preferred by human evalu-
ators in a significant majority of cases. The winning rate exceeds 68% across all the baselines. For
the evaluation of "Memory" utilization, M* demonstrates significant advantages compared with the
baseline models. Human evaluation demonstrates that our M* not only excels in automatic metrics
but also produces responses that are qualitatively superior in terms of both generation quality and
the effective use of long-term conversational memory.

Memory categories can enhance the ability of LLLM to re- ar—
trieve relevant memory information. To further explore ,, ® Group2
the benefit of the proposed M?* in enhancing the capabil- croun 3
ity of memory utilization, we manually select three control 15

groups for the experiment, each group consisting of 10 re- <,
trieved memory embedding combinations based on queries. '°| o, % ® .
The topics mentioned in the queries of the two groups are os &
similar, while the remaining group is unrelated to these two o °
groups. The t-SNE visualization in Figure[3|reveals a clear dis- ®e {
tinction: retrieved memories for content-related queries form -3.00 -2.75 250 -225 2.00 -1.75 -150 -125
coherent clusters, while those for unrelated queries are widely

dispersed. This indicates that memories retrieved by content- Figure 3: t-SNE visualization of
related queries are highly correlated, while those from unre- memories retrieved based on dif-
lated queries are uncorrelated. That is, M* can dynamically ~ferent queries. Queries in groups 1
retrieve task-relevant memories for different queries, leading and 2 contain similar topics, while
to more accurate and contextually appropriate responses. group 3 involves different topics.

X

The "compress'' action can substantially reduce token con- I w/o Compress lll w/ Compress
sumption for memory storage. Figure [ illustrates the mem-
ory usage (tokens per conversation) of our M* with and without
the "compress" action on both long-term conversation datasets.
The results clearly show a substantial reduction in token con-
sumption when compressing is applied, decreasing the memory
space by more than 50% on both datasets. This significant de-
crease in token requirements highlights the effectiveness of our
Compressing action in creating concise yet informative memory CcC MSC
representations, which is crucial for managing long conversa-

tional histories efficiently, especially given the token limits and Flg}lfe 4: Memory usage com-
computational costs associated with LLMs. parison of ChatGPT.

Parameter Sensitivity of . We further analyze the sensitivity of our M* framework to the simi-
larity threshold , a crucial parameter governing the relevance assessment for memory linking, with
results presented in Figure[5] The performance only fluctuates slightly for different values, indicat-
ing that M can fit different similarity thresholds when computing the relevant memory information.
Further, the results suggest that a moderately selective similarity threshold strikes an effective bal-
ance without being overly lenient (introducing noise) or overly strict (missing useful context).
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Figure 5: Experimental results of parameter sensitivity analysis about similarity threshold ~.

Analysis of task robustness. To further an- Table 3: Question answering accuracy (%) on
alyze the robustness of M* in other long-term [ ONGMEMEVAL compared to baselines. MR =
information learning tasks. We experiment on  Multi-Session Reasoning, KU = Knowledge Up-

a long-term question-answering dataset and re- date, and TR = Temporal Reasoning.
port the results in Table 3] We can see that M*

consistently outperforms both the Context-only Backbone Methods MR KU TR
baseline and LMEBOT across all three chal- Context 4738 50.00 40.87
]enging tasks. This demonstrates the efﬁcacy of Qwen2.5 LMEBOT (Wu et al.,[2025) 51.88 56.41 45.11
M* in utilizing memory dispersed across multi- M” Ours) e CHD S
ple conversational turns. For the knowledge up- Context 49.62 5385 47.37

. Llama3 LMEBOT (Wuetal|[025) 5338 64.95 54.89
datg task, this strong result undersgores the ef— M (Ours) TR
fectiveness of our Memory Evolution action in Confext 3158 3590 33.08
maintaining an accurate and up-to-date knowl-  chaGPT LMEBOT (Wuctal)2025) 54.86 5385 40.60
edge base. Moreover, the result of temporal rea- M* (Ours) 58.65 57.69 43.60

soning indicates that the inherent sequential or-
ganization of our memory chains aids in understanding and reasoning about the temporal relation-
ships between events and information presented across different sessions.

