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Abstract

Taxonomic classification in biodiversity research involves001
organizing biological specimens into structured hierarchies002
based on evidence, which can come from multiple modal-003
ities such as images and genetic information. We inves-004
tigated whether hyperbolic networks provide a better em-005
bedding space for such hierarchical models. Our method006
embeds multimodal inputs into a shared hyperbolic space007
using contrastive and novel entailment-based objectives.008
Experiments on the BIOSCAN-1M dataset show that hy-009
perbolic embeddings achieve competitive performance with010
Euclidean baselines, and outperforms all other models on011
unseen species classification using DNA barcodes. How-012
ever, fine-grained classification and open-world generaliza-013
tion remain challenging. This framework offers a scalable014
and structure-aware foundation for biodiversity modelling,015
with potential applications to species discovery, ecological016
monitoring, and conservation efforts.017

1. Introduction018

Taxonomic classification is essential for monitoring and019
mitigating biodiversity loss, requiring accurate identifica-020
tion of specimens across diverse ecosystems. DNA bar-021
codes [1, 7] provide a way to classify specimens to known022
taxa or identify them as novel to science, but classification023
to the species level remains challenging when barcodes are024
unavailable. To tackle this, Gong et al. [5] showed that using025
contrastive learning to align DNA barcode embeddings to026
image embeddings can improve classification at the species027
level even when only using images as input at inference.028

However, a key limitation of CLIBD [5] and other re-029
cent biodiversity-focused multimodal methods [17] is that030
the methods do not utilize the known taxonomic hierarchy031
of the input data. To address this, we explore whether em-032
beddings in hyperbolic space can better capture the hierar-033
chical structure of taxonomic relationships, enabling better034
fine-grained classification. While training, the model takes035
inputs from multiple modalities—DNA barcodes, specimen036
images, and hierarchical taxonomic labels—and co-aligns037
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Figure 1. (a) Contrastive loss: instance-level alignment between
modalities. (b) Entailment loss: enforces hierarchy within the text
modality using entailment cones. (c) Stacked entailment loss:
combines EL and cross-modal constraints by aligning image and
DNA embeddings to multiple levels of the text hierarchy.

their embeddings into a shared hyperbolic space to promote 038
taxonomic alignment across modalities. 039

Our experimental results show that our hyperbolic multi- 040
modal learning framework achieves strong performance in 041
taxonomic classification and retrieval, especially at higher 042
taxonomic ranks. The approach consistently matches or 043
outperforms Euclidean baselines and better preserves the 044
hierarchical relationships among modalities. However, all 045
methods—including ours—face challenges in fine-grained 046
species classification, particularly for previously unseen 047
taxa. These results highlight both the potential of hyper- 048
bolic learning for hierarchical biological data, and the ongo- 049
ing difficulty of open-world classification for biodiversity. 050

2. Related Works 051

Euclidean Multimodal Learning is the norm for recent ad- 052
vances in the multimodal contrastive learning domain, both 053
in general vision-language frameworks such as CLIP [15] 054
and SigLIP [19] and domain-specific ones, including those 055
for biodiversity applications [5, 6, 17]. These biodiversity 056
models embed images, textual data, and optionally DNA 057
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barcodes into a shared Euclidean embedding space using058
modality-specific encoders and contrastive learning objec-059
tives. CLIBD [5] in particular demonstrates zero-shot clas-060
sification on BIOSCAN-1M [4], achieving superior accu-061
racy than unimodal baselines.062
Hyperbolic Representation Learning is an approach that063
utilizes hyperbolic geometry to encode features into a hier-064
archical representation space [11]. Unlike Euclidean space,065
hyperbolic spaces grow exponentially, matching the way the066
number of nodes in a hierarchy can grow exponentially with067
the depth. Nickel and Kiela [12] showed that taxonomic068
relationships in language can be effectively captured using069
hyperbolic embeddings. Recently, hyperbolic visual repre-070
sentation learning has been applied to vision tasks such as071
image retrieval [8] and image segmentation [3]. While the072
majority of these works use hyperbolic geometry only at the073
last layer, recent advances have been made towards devel-074
oping fully hyperbolic models, e.g., Poincaré ResNet [18].075
Hyperbolic Multimodal Learning combines multimodal076
learning and the use of hyperbolic geometry to co-align em-077
beddings from different modalities in a hierarchical repre-078
sentation space. Early examples include the work of Liu079
et al. [10], who demonstrated how to align images and text080
embeddings in a Poincaré hyperbolic space. MERU [2] uses081
contrastive learning to align images and text in Lorentzian082
space. It has served as the foundation for several recent083
models such as HyCoCLIP [13], which incorporates com-084
positional constraints to strengthen fine-grained alignment085
between parts and wholes in visual concepts, as well as ma-086
chine unlearning approaches [14, 20]. These works demon-087
strate hyperbolic geometry can enhance the structural con-088
sistency and interpretability of multimodal models, particu-089
larly in settings with implicit or weakly defined hierarchies.090

