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Abstract. The segmentation of cardiac magnetic resonance (MR) im-
ages is a critical step for the accurate assessment of cardiac function and
the diagnosis of cardiovascular diseases. In this work, we propose a novel
segmentation method that is able to effectively leverage the temporal
information in cardiac MR image sequences. Specifically, we construct
a Temporal Aggregation Module (TAM) to incorporate the temporal
image-based features into a backbone spatial segmentation network (such
as a 2D U-Net) with negligible extra computation cost. In addition, we
also introduce a novel Motion Encoding Module (MEM) to explicitly
encode the motion features of the heart. Experimental results demon-
strate that each of the two modules enables clear improvements upon the
base spatial network, and their combination leads to further enhanced
performance. The proposed method outperforms the previous methods
significantly, demonstrating the effectiveness of our design.

Keywords: Cardiac MRI · Left ventricle segmentation · Temporal ·
Motion.

1 Introduction

Cardiac magnetic resonance imaging (MRI) is one of the major imaging modal-
ities that can be used for the quantitative spatio-temporal analysis of cardiac
function and disease diagnosis. Accurate assessment of cardiac function is essen-
tial for both diagnosis and treatment of cardiovascular diseases. Recent develop-
ments in machine learning methods promise to enable the design of automatic
cardiac analysis tools, thereby significantly reducing the manual effort currently
required by clinicians. In particular, the automatic segmentation of left ventricle
(LV) contours is an important first step to enable the accurate quantification of
regional cardiac function, including ejection fraction, temporal changes in ven-
tricular volumes and strain analysis of the myocardium. However, accurate LV
boundary segmentation is challenging due to LV shape variability, imaging arti-
facts, and poor LV boundary delineation. Such complexities make this task still
an open problem despite the existence of important works for several decades.

Recent methods for cardiac LV segmentation are mainly based on deep neu-
ral networks, given their superior performance. One representative of the recent
development is the 2D U-Net [8], which has proven one of the most effective
methods in image-based segmentation since it learns and combines multi-scale
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N×T×C×H×W N×T×C×H×W

Reshape: N×T×C×H×W → NT×C×H×W

Reshape: NT×C×H×W → N×T×C×H×W

3×3 2D Conv + BN + ReLU

TMEM

2×2 2D Spatial Pooling

2×2 2D Spatial Upsampling

1×1 2D Conv

Concatenation

Fig. 1. Overview of the proposed method. The input is a volumetric sequence of cardiac
images, and the output is the corresponding LV segmentation results. The overall
structure of our method is based on (but not limited to) a 2D U-Net, where we insert
two Temporal Motion Encoding Modules (TMEM) to effectively exploit the temporal
information for cardiac MR image segmentation. N : the batch size; T : the number of
frames in a sequence; H and W : the spatial size of feature maps; C = 1: the channel
number for grayscale image.

features. This design has inspired many follow-up methods. However, this type
of methods segment the slices individually without considering their spatial and
temporal correlations. To address this issue, the 3D U-Net [2] extends the 2D U-
Net by replacing the 2D convolutions with 3D ones in order to capture long-range
dependencies between different slices. While achieving improved accuracy, 3D U-
Net inevitably increases the computational cost and tends to cause overfitting.
Such weaknesses can be alleviated by the recurrent U-Net [6], which employs
ConvGRU [1] to connect the slices but still suffers from computational ineffi-
ciency. Recent works [7, 11] have sought to exploit optical flow for capturing
cardiac dynamic features and enforcing temporal coherence. However, the ex-
traction of optical flow is non-trivial, expensive and prone to significant errors,
making these methods often inaccurate and difficult to deploy in real applica-
tions. Other attempts at improving U-Nets include adopting a hybrid solution
[12] or integrating the attention mechanism into the network for feature refine-
ment [5]. However, these methods are difficult to train, and fail to explicitly and
efficiently model temporal relationships.

To address the above limitations, we propose a novel method for the spatio-
temporal segmentation of cardiac MR image sequences. Our method is based on
a 2D U-Net, and aggregates the temporal features with only 1D and 2D convolu-
tions, thereby eliminating the heavy computation and massive parameters of 3D
and recurrent convolutions. Specifically, we construct a Temporal Aggregation
Module (TAM) to capture the inter-slice temporal features. TAM reformulates
the input feature map as a 1D signal, and utilizes 1D convolution for temporal
feature learning with small extra computation and parameter overhead. In addi-
tion, we introduce a Motion Encoding Module (MEM), which explicitly models
the cardiac motion features using 2D convolutions without relying on optical
flow. By integrating such dynamic information into a 2D U-Net, MEM is able to
guide and regulate the segmentation. Finally, we integrate these two modules in
a Temporal Motion Encoding Module (TMEM), which feeds the network with
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NT×C×H×W

MEM

TAM

+

NT×C×H×W

(a) TMEM

NT×C×H×W

Reshape

NHW×C×T

Conv1D

NHW×C×T

Reshape

NT×C×H×W

(b) TAM

NT×C×H×W

Reshape

N×T×C×H×W
Feature 

Map at t=1

N×C×H×W

Feature 
Map at t=2

N×C×H×W

Feature 
Map at t=3

N×C×H×W

…

−

N×C×H×W

−

N×C×H×W

…

Concat.