~..I' know you asked me to take out the tras
, Learlier and was hesitant,but I’ll do it now... { Maybe we could even find one thej

!'Session 2 has some cool motorcyclerelated art
PR | \‘ Q eventua"y the Speaker to incorporate both of};ur interests,
1y = takes out the trash ... :
I ®- O P (a) w/o M*
\ T s,
Start @ AfewHours 1+ @ AFewDays @ AfewDays | Now [ Sure! Let’s make sure that you get
. N ! everything done that needs to be é’:
Session 1 H I Session 4 done before we plan our next ...

Can'tyou take ) B eventually the speaker Ow/M
out the trash? ... takes out the trash ... ’m glad we can continue to support
each other in our daily tasks,even th :F:’]:

fq I always have to R
take out the trash, )IE{( eventually takes out trash.  lsmall ones like taking out the tras

Figure 6: Case study on ChatGPT compared to w/ and w/o M*.

Case Study. Figure [6] depicts a multi-session scenario where a user complaint in Session 1 is
resolved in Session 2 when the speaker agrees to do so. Our M* framework, through its Mem-
ory Evolution action, updates the relevant memory chain to reflect this resolution (symbolized by
"...eventually the speaker takes out the trash..."). Subsequently, the Compressing action distills this
evolved memory into its core essence ("eventually takes out trash") for efficient long-term storage.
Moreover, M* leverages the accurately evolved and efficient memory, generates a response (...
even the small ones like taking out the trash") that not only addresses the current interaction but also
subtly acknowledges the past resolved issue.

5 CONCLUSIONS

In this paper, we propose M*, a novel framework for LLMs’ long-term memory learning. By lever-
aging meta-memory into memory management, M* enables LLMs to dynamically manage and uti-
lize memory during response generation. Through comprehensive experiments on multiple bench-
marks, we demonstrate that M* consistently outperforms existing baselines in long-term conversa-
tion tasks. Further analysis shows that through the introduction of self-monitoring and self-reflection
mechanisms, our M? achieves superior memory utilization and generates higher-quality responses.
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Ethical Statement This research strictly adheres to data usage regulations; all experiments are
based on public datasets, with a commitment not to process any private information. While the cur-
rent work does not delve into ethical topics like transparency and inclusivity, we acknowledge their
value and believe future advancements can be integrated into our memory learning framework. We
encourage the academic community to work together to enhance the understanding and implemen-
tation of responsible Al

Reproducibility Statement To facilitate the reproduction of our results, Section 4| and the Ap-
pendix provide a thorough description of our experimental setup, evaluation metrics, and imple-
mentation specifics. The source code and scripts will be made publicly available upon this paper’s
acceptance. We have also listed all required external libraries and dependencies. To demonstrate
the broad applicability of our approach, we have validated it on both open-source and commercial
models.
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A APPENDIX

A MORE DETAILS OF DATASETS

Time Interval

Datasetsﬁ # Sessions (train) # of Sessions Hours Days Weeks Months Years Relation
MSC (Xu et al., 2022a) 4 16K /7 X X X X
CC (Jang et al| 2023) 5 M v v/ v v v

Table 4: Comparison between MSC and CC. The latter considers longer time intervals and speaker
relationships.

We evaluate our method on two long-term multi-session conversation datasets: Conversation
Chronicles (CC) Jang et al.| (2023) and Multi-Session Chat (MSC) Xu et al.[(2022a). Following
Ong et al.|(2025)’s settings, we randomly select 50 episodes from the test set of each dataset, a total
of 250 sessions for generation experiments in this paper. The statistics of each data set are shown
in Table[d] For additionally LONGMEMEVAL dataset, which focuses on question answering, we
select full LONGMEMEVALg (50 sessions per question, total 500 questions) for our experiments
to evaluate three subtasks: Multi-Session Reasoning, Knowledge Update, and Temporal Reasoning.

