
Published as a conference paper at ICLR 2023

MECTA: MEMORY-ECONOMIC CONTINUAL TEST-
TIME MODEL ADAPTATION

Junyuan Hong1∗, Lingjuan Lyu2, Jiayu Zhou1, Michael Spranger2
1Michigan State University, 2Sony AI
{hongju12,jiayuz}@msu.edu, {lingjuan.lv,michael.spranger}@sony.com

ABSTRACT

Continual Test-time Adaptation (CTA) is a promising art to secure accuracy gains in
continually-changing environments. The state-of-the-art adaptations improve out-
of-distribution model accuracy via computation-efficient online test-time gradient
descents but meanwhile cost about times of memory versus the inference, even if
only a small portion of parameters are updated. Such high memory consumption
of CTA substantially impedes wide applications of advanced CTA on memory-
constrained devices. In this paper, we provide a novel solution, dubbed MECTA,
to drastically improve the memory efficiency of gradient-based CTA. Our profiling
shows that the major memory overhead comes from the intermediate cache for back-
propagation, which scales by the batch size, channel, and layer number. Therefore,
we propose to reduce batch sizes, adopt an adaptive normalization layer to maintain
stable and accurate predictions, and stop the back-propagation caching heuristically.
On the other hand, we prune the networks to reduce the computation and memory
overheads in optimization and recover the parameters afterward to avoid forgetting.
The proposed MECTA is efficient and can be seamlessly plugged into state-of-the-
art CTA algorithms at negligible overhead on computation and memory. On three
datasets, CIFAR10, CIFAR100, and ImageNet, MECTA improves the accuracy by
at least 6% with constrained memory and significantly reduces the memory costs
of ResNet50 on ImageNet by at least 70% with comparable accuracy. Our codes
can be accessed at https://github.com/SonyAI/MECTA.

1 INTRODUCTION

Many machine-learning applications require deploying well-trained deep neural networks from
a large dataset to out-of-distribution (OOD) data and dynamically-changing environments, for
example, unseen data variations (Dong et al., 2022; Liu et al., 2023) or corruptions caused by weather
changes (Hendrycks & Dietterich, 2019; Koh et al., 2021). Hence, the recent efforts aim to tackle this
emerging research challenge via continual test-time adaptation (CTA). The unsupervised, resource-
constrained, and dynamic test-time environments in CTA make it a challenging learning problem and
call for a self-supervised, efficient and stable solution. Decent examples include Tent (Wang et al.,
2021) and EATA (Niu et al., 2022). Early in 2017, Li et al. found that updating batch-normalization
(BN) layers with all test-time data without any training greatly improved the model OOD performance.
Recently, Tent (Wang et al., 2021) significantly improved the test-time performance by minimizing
the prediction entropy in an efficient manner where only a few parameters are updated. More
recently, EATA (Niu et al., 2022) improved sample efficiency and evade catastrophic forgetting of the
in-distribution data.

While Tent and EATA had achieved impressive gains on OOD accuracy via online optimization, such
optimizations are accompanied by large memory consumption and are prohibitive in many real-world
CTA applications. Since many devices are only designed for on-device inference rather than training,
memory-limited devices, like small sensors, cannot afford CTA algorithms. In Fig. 1, we demonstrate
that Tent/EATA adaptation of ResNet50 (He et al., 2016) with a batch size of 64 (the default setting
in Tent) costs more than 5 times of memory in model.backward as the standard inference on
ImageNet-C (Hendrycks & Dietterich, 2019). The large peak memory consumption makes EATA or

∗Work was done during the internship at Sony AI. Correspondence to Lingjuan Lyu

1

https://github.com/SonyAI/MECTA


Published as a conference paper at ICLR 2023

Figure 1: Demonstration of incremental memory footprints brought by each operation on ImageNet
and illustration of the proposed MECTA method, which reduces the cache size of gradient-based
adaptation. During forwarding, the MECTA Norm (B) stabilizes the normalization-statistic estimation
via shift-aware moving-average from small batches, (C) randomly drops caches by channel admitting
sparse gradient descent without knowing gradient in advance, and (L) maintains caches only for
layers on demand of training.

Tent impossible to be adopted on edge devices, for example, the popular board-computer, Raspberry
Pi with 1 Gb RAM, and old-generation of smartphones (Ignatov et al., 2018).

Observing the bottleneck on model.backward, a straightforward solution could be reducing
batch sizes and model scales (including the number of channels and layers), but there are several
obstacles to maintaining model performance simultaneously. First, a large batch size is essential
for adaptation (Yang et al., 2022). Second, the amount of information extracted by a deep and wide
model is desired for modeling distributionally-robust semantic features (Hendrycks et al., 2020a).

In this paper, we tackle the aforementioned challenges by proposing a novel approach called Memory-
Economic Continual Test-time Adaptation (MECTA). As illustrated in Fig. 1, our method is enclosed
into a simple normalization layer, MECTA Norm, to reduce the three dimensions of intermediate
caches: batch, channel and layer sizes. (B) MECTA Norm accumulates distribution knowledge
from streaming mini-batches and is stable on small batches and on shifts between domains using a
shift-aware forget gate. (C) Resembling sparse-gradient descents, we introduce test-time pruning that
stochastically removes channels of cached intermediate results without knowing gradient magnitudes.
(L) The forget gate also guides the layer adaptation: if the layer distribution gap is sufficiently small,
then the layer will be excluded from memory-intensive training. Our contributions are as follows.
• New Problem: We initiate the study on the memory efficiency of continual test-time adaptation,
revealing the substantial obstacle in practice.
• New Method: We propose a novel method that improves the memory efficiency of different CTA
methods. The simple norm layer structure is ready to be plugged into various networks to replace
batch-normalization. The MECTA Norm layer also enables us to stop and restart model adaptation
without unused or absent caches for unwanted or on-demand back-propagation. Without forgetting
due to removing parameters, our pruning is conducted on cache data for back-propagation rather than
forwarding and can greatly reduce memory consumption.
• Compelling Results: Our method maintains comparable performance to full back-propagation
methods while significantly reducing the dynamic and maximal cache overheads. Given limited
memory constraints, our method improves the Tent and EATA by 8.5−73% accuracy on CIFAR10-C,
CIFAR100-C, and ImageNet-C datasets.

