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Abstract

Taxonomic classification in biodiversity research involves
organizing biological specimens into structured hierarchies
based on evidence, which can come from multiple modali-
ties such as images and genetic information. We investigate
whether hyperbolic networks can provide a better embed-
ding space for such hierarchical models. Our method em-
beds multimodal inputs into a shared hyperbolic space us-
ing contrastive and a novel stacked entailment-based objec-
tive. Experiments on the BIOSCAN-IM dataset show that
hyperbolic embedding achieves competitive performance
with Euclidean baselines, and outperforms all other mod-
els on unseen species classification using DNA barcodes.
However, fine-grained classification and open-world gen-
eralization remain challenging. Our framework offers a
structure-aware foundation for biodiversity modelling, with
potential applications to species discovery, ecological mon-
itoring, and conservation efforts.

1. Introduction

Specimen identification is an essential step for monitoring
and mitigating biodiversity loss, requiring accurate classifi-
cation of organisms within the taxonomic hierarchy across
diverse ecosystems. DNA barcodes [2, 10] provide a way to
classify specimens to known taxa or identify them as novel
to science, but classification to the species level remains
challenging, especially when barcodes are unavailable. To
tackle this, CLIBD [8] showed that using contrastive learn-
ing to align DNA barcode embeddings to image embed-
dings can improve classification at the species level even
when restricted to only using images for inference.
However, a key limitation of CLIBD [8] and other re-
cent biodiversity-focused multimodal methods [19] is that
they do not utilize the known taxonomic hierarchy of the
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Figure 1. (a) Contrastive loss: instance-level alignment between
modalities. (b) Entailment loss: enforces hierarchy within the text
modality using entailment cones. (c) Stacked entailment loss:
combines EL and cross-modal constraints by aligning image and
DNA embeddings to multiple levels of the text hierarchy.

input data. Motivated by the effectiveness of hyperbolic em-
beddings for capturing hierarchical relationships [3], we ex-
plore whether embeddings in hyperbolic space can provide
more accurate fine-grained classification. Our model takes
inputs from multiple modalities—DNA barcodes, specimen
images, and hierarchical taxonomic labels—and is trained
to co-align their embeddings into a shared hyperbolic space
to promote taxonomic alignment across modalities.

Our experimental results show that our hyperbolic
multimodal learning framework achieves strong perfor-
mance in taxonomic classification and retrieval, especially
at higher taxonomic ranks. The approach consistently
matches or outperforms Euclidean baselines. However, all
methods—including ours—face challenges in fine-grained
species classification, particularly for previously unseen
taxa. These results highlight both the potential of hyper-
bolic learning for hierarchical biological data, and the ongo-
ing difficulty of open-world classification for biodiversity.



2. Related Work

Euclidean Multimodal Learning is the norm for recent ad-
vances in the multimodal contrastive learning domain, both
in general vision-language frameworks such as CLIP [17]
and SigLIP [22] and domain-specific ones, including those
for biodiversity applications [8, 9, 19]. These biodiversity
models embed images, textual data, and optionally DNA
barcodes into a shared Euclidean embedding space using
modality-specific encoders and contrastive learning objec-
tives. CLIBD [8] in particular demonstrates zero-shot clas-
sification on BIOSCAN-1M [7], achieving superior accu-
racy to unimodal baselines.

Hyperbolic Representation Learning is an approach that
utilizes hyperbolic geometry to encode features into a hier-
archical representation space [14]. Unlike Euclidean space,
hyperbolic spaces grow exponentially, matching the way the
number of nodes in a hierarchy can grow exponentially with
the depth. Nickel and Kiela [15] showed that taxonomic
relationships in language can be effectively captured using
hyperbolic embeddings. Recently, hyperbolic visual repre-
sentation learning has been applied to vision tasks such as
image retrieval [11] and image segmentation [6]. While the
majority of these works use hyperbolic geometry only at the
last layer, recent advances have been made towards devel-
oping fully hyperbolic models, e.g., Poincaré ResNet [21].
Hyperbolic Multimodal Learning combines multimodal
learning and the use of hyperbolic geometry to co-align em-
beddings from different modalities in a hierarchical repre-
sentation space. Liu et al. [13] showed how to align images
and text embeddings in a Poincaré hyperbolic space, while
MERU [3] uses contrastive learning to align images and text
in Lorentzian space. Following MERU, HyCoCLIP [16]
incorporated compositional constraints to strengthen fine-
grained alignment between parts and wholes in visual con-
cepts. These works show hyperbolic geometry can enhance
the structural consistency and interpretability of multimodal
models, particularly in settings with implicit or weakly de-
fined hierarchies.