B COMPARED BASELINES

There are five strong summary-based baselines in the paper for comparison with our method:

e MemoChat (Lu et al.,[2023)): This work summarizes different topics separately and stores
them in memory by constructing structured memos.

e MemoryBank (Zhong et al.,|2024)): This work creates a memory bank based on the Eisen-
haus forgetting curve to manage the memory of user portraits and summaries.

e COMEDY (Chen et al.,[2025): This work uses user profiles, relationship descriptions, and
events from past conversations as compressed summaries to prompt LLMs (i.e, ChatGPT).

o Rsum (Wang et al.| [2025): This work uses LLM itself to iteratively summarize past con-
versations as memory to store. Specifically, after each summary, the old memory and the
current context are summarized into a new memory.

e THEANINE (Ong et al}2025)): This work manages memories by linking them into time-
lines based on temporal and cause-effect relationships, instead of deleting old ones.

For a fair comparison with our approach, we select the same environment named LMDeploy (Con-
tributors}, 2023)) for inference on Qwen2.5-7B and Llama3-8B. For ChatGPT, we call OpenAI’s API
service for inference. We set temperature to 0.80 and v to 0.5 for generation.

C THE PROCEDURE OF SELF-REFLECTION-BASED MEMORY RETRIEVAL

We have included pseudocode (Algorithm |I)) to ensure that readers can readily grasp the intricate
details and flow of our algorithm.

D G-EvAL METRICS

With the development of open-domain conversation based on LLM, traditional overlap metrics such
as BLEU (Papineni et al., 2002), ROUGE (LIN}|2004), etc. face great challenges. The reason is that
a wide range of response generation can be considered as appropriate responses (Liu et al., [2016).
To this end, we refer to G-Eval (Liu et al.,|2023)) and use GPT-40 to evaluate episodes. In our paper,
we follow the metrics set in|Xu et al.|(2022b)) and Jang et al.| (2023):
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Algorithm 1 Self-reflection-based Memory Retrieval

0%

10:

12:

13:
14:

15:
16:

31:

AN A

Input: Query g, query-related category set 7 = {¢! 77, and corresponding memory chain set {c] o,

self-evaluation function of the response LLM_confident (+), self-evaluation function of the newly retrieved
node LLM,. (), traversal pointers py and p;, for each memory chain
Output: Retrieved memory M
M0
for all t! € 77 do
A < LLMgonfident (g, M) # Determine whether LLM is confident in the current response
if A == True then
Break .
k + argmax{sim(cg, q)}ljc:ll| # Obtain the index of the most relevant memory clue by computing
the similarity between each c_‘; and ¢q
M < fe(M||c}) # Integrate ¢} into M
pfr <+ k+1, py < k—14#Initialize the index of traversal pointers
A <~ LLMconﬁdent (qa M)
while A == False do
ifpy < |C?| — 1 then
By + LLMre(cgf) # Determine whether the response quality is improved by integrating
memory node ¢ . into M
else
By + False # All the forward nodes in memory chain C have been traversed
if p, > O then
By < LLM;c(c},) # Determine whether the response quality is improved by integrating
memory node cf, into M
else
By < False # All the backward nodes in memory chain C have been traversed
if By == True then
M fe(Mlleg,)
A «— LLMconﬁdent (q, M)
if By == True then
M fe(cp, [[M)
-A — LLMconﬁdent (q, M)
if py == |C}| — 1 and p, == 0 then
Break # All the nodes in memory chain (
ifpr < |C!| — 1 then
prpy+1
if p», > 0 then
Po<po—1
return M

2q
71

have been traversed

o Engagingness: The assistant can have rich interactions with users that go beyond simple
conversations. For example, the assistant can generate interesting and immersive responses
based on the current context.

e Humanness: The assistant can communicate with users like a real human would, display-
ing emotional understanding like empathy and human thought processes.

e Coherence: The assistant can generate responses that match current and historical contexts
based on the context.

e Consistency: The assistant need to maintain consistent responses with their persona in
long-term conversations.

o Memorability: The assistant can correctly recall more what happened in past sessions.

