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Abstract

This work investigates how large language models (LLMs) internally repre-
sent emotion by analyzing the geometry of their hidden-state space. Using
a synthetic dataset of emotionally rewritten sentences, we identify a low-
dimensional emotional manifold via singular value decomposition and
show that emotional representations are directionally encoded, distributed
across layers, and aligned with interpretable dimensions. These structures
are stable across depth and generalize to eight real-world emotion datasets
spanning five languages. Cross-domain alignment yields low error and
strong linear probe performance, indicating a universal emotional subspace.
Within this space, internal emotion perception can be steered while pre-
serving semantics using a learned intervention module, with especially
strong control for basic emotions across languages. These findings reveal a
consistent and manipulable affective geometry in LLMs and offer insight
into how they internalize and process emotion.

1 Introduction

Large Language Models (LLMs) have become central tools for interacting with, analyzing,
and generating human language. Their widespread deployment across domains has led
to increasing interest in how they handle not just syntactic or semantic meaning, but also
affective tone. Emotion is a fundamental part of language, shaping persuasion, social
signaling, and narrative context. As such, understanding how LLMs process emotional
content is essential for both interpretability and safe deployment.

A lot of literature on affect in NLP has focused on sentiment analysis, a task where models
classify inputs into discrete emotional or affective categories (1; 2; 3; 4). While this demon-
strates that LLMs can identify emotions, it offers little insight into how emotional meaning
is represented internally. Classification accuracy is not equivalent to interpretability.

Other works have taken a behavioral view, exploring the emotional “intelligence” of LLMs.
These include prompting models with hypothetical emotional scenarios and evaluating
their responses (5), or probing how well they align with human judgments in affective
tone (6; 7). Though these studies suggest some degree of affective sensitivity, they remain
surface-level—they test outputs rather than investigating internal mechanisms.

Recent work has also examined emotion manipulation and decoding. For instance, models
have been used to map text to dimensional emotion ratings like valence-arousal-dominance
(VAD) (8; 9), or to generate emotionally inflected language on demand (10). LLMs have also
been shown to be more likely to comply with emotionally framed requests (11). Yet even
these studies largely treat emotion as a label or generation condition—not a latent internal
representation.
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While there has been some work examining how LLMs respond to or generate emotional
language, the structure of emotional representations within their hidden states remains
relatively underexplored. Most prior approaches focus on output behavior or classification
accuracy, with comparatively few efforts aimed at interpreting the internal geometry of
emotion encoding. This work addresses that gap by analyzing how emotions are repre-
sented within LLM hidden states across layers, datasets, and languages. We find that
emotional encoding is directional, distributed, and remarkably consistent across varied
textual modalities. We also investigate the model’s internal “psychology”: how emotions
are separated, aligned, and—critically—how they can be steered via targeted interventions.

Our contributions are as follows: (1) We construct a low-dimensional emotional subspace
via SVD and show that it captures interpretable, directionally encoded affective structure
across LLM layers. (2) We demonstrate that this space generalizes across eight emotion
datasets spanning five languages, with low alignment distortion and high cross-domain
probe accuracy. (3) We introduce a learned steering module that manipulates internal
emotional perception while preserving semantic content, with especially strong control over
basic emotions.

2 Related Works

2.1 Models of Emotions

Psychological models of emotion are commonly categorized as either discrete or continuous.
Discrete theories posit that emotions are fundamentally distinct categories—such as the six
“basic” emotions proposed by Ekman (12): anger, surprise, disgust, enjoyment, fear, and
sadness. Other taxonomies expand this set, including more nuanced affective states (13).

In contrast, continuous models view emotions as points in a low-dimensional latent space.
A widely used formulation is the valence-arousal-dominance (VAD) model (14), where
valence encodes hedonic tone, arousal measures intensity, and dominance reflects control or
agency. Variants of this framework reduce or alter the axes (e.g., Russell’s 2D circumplex
(15)).

These representations offer an interpretive lens for analyzing learned emotion structure
in LLMs: If models implicitly encode emotions in a geometric space, we may expect that
certain latent directions align with these classic dimensions. Our work explores whether
such structure emerges naturally in the hidden-state geometry of LLMs trained without
explicit emotional supervision.

Neuroscientific models of emotion offer a parallel debate. Localist theories posit that discrete
emotions correspond to specific, anatomically distinct brain regions, while constructionist
theories argue that emotions emerge from distributed, domain-general processes (16; 17;
18). Our results, particularly from ML-AURA (Section 5), support a constructionist-style
interpretation in LLMs: emotional content is not localized to a small subset of units but is
instead widely distributed across neurons and layers, with high separability emerging from
overlapping, multi-purpose components.

2.2 Emotions in Latent Space

Recent work has investigated how LLMs interact with emotional text, often focusing on
behavior or output-level mappings. For example, ChatGPT has shown the ability to map
emotions to Valence-Arousal-Dominance (VAD) values (9; 19), suggesting that emotion-
relevant dimensions are accessible to the model. However, such studies do not analyze the
internal structure or geometry of these latent representations.

Some prior work explicitly trains models to embed emotions into structured spaces, using
classification objectives or external supervision. For instance, (20) and (21) train models to
map between emotion spaces. Similarly, (22) learns an emotion space from labeled data,
shows clustering by valence, and demonstrates transferability across datasets. However, in
all of these works, the emotion space is imposed or supervised, not emergent.
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A smaller body of work begins to analyze how emotions might be natively represented in
pretrained models. For example, (23) finds that valence appears to be linearly embedded
in contextual representations. (24) further show that while valence aligns well with linear
probes, arousal and dominance are less separable—but their setup relies on encoder-only
models and assumes fixed affective lexicons to ground the analysis. In contrast, we examine
decoder-only LLMs and aim not to impose a psychological model onto the network, but to
recover the emergent emotional structure from the geometry of its hidden states.

Other studies have shown that LLMs exhibit strong zero-shot emotion classification perfor-
mance across languages (25), though subsequent work notes that language-specific tuning
is sometimes necessary for culturally grounded affect (26). These findings suggest that
emotion representations are at least partially transferable across linguistic domains—a hy-
pothesis we test more directly through geometric alignment and projection-based analysis
in Section 4.

3 Methods

To understand how emotions are represented in LLMs, a variety of tools were used. This
section outlines those methods and their theoretical grounding. Empirical findings from
these analyses are presented in Sections 4 and 5.

3.1 ML-AURA

ML-AURA quantifies how selectively a neuron responds to a specific concept by framing
each neuron as a threshold-based detector (27). For a labeled dataset D, each neuron’s
output is summarized per example using the maximum activation across tokens. These
scalar responses are then ranked and evaluated using the area under the precision-recall
curve, comparing neuron output against the presence or absence of the target concept.
Neurons with high AUC-PR are designated as “experts” for that concept.