Our method differs from prior work in three key ways.
First, rather than focusing on vision-language, we incorpo-
rate biologically grounded modalities—DNA barcodes and
taxonomic labels—that are more salient for species-level
classification. Second, we leverage explicit taxonomic hier-
archies to guide representation learning rather than relying
on implicit hierarchical signals such as caption specificity
or object part composition. Third, our stacked entailment
loss enforces consistency across hierarchical ranks.

3. Approach

We propose a multimodal representation learning frame-
work that unifies specimen DNA barcodes, images, and tax-
onomic labels into a shared hyperbolic embedding space.

By leveraging hyperbolic geometry, we aim to preserve hi-
erarchical taxonomic relationships, improving classification
accuracy and representation quality across the hierarchy.

Our framework employs three specialized encoders to
process each of the data modalities: an image encoder ex-
tracts visual features, a DNA encoder encodes genetic se-
quences, and a text encoder captures semantic informa-
tion from taxonomic labels of varying depth. These en-
coders independently map their inputs into a common em-
bedding space, in which contrastive learning aligns multi-
modal representations for downstream tasks. We expand on
CLIBD [8] by lifting the embeddings into hyperbolic space,
and evaluate on the BIOSCAN-1M dataset [7].

3.1. Input and Output Specification

During training, we jointly optimize the encoders using
triplets of aligned data—specimen image, DNA barcode,
and hierarchical taxonomic labels (e.g., “Order: Diptera;
Family: Syrphidae; Genus: Episyrphus; Species: Episyr-
phus balteatus”)—so that their embeddings are both cross-
modally aligned and geometrically consistent with the tax-
onomic hierarchy. This objective supports flexible infer-
ence with any subset of modalities while preserving multi-
level taxonomic relationships in the learned space. At in-
ference time, the model supports both uni- and cross-modal
retrieval, allowing it to taxonomically classify specimens
using any available combination of images, DNA barcodes
and taxonomic labels. This enables robust downstream
use in biodiversity monitoring and taxonomic classification,
even with missing or noisy modalities.

3.2. Encoders

We adapt the experimental setup from Gong et al. [8], us-
ing pretrained ViT-B/16, BERT-Small, and BarcodeBERT
encoders for image, text, and DNA barcode modalities.
Each encoder produces Euclidean embeddings, which
are then projected into a Lorentzian hyperbolic space with
curvature c, via an exponential mapping centred at the ori-
gin. We refer the reader to Desai et al. [3] for details. The
shared space enables contrastive alignment across modali-
ties while preserving the hierarchical taxonomic structure.

3.3. Stacked Entailment Loss

To better leverage the inherent structure of the biologi-
cal taxonomy, we propose a hierarchical learning objec-
tive termed stacked entailment loss (SEL). This mecha-
nism is designed to explicitly enforce geometric relation-
ships between taxonomic ranks—order, family, genus, and
species—within hyperbolic space (see Figure 1). The de-
sign is inspired by compositional entailment mechanisms
introduced in prior work [16], but adapted to reflect the
nested and non-overlapping nature of biological hierarchies.



The core idea is to constrain the embeddings of lower-
level taxa (e.g., genus) to lie within an entailment cone
of their parent nodes (e.g., family). This entailment con-
straint is applied between each consecutive pair of levels in
the hierarchy to ensure each child node is within the space
“above” its parent, using a margin-based loss. Additionally,
we introduce a negative entailment loss term which ensures
each child node is not within the space “above” nodes from
the preceding layer that are not its parent.

