
On RKHS Choices for Assessing Graph
Generators via Kernel Stein Statistics

Anonymous Author(s)
Affiliation
Address
email

Abstract

Score-based kernelised Stein discrepancy (KSD) tests have emerged as a1

powerful tool for the goodness of fit tests, especially in high dimensions;2

however, the test performance may depend on the choice of kernels in an3

underlying reproducing kernel Hilbert space (RKHS). Here we assess the4

effect of RKHS choice for KSD tests of random networks models, developed5

for exponential random graph models (ERGMs) in Xu and Reinert (2021)6

and for synthetic graph generators in Xu and Reinert (2022). We investigate7

the power performance and the computational runtime of the test in different8

scenarios, including both dense and sparse graph regimes. Experimental9

results on kernel performance for model assessment tasks are shown and10

discussed on synthetic and real-world network applications.11

1 Introduction12

Recent advances in high-dimensional goodness of fit tests have been achieved by score-based13

kernelised Stein discrepancy (KSD) tests, starting with Chwialkowski et al. (2016) and Liu14

et al. (2016). A KSD test relies on an underlying reproducing kernel Hilbert space (RKHS)15

and hence its performance may depend on the choice of RKHS for the set of test functions.16

Typically, the choice of RKHS is restricted by having to lie in the Stein class of the target17

distribution (see Section 2 for details). A notable exception is the case that the target18

distribution is that of a finite random network, as then any finite function is a member of19

the Stein class. Thus, this situation is well suited to assessing the choice of RKHS.20

In this paper we assess the choice of RKHS for the two available graph-based kernelised Stein21

goodness of fit tests, which take a single network as input, namely gKSS from Xu and Reinert22

(2021) and AgraSSt from Xu and Reinert (2022). The RKHS kernels which we explore are23

the constant kernel, the vertex-edge histogram kernel (Kriege et al., 2016), the shortest path24

kernel (Borgwardt and Kriegel, 2005), random walk kernels (Gärtner et al., 2003; Sugiyama25

and Borgwardt, 2015), the Weisfeiler-Lehman kernel (Shervashidze et al., 2011), the graphlet26

kernel (Ahmed et al., 2017) and the connected graphlet kernel (Shervashidze et al., 2009).27

As the influence of the RKHS choice on the power of the goodness of fit test may depend on28

the problem setting, here we investigate a collection of test problems, including edge-two star29

(E2S) models, geometric random graph (GRG) models, Barabasi-Albert (BA) models, and30

the black-box random graph generator CELL (Rendsburg et al., 2020). The kernel choice31

may also have a significant effect on the runtime which is hence included in the analysis.32

The paper is structured as follows. In Section 2, we introduce the basic form of kernel Stein33

statistics and its corresponding goodness-of-fit testing procedure.Then we discuss kernel34

choices in Section 3. In Section 4, we present the experimental results on E2S models relating35

to the experiments in Xu and Reinert (2021), the GRG models, as well as in CELL, trained36

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.

on real-world networks, followed by concluding discussions. Additional background, results37

on the BA models and a GRG on a unit square, as well as a computational efficient algorithm38

for geometric random walk kernels are deferred to the appendix. Code for the experiment is39

available at https://anonymous.4open.science/r/kss-kernelchoice-0958.40

2 Background: kernel Stein statistic for random graph models41

Let Glab
n denote the set of vertex-labeled simple graphs on n vertices. For a probability

distribution q, an operator Tq on Glab
n satisfying the Stein identity Eq[Tqf(x)] = 0 for all

test functions f : Glab
n → R in a Stein class F is called a Stein operator. With q(x(s,1)|x−s)

denoting the conditional probability that vertex pair s has an edge, given the network except
the edge indicator of s (and similarly q(x(s,0)|x−s) the conditional probability that vertex
pair s does not have an edge) so that q(x(s,·)|x−s) is a discrete score function, the Stein
operator in Xu and Reinert (2021) is Tqf = 1

N

∑
s∈[N] T (s)

q f where

T (s)
q f(x) = q(x(s,1)|x−s)f(x(s,1)) + q(x(s,0)|x−s)f(x(s,0)) − f(x).1

If a distribution p is close to q then one would expect that Ep[Tqf(x)] ≈ 0; hence42

supf∈F |Ep[Tqf(x)]| can be used to assess the distributional distance between q and p.43

Choosing as F the unit ball of a RKHS H allows to compute the supremum exactly. The44

kernel Stein statistic (KSS) based on a single network sample x is defined as45

KSS(q;x) = sup
∥f∥H≤1

∣∣Eq(·|x)[f(Xt1)|X0 = x] − f(x)
∣∣ = sup

∥f∥H≤1

∣∣∣ 1
N

∑
s∈[N]

[
T (s)

q f(x)
] ∣∣∣. (1)

For computational efficiency, instead of averaging over all N possible edges, a vertex pair
re-sampling version is also provided. Let the re-sample size be B, then draw {s1, . . . , sB}
uniformly from [N]. Denote k the kernel associate with H. Then we estimate

K̂SS
2
(q;x) = sup

∥f∥H≤1

∣∣∣ 1
B

∑
b∈[B]

[
T (sb)

q f(x)
] ∣∣∣2 = 1

B2

∑
b,b′

〈
T (sb)

q k(x, ·), T (sb′)
q k(x, ·)

〉
︸ ︷︷ ︸

h(sb,sb′)

,

where h is referred to as the Stein kernel2. When q is the distribution of an exponential46

random graph model, KSS coincides with gKSS from Xu and Reinert (2021). When q does47

not have an explicit form, e.g. for samples from q generated by a black-box random graph48

generator, Xu and Reinert (2022) approximate the conditional distribution using samples49

generated from q to estimate the conditional score function.50

Xu and Reinert (2022) also suggest conditioning on a user-defined graph summary statistic51

t(x) and replacing q(x(s,1)|x−s) by q̂(x(s,1)|t(x−s)) in Eq.(1) ; this is termed the approximate52

graph Stein Statistic (AgraSSt) in Xu and Reinert (2022). In Xu and Reinert (2021) and Xu53

and Reinert (2022) theoretical guarantees are also given.54

For testing the goodness of fit of the model q based on a single network observation x,55

gKSS and AgraSSt use the Monte Carlo procedure, simulating l independent networks56

z1, . . . , zl ∼ q and comparing the observed K̂SS
2
(q;x) with the set of K̂SS

2
(q; zi), i = 1 ∈ [l].57

We reject the null model if K̂SS(q;x) is large. Details are given in Algorithm 1 in Appendix A.58

3 Graph kernel choices and their effects on KSS59

Graph kernels considered While details of the Gaussian vertex-edge histogram (GVEH)60

kernel, the shortest path (SP) kernel, the K-step random walk (KRW) and geometric61

random walk (GRW) kernels, and the Weisfeiler-Lehman (WL) kernels can be found in62

Appendix B of (Xu and Reinert, 2021), we recollect them in Appendix A.3. We additionally63

consider graphlet counts (sub-graphs with a small number of vertices), as the features to64

compare graph structures.65

1N = n(n − 1)/2 is the total number edges; [N] := {1, . . . , N} denotes the set of vertex pairs;
x(s,1) has the s-entry replaced of x by 1; x−s is the network x with edge index s removed.

2The Stein kernel h(s, s′) has to be clearly distinguished from the RKHS kernel k(x, x′).

2

https://anonymous.4open.science/r/kss-kernelchoice-0958

Figure 1: Graphlets illustration for l = 4: N4 = 11; the
connected graphlets are marked as red.

The idea of a graphlet kernel (Ahmed66

et al., 2017) is to count the occur-67

rences of all simple undirected graphs68

of size l, up to permutation of the ver-69

tices, {g1, . . . , gNl
} where Nl denotes70

the number of distinct l-graphlets.71

An example for l = 4 is shown in Fig-72

ure 1. The graphlet feature ϕglet(x) ∈73

NNl has as i-th entry the number of occurrences of gi in x. This feature naturally induces the74

graphlet kernel kGLET (x, x′) = ⟨ϕglet(x), ϕglet(x′)⟩. When only the connected graphlets (e.g.75

Figure 1 in red) are considered to construct the feature ϕconglet(x), the connected graphlet76

kernel is given by kCONGLET (x, x′) = ⟨ϕconglet(x), ϕconglet(x′)⟩.77

Graph kernels Parameters
GVEH bandwidth σ > 0
KRW maximal walk length K
GRW discount weight λ
WL level parameter h
GLET size of graphlets l

Table 1: Graph kernels and the parameters.