In our adaptation, the concepts are emotion categories. We apply ML-AURA in a one-vs-all
setup for each emotion, scoring each neuron by how well it distinguishes a target emotion
from all others.

3.2 Centered-SVD

Prior work has shown that LLM hidden states lie on low-dimensional manifolds and
that many semantic and syntactic properties are linearly recoverable in these subspaces
(28; 29; 30). Leveraging this, we identify emotion-relevant subspaces using singular value
decomposition (SVD).

We use the dataset introduced in (10), where each example consists of a human-authored
neutral sentence paired with synthetic rewrites that express a specific target emotion e ∈ E
while preserving semantic content. Each input xi is passed through the model to extract
hidden states at a given layer or sublayer. These activations are mean-pooled across tokens
to produce sentence-level vectors hi ∈ Rd.

We aggregate these into a matrix H ∈ RN×d, where N is the total number of emotionally
labeled inputs. After centering H, we compute its singular value decomposition: H =
UΣV⊤. The rows of V⊤ define principal directions in the model’s internal representation
space. Given that emotional content is the primary structured variation across inputs, we
hypothesize that the leading components capture dominant emotional axes. This hypothesis
is evaluated through downstream alignment, probing, and causal manipulation.

3.3 Space Alignment

Prior work has shown that latent spaces arising from related tasks often exhibit similar
internal geometry, with relationships between them approximately rigid or linear up to
rescaling and rotation (31). While some approaches lift these spaces into anchor-relative
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Dataset Stress-1 ↓ Stress-2 ↓ Sammon ↓ Avg Dist ↓ ℓ2 ↓ σ ↓ Probe Acc. ↑
Go-Emotions∗ 0.33 ± 0.33 0.13 ± 0.13 * * * * 0.52 ± 0.52
CARER (Twitter) 0.33 ± 0.33 0.13 ± 0.13 0.17 ± 0.17 1.16 ± 1.16 1.23 ± 1.23 0.12 ± 0.12 0.60 ± 0.60
SemEval 0.29 ± 0.29 0.11 ± 0.11 0.18 ± 0.18 1.09 ± 1.09 1.16 ± 1.16 0.09 ± 0.09 0.65 ± 0.65
EmoEvent (EN) 0.31 ± 0.31 0.11 ± 0.11 0.13 ± 0.13 1.02 ± 1.02 1.09 ± 1.09 0.12 ± 0.12 0.71 ± 0.71
EmoEvent (ES) 0.32 ± 0.32 0.12 ± 0.12 0.14 ± 0.14 0.97 ± 0.97 1.05 ± 1.05 0.13 ± 0.13 0.72 ± 0.72
Bhaav (Hindi) 0.32 ± 0.32 0.12 ± 0.12 0.14 ± 0.14 0.96 ± 0.96 1.03 ± 1.03 0.13 ± 0.13 0.53 ± 0.53
German Drama∗ 0.40 ± 0.40 0.29 ± 0.29 * * * * 0.57 ± 0.57
MultiEmotions-It 0.39 ± 0.39 0.17 ± 0.17 0.22 ± 0.22 1.24 ± 1.24 1.33 ± 1.33 0.15 ± 0.15 0.62 ± 0.62
EmoTextToKids (FR) 0.33 ± 0.33 0.12 ± 0.12 0.15 ± 0.15 1.01 ± 1.01 1.09 ± 1.09 0.14 ± 0.14 0.68 ± 0.68
Average (Full-Space) 0.34 ± 0.17 0.14 ± 0.56 0.14 ± 0.44 1.10 ± 0.20 1.14 ± 0.38 0.13 ± 0.27 0.62 ± 0.09
Average (50D-Space) 0.45 ± 0.16 0.23 ± 0.55 0.24 ± 0.46 0.82 ± 0.29 0.91 ± 0.45 0.22 ± 0.29 0.54 ± 0.11

Table 1: Per-dataset distortion metrics and probe accuracy in the synthetic emotional
subspace. Lower distortion values indicate greater geometric consistency. Probe accuracy
reflects how well emotion labels can be decoded via a linear probe trained on the synthetic
manifold. Datasets marked with ∗ were identified as outliers; asterisks in cells indicate
anomalously high values omitted for readability.

representations to handle isometric variance, recent work demonstrates that direct alignment
via linear or rigid transformations is often sufficient and easier to apply in practice (32).
Following this approach, we use linear regression to align the emotional subspace derived
from synthetic data with that derived from human-authored emotion classification datasets.
This alignment allows us to test whether the structure found in the synthetic manifold
reflects transferable emotional encodings or artifacts specific to the synthetic generation
process.

4 Emotion Universality

Using the tools presented in Section 3, we provide evidence that emotional representations
in LLMs are structurally universal. We show that emotions are encoded in similar geometric
subspaces across datasets, languages, and writing styles. This and all subsequent sections
focus on LLaMA 3.1; the appendices provide analogous results for Qwen 2.5 and Mistral 7B.

4.1 Datasets

To evaluate the universality of emotional representations in LLMs, we selected a diverse
set of emotion classification datasets spanning multiple languages, modalities, and writing
styles. Only datasets with explicit categorical emotion labels were included; datasets with
only polarity (e.g., positive/negative) or star ratings were excluded due to insufficient
granularity. In total, we use eight datasets: (1) Go-Emotions (33): English Reddit comments;
(2) CARER (34): English tweets; (3) SemEval-2007 Task 14 (35): English news headlines; (4)
EmoEvent (36): English and Spanish tweets; (5) Emotions in Drama (37): German plays
from the 18th–19th century; (6) Bhaav (38): Hindi short stories; (7) MultiEmotions-It (39):
Italian YouTube and Facebook comments; (8) EmoTextToKids (40): French journalistic and
encyclopedic text aimed at children. The chosen languages are those for which high-quality
emotion datasets exist and which are officially supported by LLaMA 3.1, as specified in its
technical report.

4.2 Universality Analysis

The first step of the universality analysis was to collect the mean-pooled hidden-states of
the model when text xi from dataset D is input into it. Then the mean-pooled hidden state
is either projected onto the space described in Section 3.2 or statistics are directly derived
from comparing the mean-pooled hidden states.

The first analysis compares the cosine similarity of emotion-specific centroids across datasets.
For each emotion shared between a dataset and the synthetic corpus (e.g., happy or joy),
we compute the mean-pooled hidden-state centroid and compare it to its synthetic counter-
part. Averaged across all shared emotions, layers, and sublayer types, the centroid cosine
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similarity is 0.838 ± 0.12. Figure 1 shows the centroid cosine similarity across each of the
datasets. This high similarity suggests that LLMs encode emotional categories in consistent
directions across diverse domains and languages.