Our method differs from prior work in three key091
ways. First, rather than focusing on vision-language or092
object-level inputs, we incorporate biologically grounded093
modalities—DNA barcodes and taxonomic labels—that are094
more salient for species-level classification. Second, we095
leverage explicit taxonomic hierarchies to guide represen-096
tation learning rather than relying on implicit hierarchical097
signals such as caption specificity or object part composi-098
tion. Third, our stacked entailment loss enforces consis-099
tency across hierarchical ranks.100

3. Approach101

We propose a multimodal representation learning frame-102
work that unifies specimen DNA barcodes, images, and tax-103
onomic labels into a shared hyperbolic embedding space.104
By leveraging hyperbolic geometry, we aim to preserve hi-105
erarchical taxonomic relationships, improving classification106
accuracy and representation quality across the hierarchy.107

Our framework employs three specialized encoders to108
process each of the data modalities: an image encoder ex-109

tracts visual features, a DNA encoder encodes genetic se- 110
quences, and a text encoder captures semantic information 111
from taxonomic labels of varying depth. These encoders 112
independently map their inputs into a common embedding 113
space, in which contrastive learning aligns multimodal rep- 114
resentations for downstream tasks. We expand on CLIBD 115
[5] by lifting the embeddings into hyperbolic space, and 116
evaluate on the BIOSCAN-1M dataset [4]. 117

3.1. Input and Output Specification 118

During training, the model receives triplets of aligned 119
data: an image of a biological specimen, a DNA barcode 120
sequence, and structured taxonomic labels (e.g., “Order: 121
Diptera; Family: Syrphidae; Genus: Episyrphus; Species: 122
Episyrphus balteatus”). Each modality is passed through a 123
modality-specific encoder and projected into a shared hy- 124
perbolic embedding space. The training objective aligns 125
these representations while preserving taxonomic hierarchy. 126

At inference time, the model supports both uni- and 127
cross-modal retrieval, allowing it to taxonomically clas- 128
sify specimens using any available combination of images, 129
DNA barcodes and taxonomic labels. This enables robust 130
downstream use in biodiversity discovery and classification, 131
even with missing or noisy modalities. 132

3.2. Encoders 133

Our framework adopts a modular design with modality- 134
specific encoders that map images, DNA barcodes, and tax- 135
onomic text into a shared hyperbolic embedding space. We 136
adapt the experimental setup from Gong et al. [5], using 137
pretrained ViT-B/16, BERT-Small, and BarcodeBERT en- 138
coders for image, text, and DNA barcode modalities. 139

Each encoder produces Euclidean embeddings, which 140
are then projected into a Lorentzian hyperbolic space with 141
curvature c, via an exponential mapping centred at the ori- 142
gin. We refer the reader to Desai et al. [2] for details. The 143
shared space enables contrastive alignment across modali- 144
ties while preserving the hierarchical taxonomic structure. 145

3.3. Stacked Entailment Loss 146

To better leverage the inherent structure of the biologi- 147
cal taxonomy, we propose a hierarchical learning objec- 148
tive termed stacked entailment loss (SEL). This mecha- 149
nism is designed to explicitly enforce geometric relation- 150
ships between taxonomic ranks—order, family, genus, and 151
species—within hyperbolic space (see Figure 1). The de- 152
sign is inspired by compositional entailment mechanisms 153
introduced in prior work [13], but adapted to reflect the 154
nested and non-overlapping nature of biological hierarchies. 155