For our experiment, we use the implementa-78

tion provided by the R package graphkernels79

(Sugiyama et al., 2018). In addition, we de-80

vise the “constant” kernel kConst(x, x′) ≡ 1 as81

a benchmark in our experiment. Like the SP82

kernel, the constant kernel has no parameter.83

We list the parameters for the kernels in Table 1.84

4 Experimental results85

In our experiments the observed network is assumed to be generated by model M0, and the86

goodness of fit is tested for model M1; the null hypothesis H0 : M0 = M1 is rejected in87

favour of H1 : M0 ̸= M1 at the 5%-level using a gKSS or an AgraSSt test with nM1 graphs88

simulated under M1. In the synthetic examples we repeat this procedure on nM0 graphs89

from the null model to obtain the rejection rate. Unless otherwise stated, nM0 = nM1 = 500.90

More details can be found in Appendix B.91

An ERGM example The Edge-2Star (E2S) model on Glab
n is an ERGM with density92

q(x) ∝ exp(β1E(x)+βsS2(x)) where E(x) denotes the edge count and S2 denotes the number93

of two-stars. In our experiments, following the setting of Xu and Reinert (2021) the null94

model is β = (−2, 0) and the alternative is set by perturbing β2. As this is an ERGM, we95

apply an gKSS test (Xu and Reinert, 2021); Figure 2 shows rejection rates for WL, GRW and96

graphlet kernels with different parameters. From the result, all kernels had well-controlled97

type 1 error, and even using a constant kernel already had good test power. While a WL98

kernel generally outperformed the constant kernel, GRW kernels of different parameters were99

outperformed by the constant kernel. This finding could perhaps be explained by the change100

in density between null and alternative; this change may already suffice for separating the101

two, and the constant kernel picks this up. In contrast, GRW kernels focus more on local102

structure. The graphlet kernels generally have similar test power compared to the constant103

kernel; they would pick up a change in density through a change in graphlet counts.104

Figure 2: gKSS on the E2S model with β2 perturbed; n = 20 and B = 200.

A geometric random graph example In our geometric random graph (GRG) models105

(Penrose, 2003), vertices are uniformly placed on a 2-dimensional unit torus and two vertices106

are connected by an edge if their distance is smaller than a pre-defined radius parameter107

r. The null model sets r = 0.3 where the alternative is set by perturbing r. Here we use108

AgraSSt with some of the summary statistics suggested in Xu and Reinert (2022). AgraSSt109

3

with a WL kernel as suggested in (Xu and Reinert, 2022) achieves well controlled type 1110

error in all presented settings in the main text and Appendix B. When using edge density111

as summary statistics, Figure 6 in Appendix B shows that all kernel choices achieve good112

performance, with the graphlet kernels performing best, and the constant kernel and GRW113

kernels performing better than the WL kernel. When using instead bi-degree as summary114

statistic for predicting conditional edge probability in AgraSSt (see Figure 3), there is a115

region around r = 0.45 in which the test statistics struggle to distinguish the alternative116

from the null; an explanation can be found in Appendix B.1.4. Here, GVEH with small117

bandwidth exihibits the best performance. For GRG on a square instead of a torus, there is118

no such ambiguous region; results are shown in Appendix B.119

Figure 3: AgraSSt for the GRG model with perturbed r alternatives; n = 20 and B = 200; t(x) is
set to be the bivariate (vertex) degree vector.

CELL To assess the effect of kernel choice on a black-box deep generative model, we train120

the Cross-Entropy Low-rank Logit (CELL) (Rendsburg et al., 2020) on Zachary’s Karate121

Club network Zachary (1977) using different kernels. Model M1 is obtained by training122

CELL on the Karate club network. Here we take nM1 = 100; nM0 = 1 as we observe only123

one network. We repeat the procedure 100 times to obtain average rejection rates. Rejection124

rates, shown in Figure 17, are reasonable most kernels; GVEH struggles for some of the125

statistics, and so do KRW and GRW.126

Runtimes The runtimes of the algorithms, with their standard implementation from the127

R package graphkernels (Sugiyama et al., 2018), are shown in Table 6 and Table 7, for a128

sparse as well as a dense setting. The constant kernel is by far the fastest kernel, followed by129

WL kernels. The random walk and shortest path kernels take three to 6 orders of magnitude130

longer to compute than the constant kernel and their runtime is greatly increased by larger131

edge density. We note that the runtime depends on the implementation; Appendix C.2132

includes an idea for speeding up GRW kernel computations.133

5 Conclusion and Discussion134

In this work, we explored the effect of kernel and parameter choices on KSS for model135

assessment. Beyond observing some case specific phenomena where some choices can136

outperform others, we also conclude that both gKSS and AgraSSt are fairly robust in137

producing decent test power under the alternative, using a large class of kernels. Overall138

the constant kernel, which does not encode network information beyond density, performs139

surprisingly well as soon as there is a distinguishing signal in the edge density. Given its140

clear runtime advantage if density is assumed to be a strong signal then this could be a141

reasonable kernel to use. Also it is reassuring that the WF kernels in AgraSSt perform well.142

If runtime is not an issue, then one may like to combine tests based on suitably selected143

kernels as in Schrab et al. (2022), and reject the null hypothesis if any of the single kernel144

tests distinguishes the alternative from the null hypothesis by rejecting it.145

In future work, it would be interesting to carry out a similar study for other KSD tests. In146

general then the additional issue of Stein class may feature, as not every kernel choice may147

yield a RKHS which is a Stein class for the operator.148

Finally, Stein operators for distributions are not unique (Ley et al., 2017). Exploring the149

interplay between Stein operator choice and RKHS is another future research direction.150

4

References151

Ahmed, N. K., Neville, J., Rossi, R. A., Duffield, N. G., and Willke, T. L. (2017). Graphlet152

decomposition: Framework, algorithms, and applications. Knowledge and Information153

Systems, 50(3):689–722.154

Bhamidi, S., Bresler, G., and Sly, A. (2011). Mixing time of exponential random graphs.155

The Annals of Applied Probability, 21(6):2146–2170.156

Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs. In Fifth IEEE157

International Conference on Data Mining (ICDM’05), pages 8–pp. IEEE.158

Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random159

graph models. The Annals of Statistics, 41(5):2428–2461.160

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016). A kernel test of goodness of fit.161

In JMLR: Workshop and Conference Proceedings.162

Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community structure in very163

large networks. Physical Review E, 70(6).164

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to165

Algorithms. MIT press.166

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Statistical167

Association, 81(395):832–842.168

Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph kernels: Hardness results and169

efficient alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer.170

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological171

networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826.172

Gorham, J., Raj, A., and Mackey, L. (2020). Stochastic stein discrepancies. In Advances in173

Neural Information Processing Systems, volume 33, pages 17931–17942.174

Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions175

for directed graphs. Journal of the American Statistical Association, 76(373):33–50.176

Hunter, D. R., Goodreau, S. M., and Handcock, M. S. (2008a). Goodness of fit of social177

network models. Journal of the American Statistical Association, 103(481):248–258.178

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris, M. (2008b).179

ergm: A package to fit, simulate and diagnose exponential-family models for networks.180

Journal of Statistical Software, 24(3):nihpa54860.181

Kriege, N. M., Giscard, P.-L., and Wilson, R. (2016). On valid optimal assignment kernels182

and applications to graph classification. In Advances in Neural Information Processing183

Systems, pages 1623–1631.184

Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A survey on graph kernels. Applied185

Network Science, 5(1):1–42.186

Ley, C., Reinert, G., and Swan, Y. (2017). Stein’s method for comparison of univariate187

distributions. Probability Surveys, 14:1–52.188

Liu, Q., Lee, J., and Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit189

tests. In International Conference on Machine Learning, pages 276–284.190

Penrose, M. (2003). Random geometric graphs. Oxford University Press.191

Reinert, G. and Ross, N. (2019). Approximating stationary distributions of fast mixing192

Glauber dynamics, with applications to exponential random graphs. The Annals of Applied193

Probability, 29(5):3201–3229.194

5

Rendsburg, L., Heidrich, H., and Von Luxburg, U. (2020). NetGAN without GAN: From195

random walks to low-rank approximations. In International Conference on Machine196

Learning, pages 8073–8082. PMLR.197

Schrab, A., Guedj, B., and Gretton, A. (2022). KSD aggregated goodness-of-fit test. arXiv198

preprint arXiv:2202.00824.199

Sherman, J. and Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding200

to a change in one element of a given matrix. The Annals of Mathematical Statistics,201

21(1):124–127.202

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v., Mehlhorn, K., and Borgwardt, K. M.203