Next, following the method described in Section 3.3, we used least-squares regression
to assess how well the latent spaces of real-emotion datasets align with the hidden-state
space of the synthetic dataset. This was performed both on the raw hidden states and
on their centered SVD representations. When aligning the 50-dimensional SVD-projected
spaces, we observed a mean squared error of 1.79 ± 1.97, indicating strong alignment
between the subspaces. To further characterize the learned transformation, we computed its
spectral flatness and Frobenius norm. The spectral flatness averaged 2.09 ± 0.39, suggesting
that the projection distributes energy across multiple dimensions rather than collapsing
onto a low-rank subspace. The Frobenius norm of 7.70 ± 2.67 reflects a moderate overall
transformation strength. Together, these results indicate that the alignment transformation
is neither degenerate nor axis-dominated, consistent with a view of emotional geometry as
distributed and multi-axial. The low regression error, combined with the spectral richness
of the mapping, supports the conclusion that emotional subspaces from real-world datasets
can be affinely aligned with the synthetic manifold with minimal distortion, providing
further evidence for a shared latent emotional geometry across domains.

Figure 1: Cosine similarity of emotional
centroids between datasets.

Having established the alignment between emo-
tional spaces, we next examine whether the in-
ternal geometry and topology of emotional rep-
resentations are consistently preserved across
datasets. To assess the geometric consistency of
emotional representations, we evaluate a range
of distortion metrics that compare the pairwise
distances between embeddings of shared emo-
tion labels. These metrics are computed over the
full sample distribution of representations.

We report three classical distortion scores
from the multidimensional scaling litera-
ture—Kruskal’s Stress-1, Stress-2, and Sammon
Stress—alongside three additional embedding
distortion measures derived from recent work
in machine learning geometry. These include av-
erage distortion, ℓ2 distortion, and σ-distortion
(a variance-based metric from Chennuru et al.
(41)). Results are summarized in Table 1.

We evaluate three classical distortion scores from
the multidimensional scaling literature—Kruskal’s Stress-1, Stress-2, and Sammon Stress—to
assess how well global and local relational geometry is preserved when aligning real-world
datasets with the synthetic emotional manifold. While traditional usage defines Stress-1
below 0.2 as acceptable and below 0.1 as strong (42), these thresholds were developed for
low-dimensional embeddings (e.g., 2D). In our setting—mapping between high-dimensional
hidden states—no canonical thresholds exist, but consistently low scores (e.g., Stress-1 under
0.4 across most datasets) still indicate robust relational preservation. Projection into the
50D synthetic subspace increases stress slightly (e.g., Stress-1 rises from 0.34 ± 0.17 to
0.45 ± 0.16), consistent with expected compression effects, but overall scores remain low
enough to support the presence of a coherent emotional geometry.

To complement these, we report three high-dimensional embedding distortion metrics:
average distortion, ℓ2-distortion, and σ-distortion. Values near 1 for the first two suggest
that pairwise distances are preserved up to global scaling, while low σ-distortion indicates
stable proportionality in relative distances. Most datasets fall within these expected ranges.
Two datasets—Go-Emotions and German Drama—are notable exceptions. Go-Emotions
involved collapsing a large number of fine-grained emotional categories into broader groups
for cross-dataset comparability, which likely introduced label-level ambiguity and elevated
distortion. German Drama presents a different challenge: the texts are plays written in early
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modern German, with substantial lexical, syntactic, and stylistic divergence from contem-
porary usage. Language from works like Faust exemplifies this drift—rich in archaisms,
poetic structure, and theological allusion—posing a mismatch with the modern German
data the model was trained on. We flag these datasets as outliers and report both raw and
outlier-excluded averages. In all, these results suggest that the emotional manifold’s coarse
topology is stable, with distortion emerging mainly in dataset-specific fine structure and
post-projection local detail.

Despite modest projection-related distortion, the subspace remains functionally expressive.
Linear probes trained on the synthetic 50D space achieve an average accuracy of 0.54 ± 0.11
across datasets that, on average, contain more than four emotion classes. When trained
in the full hidden-state space, accuracy improves to 0.62 ± 0.09, indicating that emotional
structure is not only geometrically consistent but also linearly decodable across diverse
domains.

5 Model Psychology

Having established the external consistency of emotional geometry across datasets, we now
turn inward, asking how these emotions are internally structured within the model, and
what this reveals about the model’s implicit psychological architecture.

Figure 2: Results of ML-AURA by layer
and emotion. Results are in terms of per-
cent of neurons with an AUROC score
above 0.9.

The first perspective we examine is neural en-
coding patterns. Using the ML-AURA method
described in Section 3.1, we assess the degree
to which individual neurons respond selectively
to emotional inputs. In this framework, each
neuron is treated as a potential 1-vs-all classi-
fier, and its classification performance is quanti-
fied via AUROC. We report results in terms of
the percentage of neurons per layer achieving
an AUROC above 0.9, interpreted as strong evi-
dence of emotion-selective activation. For the six
Ekman emotions, we find that on average, 80%
of neurons per layer exceed this threshold, indi-
cating that emotion information is widely and
reliably encoded. Among these, sadness (98%)
and surprise (96%) show the most widespread
selectivity, while fear is more sparsely encoded, with 53% of neurons exceeding the thresh-
old. This does not suggest weak separability, but rather that fewer neurons are strongly
specialized for fear relative to other emotions. The non-Ekman emotions—envy, neutral, and
excitement—also exhibit high separability, with an average of 88% of neurons surpassing
the 0.9 AUROC threshold.

When analyzing by architectural component, MLP layers show slightly higher selectivity
than attention layers (79% vs. 76.5%). Differentiability fluctuates across depth, with no clear
monotonic trend: while the first layer starts at 76% and the final layer ends at 76.3%, several
peaks and troughs occur in between, with the highest selectivity observed at layer 26 (79%).
These patterns support the conclusion that emotional information is not confined to late
layers or specialized regions, but is distributed broadly and redundantly throughout the
network. These patterns are visualized by emotion in a layer-by-layer fashion in Figure 2.

To understand how emotions are geometrically represented in the network, we examine their
structure within the derived SVD subspace. This subspace provides a low-dimensional lens
into the model’s internal affective organization. Our first goal is to assess how consistently
emotions are arranged along the principal axes across layers and layer types. To this end, we
analyze the rank ordering of emotion centroids along each principal component, controlling
for possible polarity flips.

We find that the emotional structure is remarkably stable across the model, particularly
for the top three components. Across layers, the average Spearman correlation in emotion
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rankings is 0.87, 0.83, and 0.80 for PC1, PC2, and PC3, respectively; the corresponding
Kendall’s Tau values are 0.82, 0.77, and 0.74. These results indicate that, while the magnitude
and orientation of the components may shift, their semantic content remains intact.