…

N×(T−1)×C×H×W

Conv2D

N(T−1)×C×H×W N(T−1)×C×H×W

Reshape
Zero 

Padding

NT×C×H×W

(c) MEM

Fig. 2. Illustration of the different modules. (a) Temporal Motion Encoding Module
(TMEM). (b) Temporal Aggregation Module (TAM). (c) Motion Encoding Module
(MEM). These modules are computationally efficient, and enable to significantly im-
prove the performance of base network with small extra overhead. “+” and “-” denote
element-wise addition and subtraction, respectively. The Conv2D block consists of one
3 × 3 2D convolution layer, followed by BatchNorm and ReLU.

complementary temporal and motion information while preserving the simplic-
ity and efficiency of 2D U-Net (see Fig. 1 and Fig. 2). Experimental results on
two cardiac MR image datasets demonstrate the effectiveness and superiority of
the proposed method compared to the state-of-the-arts.

2 Method

The overall architecture of our method is illustrated in Fig. 1, where we integrate
two Temporal Motion Encoding Modules into the classic 2D U-Net. Below we
give the details of our module design and the corresponding motivation.

2.1 Temporal Aggregation Module

The Temporal Aggregation Module (TAM) aims to extract the temporal features
with very limited extra overhead. As shown in Fig. 2(b), given a 2D feature map
F ∈ RNT×C×H×W , we first reshape it into a 1D signal F′ ∈ RNHW×C×T .
Then, we apply 1D convolution to F′ along the dimension of T to aggregate
temporal features. This design has the benefit that the temporal information
is propagated among different slices with only 1D convolution, which requires a
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very small number of parameters and computational cost. In our implementation
of TAM, we use a 1D convolution with kernel size 3.

2.2 Motion Encoding Module

Existing works, such as [7, 11], have indicated that the optical-flow motion in-
formation is able to regulate the network and thereby significantly improve the
segmentation performance. However, the computation or learning of optical flow
in their methods is non-trivial, computationally expensive and error-prone, which
hinders their practical applications. To address this issue, we design a Motion
Encoding Module (MEM), which aims to capture the motion features efficiently
rather than recover the exact motion patterns as in optical flow. To be specific,
the motion information from MEM is at the feature level, and can be computed
efficiently and used to improve the segmentation.

Specifically, given a feature map F ∈ RNT×C×H×W , we first reshape it to
expose the temporal dimension, obtaining F′ ∈ RN×T×C×H×W . Then we split
F′ into a set of feature maps F′1, . . . ,F

′
T , where F′t ∈ RN×C×H×W , t ∈ [1, T ].

Afterwards, the motion information is extracted from every two consecutive
feature maps F′t and F′t+1. Formally,

F̃t = f(F′t − F′t+1), t ∈ [1, T − 1], (1)

where F̃t ∈ RN×C×H×W is the captured motion information, and f denotes a
nonlinear function, which in our case is a 2D convolution followed by BatchNorm
and ReLU. Finally, all the generated motion features F̃t are stacked along the
temporal dimension, providing the feature map F̃ ∈ RN×(T−1)×C×H×W . To
make the size of F̃ consistent with the input feature F, we pad F̃ with zeros at
the last time step, and reshape it into an output feature map F̂ ∈ RNT×C×H×W

(see Fig. 2(c)).

As is illustrated, the proposed MEM is simple and only relies on 2D convolu-
tion, and thus it is more efficient than the 3D and recurrent counterparts. In the
experiments, we will show that MEM is able to largely improve the segmentation
performance of a basic 2D U-Net.