(2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research,204

12(Sep):2539–2561.205

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., and Borgwardt, K. (2009).206

Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics,207

pages 488–495. PMLR.208

Sugiyama, M. and Borgwardt, K. (2015). Halting in random walk kernels. In Advances in209

Neural Information Processing Systems, pages 1639–1647.210

Sugiyama, M., Ghisu, M. E., Llinares-López, F., and Borgwardt, K. (2018). graphkernels: R211

and Python packages for graph comparison. Bioinformatics, 34(3):530–532.212

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications.213

Cambridge University Press.214

Xu, W. and Reinert, G. (2021). A Stein goodness-of-test for exponential random graph215

models. In International Conference on Artificial Intelligence and Statistics, pages 415–423.216

PMLR.217

Xu, W. and Reinert, G. (2022). AgraSSt: Approximate graph stein statistics for interpretable218

assessment of implicit graph generators. arXiv preprint arXiv:2203.03673.219

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups.220

Journal of Anthropological Research, 33(4):452–473.221

6

A Additional details on background222

A.1 The graph kernel Stein statistic (gKSS)223

The graph Kernel Stein statistic (gKSS) has been proposed to assess goodness of fit for224

the family of exponential random graph models (ERGMs). ERGMs are frequently used as225

parametric models for social network analysis (Wasserman and Faust, 1994; Holland and226

Leinhardt, 1981; Frank and Strauss, 1986); they include Bernoulli random graphs as well as227

stochastic blockmodels as special cases. Here we restrict attention to undirected, unweighted228

simple graphs on n vertices, without self-loops or multiple edges. To define such an ERGM,229

we introduce the following notations.230

Let Glab
n be a set of vertex-labeled graphs on n vertices and, for N = n(n − 1)/2, encode

x ∈ Glab
n by an ordered collection of {0, 1} valued variables x = (xij)1≤i<j≤n ∈ {0, 1}N

where xij = 1 if and only if there is an edge between i and j. For a graph H on at most n
vertices, let V (H) denote the vertex set, and for x ∈ {0, 1}N , denote by t(H,x) the number
of edge-preserving injections from V (H) to V (x); an injection σ preserves edges if for all
edges vw of H with σ(v) < σ(w), xσ(v)σ(w) = 1. For vH = |V (H)| ≥ 3 set

tH(x) = t(H,x)
n(n− 1) · · · (n− vH + 3) .

If H= H1 is a single edge, then tH(x) is twice the number of edges of x. In the exponent this231

scaling of counts matches (Bhamidi et al., 2011, Definition 1) and (Chatterjee and Diaconis,232

2013, Sections 3 and 4). An ERGM for the collection x ∈ {0, 1}N can be defined as follows,233

see Reinert and Ross (2019).234

Definition 1. Fix n ∈ N and c ∈ N. Let H1 be a single edge and for l = 2, . . . , c let Hl

be a connected graph on at most n vertices; set tl(x) = tHl
(x). For β = (β1, . . . , βc)⊤∈ Rc

and t(x) = (t1(x), . . . , tc(x))⊤ ∈ Rc X ∈ Glab
n follows the exponential random graph model

X ∼ ERGM(β, t) if for ∀x ∈ Glab
n ,

P(X = x) = 1
κn(β) exp

(
c∑

l=1
βltl(x)

)
.

Here κn(β) is the normalisation constant.235

The vector β ∈ Rk is the parameter vector and the statistics t(x) = (t1(x), . . . , tc(x))⊤ ∈ Rc236

are sufficient statistics.237

Many random graph models can be set in this framework. The simplest example is the238

Bernoulli random graph (ER graph) with edge probability 0 < p < 1; in this case, l = 1 and239

H1 is a single edge. ERGMs can use other statistic in addition to subgraph counts, and many240

ERGMs model directed networks. Moreover, ERGMs can model network with covariates241

such as using dyadic statistics to model group interactions between vertices (Hunter et al.,242

2008a). Here we restrict attention to the case which is treated in Reinert and Ross (2019)243

because it is for this case that a Stein characterization is available.244

As the network size increases, the number of possible network configurations increases245

exponentially in the number of possible edges, making the normalisation constant κn(β)246

usually prohibitive to compute in closed form. Classical statistical inference on ERGM mainly247

relies on MCMC type methods that utilise the density ratio between proposed state and248

current state, where the normalisation constant cancels. However the Stein score-function249

operator framework does not require a normalising constant. In Reinert and Ross (2019) a250

Stein operator for an ERGM is obtained which is of the form Tqf = 1
N

∑
s∈[N] T (s)

q f where251

the components of the Stein operator are252

T (s)
q f(x) = q(x(s,1)|x−s)f(x(s,1)) + q(x(s,0)|x−s)f(x(s,0)) − f(x)

= E{0,1}[f(Xs, x−s)|x−s)] − f(x). (2)

Here N = n(n− 1)/2 is the total number edges; [N] := {1, . . . , N} denotes the set of vertex253

pairs; x(s,1) has the s-entry replaced of x by 1; x−s is the network x with edge index s254

7

removed, and E{0,1} refers to the expectation taken only over the value, 0 or 1, which Xs255

takes on. Hence, with S chosen uniformly at random from [N], independently of all other256

variables,257

Tqf(x) = ES

[
E{0,1}[f(Xs, x−s|x)]

]
− f(x). (3)

It is easy to see that EqTqf(x) = 0 for all finite functions f : Glab
n → R. Let H denote a258

RKHS with kernel k and inner product ⟨·, ·⟩. For a fixed network x, we next seek a function259

f ∈ H, s.t. ∥f∥H ≤ 1, that best distinguishes the difference in Eq.(3) when X does not have260

distribution q. We define the graph kernel Stein statistics (gKSS) as261

gKSS(q;x) = sup
∥f∥H≤1

∣∣∣ES [T (S)
q f(x)]

∣∣∣. (4)

It is often more convenient to consider gKSS2(q;x). By the reproducing property of RKHS262

functions, algebraic manipulation allows the supremum to be computed in closed form:263

gKSS2(q;x) = 1
N2

∑
s,s′∈[N]

hx(s, s′) (5)

where hx(s, s′) =
〈

T (s)
q k(x, ·), T (s′)

q k(·, x)
〉
.264

When the distribution of X is known, the expectation in Eq.(3) can be computed for networks265

with a small number of vertices, but when the number of vertices is large, exhaustive266

evaluation is computationally intensive. For a fixed network x, Xu and Reinert (2021)267

propose the following randomised Stein operator via edge re-sampling.Let B be the fixed268

number of edges to be re-sampled. The re-sampled Stein operator is269

T̂ B
q f(x) = 1

B

∑
b∈[B]

T (sb)
q f(x) (6)

where b ∈ B and sb are edge samples from {1, . . . , N}, chosen uniformly with replacement,
independent of each other and of x. The expectation of T̂ B

q f(x) with respect to the
re-sampling is

EB [T̂ B
q f(x)]= ES [T (S)

q f(x)] = Tqf(x)
with corresponding re-sampling gKSS270

ĝKSS(q;x) = sup
∥f∥H≤1

∣∣∣ 1
B

∑
b∈[B]

T (sb)
q f(x)

∣∣∣. (7)

This is a stochastic Stein discrepancy, see Gorham et al. (2020). The supremum in Eq.(7) is
achieved by

f∗(·) =
1
B

∑
b T (sb)

q k(x, ·)∥∥∥ 1
B

∑
a T (sa)

q k(x, ·)
∥∥∥ .

Similar algebraic manipulations as for Eq.(5) yield271

ĝKSS
2
(q;x) = 1

B2

∑
b,b′∈[B]

hx(sb, sb′). (8)

The ERGM can be readily simulated from an unnormalised density via MCMC, see for272

example Hunter et al. (2008b). Suppose that q is the distribution of ERGM(β, t) and x is273

the observed network for which we want to assess the fit to q.274

Then gKSS in Eq.(4) captures the optimised Stein features over RKHS functions, which is a275

comprehensive non-parametric summary statistics. Let z1, . . . , zn ∼ p be simulated networks276

from the null distribution. For test function f , the Monte-Carlo test is to compare f(x)277

against f(z1), . . . , f(zn) and the p-value can be determined accordingly. The detailed gKSS278

algorithm is shown in Algorithm 1.279

8

Algorithm 1 Kernel Stein Test for ERGM
Input:

Observed network x; null model q; RKHS kernel k;
Re-sample size B; confidence level a; number of simulated networks l;

Objective:
Test H0 : x ∼ q versus H1 : x ̸∼ q.