Even when using a more fine-grained labeling scheme, as in the Go-Emotions dataset, which
contains nearly three times as many emotion categories, we observe similar consistency.
Rank-order correlations for Go-Emotions along the top three PCs remain high: Spearman
values of 0.92, 0.74, and 0.73, and Kendall’s Tau of 0.86, 0.68, and 0.68. These findings
reinforce the conclusion that the model’s emotional manifold is structurally stable, with
interpretable axes.

Figure 3: Emotion centroids plotted on
the emotional axis found

Having established the stability of the SVD sub-
space across layers and datasets, we now exam-
ine the semantic content of the leading principal
components. By analyzing the relative positions
of emotion centroids along each axis, we infer
the underlying affective dimensions implicitly
encoded by the model. Figure 3 visualizes the
first three emotion axes that we describe below.

• PC1 strongly resembles a valence di-
mension. Emotions such as happy, sur-
prise, and excitement lie at the posi-
tive end, while anger and fear occupy
the negative end—suggesting a plea-
sure–displeasure continuum common
to many psychological models.

• PC2 appears to reflect dominance or per-
ceived control. Emotions high on this
axis (e.g., fear, sadness) are often associ-
ated with low control or submission, whereas those at the opposite end (e.g., happy,
surprise) may reflect more autonomous or socially detached states.

• PC3 maps onto approach–avoidance motivation. Emotions like excitement, happy,
and envy—typically associated with goal-seeking behavior—score high, while
anger and fear, linked to avoidance or defensive responses, score low.

• PC4 may correspond to arousal or urgency. Surprise and fear rank highly, consistent
with high physiological activation, while happy and neutral lie at the calmer end.

• PC5 appears to encode emotional volatility or temporal intensity. Emotions such as
surprise and excitement dominate the upper end, while sadness anchors the low
end—indicating a spectrum from sudden, reactive states to more sustained affect.

• PC6, though flatter, may touch on aspects of self-conscious affect. Emotions like
envy and anger cluster at one end, and disgust at the other, possibly hinting at a
distinction between self-evaluative and other-directed moral emotions. However,
its interpretation remains tentative.

These dimensions are not explicitly supervised, but show surface-level resemblance to
constructs proposed in affective science, such as valence, arousal, dominance, and ap-
proach–avoidance tendencies (cf. (15; 14; 43)). While these alignments are not exact, and
many components blend multiple emotional signals, the emergence of such patterns sug-
gests that LLMs may implicitly encode affective distinctions that overlap with long-standing
psychological taxonomies. This correspondence invites further investigation into the extent
to which models trained solely on text internalize latent emotion structures, and whether
these can serve as proxies or tools for understanding affective semantics in language.

Figure 4 visualizes how emotional states are organized in the full hidden-state space using
a 2D t-SNE projection of mean-pooled hidden states labeled with their respective emo-
tions. Despite the dimensionality reduction, emotion classes form distinguishable, partially
overlapping clusters, with closely related emotions (e.g., happy and excitement) frequently
co-localized and others (e.g., fear and joy) appearing more spatially distant. While not
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Dataset Sad Happy Fear Anger Neutral Disgust Envy Excitement Surprise

Semeval 14.8 → 99.3 22.6 → 90.5 8.2 → 96.6 23.0 → 59.2 0.0 → 98.9 0.0 → 97.4 0.0 → 100.0 0.0 → 95.8 18.9 → 86.7
CARER (Twitter) 46.3 → 98.8 15.7 → 88.4 7.0 → 89.2 10.3 → 42.7 0.0 → 98.8 0.0 → 94.8 0.0 → 100.0 0.0 → 84.6 7.7 → 77.6
EmoTextToKids (FR) 0.4 → 99.7 4.8 → 96.6 7.2 → 83.3 11.1 → 64.0 19.7 → 98.0 6.2 → 96.4 0.0 → 99.9 0.0 → 95.5 18.6 → 92.2
German Drama 10.4 → 100.0 3.6 → 97.8 8.6 → 50.9 8.6 → 71.9 0.0 → 97.5 0.0 → 97.6 0.0 → 94.6 0.0 → 93.5 9.6 → 72.6
EmoEvents (EN) 24.0 → 98.6 22.7 → 96.8 3.0 → 78.8 41.0 → 79.1 0.0 → 90.4 0.0 → 92.4 0.0 → 100.0 0.0 → 94.5 5.3 → 51.7
EmoEvents (ES) 19.0 → 99.1 21.7 → 92.2 8.7 → 91.6 30.0 → 79.7 0.0 → 89.2 2.0 → 95.1 0.0 → 100.0 0.0 → 95.4 3.3 → 60.2
MultiEmotions-It 9.2 → 98.7 33.2 → 99.7 0.0 → 81.9 21.5 → 51.1 5.7 → 91.8 6.3 → 99.2 0.0 → 100.0 5.1 → 96.0 4.4 → 72.6
Bhaav (Hindi) 8.5 → 100.0 0.0 → 51.0 2.4 → 32.7 0.0 → 59.1 51.5 → 98.3 0.0 → 82.7 0.0 → 99.3 0.0 → 57.9 0.0 → 19.5*

GoEmotions 3.4 → 99.2 15.5 → 89.5 8.2 → 8.2* 8.2 → 50.4 4.0 → 97.2 0.0 → 68.4 0.0 → 68.9 0.0 → 82.5 0.0 → 39.8*

Table 2: Top-1 prediction rates before and after learned steering for each target emotion
across datasets. Each cell shows baseline → post-steering accuracy. *Indicates failure cases
where target emotion remained under 10%.

all boundaries are sharp, the observed structure reinforces our earlier findings: emotional
information is embedded in a distributed yet semantically coherent geometry.

Figure 4: Plot of projected emotions
in TSNE-space.

Together, the distributed AUROC patterns, stable
subspace directions, interpretable principal compo-
nents, and emergent clustering structure suggest that
LLMs encode emotion not as isolated tags, but as
coherent, multidimensional structures—akin to a
learned affective manifold.

6 Steerability and the Limits of Control

Prior work on emotional steering in LLMs focuses
primarily on shifting the emotional tone of gener-
ated text. (44) and (45) learn vectors to modify out-
put valence or categorical emotion. More recently,
(23) attempts to steer internal emotional represen-
tations but collapses emotion into a binary posi-
tive/negative axis, achieving valence shifts 53.5%
of the time. In contrast, we aim for fine-grained con-
trol over the model’s internal perception of emotion
across a full categorical space, while preserving se-
mantic content.