2 RELATED WORKS

Test-time Adaptation (TTA) aims to improve model accuracy on Out-of-Distribution (OOD) data
by adapting models using unlabeled test data. In comparison, traditional learning algorithms train
models robustly, e.g., distributionally robust neural networks (Sagawa et al., 2020) or adversarial
training (Deng et al., 2023), in order to generalize to OOD data. Early examples for TTA include
the test-time training (TTT) (Sun et al., 2020) and its variant (Liu et al., 2021) which jointly train
a source model via both supervised and self-supervised objectives, and then adapt the model via
self-supervised objectives at test time. Adaptive risk minimization (Zhang et al., 2021), contextual

2



Published as a conference paper at ICLR 2023

meta-learning, conditional neural process (Garnelo et al., 2018) train models that can be adapted
using inferred context information from test data. Though plausible, these methods are in need of
a redesign of the training process. Thus, they are less applicable for many off-the-shelf models
pre-trained on datasets that are too big to attain by a small device or are prohibited from unauthorized
sharing. To address the problem, training-agnostic adaptation methods are proposed recently, through
adapting batch-normalization statistics (Nado et al., 2021; Schneider et al., 2020; Khurana et al., 2022),
minimizing unsupervised entropy losses (Wang et al., 2021; Goyal et al., 2022), maximizing prediction
consistency over multiple augmentations (Zhang et al., 2022), and classifier adjustment (Iwasawa &
Matsuo, 2021). Though these methods are effective, their applicability is limited to a constant test
environment in contrast real scenarios.

Efficient Continual Test-time Adaptation (CTA) considers the test scenario with dynamically
changing rather than static environments and calls for efficient adaptation in place and in time.
Wang et al. initiated the continual setting on computer vision by augmented supervision, which
however has a large computation hurdle due to multiple times of inference on one sample. The
BN-based approaches are efficient alternatives, which only need to update statistics (Nado et al.,
2021; Schneider et al., 2020). Yet, it has been shown in recent research that removing covariate
shift by BN is not enough for reaching the supervised performance (Wang et al., 2021; Niu et al.,
2022). In comparison, Tent is more effective and efficient with one-time back-propagation per
sample (Wang et al., 2021). Later, Niu et al. (2022) improved the sample efficiency via selective
back-propagation. Despite the advance of CTA in computation efficiency, the memory efficiency
is overlooked regardless its importance in on-device adaptation. Plausible directions are on-device
sparse (continual) learning (Wang et al., 2022b; Mallya et al., 2018; Mallya & Lazebnik, 2018)
or fine-tuning (Jiang et al., 2022; Cai et al., 2020), but how to conduct memory-efficient learning
without labels is still unclear. In this paper, we inspect the gradient computation in parameter-efficient
adaptation and disclose the main bottleneck for striking the balance between memory consumption
of feature caches and learning effectiveness. Based on the analysis, we propose a novel solution to
reduce caches by batch, channel and layer reductions without sacrificing performance.

3 PROBLEM FORMULATION

Let P (x) denote the data distribution sampled from the set of distributions P , and P0 is the training
distribution. We assume that a distributions in P ∼ P is either identical to or is biased from
P0 a lot. A neural network model fθ parameterized by θ is pre-trained on the training set P0 by
θ0 = minθ∈Θ Ex∼P0(x)[ℓ(fθ(x), c(x))], where c(x) is an oracle function for ground-truth labels and
ℓ is a loss function defined over the sample x and model parameter θ. One example of the loss is
the cross-entropy loss: ℓent(fθ(x), c(x)) = −

∑
i c(x)i log fθ(x)i + log

∑
i exp fθ(x)i given logits

from a θ-governed model fθ(x). With the pre-trained model, Tent and EATA continually adapt the
model via recursive updating,

θt = Optimizeθ∈Θt
(Ex∼Pt(x)[H(fθ(x))], θt−1), Pt ∼ P, (1)

for step t ∈ {1, 2, 3, . . . }, where Optimize(·, ·) represents a generic optimization algorithm
minimizing the first variable given θ initialized by θt−1. Without labels, the entropy function
H(fθ(x)) = ℓent(fθ(x), fθ(x)) resembles the cross-entropy loss with self-supervisions in Tent.

Parameter-efficient adaptation. As the efficiency is critical at test-time, we focus on the state-of-
the-art efficient solution to the CTA: EATA and Tent, both of which adopt the one-step gradient
descent as the optimization strategy in Eq. (1). Thus, Optimizeθ∈Θt

(EH, θt−1) = θt−1 − η ∂
∂θEH

given a learning rate η. To efficiently train models, we constrain the parameter space in a subspace
of the original one, denoted as Θt = Θ̃ ⊂ Θ. We follow Tent and EATA to make the parameters
trainable in the batch-normalization layers (BN layer).

Now, we give a brief introduction to the batch-normalization layer (Ioffe & Szegedy, 2015).
Let the input to the layer l be a batch of features denoted as xl in the real space of dimension
B × Cl ×H l ×W l, where B is the batch size, Cl is the number of channels, H l and W l are the
height and width. We use [N ] to denote the set {1, · · · , N}. For (n, i, j, k) ∈ [B]×[Cl]×[H l]×[W l]
and small constant ϵ0, the BN layer is defined as two sequential channel-wise operations,

zln,i,j,k =
xl
n,i,j,k−µl

i√
σ2
i+ϵ0

(normalization), aln,i,j,k = γl
iz

l
n,i,j,k + bli (affine), (2)

3



Published as a conference paper at ICLR 2023

where µl
i, σ

l
i
2 are the mean and variance of xl in channel i, respectively. The output tensor a is also

called activation. For Tent and EATA, only the affine parameters, γ and b, are trainable.