Test procedure:
1: Sample {s1, . . . , sB} with replacement uniformly from [N].
2: Compute τ = ĝKSS

2
(q;x) in Eq.(8).

3: Simulate z1, . . . , zl ∼ q.
4: Compute τi = ĝKSS

2
(q; zi) in Eq.(8). again with re-sampling, choosing new samples

{s1,i, . . . , sB,i} uniformly from [N] with replacement.
5: Estimate the empirical (1 − a)-quantile c1−a of τ1, . . . , τl.

Output:
Reject H0 if τ > c1−a; otherwise do not reject.

A.2 Approximate graph Stein statistics (AgraSSt)280

Approximate Stein operators Recall the Stein operator for ERGMs in Eq.(2), which
depends on the conditional probabilities q(x(s,1)|x−s) and q(x(s,0)|x−s). For implicit models
and graph generators G, the conditional probabilities required in the Stein operator T (s)

q

in Eq.(2) cannot be obtained without explicit knowledge of q(x). Instead, Xu and Reinert
(2022) consider summary statistic t(x) and the probabilities conditioned on t(x),

qt(x(s,1)) := P(Xs = 1|t(x−s))

(and analogously qt(x(s,0))), interpreting qt(x(s,·)) as a discrete score function. The corre-281

sponding Stein operator based on t(x) is defined in Xu and Reinert (2022) as282

A(s)
q,tf(x) = qt(x(s,1))f(x(s,1)) + qt(x(s,0))f(x(s,0)) − f(x).

Given a large number for samples from the graph generator G, the conditional edge probabil-283

ities qt(x(s,1)) can be estimated. Using the Stein operator for conditional graph distributions,284

Xu and Reinert (2022) obtain the approximate Stein operators Eq.(9) and (10) for an implicit285

graph generator G by estimating qt(x(s,1)). Here t(x) are user-defined statistics. In principle,286

any multivariate statistic t(x) can be used in this formalism. However, estimating the287

conditional probabilities using relative frequencies can be computationally prohibitive when288

the graphs are very large and specific frequencies are rarely observed. Instead, Xu and289

Reinert (2022) consider simple summary statistics, such as edge density which corresponds290

to t = 0, the bidegree statistics or the number of neighbours connected to both vertices of s.291

Here for a vertex pair s = (i, j), with deg−s(i) denoting the degree of i in the network x with292

j removed, the bidegree statistic is t(x−s) = (deg−s(i), deg−s(j)). The common neighbour293

statistic is t(x−s) = |{v ∈ V | v is neighbour of i and j in x}|.294

AgraSSt performs model assessment using an operator which approximates the Stein operator295

T (s)
q,t . We define the approximate Stein operator for the conditional random graph by296

T (s)
q̂,t

f(x) = q̂t(x(s,1))f(x(s,1)) + q̂t(x(s,0))f(x(s,0)) − f(x). (9)

The vertex-pair averaged approximate Stein operator is297

T
q̂,t
f(x) = 1

N

∑
s∈[N]

T (s)
q̂,t

f(x). (10)

AgraSSt for implicit graph generators is then defined in analogy to gKSS in Eq.(4), as298

AgraSSt(q̂, t;x) = sup
∥f∥H≤1

∣∣∣ 1
N

∑
s

T (s)
q̂,t

f(x)
∣∣∣.

9

Re-sampling Stein statistic Similar to Eq.(6), a computationally efficient operator for
large N is derived in Xu and Reinert (2022) via re-sampling B vertex-pairs sb, b = 1, . . . , B,
from {1, . . . , N}, chosen uniformly with replacement, independent of each other and of x,
which creates a randomised operator to be re-sampled. The re-sampled operator is

T̂ B

q̂,t
f(x) = 1

B

∑
b∈[B]

T (sb)
q̂,t

f(x).

The expectation of T̂ B

q̂,t
f(x) with respect to re-sampling is EB[T̂ B

q̂,t
f(x)]= ES [T (S)

q̂,t
f(x)] =299

T
q̂,t
f(x). The corresponding re-sampled AgraSSt is300

̂AgraSSt(q̂, t;x) = sup
∥f∥H≤1

∣∣∣ 1
B

∑
b∈[B]

T (sb)
q̂,t

f(x)
∣∣∣.

Similar to Eq.(8), the squared version of ̂AgraSSt admits the following quadratic form,301

̂AgraSSt
2
(q̂, t;x) = 1

B2

∑
b,b′∈[B]

ĥx(sb, sb′),

where ĥx(s, s′) = ⟨T (s)
q̂,t

k(x, ·), T (s′)
q̂,t

k(·, x)⟩H. Theoretical guarantees for this operator are302

given in in Xu and Reinert (2021).303

A.3 Graph kernels304

For a vertex-labeled graph x = {xij}1≤i,j≤n ∈ Glab, with label range {1, . . . , c} = [c], denote305

the vertex set by V and the edge set by E. With abuse of notation we write x = (V (x), E(x)).306

Consider a vertex-edge mapping ψ : V ∪ E → [c]. In this paper we use the following graph307

kernels.308

Gaussian vertex-edge histogram graph kernels The vertex-edge label histogram
h = (h111, h211, . . . , hccc) has as components

hl1l2l3(x) = |{v ∈ V (x), (v, u) ∈ E(x) |ψ(v, u) = l1, ψ(u) = l2, ψ(v) = l3}| ,

for l1, l2, l3 ∈ [c]; it is a combination of vertex label counts and edge label counts. Let
⟨h(x), h(x′)⟩ =

∑
l1,l2,l3

h(x)l1,l2,l3h(x′)l1,l2,l3 . Following Sugiyama and Borgwardt (2015),
the Gaussian Vertex-Edge Histogram (GVEH) graph kernel between two graphs x, x′ is
defined as

kGV EH(x, x′;σ) = exp
{

−∥h(x) − h(x′)∥2

2σ2

}
.

The GVEH kernel is a special case of histogram-based kernels for assessing graph similarity309

using feature maps, which are introduced in Kriege et al. (2016). Adding a Gaussian RBF310

as in Sugiyama and Borgwardt (2015), yielding the GVEH kernel, significantly improved311

problems such as classification accuracy, see (Kriege et al., 2020). In our implementation, as312

in Sugiyama et al. (2018), ψ is induced by the vertex index. If the vertices are indexed by313

i ∈ [n] then the label of vertex vi is ψ(vi) = i; for edges, ψ(u, v) = 1 if (u, v) ∈ E is an edge314

and 0 otherwise.315

Random walk graph kernels A K-step random walk (KRW) graph kernel (Sugiyama
and Borgwardt, 2015) is built as follows. Take A⊗ as the adjacency matrix of the direct
(tensor) product G⊗ = (V⊗, E⊗, ψ⊗) (Gärtner et al., 2003) between x and x′ such that vertex
labels match and edge labels match:

V⊗ = {(v, v′) ∈ V × V ′ | ψ(v) = ψ′(v′)},

E⊗ = {((v, u), (v′, u′))) ∈ E × E′ | ψ(v, u) = ψ(v′, u′)},

10

and use the corresponding label mapping ψ⊗(v, v′) = ψ(v) = ψ′(v′); ψ⊗((v, v′), (u, u′)) =
ψ(v, u) = ψ′(v′, u′). With input parameters (λ0, . . . , λK), the K-step random walk kernel
between two graphs x, x′ is defined as

k
(K)
⊗ (x, x′) =

|V⊗|∑
i,j=1

[
K∑

t=0
λtA

⊤
⊗

]
i,j

.

A geometric random walk (GRW) kernel between two graphs x, x′ takes the λ-weighted
infinite sum from the random walk:

kGRW (x, x′) =
|V⊗|∑
i,j=1

[
(I − λA⊗)−1]

i,j
.

In our implementation we choose, λl = λ,∀l = 1, . . . , k and λ = 1
3 .316

Shortest path graph kernels Introduced by Borgwardt and Kriegel (2005), the shortest
path (SP) kernels are based on a Floyd transformation of the graph x. The Floyd transfor-
mation F turns the original graph into the so-called shortest-path graph y = F (x); the graph
y is a complete graph with vertex set V with each edge labelled by the shortest distance
in x between the vertices on either end of the edge. For two networks x and x′ the 1-step
random walk kernel k1

⊗ between the shortest-path graphs y = F (x) and y′ = F (x′) gives
the shortest-path (SP) kernel between x and x′;

kSP (x, x′) = k1
⊗(y, y′).