We train a learned module that operates within the previously constructed SVD-based
emotional subspace. For each emotion, we select all layers and sublayers where adding the
centroid direction to same-emotion hidden states improves 1-vs-all classification AUROC
beyond a fixed threshold. These layers are used for steering and serve as a proxy for the more
challenging task of controllable emotional manipulation. At each selected layer, the model’s
hidden state is projected into the subspace using the precomputed basis. The projected
representation is passed through a one-layer MLP with GELU activation to compute a shift,
which is then mapped back into hidden-state space and added residually. The MLP is
trained to steer the model’s internal representation to favor the target emotion token when
prompted.

We define the overall training objective as:

Ltotal = Ltoken + Lsem

where Lsem preserves semantic meaning and Ltoken enforces perceptual control.

Semantic Preservation. The semantic consistency loss combines cosine and ℓ2 distance
between the original and shifted final-layer hidden states:

Lsem = (1 − cos(hbase, hshifted)) + γ · ∥hbase − hshifted∥2

Emotion Control. To ensure accurate emotion classification, we combine a standard cross-
entropy loss with a token-level margin loss. The margin loss enforces that the logit for the
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target emotion token ei exceeds its synonyms si by a margin m1 (0.5), and that both exceed
all other emotions ej and their synonyms by m2 (10):

Lmargin = max(0, m1 − (log pei − log psi )) + max(0, m2 − (log psi − log pej))

To prevent the model from optimizing by suppressing unrelated tokens, we weight the loss
for emotion tokens more heavily in LCE:

Ltoken = LCE + λ · Lmargin

We optimize the objective using AdamW with learning rate 1e-3 and weight decay 1e-2,
using a cosine schedule with 50 warm-up steps. Steering uses the top 40 dimensions of the
centered SVD-derived emotional subspace. The learned module is trained independently for
each target emotion across all selected steering layers, using supervision from emotion-token
prompts and hidden-state consistency targets. At evaluation, token sampling is performed
with temperature 0 for determinism. Ablations on loss components and architecture are
provided in the supplementary material.

Table 2 shows that our learned steering approach achieves consistent and accurate control
over internal emotional representations across a diverse set of languages and datasets. For
core emotions like sadness, anger, and excitement, post-steering accuracy typically exceeds
90%. Performance is robust even in multilingual settings, with particularly strong results
in French, German, and Italian. Steerability remains high for many emotions in Hindi—a
lower-resource language—but control over fear and surprise is less reliable, suggesting
that lexical sparsity and data imbalance remain limiting factors for certain emotions in
under-resourced settings.

7 Conclusion

Using a combination of probing, alignment, and causal intervention techniques, this work
shows that emotional representations in LLMs are directionally consistent across layers,
datasets, and languages. We find that emotions cluster in coherent, low-dimensional
subspaces whose structure is stable across architectural depth and transferable across
linguistic and cultural domains. The leading axes of this space correspond to psychologically
interpretable dimensions, despite no explicit supervision. These emotional directions are not
confined to isolated neurons or layers but are distributed and redundant, supporting high
linear separability even under one-vs-all probing. Alignment experiments further reveal
that the synthetic and real-world emotion spaces can be matched with minimal distortion,
and linear probes trained in one domain generalize well to others. Together, these findings
suggest that LLMs internalize a structured latent affective manifold during pretraining.

Crucially, this representational structure is not merely interpretable but also controllable.
Our learned intervention module achieves accurate and emotion-specific steering across
languages, reliably shifting the model’s internal affective state toward the desired target.
Steering is especially effective for basic emotions like sadness, anger, and fear, even in
low-resource settings. However, control over more nuanced categories such as envy and
excitement remains inconsistent, particularly in Hindi, highlighting the residual challenges
of lexical sparsity and affective ambiguity.

These findings offer a structured account of how LLMs represent and modulate emotion.
Future work should extend this analysis to multimodal models, investigating whether
shared affective subspaces emerge across language, vision, and speech, and whether emo-
tional representations in one modality can steer or constrain perception in another. Such
models may yield a richer, more disentangled affective geometry, enabling both deeper
interpretability and more naturalistic emotional reasoning.

Limitations While our interventions demonstrate strong control over internal emotional
perception, they do not address downstream generation—leaving open the question of
how internal shifts affect model outputs in practice. Additionally, although the steering
directions yield causal effects, they are derived from statistically constructed subspaces
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without formal guarantees of disentanglement. Finally, performance on certain emotions
in low-resource settings (e.g., fear and surprise in Hindi) suggests limitations imposed by
lexical sparsity and pretraining data imbalance, particularly for culturally specific or less
frequently expressed affective states.
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A Reproduction of Emotional Universality on Other Models

We extend the analysis from Section 4 to the Qwen 3.0-8B (46) and Mistral-8B (47) models,
using the same datasets and evaluation methods. Both models support similar language
coverage; however, Mistral-8B lacks support for Hindi.

Figure 5: Cosine similarity of emotional cen-
troids between datasets for Qwen.

We begin by examining centroid cosine sim-
ilarities across all shared emotions, layers,
and sublayer types. Qwen-3.0 yields a
mean similarity of 0.86± 0.04, while Mistral-
8B achieves 0.92 ± 0.04. Figures 5 and 6
show per-dataset similarities. These values,
higher than those observed for LLaMA, sug-
gest that emotional categories are encoded
in consistent directions across domains and
languages in all three models.

Next, we used least-squares regression
to assess how well the latent spaces of
real-emotion datasets align with the syn-
thetic emotional manifold. For each model,
we aligned 50-dimensional SVD-projected
spaces between different datasets within
the same model. Qwen-3.0 yields an av-
erage MSE of 6.23 ± 9.55, while Mistral-8B
yields 1.44± 1.47. The higher error in Qwen
reflects greater variability in cross-dataset
alignment, though both models maintain
sufficiently low distortion to support an un-
derlying shared geometry. Spectral flatness is 2.11 ± 0.38 for Qwen and 2.22 ± 0.44 for Mis-
tral, indicating that the alignment transformations retain multi-dimensional structure rather
than collapsing into low-rank subspaces. Frobenius norms are similar—7.64 ± 1.45 (Qwen)
and 7.60 ± 0.91 (Mistral)—suggesting comparable transformation magnitudes. These re-
sults support the conclusion that, across datasets, emotional spaces within each model are
structurally coherent and affinely alignable.

Figure 6: Cosine similarity of emotional cen-
troids between datasets for Mistral.

Tables 3 and 4 summarize stress and dis-
tortion metrics for Qwen 3.0 and Mistral-
8B. Each model has a distinct set of outlier
datasets. For Qwen 3.0, Go-Emotions and
CARER are outliers—Go-Emotions likely
for the same aggregation-related reasons
as in LLaMA. For Mistral, outliers include
EmoEvent (EN and ES), German Drama,
Bhaav, and CARER. German Drama again
likely reflects the difficulty of the archaic
and out-of-distribution text in the dataset.
Mistral’s lack of Hindi support plausibly
explains the Bhaav results. EmoEvent and
CARER both derive from Twitter, which is
known to exhibit platform-specific linguis-
tic variation (48; 49). As Mistral’s pretrain-
ing corpus is not publicly disclosed, it re-
mains unclear whether these divergences
reflect distributional mismatch or deeper
structural disalignment.