4 PROPOSED METHOD

In this section, we elaborate on the proposed method that improves the memory efficiency of
gradient-based adaptation methods. First, straightforward derivations show that the intermediate
representations ought to be stored for computing the gradients of affine layers and therefore forge a
huge memory overhead. Suppose the loss on the n-th sample is ℓn. Based on Eq. (2), the gradient
w.r.t. the i-th channel affine weight γi is

B∑
n=1

∂ℓn
∂γl

i

=

B∑
n=1

W∑
j=1

H∑
k=1

∂ℓn
∂ali,j,k

zln,i,j,k. (3)

Therefore, to compute the gradient, each BN layer has to store the normalized representations zl
(cache) of the dimension B × Cl ×W l ×H l at forwarding until ∂ℓn/∂ali,j,k is available. For an L-
layer network, the inference-only memory consumption of affine layers is Rfwd = maxl∈{1,··· ,L} B×
Cl × W l × H l. In comparison, the corresponding intermediate memory for back-propagation is
accumulated by Rbwd =

∑L
l=1 B × Cl × W l × H l ≥ Rfwd. To reduce the memory overhead,

a straightforward idea is to reduce B, Cl, and L by dropping corresponding entries in {zl}Ll=1,
respectively. Since dropping entries in {zl}Ll=1 will vanish the corresponding gradients, the strategy
will easily break down the learning if not carefully handled. Below, we will discuss the obstacles and
our solutions for accuracy-secured cache reduction by B, Cl, and L dimensions, respectively.

(Reduce B) Adaptive statistic estimation on dynamic distributions. As a sufficient number of
samples are essential for accurate statistic estimation (µ and σ2) per BN layer, reducing samples in a
batch will bias the statistics for normalization. In standard or test-time training, exponential moving
average (EMA) has been widely used to mitigate the bias by memorizing streamed batches (Yang
et al., 2022; Chiley et al., 2019; Liao et al., 2016). To preserves the property of gradient on calibrated
statistics, we follow Yang et al. and Schneider et al. to implement the EMA normalization at test time.
Let ϕ be the composed tuple, [µ, σ], for mean and variance in a BN layer. ϕt denotes the running
statistics at iteration t and ϕ̂t is the one from the t-th batch. The EMA statistics are

ϕt = (1− β)ϕt−1 + βϕ̂t, (4)

where the parameter β ∈ [0, 1] governs the memory length and therefore works as the forget gate. A
small β endorses the model with long-term memory, otherwise short-term memory.

Traditionally, β is constant at running time, which however cannot accommodate the estimation to
the dynamic distributions Pt. Intuitively, when a model is stably running in a single domain, e.g.,
Pt ≈ Pt, β should be small to keep as many data points as possible to support accurate statistic
estimation. In contrast, when the distribution is shifting, e.g., Pt ̸= Pt−1, β should be large for
avoiding the mixture of two distinct statistics. Complying with the intuition, we introduce a forgetting
gate to calibrate the β adaptively, βt = h(ϕt−1, ϕ̂t), where h(·, ·) captures the distributional shifts.
We consider a non-parametric heuristic definition of h(·, ·) as follows.

βt = 1− e−D(ϕt−1,ϕ̂t), D(ϕt−1, ϕ̂t) =
1
C

∑C

i=1
KL(ϕt−1,i∥ϕ̂t,i) +KL(ϕ̂t,i∥ϕt−1,i), (5)

where D(·, ·) is a properly-defined distance function measuring distribution shifts. The KL divergence,
KL(ϕi

1∥ϕi
2), is defined as log σi

2 − log σi
1 +

1
2σi

2
2 (σi

1
2
+ (µ1 − µ2)

2)− 1
2 assuming two Gaussian

distributions parameterized by ϕ1 and ϕ2, respectively. The distance function is inspired by Li et al.
(2017), where the authors showed that ϕ1 and ϕ2 have larger KL divergence (based on a Gaussian
assumption) if they are from distinct domains. In addition, βl

t is estimated layer by layer, as the
distribution of different layers will shift to different degrees. Intuitively, when the (l − 1)-th layers
are well aligned after calibrating ϕl

t, the deep layers should be aligned better.

(Reduce C) Sparse gradients via stochastically-pruned caches. It is easy to see that dropping
the caches the channel i in z will vanish the corresponding gradient at the channel and may leave

4



Published as a conference paper at ICLR 2023

the corresponding affine parameter underfitted. Thus, trivially pruning channels would cast serious
issues, especially when some channels are critical for OOD generalization (Sehwag et al., 2020).
But, it is hard to predict which gradient is such important not to be pruned before it is computed.
Therefore an efficient pruning strategy without depending on back-propagation is desired. For this
purpose, we propose an unconditioned pruning strategy by repeatedly generating a stochastic mask
M per iteration such that q × 100% entries of the mask are zeros and the rest are ones. Given the
input tensor z to the affine layer, we mask the tensor by z̃n,i,j,k = Mizn,i,j,k for caches in Eq. (3).

Our pruning strategy has multi-fold merits. Since forwarding is not influenced, the prediction can be
done still on the full size of the network preserving a high quality of semantic features. Meanwhile,
pruning lowers memory usage significantly with much smaller intermediate caches and gradients.
The recomputed masks per iteration resembles a progressive learning paradigm and the momentum
technique in modern optimizers, like SGD or Adam, can impute the missing gradients. Moreover,
the approach mitigates catastrophic forgetting since only a subset of affine weights are updated
and the low-magnitude parameters are not updated. Specifically, given gradients gt, the model
difference ∥θt − θ0∥ = ∥

∑
t gt∥ ≤ O(

∑
t ∥gt∥) will be reduced with some zeroed ∥gt∥, which can

be viewed as an implicit anti-forgetting regularization in EATA. Later, we empirically demonstrate
the regularization effect in mitigating the forgetting in regularization-free Tent.

(Dynamic L) Train layers on demand. Most test-time adaptations will last for a long time in a single
environment. For example, an auto-driving car will keep running in sunny weather for long daytime,
producing thousands of images. Continually adapting the model to the same environment for an
overly-long time will not improve models continually but waste resources. Thus, we propose to stop
the back-propagation if the optimization converges and we restart it on demand of adaptation. The
principle is that the adaptation is demanded when data distribution fundamentally shifts. Recalling
that we already measure the distributional shift by Eq. (5), we reuse the metric to guide the adaptation.
Specifically, we use a threshold βth to make the decision. If βl

t ≤ θth, then the zl is cached for
back-propagation. Because of the layer-wise decision, any layer can halt training to save a lot of
memory early before the network is fully executed or the optimization of all layers converge. This
technique can introduce dynamic memory allocation, benefiting multi-task mobile systems. For
example, the extra memory freed by the training can be used for other apps on the smartphone.