Lemma 3 in Borgwardt and Kriegel (2005) showed that this kernel is positive definite.317

Weisfeiler-Lehman graph kernels Weisfeiler-Lehman (WL) graph kernels have been318

proposed by Shervashidze et al. (2011); these kernels are based on the Weisfeiler-Lehman test319

for graph isomorphisms and involve counting matching subtrees between two given graphs.320

Theorem 3 in Shervashidze et al. (2011) showed the positive definiteness of these kernels. In321

our implementation, we adapted an efficient implementation from the graphkernel package322

(Sugiyama et al., 2018).323

B Additional experiments and discussions324

B.1 Power performance325

Here we provide further results in addition to the experiments presented in the main text.326

All the experiments shown in this section are based on test level a = 0.05, network size327

n = 20 and re-sample size B = 200. For both gKSS and AgraSSt tests, we obtain nM1 = 100328

trials for each setting to obtain the rejection rates. For AgraSSt, we simulate nM0 = 100 to329

estimate the conditional distribution q̂t. The Monte Carlo sample size l = 200 are used to330

simulated the null distribution.331

Figure 4: Kernel experiments in the setting of Figure 2: gKSS for E2S model with β2
perturbed.

11

Figure 5: Kernel experiments in the setting of Figure 3: AgraSSt for the GRG model with
alternative; t(x) is set to be bivariate (vertex) degree vector.

Figure 6: AgraSSt for the GRG model with t(x) being the edge density.

B.1.1 Additional experiments on the E2S model332

In Figure 4, we show the rejection rate for SP, GVEH and KRW kernels in the same E2S333

setting as presented in Figure 2. All these kernels have similar performance to the constant334

kernel, with GVEH kernels being more sensitive to parameter choice than the KRW kernels.335

B.1.2 Additional GRG experiments: GRG models on the torus336

In the main text the results of the experiments using as t the bivariate vertex degree vector337

are shown. In Figure 6 we show results for using as t the average density in the sample,.338

The type 1 error is controlled under all kernels; the kernels perform similarly.339

Figure 7 shows the behaviour of the kernels using the common neighbour statistic. The340

behaviour is similar to the bi-degree statistic, in showing an additional dip. The constant341

kernel and the shortest path kernel have lowest rejection rate not at the true value. The342

connected graphlet kernel with graphlet size 3 also suffers from this issue.343

B.1.3 Additional GRG experiments: GRG models on a unit square344

In the next set of experiments, instead of on a torus, we place the vertices on the 2-dimensional345

unit square to generate the geometric random graph models. The null model has radius346

r = 0.3 while the alternative models have a different r. Experimental results with AgraSSt347

are shown in Figure 8, Figure 9 and Figure 10. In this example all the tested kernels show a348

similar behaviour, with sparse alternatives easier to distinguish than denser alternatives.349

B.1.4 AgraSSt for geometric random graphs on a torus: further details350

For the geometric random graph on a torus, we observe a spike and subsequent dip for the351

bidegree statistic as well as for the common neighbour statistic, which occurs at around352

rM1 = 0.45. We hypothesize that this phenomenon stems from the torus structure of the353

12

Figure 7: AgraSSt for the GRG model with t(x) being the number of common neighbours.

Figure 8: AgraSSt for GRG on the 2-dimensional unit square with t(x) being the edge
density.

Figure 9: AgraSSt for GRG on the 2-dimensional unit square with t(x) being the bivariate
degree vector.

underlying space; the behaviour on the unit square does not show this pattern. The torus354

effect can be most easily seen for the common neighbour statistic. Consider two vertices355

13

Figure 10: AgraSSt for GRG on the 2-dimensional unit square with t(x) being the number
of common neighbours.

placed on the unit square and imagine circles around these vertices of radius r, as in Figure 11.356

The area of their intersection equals the probability that a randomly placed vertex is a357

common neighbour of the two. For small r, this area is large if the vertices are very close to358

each other and small or zero if the vertices are far apart. Hence, conditional on two vertices359

having a common neighbour the probability that two vertices are only a distance smaller360

than r apart is large, and thus the probability that they are themselves connected is large as361

well. However, for larger r, the area of overlap can be large even though both vertices are far362

away due to the circles wrapping around the torus (see Figure 11). Thus, the information363

about the number of common neighbours may become less informative for larger radius r.364

Figure 11: Two vertices, in red and blue, and corresponding surrounding circles of radius are
displayed: left for r = 0.45, right for r = 0.3. Left: Even though the vertices have a distance of 0.5
and are not connected in the Geometric Random Graph with radius r = 0.45, their area of overlap
is quite large because the red circle extends over the boundary of the unit square. Without the
torus structure, the area of overlap between the two circles would only be half as large. Right: Here
r = 0.3 and the two vertices are connected in the Geometric Random Graph model; the overlap of
the two circles around them is similar in size to the overlap on the left-hand side. Thus, based on
the overlap alone the two models are difficult to distinguish.

This effect does not occur in the geometric random graph model on the two-dimensional365

unit square in the Euclidean space as the circles do not wrap around the edges of the square.366

Thus, compared to the torus topology, the area of overlap differs more depending on whether367

vertices are close or far away, even when r is large. However, when the radius is large, larger368

portions of the circles may be cut off by the square. Hence, the difference in intersection369

area is proportionally bigger between a pair of close and a pair of distant vertices, when r is370

smaller. This explains why the rejection rates, seen in Figure 7 have only one dip at the true371

null value r = 0.3, but increase faster for decreasing radius than for increasing radius.372

14

Figure 12: AgraSSt for BA model with m = 1; t(x) being the edge density.

Figure 13: AgraSSt for BA model with m = 1; t(x) being the bivariate degree vector.

B.2 An additional experiment: Barabasi-Albert networks373

A Barabasi-Albert model generates scale-free networks using preferential attachment. The374

algorithm starts with a complete graph of m vertices, where m ∈ N is chosen as a parameter375

of the model. In every step, one vertex is added and connected with m edges to the network.376

The version used here is from the R package igraph; the probability of a vertex v being377

chosen to connect to the new vertex depends on its current degree via378

pv ∝ deg(v)α + 1,

where α is a power parameter which governs the intensity of preference for high-degree379

vertices in the attachment step. When m ≥ 2 the degrees are updated after the first edge is380

added and before the second edge is added, and the second edge is then added according to381

the updated degrees. If α = 0, the vertices to attach to are chosen uniformly at random,382

whereas α = 2 leads to graphs which are almost starlike with one central vertex (or for m > 1383

multiple central vertices) and most of the remaining vertices only connected to the centre.384

For α > 0 vertices with higher degree are more likely to connect to new vertices, leading to385

few vertices with unusually high degrees in comparison to other graph generators. Unlike in386

ERGMs or GRG models, a change of the parameter α does not result in a change of edge387

density.388

We carry out tests of the form M0 : BAαM0 = 1 versus M1 : BAαM1, with αM1 ranging389

from 0 to 2. The rejection rates for m = 1 are shown in Figure 12 and Figure 13. Furthermore,390

the results of the experiment for m = 2 are shown in Figure 14 and Figure 15. We note391

15

Figure 14: AgraSSt for BA model with m = 2; t(x) being the edge density.

Figure 15: AgraSSt for BA model with m = 2; t(x) being the bivariate degree vector.

that here a change in the parameter, α, does not generally yield high rejection rates. This is392

not surprising for t(x) the edge density, as edge density is not influenced by α, but for most393

kernels this also the case for t(x) the bivariate degree vector. For m = 1 notable exception394

is the Gaussian vertex-edge histogram kernel with small parameter σ = 0.1. This kernel is395

tailored to assessing degree pairs and hence it is plausible that it picks up the power law396

distribution in the degrees. In this example the choice of kernel and of parameter can make397

a considerable difference. For m = 2 also the GRW kernel with λ = 0.5 and the WL kernel398

with level 3 and 5 pick up some signal.399

B.3 Additional CELL experiments400

B.3.1 Synthetic data401

For our additional experiments we first choose a theoretical graph generator as null model402

M0. By the construction of CELL, the generator can only be trained on a single network403

and by repeating the training process, we reduce the risk of sampling an unrepresentative404

network from M0 and thus making all networks trained on this generator unrepresentative.405

For all samples from M1, we perform a Monte Carlo test based on sampled AgraSSt with406

different statistics t. In the case of the E2S-model which is a ERGM and hence gKSS is407

applicable, we additionally compare to sampled gKSS, to obtain average rejection rates for408

different graph kernels k. As null model, we test the E2S-model with parameters β = (−2, 0),409

16

the Geometric Random Graph model with radius r = 0.3 on a unit square without torus410

structure, and the Barabasi-Albert model with m = 1 and power parameter α = 1.411