Each metric is scored on a scale of 1-5, with 1 being the worst and 5 being the best. Normalisation
is taken in G-Eval experimental results to maintain a better visualisation.
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Prompt for Category-based Memory

nnn

You are an Al assistant with a Category-based Memory module. Your task is to extract and
categorize new information from conversations to remember for future interactions. This
process is designed to prevent redundancy by focusing only on information absent from
your general knowledge.

Here is a conversation:
{Conversation}

Please analyze the conversation and identify distinct pieces of information that are important
to memorize.

Focus exclusively on details specific to the speakers or the situation (e.g., personal prefer-
ences, plans, specific events, relationships) and avoid summarizing common knowledge you
already possess. This enables you to autonomously identify what needs to be memorized.

For each identified piece of memory, classify it into a distinct and natural memory category
and provide a concise summary.

Return a JSON array of objects, where each object represents a memory item.

Example JSON Response:
{"Category": "{ YOUR_CATEGORY}", "Summary": "{ YOUR_SUMMARY}"},
{"Category": "{YOUR_CATEGORY}", "Summary": "{ YOUR_SUMMARY }"}

Now, for the given conversation, provide the JSON response without any reasoning:

nnn

Figure 7: Prompt for Category-based Memory.

Prompt for Category Retrieval

nn

Given the current utterance/query:

{Utterance}

Please analyze the utterance and determine which categories it is relevant to.

Return a JSON array of objects, where each object represents a category that is relevant to
the utterance.

Example JSON Response:
{"Category": "{ YOUR_CATEGORY}"},
{"Category": "{YOUR_CATEGORY}"}

Based on the utterance, please provide the JSON response with the relevant categories with-
out any reasoning:

nnn

Figure 8: Prompt for Category Retrieval.
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Prompt for Conflict Detection

The following are summaries given in conversational order:

Previous_summary:

{Previous_summary } New_summary:

{New_summary}

Please understand their differences carefully and judge whether there is a conflict or update
between them, such as a change in the speaker’s identity, the development of events, and a
change in attitude (interest, etc.).

If you think there is a conflict between them, then please output 1, otherwise output O without
any reasoning:

nnn

Figure 9: Prompt for Conflict Detection.

Prompt for Memory Updating

nn

The following are some summaries given in conversational order:

Previous_summary:

{Previous_summary}

New_summary:

{New_summary }

Please understand their differences carefully and focus on the changes or updates between
contents, such as the change of the speaker’s identity, the development of events, and the
change of attitude (interest, etc.), etc., and merge the two into a new summary without any
reasoning:

nnn

Figure 10: Prompt for Memory Updating.

Prompt for Compression Detection

nnn

The following is an original text and its compressed text:

Original_text:

{Original_text}

Compressed_text:

{Compressed_text}

Please be careful to understand the differences and make an honest judgement as to whether
most of the key information in the original text can be restored from the compressed text.

If you think you can decompress or restore it, then please output 1, otherwise output O
without any reasoning:

nnn

Figure 11: Prompt for Compression Detection.

E GENERATION PROMPTS

E.1 CATEGORY-BASED MEMORY PROMPT

As shown in Figure[7] we prompt LLMs to complete the category-based memory of each historical
session.
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Prompt for Memory Judgment

nnn

The following are user’s query/utterance and candidate memories:

Query/Utterance:

{Query/Utterance}

Memories:

{Memories}

Please be very honest in your judgement as to whether you can generate the best response
based on the known memories.

If you can please output 1 and conversely if you need more memories then output 0 without
any reasoning:

nnn

Figure 12: Prompt for Memory Judgment.