Given a batch B = {(z;,yi, c;)}2_,, where z; and y; are
embeddings and c; the class, we define positive pairs P =
{(4,7) : ¢; = ¢;} and negative pairs N' = {(4,7) : ¢; # ¢; }.
The corresponding entailment losses are:

Lh = % S max (0, ext(er,y,) —aper(zs) (1)
(i,j)€P
1
Loy = ol Z max (0, aper(x;) — ext(z;,y;) +m) (2)
(4,5)eEN

where ext(x,y) denotes the exterior angle between x and
y in hyperbolic space, aper(x) is the cone aperture of
z, and m is the margin for negative pairs. The posi-
tive and negative entailment loss are then combined into:
Lene = /2 (L + Lgy) - Unlike flat contrastive objectives,
which treat all positive pairs equally, the stacked entailment
loss introduces a directional notion of containment in the
taxonomic hierarchy (from parent to child), ensuring that
more specific taxa (fine-grained nodes) are properly nested
under their broader ancestors in the hyperbolic hierarchy.
The overall stacked-entailment loss consists of two parts:
Lsgr. = LsgL-intra + LSEL-inter- The first component, intra-
modal entailment loss, enforces hierarchy among taxo-
nomic labels. Let the taxonomy have R levels (e.g., order,
family, genus, species), indexed » = 1,2, ..., R from root
to leaf. 7). is the embedding at rank r, and 1, an indicator
function for the availability of the label at rank r. Then we
construct the intra-modal stacked entailment loss,
R
Lyt = —— > 1y % Len(To Tocy). )
Zr:2 ]lT r=2
Secondly, we introduce an inter-modal entailment loss
that bridges the taxonomic labels with other modalities:
1

3 (Lemu, Ti) + Len(D, o) + Len(], D)) @

where I and D are the embeddings of images and DNA bar-
codes respectively, and Tr: refers to the deepest available
taxonomic label (i.e., Tspecies if species is known, Tgenus if
species isn’t known but genus is, efc.). This term ensures
that modality-specific inputs are not only aligned with the
correct label, but also geometrically nested within the same
hierarchical space. Since there can be multiple specimens
with the same DNA barcode, and the same specimen can
have different images, we consider the barcode to be more
abstract than the image and also include an entailment loss
term from barcode to image in the inter-modality objective.

LSEL-inter =

In summary, our stacked entailment loss unifies taxo-
nomic ordering and modality alignment, and embeds hier-
archical structure into model training. This enables better
generalization, especially with incomplete labels or unseen
species. By explicitly modelling the hierarchical contain-
ment of taxonomic levels, our approach enables indepen-
dent retrieval and prediction at any rank (e.g., order, fam-
ily, genus, or species), facilitating multi-level querying and
evaluation directly within the learned representation. This
stands in contrast to CLIBD, which produces predictions at
all levels jointly We also extend the stacked entailment loss
with two variants.

* Image-DNA contrastive loss: By adding a contrastive
loss term based on the negative Lorentz distance between
image and DNA embeddings, we encourage stronger
cross-modal alignment and can improve the accuracy of
image-to-DNA retrieval.

* Full-text supervision: We introduce an extra language
input by concatenating taxonomic labels from all four
ranks (order, family, genus, species), as is used in CLIBD.
The full text is also used for contrastive alignment to the
image and DNA embeddings.

4. Experiments and Results

We use the Euclidean-space CLIBD model [8] as a baseline,
and adapt the CLIBD training pipeline to use hyperbolic-
space based on the MERU framework [3]. We experimented
with different combinations of loss functions, including en-
tailment loss, stacked entailment loss, and contrastive loss.
Experiments were conducted on four NVIDIA A100 GPUs
(80GB VRAM each). We use a batch size of 2000 (4
x 500), except for experiments using stacked entailment,
which could only fit a batch size of 1520 (4 x 380). All
models were trained for 50 epochs with Adam [12]. The
learning rate was scheduled using a one-cycle policy [18],
ranging from 1 x 1076 to 5 x 10~°. For the contrastive loss,
we use a trainable temperature, initialized to 0.07.

4.1. Metrics and Datasets

We conduct experiments on the BIOSCAN-1M dataset [7],
which provides high-quality images with paired DNA
barcodes and taxonomic labels for over 1 million in-
sect specimens. For simplicity, we train all models on
CLIBD’s train_seen split of BIOSCAN-1IM (36 k sam-
ples), which ensures all samples have complete species-
level labels. The CLIBD results reported in our exper-
iments are likewise obtained by training on this same
train_seen split, rather than using a pretrained CLIBD
model. We leave expanding the experiments to the full
BIOSCAN-1M training dataset to future work.