An E2ST experiment Rejection rates for the E2S-model are displayed in Table 2. We412

observe that rejection rates for all statistics and kernels are around 5%, which is expected if413

the CELL-simulated samples are not distinguishable from the original graph generator. The414

two-star coefficient of our null model is β2S = 0, hence the only criterion of a graph affecting415

the probability distribution of the model is its edge density. As the CELL-simulated graphs416

have the same edge density as the graph the generator was trained on, we may expect the417

alternative model to get rejected in roughly 5% of cases. We note that gKSS, which for this418

model includes edges and two-stars as sufficient statistics, has only slightly lower rejection419

rates on average than AgraSSt.420

Kernel gKSS Avg. density Bidegree statistic Common neighbour statistic
Const. 0.02 0.04 0.05 0.05
GVEH 0.1 0.04 0.07 0.09 0.07
GVEH 1 0.03 0.04 0.05 0.05
GVEH 10 0.01 0.04 0.02 0.06
GVEH 100 0.04 0.04 0.02 0.06
SP 0.06 0.05 0.05 0.05
KRW 2 0.02 0.03 0.01 0.05
KRW 3 0.04 0.03 0.05 0.05
KRW 4 0.02 0.04 0.04 0.05
KRW 5 0.02 0.04 0.03 0.05
GRW 1e-5 0.05 0.03 0.03 0.05
GRW 1e-4 0.03 0.02 0.04 0.06
GRW 1e-3 0.03 0.02 0.04 0.06
GRW 1e-2 0.02 0.05 0.03 0.05
GRW 5e-2 0.02 0.04 0.03 0.05
WL 1 0.03 0.04 0.03 0.05
WL 3 0.03 0.04 0.06 0.03
WL 5 0.04 0.04 0.05 0.04
GLET 3 0.02 0.02 0.03 0.06
CONGLET 3 0.02 0.03 0.05 0.05
CONGLET 4 0.04 0.02 0.02 0.04

Table 2: Rejection rates for CELL-simulated Edge-Two star graph samples with parameters
β = (−2, 0) using the gKSS and AgraSSt testing procedure with different summary statistics.
Rejection rates over 5% are marked in amber, and rejection rates of at least 10% would have
been marked in red.

The geometric random graph experiment Table 3 shows the rejection rates in the421

Geometric Random Graph experiment from Section 4, now using CELL. The rates for422

AgraSSt based on the average density are all roughly 5%. While this statistic is effective at423

distinguishing between different radius parameters in the experiment with the Geometric424

Random Graph model in Section 4, this may just reflect that a change in radius also changes425

the average edge density. When using the bidegree statistics the average rejection rate is426

slightly higher than 5% and some kernels achieve a rejection rate of over 10%. Only some of427

the Weisfeiler-Lehman kernels achieve at most 5% rejection rate, under the bidegree statistic.428

The common neighbour statistic achieves the highest rejection rates as all but one kernel429

reject in 10% or more of cases. The maximal rejection rate of 16% is achieved by the430

Gaussian vertex-edge histogram Kernel with bandwidth σ = 0.1, the Shortest Path kernel431

and the Geometric Random Walk kernel with weight λ = 0.01. These results align with432

our findings in Section 4 where the common neighbour statistic achieved higher rejection433

rates than the bidegree statistic and the Gaussian vertex-edge Histogram kernel achieved the434

best results. In analysing the graphs which are rejected by the Shortest Path kernel, we can435

furthermore see that CELL has a tendency to connect small disconnected components to the436

rest of the graph and create additional paths between components which are only attached437

through one edge (see Figure 16). So it appears that CELL may struggle with generating438

17

Kernel Avg. density Bidegree statistic Common neighbour statistic
Const. 0.03 0.09 0.12
GVEH 0.1 0.08 0.08 0.16
GVEH 1 0.09 0.08 0.11
GVEH 10 0.04 0.13 0.12
GVEH 100 0.03 0.09 0.07
SP 0.06 0.09 0.16
KRW 2 0.03 0.10 0.12
KRW 3 0.07 0.09 0.15
KRW 4 0.08 0.10 0.12
KRW 5 0.04 0.06 0.15
GRW 1e-5 0.04 0.07 0.10
GRW 1e-4 0.02 0.08 0.15
GRW 1e-3 0.05 0.10 0.16
GRW 1e-2 0.06 0.07 0.12
GRW 5e-2 0.03 0.08 0.09
WL 1 0.06 0.08 0.14
WL 3 0.04 0.04 0.10
WL 5 0.04 0.05 0.15
GLET 3 0.04 0.08 0.14
CONGLET 3 0.04 0.08 0.15
CONGLET 4 0.03 0.10 0.10

Table 3: Rejection rates for CELL-simulated Geometric Random Graph samples with
parameters r = 0.3 on a unit-square without torus structure using the AgraSSt testing
procedure with different summary statistics. Rejection rates over 5% are marked in amber,
and rejection rates of at least 10% are marked in red.

networks which are constituted by a few disconnected or sparsely connected components.439

However, the case of many disconnected components, as generated by the sparse E2S-model,440

seems unproblematic. Altogether however, rejection rates remain fairly low for all kernels,441

indicating that CELL produces fairly accurate samples despite its flaws.442

(a) (b) (c) (d)

Figure 16: CELL-samples for the Geometric Random Graph model: original network is
displayed in red, and the CELL sample is displayed in blue.

The Barabasi-Albert experiment Rejection rates for the Barabasi-Albert model, now443

using CELL, with parameters m = 1 and α = 1 are presented in Table 4. We observe444

that while their average lies slightly above 5%, samples from CELL would be still accepted445

at the 10% level in the majority of cases. AgraSSt with the bidegree statistic achieves446

the largest rejection rates, which agrees with our findings in Appendix B.2. Similarly, the447

Gaussian vertex-edge histogram kernel achieves the highest rejection rate with a maximum448

of 16% with bandwidth σ = 1. The Weisfeiler-Lehman kernel also performs well, attaining449

a rejection rate of 13% for any level parameter and a maximum of 16% for h = 3. While450

the Weisfeiler-Lehman kernel was not effective in distinguishing between different power451

parameters α for m = 1, it did boost the rejection rates of sampled AgraSSt with the bidegree452

statistic for m = 2 Out of the 100 simulated samples, 58 graphs contain multiple disconnected453

subgraphs or cycles, which should make them clearly distinguishable from graphs created by454

the Barabasi-Albert model with m = 1, whereas only 42 are connected and contain no cycle.455

18

Kernel Avg. density Bidegree statistic Common neighbour statistic
Const. 0.07 0.05 0.10
GVEH 0.1 0.08 0.13 0.05
GVEH 1 0.06 0.16 0.05
GVEH 10 0.04 0.09 0.09
GVEH 100 0.07 0.08 0.08
SP 0.05 0.07 0.08
KRW 2 0.07 0.08 0.07
KRW 3 0.10 0.10 0.12
KRW 4 0.08 0.06 0.09
KRW 5 0.07 0.08 0.10
GRW 1e-5 0.09 0.09 0.12
GRW 1e-4 0.07 0.07 0.09
GRW 1e-3 0.04 0.08 0.09
GRW 1e-2 0.04 0.12 0.09
GRW 5e-2 0.08 0.08 0.08
WL 1 0.09 0.13 0.04
WL 3 0.08 0.16 0.05
WL 5 0.07 0.13 0.08
GLET 3 0.10 0.11 0.08
CONGLET 3 0.07 0.08 0.09
CONGLET 4 0.10 0.10 0.07

Table 4: Rejection rates for CELL-simulated Barabasi-Albert graph samples with parameters
m = 1 and α = 1 using the AgraSSt testing procedure with different summary statistics.
Rejection rates over 5% are marked in amber, and of at least 10% are marked in red.

Most kernels do a good job at accepting connected graphs, above all the connected graphlet456

kernel of size 4. Out of the 10 graphs it rejects, only one is connected, and the other 41457

connected graphs are accepted by the testing procedure. However, all kernels still accept a458

large number of disconnected networks.459

B.3.2 Details on the Karate club network and the CELL results460

Zachary’s Karate Club network Zachary (1977) contains 34 vertices, representing the members461

of a university sport society before its separation into two new groups due to a conflict462

between the instructor and the administrator. An edge in the network symbolizes consistent463

interaction between members outside of karate classes. Using the structural information464

about friendships in the club, Zachary found a method to cluster the vertices which for all465

but one member agreed with the side they would end up after the split. The network became466

a widespread example of community structures after its use by Girvan and Newman (2002).467

We perform a Monte Carlo test, in which we compare sampled AgraSSt with sample size468

B = 200 of the original network to nM1 = 100 simulations from CELL and reject at the469

5%-level. This procedure is repeated 100 times to obtain average rejection rates. The470

complete results are displayed in Table 5. Most rejection rates remain at around 5%, but471

when using the bidegree statistic both the Gaussian Vertex-Edge Histogram kernel with472

bandwidth σ = 0.1 and the Geometric Random Walk kernel with λ = 0.053 achieve rejection473

rates above 15%.474

We recall that in the experiments on the Barabasi-Albert model these two kernels were able475

to detect differences in graph structure in certain cases, so there is some indication that476

these results may extend to real-life applications.477

3We may choose λ = 0.05 as the original and simulated networks have no vertex with degree
20 or above, so the infinite sum in the Geometric Random Walk kernel converges. We could allow
for larger λ, but chose to only consider values up to 0.05 to keep the considered hyperparameters
consistent throughout.