Finally, we summarize the proposed method in Algorithm 1, where our method includes three hyper-
parameters to trade off accuracy and memory. Notably, our method is fully enclosed in a MECTA
Norm layer, which can be easily embedded into a network, like the widely-used ResNet (He et al.,
2016), to enhance the memory efficiency at test-time adaptation.

Algorithm 1 Memory-Economic Continual Test-time Adaptation (MECTA)
Input: A model fθ with L MECTA Norm layers, the total number of iterations T , pruning rate q, batch size B
and layer cache threshold βth.

1: for iteration t ∈ {1, · · · , T} do
2: Initiate intermediate cache: Z = ∅
3: for MECTA Norm layer l ∈ 1, . . . , L do
4: Get layer input xl;
5: Compute the current batch statistics ϕ̂l

t;
6: Compute forget gate βl

t by Eq. (5) and the statistics ϕl
t by Eq. (4); ▷ Stable statistics with reduced B

7: Compute al
t and zl by Eq. (2) using ϕl

t;
8: if βl

t > βth then ▷ Dynamic L
9: Randomly remove q × 100% of channels in zlt and cache Z = Z ∪ {zlt}; ▷ Reduce C

10: Output al to the next layer;
11: Compute loss and back-propagate gradients with cache Z to update parameters;

Critical difference to prior work on memory footprint reduction. Previous attempts to reduce
footprint (Wang et al., 2022b; Yuan et al., 2021) focused on parameter sparsity and reduce the
overhead of storing model parameters and gradients. However, the overhead of parameters or
gradients is relatively small in comparison to the caches for backwarding, as shown in Fig. 1. Instead,
we focus on the large overheads of caches and our method is ready to work with the traditional
parameter sparsity. For this purpose, our channel pruning and on-demand layer training resembles the
gradient sparsity (Garg & Khandekar, 2009) or coordinate descent (Wright, 2015), and the two tactics
implicitly prune the gradients before back-propagation avoiding large caches. Other than gradient

5



Published as a conference paper at ICLR 2023

sparsity, gradient checkpointing (GC) Chen et al. (2016) is a more general way to reduce memory
footprint. GC only caches the inputs of segments of layers and recompute intermediate features on
demand. The optimal memory reduction is about the 1/

√
L of the original cost. Both GC and our

method can greatly reduce the memory, but our method is favored because MECTA can reduce the
memory on demand, MECTA is more computation efficient.

5 EXPERIMENTS

Datasets and pre-trained models. To evaluate the OOD generalization of models, we adopt three
image-classification datasets: the CIFAR10-C, CIFAR100-C (Krizhevsky, 2009) and ImageNet-
C (Deng et al., 2009) following previous arts (Niu et al., 2022). All the datasets are processed with 15
kinds of corruptions from 4 main categories (noise, blur, weather, and digital ones) with the highest
severity level 5, which are widely used as the robustness benchmark for deep learning (Hendrycks
& Dietterich, 2019). Without specifications, we use the ResNeXt29-32×4d pre-trained by Aug-
Mix (Hendrycks et al., 2020b) for CIFAR10-C and CIFAR100-C, and the ResNet50 pre-trained
by Hendrycks et al. (2020a) for ImageNet-C, which has compelling robust performance in the bench-
mark learderboard (Croce et al., 2021).
Baselines. Our method is ready to replace batch-normalization in adaptable networks for bet-
ter OOD generalization. (1) CTA. Therefore, we plug the proposed MECTA into two backbone
methods: Efficient Anti-forgetting Test-time Adaptation (EATA) (Niu et al., 2022) and Test-time
entropy minimization (Tent) (Sun et al., 2020). We also include the simplest BN statistic adapta-
tion (BN) (Schneider et al., 2020) which is the most memory- and computation-efficient test-time
adaptation only updating BN statistics without gradients. Tent improves the model accuracy via
self-supervision and constrains the parameter updating to affine layers. EATA is the state-of-the-art
efficient solution that balances computation efficiency and accuracy well. We plug MECTA into them
to show the potential improvements in accuracy, efficiency, and generality on methods with advanced
principles. Though other methods are also applicable to the problem, they typically lack advantages
in efficiency, thus out of our scope. (2) Memory reduction. Gradient checkpointing (GC) Chen et al.
(2016) is a general method for reducing memory costs in training, which trades in computation for
memory and is applicable with any sequential structure. We apply GC to ResNet where we treat each
block (including several conv-bn-relu layers) as the minimal unit and segment ResNet into

√
L parts.

Evaluation setup. We conduct experiments on the lifelong setting, where the batches of data come in
a streaming manner. For privacy considerations, no data shall be stored for memorization. Similarly,
the types of corruption also arrive sequentially and are agnostic to the model. Thus, models have
to be adapted online to gain higher accuracy on streaming data and environments. Such a setup can
simulate a challenging yet realistic scenario, admitting high practical values.
Evaluation metrics. We adopt two metrics to evaluate the effectiveness and memory efficiency of
different methods. (1) Accuracy (%) is evaluated on all samples under the same corruption with
the highest level 5 by default. (2) Cache size (Mb). Since the memory of model parameters and
optimizers is always constant or linearly dependent on the size of intermediate variables, we focus on
the tensor size of intermediate variables. Specifically, we sum up the memory consumption of the
tensor for affine layers, i.e. the cache zl in Eq. (3). For the ease of memory accountant, we eclude
other memory costs that are the same among different algorithms.
More details regarding hyper-parameters and implementation can be found in the appendix.