Similar to CLIBD, we evaluate classification perfor-
mance across taxonomic ranks and for both seen and unseen
classes, using class-averaged (macro) top-1 accuracy.



Table 1. Macro top-1 accuracy (%) comparison of different training objectives across taxonomic levels on BIOSCAN-1M. CL: contrastive
loss. EL: entailment loss; SEL: stacked entailment loss; We evaluate uni- and multi-modal retrieval tasks including DNA-to-DNA, Image-
to-Image, and Image-to-DNA. Accuracy is reported on both seen and unseen taxa, along with their harmonic mean (H.M.). Each method is
further characterized by the configuration of entailment loss used (EL config.), whether full taxonomic text embedding is included utilized
during training (Full Text), and the choice of embedding space (Euclidean: R", or Lorentzian-hyperbolic: H7 ). All models are trained on
the train_seen split of CLIBD and evaluated on the test split. Best results are shown in bold; second-best are underlined.

DNA-to-DNA Image-to-Image Image-to-DNA
Rank Method  EL config. Full Text Space  Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.
CLIBD - v R™ 89.1 878 884 99.5 664 79.6 987 495 659
CL - v H7Y 89.1 856 873 985 612 755 89.1 478 622
Order EL+CL  Pos. 4 H7} 88.6 865 875 98.6 569 721 77.8 484 59.7
SEL Pos.+Neg. X H} 884  90.8 89.6 793 623 69.8 98.7 489 654
SEL+CL  Pos.+Neg. X HY} 88.7 863 875 994 659 793 78.6 482 59.7
SEL+CL  Pos.+Neg. v H7} 889 882 885 99.0 609 754 78.6 489 60.3
CLIBD - 4 R 90.8 758 82.6 89.2 522 659 836 193 314
CL - 4 H} 903 76.6 829 839 485 o614 79.6 188 304
Family EL+CL  Pos. v H7Y 89.3 749 814 819 376 515 767 168 27.6
SEL Pos.+Neg. X H7} 86.8 788 82.6 79.0 418 547 789 184 299
SEL+CL  Pos.+Neg. X H7} 89.0 769 825 79.6 466 58.8 787 173 284
SEL+CL  Pos.+Neg. v HY} 91.2 77.0 83.6 824 415 552 78.1 174 284
CLIBD - v R™ 852 643 733 713 350 47.0 70.8 71 129
CL - 4 H7} 8.4 649 74.1 656 324 434 66.9 6.5 118
Genus EL+CL  Pos. v H} 847 63.1 723 63.0 228 335 64.2 6.6 119
SEL Pos.+Neg. X HY 827 659 734 62.1 292 397 63.1 6.6 12.0
SEL+CL  Pos.+Neg. X H7} 83.6 669 743 633 33.1 435 67.6 6.4 117
SEL+CL  Pos.+Neg. v H7 858 648 739 648 275 386 64.8 62 114
CLIBD - v R™ 81.8 60.6 69.7 551 243 337 55.8 0.7 1.4
CL - v H7Y 844 618 714 482 226 308 53.7 0.9 1.7
Species EL+CL  Pos. 4 H7} 825 60.1 69.6 454 143 21.8 50.5 0.9 1.8
SEL Pos.+Neg. X H} 795 623 699 455 200 278 52.0 1.1 2.1
SEL+CL  Pos.+Neg. X HY 80.5 632 70.8 46.8 228 307 542 0.7 1.4
SEL+CL  Pos.+Neg. 4 H7 826 620 708 478 19.0 272 514 1.0 2.1
4.2. Results the Euclidean model performs best at image retrieval. Com-

We compare our hyperbolic SEL strategy against baselines
on the BIOSCAN-IM dataset across three retrieval tasks
(DNA-to-DNA, Image-to-Image, and Image-to-DNA) eval-
uated at four taxonomic levels (order, family, genus, and
species). We investigate how well training with contrastive
loss (CL) in the hyperbolic space performs compared with
training in Euclidean space (CLIBD [8]). We then compare
different ways of training in hyperbolic space, comparing
a strategy similar to MERU [3] with entailment loss and
contrastive losses (EL + CL) to different variants of SEL.
Table 3 reports macro Top-1 accuracy for seen and unseen
taxa, as well as their harmonic mean.