Qwen 3.0. Qwen shows higher stress metrics than LLaMA across both full and 50D
spaces (e.g., Stress-1: 0.43 ± 0.62 vs. 0.34 ± 0.17), indicating less faithful preservation of
relational structure. Distortion scores (average, ℓ2, and σ) are modestly worse but still broadly
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Dataset Stress-1 ↓ Stress-2 ↓ Sammon ↓ Avg Dist ↓ ℓ2 ↓ σ ↓ Probe Acc. ↑
Go-Emotions∗ 0.41 ± 0.18 0.20 ± 0.22 * * * * 0.31 ± 0.10
CARER (Twitter)∗ 0.41 ± 0.15 0.19 ± 0.17 * * * * 0.31 ± 0.08
SemEval 0.48 ± 0.40 0.39 ± 1.58 0.65 ± 4.25 1.41 ± 0.63 1.49 ± 0.98 0.09 ± 0.14 0.42 ± 0.15
EmoEvent (EN) 0.33 ± 0.13 0.13 ± 0.14 0.16 ± 0.29 1.09 ± 0.17 1.16 ± 0.29 0.12 ± 0.24 0.48 ± 0.14
EmoEvent (ES) 0.33 ± 0.13 0.12 ± 0.15 0.15 ± 0.36 1.05 ± 0.15 1.12 ± 0.30 0.14 ± 0.39 0.46 ± 0.16
Bhaav (Hindi) 0.37 ± 0.11 0.15 ± 0.12 0.16 ± 0.23 0.90 ± 0.16 0.98 ± 0.30 0.16 ± 0.28 0.37 ± 0.08
German Drama∗ 0.52 ± 0.79 0.89 ± 9.44 * * * * 0.27 ± 0.08
MultiEmotions-It 0.60 ± 1.33 2.14 ± 27.05 4.76 ± 65.12 1.34 ± 0.33 1.66 ± 3.48 0.74 ± 8.67 0.42 ± 0.11
EmoTextToKids (FR)∗ 0.36 ± 0.13 0.14 ± 0.14 * * * * 0.40 ± 0.12
Average (Full-Space) 0.43 ± 0.62 0.57 ± 10.87 1.17 ± 26.73 1.17 ± 0.37 1.31 ± 1.67 0.24 ± 3.40 0.40 ± 0.09
Average (50D-Space) 0.46 ± 0.54 0.50 ± 9.65 1.27 ± 31.91 0.91 ± 0.39 1.07 ± 1.90 0.36 ± 4.72 0.40 ± 0.09

Table 3: Per-dataset distortion metrics and probe accuracy in the synthetic emotional
subspace for Qwen 3.0. Lower distortion values indicate greater geometric consistency.
Probe accuracy reflects how well emotion labels can be decoded via a linear probe trained
on the synthetic manifold. Datasets marked with ∗ were identified as outliers; asterisks in
cells indicate anomalously high values omitted for readability.

comparable, suggesting reasonable preservation of pairwise distances and topological
features. Elevated variance in datasets like German Drama and MultiEmotions-It inflates
Qwen’s averages, though most non-outlier datasets remain stable. However, Qwen lags
behind LLaMA in probe accuracy, suggesting that the emotional manifold it induces encodes
affective distinctions in a less linearly decodable—or more nonlinearly entangled—form.
Qwen also exhibits a greater number of outlier datasets than LLaMA, underscoring reduced
geometric consistency across both linguistic and domain boundaries.

Mistral-8B. Mistral likewise shows increased stress (Stress-1: 0.43 ± 0.16 → 0.51 ± 0.14),
with a consistent rise in compression-related error compared to LLaMA. Nonetheless,
distortion metrics remain stable and close to 1, especially in the ℓ2 and average distortion
columns, indicating that the underlying emotional manifold is preserved up to global
scaling. Note that several high-distortion outliers were excluded, so these metrics likely
reflect a cleaner subset. Overall, despite the increase in stress, Mistral maintains a coherent
and decodable emotional geometry.

Inter-Model. Having shown that the synthetic dataset hidden-state space serves as a
"canonical" emotion space within each model, we next mapped these spaces across models.
While some layers proved incompatible, most aligned successfully. Table 5 reports distortion
and stress scores, with the number of excluded outlier layers (out of 224) in parentheses.
Only for Qwen’s Sammon Stress metric were more than 50% of layers excluded. Most
incompatibilities occur in the key and value projection layers, suggesting model-specific
differences in how attention mechanisms process emotional content, whereas semantic
representations remain more aligned.

Overall, the remaining layers exhibit strong cross-model similarity, with Mistral showing
greater compatibility with LLaMA than Qwen. Even without excluding layers, inter-model
mappings achieve low MSE (0.03 ± 0.05), indicating that the spaces are, in principle, lin-
early alignable. However, the associated spectral flatness and Frobenius norms are high,
implying that these transformations are complex and energetically distributed. This combi-
nation—low distortion, low MSE, high transformation complexity—suggests that while the
models encode emotion with consistent structure, they do so using different internal bases.

The emotional structure is preserved across all models, with Mistral showing the highest
consistency and Qwen slightly lower than LLaMA. Across layers, average Spearman cor-
relations in emotion rankings along PC1, PC2, and PC3 are 0.94, 0.83, and 0.79 for Mistral,
and 0.75, 0.81, and 0.76 for Qwen. Corresponding Kendall’s Tau values are 0.91, 0.78, 0.74
(Mistral) and 0.70, 0.76, 0.71 (Qwen).