5.1 BENCHMARKS ON OOD PERFORMANCE

Comparison under the same cache constraint. We evaluate the accuracy with a constraint on the
cache size. For this purpose, we let the gradient-free methods use a large batch size of 128 and a
gradient-based method (Tent and EATA) select a small batch size from {4, 8, 16, 32} such that the
latter has a smaller maximal cache size than the former does. In Table 1, we report the per-domain
accuracy in continual test-time adaptation in the column order, and we calculate the cache size
on average and on maximum along the sequential adaptation. We have two main observations on
MECTA. (1) MECTA improves accuracy under cache constraints. With the constraint, Tent and
EATA have to adopt a small batch size and therefore perform poorly, even worse than gradient-free
adaptation (BN). By reducing the cache dynamically, MECTA boosts the performance of EATA and
Tent drastically by 6 − 71.6% on all three datasets. EATA+MECTA shows the best performance
in CIFAR10-C and ImageNet-C and comparable accuracy to Tent on CIFAR100-C. (2) MECTA
is more computation- and memory-efficient than GC. Though GC lowers the memory costs,

6



Published as a conference paper at ICLR 2023

it meanwhile increases the computation costs by around 20% in terms of GFLOPs. In contrast,
our method only marginally increases the computation cost by less than 0.2% and can bear larger
batches.

Table 1: Continual evaluation on three datasets regarding accuracy (%) and cache sizes (Mb). For
a fair comparison, batch sizes (BS) are chosen such that the corresponding cache sizes are lower
than those of BN with a batch size of 128. Orig. denotes the original data. Blue cells highlight the
highest accuracy on the same dataset, and the bold texts indicate the best accuracy given the same
base algorithm. GFLOPs is the number of 109 Floating Point Operations for adapting one sample.

Noise Blur Weather Digital Acc. Cache GFLOPs

Alg. BS Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg Avg Max

CIFAR10-C
BN 128 81.5 83.2 79.9 92.4 80.7 91.1 92.1 87.9 87.7 85.7 92.7 89.8 85.6 87.6 83.0 94.2 87.2 134 134 1.1

Tent 8 68.8 46.3 16.4 12.8 11.8 8.9 9.9 10.7 10.3 10.2 10.3 10.2 10.1 10.0 10.2 10.2 16.7 114 114 2.180
+GC 16 81.8 82.2 71.8 68.9 52.8 43.7 39.0 30.7 22.8 17.7 10.1 6.7 7.4 8.2 8.1 9.0 35.1 130 130 2.6
+MECTA 31 86.5 87.2 81.3 88.3 78.9 84.1 85.8 81.3 80.8 77.4 82.1 77.4 74.9 76.6 71.7 77.5 80.7 93 129 2.182

EATA 8 74.5 70.9 66.6 69.7 55.5 54.6 47.2 38.4 33.1 35.1 35.2 18.8 12.2 14.5 13.3 8.5 40.5 114 114 2.180
+GC 16 83.4 84.3 81.3 86.4 77.0 83.8 86.5 84.5 84.7 83.9 88.1 87.9 80.9 85.5 79.3 87.9 84.1 130 130 2.6
+MECTA 31 86.6 88.3 84.4 89.2 82.4 87.4 89.3 86.5 87.6 86.4 89.6 88.0 85.1 87.7 83.1 90.3 87.0 102 130 2.182

CIFAR100-C
BN 128 57.6 59.0 56.6 72.5 58.2 69.9 71.8 64.7 64.8 57.9 73.5 69.8 64.3 66.7 58.6 75.8 65.1 134 134 1.1

Tent 8 52.9 53.9 46.7 50.5 31.2 29.7 23.7 14.3 10.0 6.7 5.9 3.4 3.9 3.6 3.5 3.5 21.5 114 114 2.180
+GC 16 56.8 61.4 59.6 68.5 56.1 65.3 66.9 59.7 60.0 54.9 65.0 57.0 54.2 56.2 46.8 58.6 59.2 130 130 2.6
+MECTA 31 58.8 61.2 58.2 73.2 60.7 71.4 73.4 65.8 66.7 60.1 73.6 68.4 65.5 67.3 59.1 75.1 66.2 77 130 2.182

EATA 8 52.1 54.2 53.2 65.3 51.5 63.8 64.9 59.1 58.5 53.9 66.8 63.2 56.3 61.1 52.9 70.1 59.2 114 114 2.180
+GC 16 57.3 60.5 58.5 69.9 57.1 68.9 69.8 63.7 64.4 59.4 71.6 67.9 62.8 67.1 58.2 74.4 64.5 130 130 2.6
+MECTA 31 58.7 60.7 57.8 72.7 59.4 70.9 73.6 65.8 66.8 60.4 74.7 70.7 66.0 68.4 60.6 77.7 66.6 75 130 2.182

ImageNet-C
BN 128 39.2 42.6 39.6 29.9 32.9 40.8 47.4 45.0 47.7 55.8 68.5 36.0 54.8 65.4 55.7 74.2 48.5 411 411 4.1

TENT 8 33.8 16.5 0.8 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.2 0.3 0.4 0.3 0.4 3.5 355 355 8.183
+GC 16 43.3 46.1 42.8 25.8 14.8 5.0 1.3 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 11.6 404 404 10.3
+MECTA 30 48.6 50.9 48.5 35.7 38.3 39.6 44.2 37.0 37.4 42.1 51.9 31.7 42.9 47.6 42.5 53.6 43.3 338 397 8.190

EATA 8 34.1 37.0 35.0 27.5 28.1 35.5 38.6 39.6 39.7 47.8 56.6 35.5 44.1 53.3 46.7 63.2 41.4 355 355 8.183
+GC 16 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4 404 404 10.3
+MECTA 30 50.6 53.3 51.7 44.7 46.1 52.2 56.1 53.4 53.0 62.0 68.9 52.9 60.4 67.1 61.7 73.6 56.7 342 397 8.190