Prompt for Response Generation

nnn

The following are user’s query/utterance and related memories:

Query/Utterance:

{Query/Utterance }

Memories:

{Memories}

Generate the most plausible answer based memories without any reasoning. Each line in
the memory represents a timeline chain of topics. Please pay attention to the sequence, the
evolution of these memories.

Do not put too much information in the next response.

nnn

Figure 13: Prompt for Response Generation.

E.2 CATEGORY RETRIEVAL PROMPT

As shown in Figure [8] we prompt LLM:s to select possible categories that are more relevant to the
current utterance.

E.3 CONFLICT DETECTION PROMPT

As shown in Figure 9] we prompt LLMs to check for conflicts in the memory before the undergo-
ing session. If conflicts are found between memorizes of the same topic in different sessions, the
memory needs to be updated.

E.4 MEMORY UPDATTING PROMPT

As shown in Figure[I0] we prompt LLMs to merge previous memories with present ones. The point
is to fuse the contents as a new conflict-free memory.

E.5 COMPRESSION DETECTION PROMPT

As shown in Figure[TT} we prompt LLMs to determine whether most of the key information of the
original text can be restored based on the currently compressed text.
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Prompt for G-Eval

nnn

This a conversation:

{Conversation }

You are an impartial evaluator. Please evaluate this conversation based on the following five
metrics:

1. Engagingness: Two speakers should interact to create responses that are not only interest-
ing but also well-immersed in the given context of the conversation.

2. Humanness: Two speakers should have a conversation that demonstrates emotional un-
derstanding (e.g., empathy) and the use of natural language and thought processes that are
typical of human beings.

3. Memorability: If two Speakers recall past events correctly by retaining information from
previous sessions.

4. Coherence: Whether the whole conversation is relevant and consistent with the context.
5. Consistency: Whether responses are relevant and consistent with previous persona.

The score for each metric is 1-5, with 1 being the lowest score and 5 being the highest score.
Write down your score for each metric without any explanation, e.g. Engagingness: {YOUR
SCORE}, Humanness: {YOUR SCORE}, Memorability: {YOUR SCORE}, Coherence:
{YOUR SCORE}, Consistency: {YOUR SCORE}"

nnn

Figure 14: Prompt for G-Eval.

E.66 MEMORY JUDGMENT PROMPT

As shown in Figure[12] we prompt LLMs to determine whether current memories can provide suf-
ficient information to respond based on the current query/utterance.

E.7 RESPONSE GENERATION PROMPT

As shown in Figure T3] we prompt LLMs to pay more attention to the order and evolution of the
memorizes explicitly.

F EVALUATION PROMPT

As shown in Figure[T4] we prompt LLMs to evaluate all generated responses according to the defined
metrics.

G LIMITATIONS

Our work introduces M*, a novel paradigm for dynamic memory management in long-term conver-
sations, establishing a foundational framework for more autonomous Al systems. While our exper-
iments demonstrate the significant potential of this approach, we also recognize several promising
avenues for future exploration that can further enhance its capabilities and robustness.

The effectiveness of the M* framework is closely intertwined with the underlying capabilities of the
base LLM, as it relies on the model’s reasoning for critical sub-tasks such as memory categoriza-
tion, conflict detection, and self-reflective retrieval. Future research could explore the development
of more specialized and lightweight mechanisms for these components. This could not only improve
computational efficiency but also enhance the overall system’s resilience by reducing the potential
for cascading errors originating from a single judgment by the base model. Furthermore, the cur-
rent implementation employs a set of effective heuristics for memory retrieval and organization. A
valuable next step would be to investigate adaptive methods that allow the model to dynamically
adjust these strategies based on the specific conversational context or task, moving towards a more
sophisticated and self-optimizing memory management system.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized LLMs to assist with proofreading and lan-
guage polishing. The authors have reviewed and edited all suggested changes to ensure the scientific
accuracy and clarity of the content, and take full responsibility for the final manuscript.
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