2.3 Temporal Motion Encoding Module

TAM and MEM extract the temporal features from two different perspectives.
To combine their strengths we design a Temporal Motion Encoding Module
(TMEM), which consists TAM and MEM (see Fig. 2(a)). TMEM is able to fuse
the temporal and motion features together and can be integrated into any layer
of a 2D U-Net. In practice, we empirically observe that placing TMEM within
the third and fourth Conv2D blocks of the encoder gives the best results. This
observation is in accordance with the findings of [10], which suggest temporal
representation learning on high-level semantic features is more useful.
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3 Experiments and Results

We evaluate the proposed method on two cardiac MR image datasets. (1) DYS,
a dataset which contains 24 subjects, of which the patients are with heart fail-
ure due to dyssynchrony. The number of phases is 25 for each cardiac cycle. In
total, there are around 4000 2D short-axis (SAX) slices. The LV myocardium
contours of these SAX images over different spatial locations and cardiac phases
are manually annotated based on consensus of three medical experts. The sizes
of images vary between 224 × 204 and 240 × 198 pixels, and their in-plane res-
olutions vary from 1.17mm to 1.43mm. We use 3-fold cross validation in our
experiments, and make sure both the training and test sets contain the normal
subjects and patients. (2) CAP, a publicly available dataset consisting of steady-
state free precession (SSFP) cine MR images from Cardiac Atlas database [3, 4,
9]. CAP involves 100 patients with coronary artery disease and prior myocardial
infarction. The ground-truth myocardium annotations are generated by various
raters with consensus. There exists large variability within this dataset: the data
are generated from different MRI scanner systems, the image size varies from
138×192 to 512×512 and the cardiac phases range from 18 to 35. These factors
make CAP more challenging than DYS. In our experiments, we perform cross
validation with 3 different partitions of the dataset. In each particular partition,
we select 70 subjects for training, 15 for validation and 15 for testing.

During training, for both datasets, we crop the regions around the LV to
generate training images of size 144×144. Data augmentation, including random
flip and rotation, is adopted to improve the model robustness. To train the
models, we use cross entropy loss and optimize the network parameters with
Adam optimizer. We set the learning rate to 0.0005, and decay it by 0.5 after
every 15 training epochs. The batch size is 8 (i.e., 8 cardiac sequences), each of
which is padded/subsampled to contain 32 slices. The weight decay is 0.0001,
and the number of training epochs is chosen to be 75 to ensure convergence. For
all the 2D convolutions of our method, we set their kernel sizes to 3 × 3. The
training of our model takes around 0.5 ∼ 1.5 hours on a single NVIDIA RTX
4000 GPU, and the inference takes about 0.01s for a sequence of slices.

We compare our method with several representative works, including 2D U-
Net [8], 3D U-Net [2], recurrent U-Net (RFCN) [6], and Attention U-Net [5].
In particular, the 3D U-Net was originally developed to capture the spatial
relationships among the slices of 3D volumetric images (i.e., stacks of images).
Contrary to its original application, here we apply the 3D U-Net to a sequence
of SAX images from a cardiac cycle, and set its channel numbers equal to its
2D counterpart. Similarly, RFCN was designed for processing the slices of a
single 3D volumetric cardiac image, and here we apply its recurrent unit to the
temporal dimension. The Attention U-Net aims to improve the classic U-Net, and
generates attention maps from higher-level features to help the network focus
on important regions. Apart from the above methods, we also build another
U-Net variant which is inspired by [10]. Specifically, we replace the TMEM in
our method with a separable 3D convolution, which decomposes the traditional
3 × 3 × 3 3D convolution into two separate ones: a 3D convolution with kernel
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Table 1. Evaluation of segmentation accuracy for different methods in terms of Dice
and Jaccard metrics, as well as Hausdorff distance (HD) in pixels. We report the mean
and standard deviation over different folds.

Dataset Method Dice Jaccard HD

DYS

2D U-Net 0.7854 ± 0.0384 0.6633 ± 0.0465 4.6204 ± 2.8586
3D U-Net 0.7566 ± 0.0143 0.6229 ± 0.0175 10.159 ± 3.4157
Att. U-Net 0.7984 ± 0.0269 0.6801 ± 0.0303 5.9199 ± 1.3563
RFCN 0.7936 ± 0.0316 0.6721 ± 0.0391 4.5095 ± 1.3524
S3D U-Net 0.7912 ± 0.0348 0.6719 ± 0.0393 5.1291 ± 1.6801
Ours + TAM 0.8101 ± 0.0254 0.6944 ± 0.0288 3.8381 ± 0.7819
Ours + MEM 0.8076 ± 0.0203 0.6922 ± 0.0197 3.9163 ± 1.1508
Ours + TMEM 0.8204± 0.0302 0.7085± 0.0363 3.4114± 0.7277