Comparison using the same batch size. In Table 2, we follow the CTA protocol of (Niu et al., 2022)
to compare the proposed method with other baselines, e.g., TTT (Sun et al., 2020), TTA (Ashukha
et al., 2021), MEMO (Zhang et al., 2021) and CoTTA (Wang et al., 2022a). For a fair comparison,
all methods only adapt BN layers if applicable, and use the standardly-trained ResNet50, which is
publicly available, for example, from the official PyTorch package. (1) MECTA is memory-efficient
with the same batch size. With only 30% of cache (or 52% of GC cache), MECTA maintains similar
performance as the standard EATA. Notice that GC is less effective in cache reduction here than the
reported results in (Chen et al., 2016), because the parameter-efficient adaption already drops a lot of
caches for frozen convolutional layers. The cache cost of EATA+MECTA is pretty low which is only
more than those of the BN and non-adapted source models, yet has a large gain (12%) on accuracy
meanwhile. (2) MECTA mitigates forgetting. Note Tent has been known to suffer from catastrophic
forgetting in continual adaptation (Niu et al., 2022) and thus has decreasing trend on the accuracy
by sequential domains, and we find that our method can mitigate this issue. The inherent reason for
the mitigation is quite intuitive: the MECTA will adaptively reduce the number of parameters to be
updated, which is similar to the regularization of EATA on norm-bounded parameter distance. Also,
we add the original dataset as the last domain in CTA to evaluate if the model forgets the original
data. Both Tent and EATA have significantly lower accuracy on the original set with small batch size
in Table 1, while Tent/EATA+MECTA gains much higher original-set accuracy on all datasets.

5.2 QUALITATIVE STUDIES

In the following experiments, if not specified, we use ImageNet-C and robustly pre-trained ResNet50.

Effect of each component in ECTA on memory-accuracy trade-off. For brevity, we name the
components as MECTA-X where X is B for adaptive forgetting, C for stochastic cache pruning
and L for adaptive layer training. We define the accuracy averaged over all corruptions as the
mean-corruption acc. An overall comparison with EATA and BN on mean-corruption acc is de-
picted in Fig. 2a. For BN, we vary the batch size from {32, 64, 128, 256, 512}. For EATA and
EATA+MECTA-B, we vary the batch size from {4, 8, 16, 32, 64} where 64 is the default setting from

7



Published as a conference paper at ICLR 2023

Table 2: Comparison to other baselines with a batch size of 64 on the standardly-trained ResNet50
on ImageNet-C. #fwd and #bwd denote the times of forward and backward over a batch on average.
GN is the group norm and JT denotes the model is jointly trained via supervised cross-entropy and
rotation prediction losses. The bold numbers indicate the highest accuracy (or smallest cache) and
the underlined ones are the second best result. Cache sizes with GC are in brackets.

Noise Blur Weather Digital Acc. Cache #fwd #bwd

Alg. Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Avg Max (Mb)

ResNet50; Reset model per perturbation
TTT (GN+JT) 31.0 33.6 33.4 28.1 7.8 33.2 36.8 40.9 19.0 51.0 61.8 38.9 49.4 51.7 48.0 37.6 2460×20 21 20
BN 15.5 16.1 16.3 20.0 20.0 28.5 40.0 34.8 35.0 48.5 65.9 24.1 45.8 50.7 41.1 33.5 206 1 0
TTA 4.1 4.9 4.5 12.5 8.2 12.9 25.8 14.0 19.1 21.3 53.0 12.4 14.6 24.6 33.6 17.7 206 64 0
MEMO 7.5 8.7 9.0 19.7 13.0 20.7 27.6 25.3 28.8 32.1 61.0 11.0 23.8 33.0 37.5 23.9 2460×65 65 65

ResNet50; Lifelong adaptation
CoTTA(+GC) 16.9 20.3 22.8 20.6 22.0 31.7 42.4 34.5 34.0 47.2 58.9 24.1 44.5 48.6 42.4 34.1 2845 (1618) 33 1
Tent(+GC) 28.4 34.1 31.7 19.3 12.2 6.9 4.0 1.4 0.8 0.7 0.9 0.4 0.6 0.7 0.6 9.5 2845 (1618) 1 1
Tent+MECTA 24.5 29.5 28.3 22.0 23.5 27.4 37.2 28.2 27.1 36.8 50.7 15.5 38.0 40.2 34.7 30.9 847 1 1
EATA(+GC) 35.0 38.1 36.8 33.8 34.2 47.3 53.2 51.1 45.6 59.7 68.0 44.2 57.2 60.4 54.7 48.0 2845 (1618) 1 0.56
EATA+MECTA 33.7 39.1 37.8 31.7 33.1 42.2 50.3 46.3 43.0 56.9 65.4 41.2 55.2 58.2 53.7 45.9 847 1 0.56

the original paper of EATA. For EATA+MECTA-BL, we let the batch size be 16 and vary the βth in
{1, 6.25, 12.5, 25, 50, 100, 200, 400} × 10−4. For EATA+MECTA-BLC, we let the batch size be 16
and βth be 0.00125 and vary the pruning rate q in {0.1, 0.3, 0.5, 0.7, 0.9}.

0 1000 2000 3000 4000 5000 6000 7000
iteration

200

400

600

800

1000

1200

ca
ch

e 
siz

e 
(M

b)

Gauss. Shot. Impul. Defoc. Glass.

EATA+MECTA
EATA
EATA+GC

2000 2500 3000 3500 4000 4500 5000 5500
iteration

0.2
0.3
0.5

1.0

2.0

(×
10

2 )
Impul. Defoc.norm 2

norm 4
norm 23
norm 40
norm 45

Figure 3: Dynamic cache sizes and
layer-wise β using MECTA.

The simplest BN method reaches the best accuracy at the batch
size of 128 with approximately 400 Mb cache, which is much
lower than the best accuracy achieved by EATA. However,
given the same cache size, EATA does not perform better than
BN. Only when 1200 Mb cache memory is occupied, EATA
significantly outperforms BN by 5%. The need for a large batch
(corresponding to a large cache) by EATA comes from the poor
performance when the batch size is small, e.g., at a batch size
of 8 or 16. MECTA-B treats EATA with a streaming normal-
ization with adaptive forgetting and memorization leading to
higher accuracy on small-batch adaptation. EATA+MECTA-B
achieves better or comparable accuracy using either the smallest
memory or the largest memory. Meanwhile, MECTA-L and
MECTA-C improve the trade-off frontier into a low-cost zone.
Given cache size lower than 600 Mb, MECTA-BL can beat
the best accuracy of EATA. Last, with cache pruning, MECTA-
BLC further improves the efficiency more impressively: best accuracy at an extremely small cache
size (fewer than 100 Mb).