Using the fine-grained Go-Emotions labels yields consistent results. For Mistral, Spearman
values are 0.93, 0.74, and 0.71; for Qwen, 0.85, 0.69, and 0.70. Kendall’s Tau values are 0.90,
0.68, 0.66 (Mistral) and 0.79, 0.64, 0.65 (Qwen).
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Dataset Stress-1 ↓ Stress-2 ↓ Sammon ↓ Avg Dist ↓ ℓ2 ↓ σ ↓ Probe Acc. ↑
Go-Emotions 0.44 ± 0.17 0.22 ± 0.36 0.30 ± 0.75 1.17 ± 0.23 1.30 ± 0.40 0.20 ± 0.16 0.32 ±0.05
CARER (Twitter)∗ 0.46 ± 0.11 0.22 ± 0.11 * * * * 0.30 ±0.10
SemEval 0.38 ± 0.21 0.19 ± 0.53 0.24 ± 0.91 1.13 ± 0.19 1.22 ± 0.39 0.16 ± 0.52 0.37 ±0.11
EmoEvent (EN)∗ 0.40 ± 0.11 0.17 ± 0.11 * * * * 0.49 ±0.11
EmoEvent (ES)∗ 0.44 ± 0.12 0.20 ± 0.12 * * * * 0.47 ±0.13
Bhaav (Hindi)∗ 0.42 ± 0.11 0.19 ± 0.10 * * * * 0.32 ±0.08
German Drama∗ 0.50 ± 0.25 0.32 ± 0.98 * * * * 0.26 ±0.09
MultiEmotions-It 0.48 ± 0.13 0.25 ± 0.14 0.30 ± 0.22 1.16 ± 0.11 1.30 ± 0.19 0.24 ± 0.27 0.50 ±0.11
EmoTextToKids (FR) 0.42 ± 0.11 0.19 ± 0.12 0.23 ± 0.23 1.13 ± 0.12 1.24 ± 0.23 0.19 ± 0.16 0.37 ±0.09
Average (Full-Space) 0.44 ± 0.16 0.22 ± 0.40 0.27 ± 0.61 1.15 ± 0.17 1.26 ± 0.32 0.20 ± 0.31 0.37 ± 0.14
Average (50D-Space) 0.52 ± 0.14 0.29 ± 0.42 0.34 ± 0.63 1.03 ± 0.21 1.19 ± 0.37 0.31 ± 0.34 0.41 ± 0.11

Table 4: Per-dataset distortion metrics and probe accuracy in the synthetic emotional
subspace for Mistral. Lower distortion values indicate greater geometric consistency. Probe
accuracy reflects how well emotion labels can be decoded via a linear probe trained on the
synthetic manifold. Datasets marked with ∗ were identified as outliers; asterisks in cells
indicate anomalously high values omitted for readability.

Model Stress-1 ↓ Stress-2 ↓ Sammon ↓ Avg Dist ↓ ℓ2 ↓ σ ↓
Mistral → LLaMA 0.49 ± 0.31 (0) 0.26 ± 0.38 (2) 0.34 ± 0.48 (59) 0.95 ± 0.67 (58) 0.89 ± 0.40 (67) 0.21 ± 0.26 (66)
Qwen → LLaMA 1.33 ± 1.16 (39) 0.88 ± 0.95 (73) 1.02 ± 0.97 (115) 1.99 ± 1.27 (98) 1.96 ± 1.26 (109) 0.16 ± 0.24 (66)

Table 5: Distortion metrics for mapping each model’s SVD-projected emotional manifold
back to LLaMA. Values shown are outlier-excluded means ± standard deviations, with
the number of excluded layers indicated in parentheses. Lower values indicate better
preservation of geometry.

This structure is not only stable within models, but also consistent across them in terms
of relative emotion positioning. Spearman correlations between Qwen and LLaMA are
0.75, 0.83, and 0.77 (PC1–PC3), with corresponding Kendall’s Tau of 0.69, 0.77, and 0.71.
Mistral–LLaMA shows similar values: 0.76, 0.84, and 0.79 (Spearman), and 0.69, 0.77, and
0.71 (Kendall). These high rank-order correlations suggest that the emotional geometry
described in Section 5 reflects a shared conceptual structure across models. However, results
from the inter-model alignment analysis indicate that these shared structures are embedded
in distinct internal coordinate systems, requiring high-complexity transformations to align.
Thus, while the emotional manifolds are topologically consistent, their parameterizations
remain model-specific—likely shaped by architectural and pretraining differences.

Figures 7 and 8 apply the ML-AURA method from Section 3.1 to assess neuron-level
selectivity for emotional inputs in a 1-vs-all classification setting. These reproduce the ML-
AURA results presented in Section 5 using the Qwen and Mistral models. Consistent with
LLaMA, both models show that sadness and surprise elicit the most widespread neuron
selectivity, while fear and anger are more sparsely represented—fewer neurons exceed
the AUROC threshold of 0.9 for these emotions. This suggests that, across architectures,
a greater number of neurons specialize in distinguishing sadness and surprise from other
emotions. Nonetheless, neurons in all three models exhibit reliable separation across
emotional categories, indicating distributed but consistent encoding.

B Ablations for Emotional Steering

In Section 6, we introduced a method for steering how LLMs internally represent and
perceive emotion. This appendix presents ablation studies identifying which components
are essential for successful steering. We evaluate the impact of: (1) the number of steering
dimensions in the SVD subspace, (2) the presence of the GELU nonlinearity, (3) the use of
synonyms in the loss function, (4) the weight of the target-token term in the cross-entropy
loss, (5) individual components of the semantic similarity loss, (6) the structure of the margin
loss, and (7) the choice of target layers for intervention.

To reduce evaluation cost while capturing variance in performance, we selected three
emotion-dataset pairs representing high, moderate, and poor performance in the main re-
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Figure 7: Results of ML-AURA by layer and
emotion for Qwen3-8B. Results are in terms
of percent of neurons with an AUROC score
above 0.9.

Figure 8: Results of ML-AURA by layer and
emotion for Mistral. Results are in terms of
percent of neurons with an AUROC score
above 0.9.

sults: sad (EmoTextToKids), anger (CARER), and fear (Bhaav). All ablations were conducted
using these fixed emotion-dataset combinations.

Table 6 presents the effect of varying the number of steering dimensions R in the SVD
subspace. We observe that extremely low ranks (e.g., R = 1) fail catastrophically, while
small ranks like R = 2 surprisingly succeed on all three emotion-dataset pairs. However, this
success is likely fragile—intermediate values such as R = 15 and R = 10 show inconsistent
behavior, with performance collapses in some cases. As rank increases, steering generally
improves, peaking around R = 20, which achieves near-perfect or perfect steering across
all settings. Beyond this point, gains saturate or regress, particularly for fear, suggesting
diminishing returns or overparameterization. We adopt R = 20 as the best-performing and
most stable configuration.

Tables 7 and 8 examines the effect of varying the margin weights m1 and m2, which define
separation constraints in the semantic loss. The margin m1 enforces a minimum distance
between the target emotion token and its synonyms, preventing collapse and encouraging
meaningful local structure. We observe that performance remains relatively stable across m1
values, though some instability appears for fear, suggesting mild sensitivity. In contrast, m2
enforces separation between the target emotion token and all other emotion tokens (and
their synonyms). Steering is highly sensitive to this margin: low m2 values consistently fail,
while performance improves monotonically as m2 increases. At m2 = 20, all emotion-dataset
pairs steer successfully, indicating that strong inter-class separation is essential. We adopt
m1 = 0.75, m2 = 20 as the best-performing configuration.