The core idea is to constrain the embeddings of lower- 156
level taxa (e.g., genus) to lie within an entailment cone 157
of their parent nodes (e.g., family). This entailment con- 158
straint is applied between each consecutive pair of levels in 159
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the hierarchy to ensure each child node is within the space160
“above” its parent, using a margin-based loss. Additionally,161
we introduce a negative entailment loss term which ensures162
each child node is not within the space “above” nodes from163
the preceding layer that are not its parent.164

In general, given a batch B = {(xi, yi, ci)}Bi=1, where xi165
and yi are embeddings and ci the class, we define positive166
pairs P = {(i, j) : ci= cj} and negative pairs N = {(i, j) :167
ci ̸=cj}. The corresponding entailment losses are:168

L+
ent =

1

|P|
∑

(i,j)∈P

max (0, ext(xi, yj)− aper(xi)) (1)169

L−
ent =

1

|N |
∑

(i,j)∈N

max (0, aper(xi)− ext(xi, yj) +m) (2)170

where ext(x, y) denotes the exterior angle between x and171
y in hyperbolic space, aper(x) is the cone aperture of x,172
and m is the margin for negative pairs. The positive and173
negative entailment loss are then combined into: Lent =174
1/2

(
L+

ent + L−
ent
)
. Unlike flat contrastive objectives, which175

treat all positive pairs equally, the stacked entailment loss176
introduces a directional notion of containment, ensuring177
that more specific taxa (fine-grained nodes) are properly178
nested under their broader ancestors in the hyperbolic hi-179
erarchy. The overall stacked-entailment loss consists of two180
parts: LSEL = LSEL-intra + LSEL-inter. The first component,181
intra-modal entailment loss, enforces hierarchy among182
taxonomic labels. Let the taxonomy have R levels (e.g., or-183
der, family, genus, species), indexed r = 1, 2, . . . , R from184
root to leaf. Tr is the embedding at rank r, and 1r an in-185
dicator function for the availability of the label at rank r.186
Then we construct the intra-modal stacked entailment loss,187

LSEL-intra =
1∑R

r=2 1r

R∑
r=2

1r × Lent(Tr, Tr−1). (3)188

Secondly, we introduce an inter-modal entailment loss189
that bridges the taxa labels with other modalities:190

LSEL-inter =
1

2

(
Lent(I, TR′) + Lent(D,TR′) + Lent(I,D)

)
(4)191

where I and D are the embeddings of images and DNA192
barcodes respectively, and TR′ refers to the deepest avail-193
able taxonomy label (i.e. TSpecies if species is known, TGenus194
if species isn’t known but genus is, etc.). This term ensures195
that modality-specific inputs are not only aligned with the196
correct label, but also geometrically nested within the same197
hierarchical space. Since there can be multiple specimens198
with the same DNA barcode, and repeated photography of199
even the same specimen will not yield the same image, we200
consider the barcode to be more abstract than the image and201
also include an entailment loss term from barcode to image202
in the inter-modality objective.203

In summary, our stacked entailment loss unifies taxo-204
nomic ordering and modality alignment, and embeds hier-205
archical structure into model training. This enables better206

generalization, especially with incomplete labels or unseen 207
species. By explicitly modelling the hierarchical contain- 208
ment of taxonomic levels, our approach enables indepen- 209
dent retrieval and prediction at any rank (e.g., order, fam- 210
ily, genus, or species), facilitating multi-level querying and 211
evaluation directly within the learned representation. This 212
stands in contrast to CLIBD, which requires simultaneous 213
prediction of all taxonomic levels during inference. We also 214
extend the stacked entailment loss with two variants. 215
• Image-DNA contrastive loss: By adding a contrastive 216

loss term based on the negative Lorentz distance between 217
image and DNA embeddings, we encourage stronger 218
cross-modal alignment and can improve the accuracy of 219
image-to-DNA retrieval. 220