To understand the cache reduction, we study the memory/accuracy by three MECTA components.
(L) Adaptive layer-training. In Fig. 3, we show that the cache size will dynamically change
by iterations using EATA+MECTA (batch size of 32). Especially, the cache size will peak at the
beginning of distribution shifts and gradually vanishes. The β differs by layer and different layer has
a different sensitivity to the distributional shifts, which motivate us to use set β and activate training
layer-wisely. In Fig. 2b, when βth is small, all layers will be trained and therefore the cache size
is larger than the efficient BN adaptation. Increasing βth reduces the cache size on average of the
adaptation process. Though this meanwhile decreases the accuracy, the accuracy is still higher than
the BN adaptation by more than 4% based on the same batch size.

0 500 1000 1500 2000 2500
average cache size (Mb)

25

30

35

40

45

50

55

60

m
ea

n-
co

rru
pt

io
n 

ac
c

method
EATA
EATA+MECTA-B
BN
EATA+MECTA-BL
EATA+MECTA-BLC

(a) Trade-off comparison.

10 4 10 3 10 2

th

48

50

52

54

56

m
ea

n-
co

rru
pt

io
n 

ac
c

200

400

600

av
g 

ca
ch

e 
siz

e 
(M

b)

(b) Adaptive training (L).

0.2 0.4 0.6 0.8
q

50

52

54

56

m
ea

n-
co

rru
pt

io
n 

ac
c

100

200

300

400

500

600

m
ax

 c
ac

he
 si

ze
 (M

b)

(c) Cache pruning (C).
Figure 2: Ablation study on the components of MECTA. The dash horizontal lines in (b) and (c) are
the performance of BN with the best trade-off in (a) (of batch size 128).

8



Published as a conference paper at ICLR 2023

Table 3: Ablation study of MECTA-B regarding accuracy (%) and a batch size of 16. Bold texts
indicate the best accuracy among ablations. See Table 7 for other backbone methods.

EMA MECTA-B Noise Blur Weather Digital

Alg. β = 0.1 auto β Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg

EATA
✗ ✗ 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4
✓ ✗ 49.2 52.0 50.6 43.8 45.1 52.5 55.5 54.4 53.5 62.3 69.6 52.1 60.0 67.4 61.6 74.4 56.5
✓ ✓ 50.0 53.1 51.5 44.8 45.7 53.2 56.5 55.3 54.3 63.2 70.3 52.6 61.1 68.1 62.5 75.0 57.3

Table 4: Evaluation of k-new K-old shift accuracy by EATA. Average accuracy (AA %) and worst
accuracy (WA %) are reported for each target perturbation. Values in the brackets denote the difference
between the current method and the base one. More combinations of (K, k) are in Table 8.

K k EMA MECTA-B Impul. Motion Fog Elast.

β = 0.1 Auto β AA WA AA WA AA WA AA WA

49 1
✗ ✗ 35.5 34.6 37.0 36.8 50.1 49.8 48.3 47.8
✓ ✗ 35.4 (-0.1) 30.6 (-4.0) 26.6 (-11.0) 20.1 (-16.7) 41.0 (-9.1) 25.9 (-23.9) 42.8 (-5.5) 39.3 (-8.5)
✓ ✓ 34.4 (-1.1) 32.0 (-2.6) 28.6 (-8.4) 25.7 (-11.1) 43.6 (-6.5) 39.1 (-10.7) 42.6 (-5.7) 41.2 (-6.6)

(C) Channel pruning. Fig. 2c shows that the pruning linearly reduces the maximal cache size, which
bounds the maximal memory requirement in the whole adaptation life-cycle. With such a reduction
in memory, pruning only mildly sacrifices the accuracy by less than 1%.
(B) Adaptive forgetting. In Fig. 2a, we observe that small batch size (corresponding to small cache
size) hurts the accuracy of EATA significantly. Thus, it is crucial to ask how the proposed adaptive
forgetting and memorization improve CTA accuracy in small batches. To answer this question,
we reiterate the two keys of CTA: accurate modeling of data distribution from stream data and
stability in dynamic environments. We show that our adaptive forget gate can achieve the two goals
simultaneously without hyper-parameters compared to the traditional moving average method.
(B.1) Parameter-free memorization improves the per-domain accuracy. In Table 3, we present
the per-domain accuracy on the full perturbation set with batch size 16 using all perturbations. We
include the exponential moving average (EMA) to show that memorizing streaming batches into a
moving average can improve the accuracy of small batch sizes. Despite the effectiveness of EMA,
the hyperparameter β requires extra effort or extra labeled data in tuning. In contrast, MECTA-B is
parameter-free and meanwhile outperforms the EMA on all corrupted and original data.
(B.2) Forgetting improves shift stability. Regarding the advantage of adaptive forgetting in Table 3,
we conjecture that the adaptive βt estimated by MECTA-B can benefit the accuracy when the data
distribution shifts from one domain to another, namely, shift accuracy (stability). To quantify the
shift accuracy, we suppose that a model first experiences K batches from one domain (old domain),
and then receives k batch from another domain (new domain). The shift accuracy is the correct ratio
of model predictions on samples of the k-new batches. For example, we measure the shift accuracy
by randomly sampling 49 batches from the old domain and retrieving one batch from the new domain
without replacement until all data of the new domain have been evaluated. For a given kind of
perturbation as a new domain, we evaluate the shift accuracy paired with all kinds of perturbation as
the old domain and report the average-case accuracy (AA) and the worst-case accuracy (WA). Here,
we use ResNet50 on ImageNet and a subset of perturbations for the ease of intensive evaluations:
Impul, Motion, Fog, and Elast. As summarized in Table 4, EMA causes large accuracy declines,
compared to the batch-estimated BN statistics (without distribution memory). This observation
implies that in contrast to the large gains in continual evaluation, the distribution memory induced by
EMA becomes an obstacle for models to efficiently adapt new domains. Instead, short-term memory
is preferred. Without explicitly switching a hyper-parameter, our method automatically detects such
domain shift and merits the accuracy on shift with memory from past domains.