19

Kernel Avg. density Bidegree statistic Common neighbour statistic
Const. 0.03 0.04 0.05
GVEH 0.1 0.04 0.17 0.03
GVEH 1 0.07 0.11 0.04
GVEH 10 0.05 0.06 0.04
GVEH 100 0.12 0.06 0.10
SP 0.08 0.01 0.08
KRW 2 0.04 0.05 0.06
KRW 3 0.03 0.04 0.02
KRW 4 0.02 0.04 0.01
KRW 5 0.10 0.04 0.09
GRW 1e-5 0.04 0.04 0.06
GRW 1e-4 0.05 0.04 0.01
GRW 1e-3 0.07 0.06 0.05
GRW 1e-2 0.06 0.05 0.09
GRW 5e-2 0.03 0.16 0.03
WL 1 0.05 0.07 0.04
WL 3 0.02 0.01 0.03
WL 5 0.03 0.05 0.03
GLET 3 0.08 0.04 0.04
CONGLET 3 0.03 0.05 0.04
CONGLET 4 0.02 0.02 0.07

Table 5: Rejection rates for CELL-simulated Zachary’s Karate Club samples using the
AgraSSt testing procedure with different summary statistics. Rejection rates over 5% are
marked in amber and those of at least 10% are marked in red.

However, the CELL generator does not always produce graphs which portray the same478

structures of group membership as the original network and AgraSSt can fail to detect this479

shortcoming. To illustrate this, we separate the vertices in the training and simulated graphs480

into two clusters using a greedy algorithm from Clauset et al. (2004). The rate of coincidence481

between the cluster assignment in the original graph and the simulations varies between482

64.3% to 70.8%. The AgraSSt test decision however seems to be largely independent of how483

well the community structure is reproduced. Figure 17 displays two batches of simulated484

graphs, one accepted and one rejected by the Gaussian Vertex-Edge Histogram kernel. There485

is no discernible difference in cluster assignment in the two batches; the group allocation486

matches the original graph for 66.4% of vertices in the accepted batch, whereas the rejected487

batch achieves 70.0%. Therefore, the current implementation with the chosen graph kernels488

may have trouble detecting differences in community structures if they are not represented in489

other statistics such as the degree distribution. One possible solution is assigning each vertex490

their group membership in the original graph as an attribute, which gives the graph kernels491

explicit information to detect discrepancies. On another note, we observe that the Gaussian492

Vertex-Edge Histogram kernel and the Geometric Random Walk kernel reject almost entirely493

different batches. This As mentioned in Section 5, this finding opens the possibility for using494

an ensemble of kernels which may achieve higher power, as for example in Schrab et al.495

(2022).496

C Runtime considerations497

C.1 Runtime experiments498

Here we present the runtimes for calculating sampled gKSS with sample size B = 200 using499

the kernel implementations by the R package graphkernel. We use an Edge-2Star model500

with parameters β = (−2, 0) (sparse regime, average edge density 11.8%) and β = (1, 0)501

(dense regime, average edge density 73.2%) for n = 20 and n = 40 vertices. For a given502

graph, we run each kernel ten times on the graph and pick the median runtime to largely503

remove randomness in the runtime due to the momentary performance of the machine from504

the runtime analysis. For each of the four set-ups, we repeat this procedure for 100 different505

20

(a) Accepted batch

(b) Rejected batch

Figure 17: Rejected and accepted CELL-samples trained on Zarachy’s Karate Club network.
The original graph is displayed in red, simulated graphs are displayed in blue. Different
shadings indicate the cluster membership. The layout is kept fixed for all graphs. We
observe no significant difference between the accepted and rejected sample in how well cluster
membership in the simulated samples corresponds to cluster membership in the original
graph.

graphs, obtaining 100 median runtimes per set-up. We report their minimum, average and506

maximum for every kernel. We consider different hyperparameters for the kernels, to assess507

whether the hyperparameter affects the computational complexity of the algorithm.508

The results are shown in Table 6, for sparse networks, and Table 7, for dense networks. The509

constant kernel is the quickest to evaluate by two orders of magnitude compared to the510

runner-up. The fastest non-trivial choice is the Weisfeiler-Lehman kernel, with which gKSS511

on average takes about 0.2 to 0.35 seconds to calculate. The runtime is very consistent in512

every set-up with only little deviation and only slightly increases with increased level or513

density. Similarly, gKSS using the Gaussian vertex-edge histogram kernel takes between514

21

Runtime (ms) for n = 20, sparse Runtime (ms) for n = 40, sparse
Kernel Minimum Average Maximum Minimum Average Maximum
Const. 0.47 0.50 1.03 0.51 0.57 1.10
WL 1 199.51 206.42 214.23 219.38 224.10 233.86
WL 3 201.54 210.59 218.99 229.06 235.09 242.58
WL 5 208.74 218.26 225.49 245.64 255.18 267.64
GLET 3 192.08 202.50 214.43 311.96 326.72 345.26
GVEH 318.32 331.63 342.52 428.01 448.00 470.37
CONGLET 3 385.88 400.35 417.83 512.63 539.49 560.63
CONGLET 4 379.00 407.84 438.10 620.05 754.20 968.26
KRW 3 432.39 682.93 1,010.08 3,638.44 5,460.50 7,713.08
KRW 5 432.76 682.45 1,008.46 3,616.95 5,463.80 7,715.39
GRW 427.29 678.56 1,002.74 3,590.22 5,473.98 7,725.11
SP 655.11 940.04 1,278.72 4,071.83 5,984.19 8,280.77

Table 6: Runtime of graph kernels with different hyperparameters on sparse graphs of size 20
and 40 in milliseconds. The sparse graphs are simulated from an E2S-model with parameters
β = (−2, 0).

Runtime (ms) for n = 20, dense Runtime (ms) for n = 40, dense
Kernel Minimum Average Maximum Minimum Average Maximum
Const. 0.47 0.53 1.04 0.51 0.54 1.12
WL 1 210.82 217.08 224.71 245.06 253.82 415.35
WL 3 215.61 227.18 235.57 268.51 290.70 460.15
WL 5 235.62 243.09 249.93 319.81 351.17 376.40
GLET 3 212.13 219.29 230.56 406.23 447.68 482.55
GVEH 366.71 384.54 405.73 581.44 640.82 890.56
CONGLET 3 425.63 444.61 466.28 644.86 796.21 928.90
CONGLET 4 2,145.85 2,439.85 2,838.56 16,114.99 41,525.31 54,248.50
KRW 3 9,241.91 10,184.59 11,846.73 72,359.72 135,137.37 165,997.28
KRW 5 9,225.76 10,188.56 11,801.09 72,578.23 135,177.07 165,510.63
GRW 9,206.17 10,222.37 11,985.30 72,276.88 135,096.51 165,456.58
SP 9,767.99 10,706.33 12,311.66 74,118.71 136,571.69 166,649.77

Table 7: Runtime of graph kernels with different hyperparameters on dense graphs of size 20
and 40 in milliseconds. The dense graphs are simulated from an E2S-model with parameters
β = (1, 0).

around 0.33 seconds to compute on the network of 20 vertices and 0.45 seconds on the515

network of 40 vertices, with no large increase in runtime on the denser networks.516

For the graphlet kernel on three vertices, it takes roughly 0.2 seconds to calculate gKSS on517

the network on 20 vertices and 0.33 seconds on the network of 40 vertices. As the number518

of triplets of vertices which need to be checked for calculating the kernel is independent519

of the edge structure of the graph, there is little difference in runtime for the sparse or520

dense network. This is very different for the connected graphlet kernel as an action such as521

increasing the count of a certain graphlet is only needed if the vertex set that is currently522

examined by the algorithm is connected. Using the connected graphlet kernel takes longer523

than the graphlet kernel as additional checks for connectivity are needed. In the sparse524

regime, runtimes of the kernel on graphlets of size 3 or 4 are comparable, with a runtime of525