Across all retrieval tasks, models achieve high accuracy
at the coarsest levels, but this falls off substantially as ranks
become more fine-grained, especially for image-based re-
trieval. We note that hyperbolic models consistently achieve
results that are comparable to the Euclidean CLIBD base-
line across all ranks and retrieval settings. SEL methods
consistently perform best at unseen DNA retrieval, whereas

paring EL+CL to SEL+CL (both with full text), we find that
SEL+CL always dominates the former, showing the util-
ity of the stacked entailment over single-layer entailment.
Comparing SEL+CL with and without full text, we find full
text supervision improves unimodal seen taxa retrieval, but
decreases unseen taxa and cross-modal performance.

5. Discussion

Our experiments demonstrate that hyperbolic learning can
effectively capture hierarchical structure in biological data
and provides performance competitive with established Eu-
clidean methods. However, neither framework fully over-
comes the persistent challenge of fine-grained, open-world
species identification.

Improving classification at fine-grained taxonomic ranks
and for novel, unseen taxa remains a key direction for fu-
ture work. Potential strategies include addressing class im-
balance, enhancing data augmentation, or leveraging more
advanced hierarchical or uncertainty-aware methods.
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Appendix

In this appendix, we provide details of our model (Ap-
pendix A) and additional results (Appendix B).

A. Model Details
A.l. Overall Architecture

Our framework comprises three modality-specific encoders,

following the setup used in CLIBD [8]:

 Image encoder: We employ a ViT-B' backbone, initial-
ized with ImageNet-21k pretraining and further tuned on
ImageNet-1k [5].

e DNA encoder: BarcodeBERT [1] with 5-mer tokeniza-
tion, pretrained via masked language modeling on 893k
DNA barcode sequences [4]. This corpus is related to but
does not overlap with BIOSCAN-1M, making it suitable
for unbiased evaluation.

* Text encoder: A pretrained BERT-Small model [20] is
used to embed taxonomic labels at different ranks.

Each encoder produces Euclidean embeddings of size d =

768, which are mapped to a Lorentzian hyperbolic space

H?} (with curvature ¢ > 0) via an exponential map de-

scribed in Section A.2.

'Implemented as vit_base_patchl6_224 from the t imm library.

A.2. Hyperbolic Projection and Distances

Following MERU [3], we project encoder outputs (Eu-
clidean vectors) onto the Lorentzian hyperboloid using the
exponential map. Here, ¢ > 0 denotes the curvature of the
hyperbolic space H?; smaller values of ¢ correspond to a
“flatter” geometry, while larger values lead to more strongly
curved spaces.

The general exponential map from a tangent vector v €
T,H¢, where T,H? denotes the tangent space at point p in
the Lorentz model of H, to the manifold is given by:

sinh (\/EH’U”[L) ;

exp,,(v) = cosh (Ve ||vllL) p+ NG

Hyperbolic distances are computed via:

dp(z,y) = 1 cosh™" (= (z,y)L).

Ve
A.3. Entailment Cones

The half-aperture angle of the cone centred at u is:

afu) = sin™! (ﬁﬂ) ,

where K = 27yin/+/c. Here rpp;y, is a small constant 0.1,
which is used to set boundary conditions near the origin and
prevent o(u) from diverging when ||u||g is small.

A.4. Input Text Construction

Taxonomic labels are encoded per rank using the BERT-
Small tokenizer [20]. Full-text inputs concatenate all ranks
with spaces as separators (see Table 2).

Table 2. Example of taxonomic labels and their full-text concate-
nation.

Rank Label

Order Hymenoptera
Family Formicidae

Genus Myrmica

Species ~ Myrmica specioides

Full-text Hymenoptera Formicidae Myrmica Myrmica specioides

A.5. Training Details

We train on the train_seen split (36k samples) of
BIOSCAN-1M. The batch size is 2000 for CL-only runs
and 1520 for SEL runs across 4xA100 (80GB). Optimiza-
tion is with Adam (8; = 0.9, B2 = 0.98, weight de-
cay le—4), with a one-cycle LR schedule (1e—6 to 5e—5).
Mixed precision is used. All negatives come from in-batch
sampling; for entailment loss, negatives are taxonomy-
aware.