Table 9 shows the effect of varying the weight of the cross-entropy loss applied to the target
emotion token and its synonyms. Lower weights lead to poor steering, particularly on fear,
while higher values generally improve performance. The best overall results are observed
at a weight of 25, suggesting that strongly emphasizing the generation of target emotion
tokens is necessary for effective control.

Table 10 reports ablations over discrete architectural and training choices. Removing the
GELU activation severely degrades performance across all tasks, indicating that nonlinearity
is critical for steering. Omitting bias has a moderate effect, while removing synonyms from
the loss function leads to failure on fear, suggesting their inclusion helps generalize the steer-
ing signal. Within the semantic similarity loss, the delta-norm and cosine components can
be individually removed with limited degradation, but removing the full loss results in col-
lapse—suggesting a synergistic effect where both components reinforce each other to guide
the model’s representation. The emotion margin loss is also crucial—its removal results in
failure across all settings. Finally, applying steering across all layers performs worse than
selectively targeting layers based on alignment with the emotion direction, underscoring
the importance of precise and informed intervention over blanket modification.
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Ablation Target Sad (EmoTextToKids) Anger (CARER) Fear (Bhaav)

R=1 0.4 → 0 7.0 → 100 2.4 → 0
R=2 0.4 → 99.8 7.0 → 100 2.4 → 100
R=3 0.4 → 37.9* 7.0 → 100 2.4 → 100
R=5 0.4 → 100 7.0 → 2.4* 2.4 → 29.3*
R=10 0.4 → 64.3 7.0 → 99.6 2.4 → 44.2
R=15 0.4 → 30.8 7.0 → 17.6* 2.4 → 22.2*
R=20 0.4 → 93.2 7.0 → 99.1 2.4 → 81.3
R=25 0.4 → 84.8 7.0 → 96.0 2.4 → 6.3*
R=30 0.4 → 85.4 7.0 → 68.4 2.4 → 65.2
R=35 0.4 → 84.8 7.0 → 76.3 2.4 → 46.4
R=40 0.4 → 99.7 7.0 → 42.7 2.4 → 32.7*
R=45 0.4 → 95.4 7.0 → 51.0 2.4 → 61.1
R=50 0.4 → 99.2 7.0 → 99.3 2.4 → 27.2*
R=100 0.4 → 94.2 7.0 → 99.2 2.4 → 30.3*

Table 6: Ablation for number of steering directions. Top-1 prediction rates before and after
steering under ablation conditions for selected emotion-dataset pairs. Each cell shows
baseline → post-ablation accuracy. *Indicates failure cases where target emotion is not the
most predicted Top-1 class.

Ablation Target Sad (EmoTextToKids) Anger (CARER) Fear (Bhaav)

m1=0.1 0.4 → 99.2 7.0 → 66.7 2.4 → 37.3*
m1=0.25 0.4 → 97.8 7.0 → 99.0 2.4 → 27.1*
m1=0.5 0.4 → 99.7 7.0 → 42.7 2.4 → 32.7*
m1=0.75 0.4 → 96.1 7.0 → 99.8 2.4 → 22.2*
m1=1 0.4 → 93.3 7.0 → 65.4 2.4 → 37.25*

Table 7: Ablation for target synonym margin. Top-1 prediction rates before and after steering
under ablation conditions for selected emotion-dataset pairs. Each cell shows baseline →
post-ablation accuracy. *Indicates failure cases where target emotion is not the most predicted
Top-1 class.

Ablation Target Sad (EmoTextToKids) Anger (CARER) Fear (Bhaav)

m2=1 0.4 → 31.2 7.0 → 29.3 2.4 → 4.0*
m2=2 0.4 → 51.9 7.0 → 99.0 2.4 → 3.4*
m2=5 0.4 → 79.2 7.0 → 96.1 2.4 → 22.8*
m2=10 0.4 → 99.7 7.0 → 42.7 2.4 → 32.7*
m2=15 0.4 → 100 7.0 → 99.6 2.4 → 97.1
m2=20 0.4 → 99.6 7.0 → 100 2.4 → 100

Table 8: Ablation for margin between target and non-target classes. Top-1 prediction rates
before and after steering under ablation conditions for selected emotion-dataset pairs. Each
cell shows baseline → post-ablation accuracy. *Indicates failure cases where target emotion is
not the most predicted Top-1 class.

Ablation Target Sad (EmoTextToKids) Anger (CARER) Fear (Bhaav)

CE Loss Weight=1 0.4 → 96.3 7.0 → 95.1 2.4 → 1.4*
CE Loss Weight=2 0.4 → 92.8 7.0 → 54.2 2.4 → 6.0*
CE Loss Weight=5 0.4 → 94.9 7.0 → 98.7 2.4 → 12.7*
CE Loss Weight=10 0.4 → 80.0 7.0 → 65.7 2.4 → 56.2
CE Loss Weight=15 0.4 → 89.8 7.0 → 85.2 2.4 → 56.7
CE Loss Weight=20 0.4 → 99.7 7.0 → 42.7 2.4 → 32.7*
CE Loss Weight=25 0.4 → 98.0 7.0 → 99.8 2.4 → 93.2
CE Loss Weight=30 0.4 → 94.4 7.0 → 91.7 2.4 → 73.3

Table 9: Ablation for cross-entropy loss weight for emotion tokens. Top-1 prediction rates
before and after steering under ablation conditions for selected emotion-dataset pairs. Each
cell shows baseline → post-ablation accuracy. *Indicates failure cases where target emotion is
not the most predicted Top-1 class.
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Ablation Target Sad (EmoTextToKids) Anger (CARER) Fear (Bhaav)

Baseline 0.4 → 99.7 7.0 → 42.7 2.4 → 32.7*
No GELU 0.4 → 25.9* 7.0 → 11.0* 2.4 → 1.3*
No Bias 0.4 → 88.2 7.0 → 91.7 2.4 → 26.9*
No Synonyms 0.4 → 98.9 7.0 → 99.3 2.4 → 15.9*
No Semantic Loss 0.4 → 30.2* 7.0 → 88.9 2.4 → 100
No Cosine Loss 0.4 → 74.3 7.0 → 100 2.4 → 76.3
No Delta-Norm Loss 0.4 → 100 7.0 → 97.7 2.4 → 100
No Emotion Margin Loss 0.4 → 23.9 7.0 → 13.3* 2.4 → 0.6*
Target Layers=All 0.4 → 66.1 7.0 → 64.9 2.4 → 12.9*

Table 10: Top-1 prediction rates before and after steering under various ablation conditions
for selected emotion-dataset pairs. Each cell shows baseline → post-ablation accuracy. *Indi-
cates failure cases where target emotion is not the most predicted Top-1 class.
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