• Full-text supervision: We introduce an extra language 221
input by concatenating taxonomic labels from all four 222
ranks (order, family, genus, species), as is used in CLIBD. 223
The full text is also used for contrastive alignment to the 224
image and DNA embeddings. 225

4. Experiments and Results 226

We use the Euclidean-space CLIBD model [5] as a baseline, 227
and adapt the CLIBD training pipeline to use hyperbolic- 228
space based on the MERU framework [2]. We experimented 229
with different combinations of loss functions, including en- 230
tailment loss, stacked entailment loss, and contrastive loss. 231
Experiments were conducted on four NVIDIA A100 GPUs 232
(80GB VRAM each). We use a batch size of 2000 (4 233
× 500), except for experiments using stacked entailment, 234
which could only fit a batch size of 1520 (4 × 380). All 235
models were trained for 50 epochs with the Adam optimizer 236
[9]. The learning rate was scheduled using a one-cycle pol- 237
icy [16], ranging from 1e-6 to 5e-5. We also used a trainable 238
temperature for the contrastive loss, initialized to 0.07. 239

4.1. Metrics and Datasets 240

We conduct experiments on the BIOSCAN-1M dataset [4], 241
which provides high-quality images with paired DNA 242
barcodes and taxonomic labels for over 1 million in- 243
sect specimens. For simplicity, we train all models on 244
CLIBD’s train seen split of BIOSCAN-1M (36 k sam- 245
ples), which ensures all samples have complete species- 246
level labels. We leave expanding the experiments to the full 247
BIOSCAN-1M training dataset to future work. 248

Similar to CLIBD we evaluate classification perfor- 249
mance across taxonomic ranks and for both seen and unseen 250
classes, using class-averaged (macro) top-1 accuracy. 251

4.2. Results 252

We compare our hyperbolic SEL strategy against baselines 253
on the BIOSCAN-1M dataset across three retrieval tasks 254
(DNA-to-DNA, Image-to-Image, and Image-to-DNA) eval- 255
uated at four taxonomic levels (order, family, genus, and 256
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Table 1. Macro top-1 accuracy (%) comparison of different training objectives across taxonomic levels on BIOSCAN-1M. CL: contrastive
loss. EL: entailment loss; SEL: stacked entailment loss; We evaluate uni- and multi-modal retrieval tasks including DNA-to-DNA, Image-
to-Image, and Image-to-DNA. Accuracy is reported on both seen and unseen taxa, along with their harmonic mean (H.M.). Each method is
further characterized by the configuration of entailment loss used (EL config.), whether full taxonomic text embedding is included utilized
during training (Full Text), and the choice of embedding space (Euclidean: Rn, or Lorentzian-hyperbolic: Hn

L). All models are trained on
the train seen split of CLIBD and evaluated on the test split. Best results are shown in bold; second-best are underlined.

DNA-to-DNA Image-to-Image Image-to-DNA

Rank Method EL config. Full Text Space Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order