B. Additional results

In the main paper, we reported the macro averaged accu-
racy over classes for the different methods. Here in Table 3
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Table 3. Micro top-1 accuracy (%) comparison of different training objectives across taxonomic levels on BIOSCAN-1M. CL: contrastive
loss. EL: entailment loss; SEL: stacked entailment loss; We evaluate uni- and multi-modal retrieval tasks including DNA-to-DNA, Image-
to-Image, and Image-to-DNA. Accuracy is reported on both seen and unseen taxa, along with their harmonic mean (H.M.). Each method is
further characterized by the configuration of entailment loss used (EL config.), whether full taxonomic text embedding is included utilized
during training (Full Text), and the choice of embedding space (Euclidean: R", or Lorentzian-hyperbolic: H7 ). All models are trained on
the train_seen split of CLIBD and evaluated on the test split. Best results are shown in bold; second-best are underlined.

DNA-to-DNA Image-to-Image Image-to-DNA
Rank Method  EL Settings Full Text Space Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.
CLIBD - v R™ 99.2 982 987 99.6 983 989 994 9.4 979
CL - v H7 99.1 98.0 98.6 994 98.0 987 995 955 975
Order EL+CL  Pos. 4 H? 99.2 979 98.6 993 971 982 99.2 958 974
SEL Pos.+Neg. X H? 99.1 982 986 994 977 98.6 99.1 95.0 97.0
SEL+CL  Pos.+Neg. X H? 99.1 983 98.7 994 977 985 989 955 972
SEL+CL  Pos.+Neg. v H7? 99.2 98.1 98.6 994 979 98.6 99.1 96.0 975
CLIBD - 4 R™ 97.5 91.8 94.6 954 857 903 948 69.7 80.4
CL - v H7 97.1 91.8 944 943 847 892 939 68.1 79.0
Family EL+CL  Pos. v H7 972 90.6 938 935 80.3 864 932 664 71.6
SEL Pos.+Neg. X H7 97.0 925 947 934 83.0 879 925 67.2 718
SEL+CL  Pos.+Neg. X H? 96.7 924 945 936 839 885 93.0 67.5 782
SEL+CL  Pos.+Neg. v H7 97.1 913 941 943 833 885 938 68.6 79.2
CLIBD - 4 R" 94.8 85.1 89.7 88.2 69.0 774 871 371 521
CL - 4 H7 95.3 856 902 85.6 68.0 758 86.0 36.1 50.8
Genus EL+CL  Pos. v H? 95.1 84.6 895 832 604 70.0 845 346 49.1
SEL Pos.+Neg. X H? 94.0 86.1 899 837 65.7 73.6 832 353 495
SEL+CL Pos.+Neg. X H? 94.2 86.7 90.3 838 67.0 745 844 341  48.6
SEL+CL Pos.+Neg. 4 H7 95.0 855 90.0 84.8 653 738 842 350 494
CLIBD - v R™ 93.0 82.0 872 1774 534 632 783 1.9 3.6
CL - v H? 93.6 827 878 733 521 609 776 24 4.6
Species EL+CL  Pos. v H? 935 81.6 872 69.8 445 544 759 1.5 29
SEL Pos.+Neg. X H? 91.8 832 873 718 502 59.1 752 1.4 2.8
SEL+CL  Pos.+Neg. X H7 92.1 835 876 718 512 59.8 757 1.6 3.1
SEL+CL  Pos.+Neg. v H? 93.3 827 817 727 494 588 756 2.0 3.8

we report the micro accuracy, averaging over individual in-
stances. Compared to the macro accuracy, which treat all
classes evenly, the micro accuracy will give more weight to
classes with more instances. Overall, we see a similar trends
in the comparative performance of the different methods for
both macro and micro averaged results, with the micro av-
eraged accuracy being substantially higher (as the macro
averaged accuracy is pulled down by rare classes).
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