CAP

2D U-Net 0.7158 ± 0.0243 0.6234 ± 0.0271 4.4257 ± 0.4978
3D U-Net 0.7434 ± 0.0084 0.6501 ± 0.0051 4.2577 ± 0.3889
Att. U-Net 0.7341 ± 0.0124 0.6445 ± 0.0127 4.6684 ± 0.1695
RFCN 0.7172 ± 0.0297 0.6259 ± 0.0278 4.6394 ± 0.3271
S3D U-Net 0.7191 ± 0.0118 0.6276 ± 0.0101 5.3890 ± 0.3459
Ours + TAM 0.7653 ± 0.0175 0.6766 ± 0.0188 4.3039 ± 0.4061
Ours + MEM 0.7681 ± 0.0213 0.6814 ± 0.0206 4.5178 ± 0.5474
Ours + TMEM 0.7766± 0.0087 0.6912± 0.0066 3.8977± 0.2190

Table 2. The model complexities of different methods. FLOPs are calculated over a
sequence of 32 images, with size 144 × 144.

Method #Parameter FLOPs Method #Parameter FLOPs

2D U-net 7.9M 143G Att. U-Net 8.5M 150G
3D U-Net 23.5M 183G S3D U-Net 8.8M 159G
RFCN 22.0M 179G Ours + TAM 8.1M 146G
Ours + MEM 8.6M 154G Ours + TMEM 8.8M 158G

size 1 × 3 × 3 followed by another one with kernel size 3 × 1 × 1. We term
this model as S3D U-Net, which only requires a small extra parameter and
computation overhead while being able to capture the temporal information.
Finally, to validate the effectiveness of our two modules, we also conduct ablation
studies. In particular, we remove MEM from our model, obtaining a network with
TAM only (i.e., Ours + TAM in Table 1). Similarly, we remove TAM and replace
it with an identity mapping, leading to a model with MEM only (i.e., Ours +
MEM in Table 1).

Table 1 lists the segmentation results for different methods. As is shown, both
the TAM and MEM are able to significantly boost the performance of vanilla 2D
U-Net. This demonstrates the importance of leveraging temporal information in
cardiac image sequence segmentation, as well as the effectiveness of the proposed
modules on exploiting temporal features. In addition, when combining TAM and
MEM into a single module, we observe a further improved segmentation accu-
racy, which indicates that the temporal and motion features are complementary
to each other. From Table 1 it can also be observed that our method outperforms
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2D U-Net 3D U-Net Att. U-Net RFCN S3D U-Net Ours

Fig. 3. Examples of segmented left ventricle walls from different methods. The images
are from the CAP dataset, and from different LV locations: middle (row 1-2), base (row
3-4) and apex (row 5-6). These images show the cases of myocardial infarction; our
method overall achieves the best performance. Green contours represent the ground
truth and red contours are the model predictions. “Ours” refers to the model using
TMEM. (Zoom in for best view.)

RFCN, 3D U-Net and S3D U-Net, even when only one of the proposed mod-
ules is employed. This validates the advantages of our temporal feature encoding
over the recurrent 2D and vanilla/separable 3D convolutions. In Table 2 we also
report the model complexities of different methods. It can be observed that our
modules only introduce a small extra parameter and computation overhead while
bringing a clear performance gain.

Fig. 3 shows several segmentation results for different methods. We can ob-
serve that our method is able to delineate the ventricular walls accurately, espe-
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(a) Apex (b) Middle (c) Base

Fig. 4. Representative examples of LV myocardium area over a cardiac cycle for dif-
ferent methods, at the apex, middle and base, respectively. The data sample is from
the CAP dataset, and shows a case of myocardial infarction.

cially at the base and the apex which are challenging (see row 3-6). Moreover,
the proposed method is able to generate smoother outcomes while preserving
the topological shape properties of the myocardium walls (i.e., a closed loop). In
contrast, the original 2D U-Net fails to accurately localize the boundary at the
base and apex, and leads to disconnected segmented shapes. This demonstrates
the effectiveness of our method on leveraging temporal and motion information
for the segmentation of cardiac MR image sequences.

In Fig. 4, we plot the myocardium area over a cardiac cycle for different
methods. We observe that, compared to the baselines, the results by our method
are smoother and closer to the ground-truth. In particular, our method largely
improves the 2D U-Net, thanks to the explicit modeling of temporal information.

4 Conclusions

In this work, we proposed a new method for the segmentation of cardiac MR
image sequences, based on the use of a 2D U-Net. The key elements of our
method are two new modules, which are able to leverage the temporal and
motion information volumetrically in cardiac image sequences. The proposed
modules work collaboratively and enable us to improve the feature learning of
the base network in a computationally efficient manner. Experimental results on
two cardiac MR image datasets demonstrate the effectiveness of our method.
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