CLIBD – ✓ Rn 89.1 87.8 88.4 99.5 66.4 79.6 98.7 49.5 65.9
CL – ✓ Hn

L 89.1 85.6 87.3 98.5 61.2 75.5 89.1 47.8 62.2
EL+CL Pos. ✓ Hn

L 88.6 86.5 87.5 98.6 56.9 72.1 77.8 48.4 59.7
SEL Pos.+Neg. ✗ Hn

L 88.4 90.8 89.6 79.3 62.3 69.8 98.7 48.9 65.4
SEL+CL Pos.+Neg. ✗ Hn

L 88.7 86.3 87.5 99.4 65.9 79.3 78.6 48.2 59.7
SEL+CL Pos.+Neg. ✓ Hn

L 88.9 88.2 88.5 99.0 60.9 75.4 78.6 48.9 60.3

Family

CLIBD – ✓ Rn 90.8 75.8 82.6 89.2 52.2 65.9 83.6 19.3 31.4
CL – ✓ Hn

L 90.3 76.6 82.9 83.9 48.5 61.4 79.6 18.8 30.4
EL+CL Pos. ✓ Hn

L 89.3 74.9 81.4 81.9 37.6 51.5 76.7 16.8 27.6
SEL Pos.+Neg. ✗ Hn

L 86.8 78.8 82.6 79.0 41.8 54.7 78.9 18.4 29.9
SEL+CL Pos.+Neg. ✗ Hn

L 89.0 76.9 82.5 79.6 46.6 58.8 78.7 17.3 28.4
SEL+CL Pos.+Neg. ✓ Hn

L 91.2 77.0 83.6 82.4 41.5 55.2 78.1 17.4 28.4

Genus

CLIBD – ✓ Rn 85.2 64.3 73.3 71.3 35.0 47.0 70.8 7.1 12.9
CL – ✓ Hn

L 86.4 64.9 74.1 65.6 32.4 43.4 66.9 6.5 11.8
EL+CL Pos. ✓ Hn

L 84.7 63.1 72.3 63.0 22.8 33.5 64.2 6.6 11.9
SEL Pos.+Neg. ✗ Hn

L 82.7 65.9 73.4 62.1 29.2 39.7 63.1 6.6 12.0
SEL+CL Pos.+Neg. ✗ Hn

L 83.6 66.9 74.3 63.3 33.1 43.5 67.6 6.4 11.7
SEL+CL Pos.+Neg. ✓ Hn

L 85.8 64.8 73.9 64.8 27.5 38.6 64.8 6.2 11.4

Species

CLIBD – ✓ Rn 81.8 60.6 69.7 55.1 24.3 33.7 55.8 0.7 1.4
CL – ✓ Hn

L 84.4 61.8 71.4 48.2 22.6 30.8 53.7 0.9 1.7
EL+CL Pos. ✓ Hn

L 82.5 60.1 69.6 45.4 14.3 21.8 50.5 0.9 1.8
SEL Pos.+Neg. ✗ Hn

L 79.5 62.3 69.9 45.5 20.0 27.8 52.0 1.1 2.1
SEL+CL Pos.+Neg. ✗ Hn

L 80.5 63.2 70.8 46.8 22.8 30.7 54.2 0.7 1.4
SEL+CL Pos.+Neg. ✓ Hn

L 82.6 62.0 70.8 47.8 19.0 27.2 51.4 1.0 2.1

species). We investigate how well training with contrastive257
loss (CL) in the hyperbolic space performs compared with258
training in Euclidean space (CLIBD [5]). We then compare259
different ways of training in hyperbolic space, comparing260
a strategy similar to MERU [2] with entailment loss and261
contrastive losses (EL + CL) to different variants of SEL.262
Table 1 reports macro Top-1 accuracy for seen and unseen263
taxa, as well as their harmonic mean.264

Across all retrieval tasks, models achieve high accu-265
racy at the coarsest levels, but this falls off substantially266
as ranks become more fine-grained, especially for image-267
based retrieval. We note that hyperbolic models consistently268
achieve results that are highly comparable to the Euclidean269
CLIBD baseline across all ranks and retrieval settings. SEL270
methods consistently perform best at unseen DNA retrieval,271
whereas the Euclidean model performs best at image re-272
trieval. Comparing EL+CL to SEL+CL with full text, we273
find that SEL+CL always dominates the former, demon-274
strating the utility of the stacked entailment over single-275

layer entailment. Additionally, comparing SEL+CL with- 276
out full text to with it, we find this change consistently im- 277
proves unimodal seen taxa retrieval, but decreases unseen 278
taxa performance and cross-modal performance. 279

5. Discussion 280

Our experiments demonstrate hyperbolic learning can ef- 281
fectively capture hierarchical structure in biological data 282
and provides performance competitive with established Eu- 283
clidean methods. However, neither framework fully over- 284
comes the persistent challenge of fine-grained, open-world 285
species identification. 286

Improving classification at fine-grained taxonomic ranks 287
and for novel, unseen taxa remains a key direction for fu- 288
ture work. Potential strategies include addressing class im- 289
balance, enhancing data augmentation, or leveraging more 290
advanced hierarchical or uncertainty-aware methods. 291
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