0.4 seconds for both on 20 vertices and a runtime of 0.54 and 0.75 seconds on 40 vertices.526

However, a large disparity emerges in the dense regime: Whereas, for graphlets of size 3, the527

kernel takes 0.44 seconds on the smaller and 0.8 seconds on the bigger network, for graphlets528

of size 4, runtimes increase to 2.4 seconds on 20 vertices and even 41.5 seconds on 40 vertices.529

Both the k-Random Walk kernels and the Geometric Random Walk kernel have a similar530

runtime, irrespective of the chosen hyperparameters. While their runtime is still competitive531

on the smaller and sparser graphs, their runtime increases by an order of magnitude when532

doubling the number of vertices or moving from the sparse to the dense regime. The slowest of533

22

the kernels is the shortest path kernel, though its runtime is largely comparable to the random534

walk kernels. In the sparse case it runs on average for 0.94 seconds on the smaller and 5.9535

seconds on the larger network. In the dense case, however, runtime increases to 10.7 seconds536

for the smaller and to more than 2 minutes in the larger network. This renders the kernel537

in its current implementation unserviceable in practice. The reasons for this are twofold:538

Firstly, unlike the other kernels, its code is written in Python and not C++, thus making539

the implementation slower irrespective of the used algorithm. Secondly, the authors use a540

basic approach for calculation of the shortest path graph by running Dijkstra’s algorithm for541

every vertex. This means that even with optimal data storage implementation, the runtime542

complexity of the algorithm for a graph on n vertices and m edge is O(n2 log(n) + nm)543

steps Cormen et al. (2022). Generally, kernels considering paths in the graph have the544

longest runtimes and their comparative disadvantage becomes worse the larger and denser545

the network becomes. Furthermore, unlike the other kernels, their runtime varies greatly546

even in the same regime, so calculation times may strongly deviate from the average.547

As kernel implementation may have a considerable effect on the runtime, next we detail a548

computationally efficient implementation of GRW kernels.549

C.2 Efficient computation for GRW kernels550

The GRW kernel with parameter λ for networks x, x′ is kλ
GRW (x, x′) =551 ∑|V⊗|

i,j=1
[
(I − λA⊗)−1]

i,j
= 1T

n (In − λA⊗)−11n.
4. This expression involves inverting a552

n× n matrix, at cost O(n3). Due to the special form of KSS the following theorem shows553

that O(n) computation cost suffices.554

Theorem 1. Let B be a symmetric invertible matrix and C = B−1. Let Ci denote the i-th555

column and cij the (i, j)-th entry of C; ei is the i-th coordinate vector. Let µ ∈ R satisfy556

1 +µcij ̸= 0 and (1 +µcij)2 −µ2ciicjj ̸= 0. Then M = (B+µ(eie
T
j + eje

T
i)) is invertible and557

M−1 = C − µ(1 + µcij)
(1 + µcij)2 − µ2ciicjj

(CiC
T
j + CjC

T
i − µcjj

1 + µcij
CiC

T
i − µcii

1 + µcij
CjC

T
j). (11)

For A⊗ = A− (eie
T
j + eje

T
i) and B = In −λA, taking µ = λ yields a fast rank 1 computation558

of B⊗ = In − λA⊗ for GRW kernels.559

To prove Theorem 1, we apply the Sherman-Morrison formula (Sherman and Morrison, 1950)560

(as a special case of Woodbury matrix identity); we repeat it here for convenience.561

Proposition 1 (Sherman-Morrison). Let A ∈ Rn×n be an invertible matrix and let u, v ∈ Rn562

be column vectors. Then the matrix A + uvT is invertible if and only if 1 + vTA−1u ̸= 0,563

and in this case564

(A+ uvT)−1 = A−1 − 1
1 + vTA−1u

A−1uvTA−1. (12)

Proof of Theorem 1565

Proof. The statement follows from applying Proposition 1 twice. First, we use the formula566

with A = B, u = µei, v = ej and note that as 1 + µcij ̸= 0, we may apply the proposition.567

Then by the symmetry of the inverse matrix C568

(B + µeie
T
j)−1 = B−1 − 1

1 + eT
j B

−1µei
B−1µeie

T
j B

−1

= C − µ

1 + µcij
(Cei)(eT

j C) = C − µ

1 + µcij
CiC

T
j . (13)

Applying the theorem again with A = B + µeie
T
j , u = µej , v = ei and assuming that569

(1 + µcij)2 − µ2ciicjj ̸= 0, we can calculate the inverse as570 (
(B + µeie

T
j) + µeje

T
i

)−1 = (B + µeie
T
j)−1 − µ

1 + eT
i (B + µeieT

j)−1µej

×
(
(B + µeie

T
j)−1ej

)(
eT

i (B + µeie
T
j)−1). (14)

4details can be found in Appendix A.3

23

We use the expression in Eq.(13) to calculate the terms of Eq.(14). We first calculate the571

(ij)-th entry572

eT
i (B + µeie

T
j)−1ej = eT

i Cej − µ

1 + µci,j
(eT

i Ci)(CT
j ej) = cij − µciicjj

1 + µcij

= (1 + µcij)cij − µciicjj

1 + µcij
,

with which the fraction in Eq.(14) calculates as573

µ

1 + eT
i (B + µeieT

j)−1µej
= µ

1 + µ(1 + µcij)−1{(1 + µcij)cij − µciicjj}

= µ(1 + µcij)
(1 + µcij) + µ(1 + µcij)cij − µ2ci,icjj

= µ(1 + µcij)
(1 + µcij)2 − µ2ciicjj

.

Calculating the column vectors574

(B + µeie
T
j)−1ej = Cej − µ

1 + µcij
CiC

T
j ej = Cj − µcjj

1 + µcij
Ci

and575

eT
i (B + µeie

T
j)−1 = CT

i − µcii

1 + µcij
CT

j .

Putting these expressions and Eq.(13) into Equation (14) yields the identity576

(B + µ(eie
T
j + eje

T
i))−1 = C − µ

1 + µcij
CiC

T
j − µ(1 + µcij)

(1 + µcij)2 − µ2ciicjj

×
(
CjC

T
i − µcjj

1 + µcij
CiC

T
i − µcii

1 + µcij
CjC

T
j + µ2ciicjj

(1 + µcij)2CiC
T
j

)
.

The final form in Eq.(11) follows from the algebraic identity577

µ

1 + µcij
+ µ(1 + µcij)

(1 + µcij)2 − µ2ciicjj
× µ2ciicjj

(1 + µcij)2 = µ(1 + µcij)
(1 + µcij)2 − µ2ciicjj

.

578

The required criteria 1 + µcij ̸= 0 and (1 + µcij)2 − µ2ciicjj ̸= 0 are sufficient but not579

necessary. See for example580

B =
[
1 1
1 2

]
, C = B−1 =

[
2 −1

−1 1

]
, µ = 1.

Then 1 + µc12 = 1 − 1 = 0 and while neither B + µe1e
T
2 nor B + µe2e

T
1 are invertible, we581

have582

B + µ(e1e
T
2 + e2e

T
1) =

[
1 2
2 2

]
,
(
B + µ(e1e

T
2 + e2e

T
1)
)−1 =

[
−1 1
1 − 1

2

]
.

However, if criterion 1 + µcij ̸= 0 is fulfilled, then the criterion (1 + µcij)2 − µ2ciicjj ≠ 0 is583

necessary and sufficient for B + µ(eie
T
j + eje

T
i) to be invertible. This follows directly from584

the Sherman-Morrison in Proposition 1. Note further that if any of the two expressions585

1+µcij and (1+µcij)2 −µ2ciicjj are close to zero, then the formula may become numerically586

unstable.587

24

	Introduction
	Background: kernel Stein statistic for random graph models
	Graph kernel choices and their effects on KSS
	Experimental results
	Conclusion and Discussion
	Additional details on background
	The graph kernel Stein statistic (gKSS)
	Approximate graph Stein statistics (AgraSSt)
	Graph kernels

	Additional experiments and discussions
	Power performance
	Additional experiments on the E2S model
	Additional GRG experiments: GRG models on the torus
	Additional GRG experiments: GRG models on a unit square
	 AgraSSt for geometric random graphs on a torus: further details

	An additional experiment: Barabasi-Albert networks
	Additional CELL experiments
	Synthetic data
	Details on the Karate club network and the CELL results

	Runtime considerations
	Runtime experiments
	Efficient computation for GRW kernels