6 CONCLUSION

Though the gradient-based Continual Test-time Adaptation (CTA) is an effective manner to improve
running performance on test data, the high memory consumption becomes a considerable challenge
for deploying the technique to resource-limited end devices, like smartphones. To our best knowledge,
our work is the pilot study on the memory efficiency and reveal the main bottleneck is on the
intermediate results cached for back-propagation, even if only few parameters need to be updated
in the state-of-the-art computation-efficient solution (EATA). Therefore, we propose the first cache-
aware method that achieves higher accuracy with much lower cache memory.

9



Published as a conference paper at ICLR 2023

ETHICS STATEMENT

In this paper, we work is not related to human subjects, practices to dataset releases, discrimina-
tion/biases/fairness concerns, adn also do not have legal compliance or research integrity issues. Our
work is proposed to address the memory efficiency of model adaptation in continual distributional
shifts. In this case, if the model is trained out of good will, we have good faith that our methods won’t
cause any ethic problem or negative social impacts.

REPRODUCIBILITY STATEMENT

The algorithm pseudo codes are enclosed in the main body. We also provide details on the implemen-
tation, hyper-parameters in Appendix B.1. The datasets and baselines codes are all public available
online and we specify them properly in our paper.

ACKNOWLEDGMENTS

This research was funded by Sony AI. This material is based in part upon work supported by the
National Science Foundation under Grant IIS-2212174, IIS-1749940, ECCS-2024270, Office of
Naval Research N00014-20-1-2382, and National Institute on Aging (NIA) RF1AG072449.

REFERENCES

Berkin Akin, Zeshan A. Chishti, and Alaa R. Alameldeen. Zcomp: Reducing dnn cross-layer memory
footprint using vector extensions. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 126–138, Columbus OH USA, October 2019. ACM.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In International Conference on Learning
Representations, July 2021.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems, 33:11285–11297,
2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, April 2016.

Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la Fuente,
Vishal Subbiah, and Michael James. Online normalization for training neural networks. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark, October 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, June 2009.

Yuyang Deng, Nidham Gazagnadou, Junyuan Hong, Mehrdad Mahdavi, and Lingjuan Lyu. On
the hardness of robustness transfer: A perspective from rademacher complexity over symmetric
difference hypothesis space. 2023.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10164–10173, 2022.

Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative algorithm for
sparse recovery with restricted isometry property. In Proceedings of the 26th Annual International
Conference on Machine Learning, June 2009.

10



Published as a conference paper at ICLR 2023

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pp. 1704–1713. PMLR, 2018.

Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and Zico Kolter. Test-time adaptation via conjugate
pseudo-labels. July 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Computer Vision and Pattern Recognition, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, March
2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. June 2020a.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
International Conference on Learning Representations, February 2020b.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, April 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, January 2018.

Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van Gool.
Ai benchmark: Running deep neural networks on android smartphones. In Proceedings of the
European Conference on Computer Vision (ECCV) Workshops, pp. 0–0, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167 [cs], March 2015.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems, volume 34, pp.
2427–2440. Curran Associates, Inc., 2021.

Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, and Zhangyang Wang. Back razor:
Memory-efficient transfer learning by self-sparsified backpropagation. In Advances in Neural
Information Processing Systems, 2022.

Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, and Gaurav Aggarwal. Sita: Single image
test-time adaptation, September 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec, An-
shul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. Wilds: A benchmark
of in-the-wild distribution shifts. In Proceedings of the 38th International Conference on Machine
Learning, pp. 5637–5664. PMLR, July 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
for practical domain adaptation. In International Conference on Learning Representations. arXiv,
2017.

Qianli Liao, Kenji Kawaguchi, and Tomaso Poggio. Streaming normalization: Towards simpler and
more biologically-plausible normalizations for online and recurrent learning, October 2016.

11



Published as a conference paper at ICLR 2023

Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao Wang, and Qi Zhu. Deja vu: Continual model
generalization for unseen domains. In International Conference on Learning Representations,
2023.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre
Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In Advances in Neural
Information Processing Systems, volume 34, pp. 21808–21820. Curran Associates, Inc., 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In European Conference on Computer Vision, volume 11208,
pp. 72–88, Cham, 2018. Springer International Publishing.

Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift.
arXiv:2006.10963 [cs, stat], January 2021.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International Conference on
Machine Learning, 2022.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In ICLR, April 2020.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
Advances in Neural Information Processing Systems, October 2020.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially robust
neural networks. In Advances in Neural Information Processing Systems, volume 33, pp. 19655–
19666. Curran Associates, Inc., 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, April 2015.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on
machine learning, pp. 9229–9248. PMLR, 2020.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training, June 2021.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In International Conference on Learning Representations,
2021.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
7201–7211, 2022a.

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. In Advances in
Neural Information Processing Systems, September 2022b.

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, June
2015.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, April 2017.

12



Published as a conference paper at ICLR 2023

Tao Yang, Shenglong Zhou, Yuwang Wang, Yan Lu, and Nanning Zheng. Test-time batch normaliza-
tion, May 2022.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, and
Xue Lin. Mest: Accurate and fast memory-economic sparse training framework on the edge.
In Advances in Neural Information Processing Systems, volume 34, pp. 20838–20850. Curran
Associates, Inc., 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146 [cs], June
2017.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
Adaptive risk minimization: Learning to adapt to domain shift. In Advances in Neural Information
Processing Systems, December 2021.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS 2021 Workshop DistShift, January 2022.

13



Published as a conference paper at ICLR 2023

A DISCUSSION

A.1 MEMORY FOOTPRINT FOR TEST-TIME ADAPTATION

When a learning algorithm looks for deployment on edge devices, it is unavoidable to take the two
folds into account: (1) whether the maximal memory consumption of the algorithm can be fitted
into a mobile device; (2) whether the dynamic and instantly-free space of device memory (RAM)
is sufficient for the adaptation. The current mobile devices generally have memory in GB levels.
For example, current general mobile devices such as Samsung S20 have 2GB or more memory,
Raspberry Pi has 1GB or more memory. However, unlike the training or adaptation on a high-capacity
GPU server where all the resources (memory and CPU time) can be allocated for training, the
memory on mobile devices may be temporarily and partially allocated for the operating system and
other background applications. The situation could be even more severe for mobile devices. Thus,
squeezing the memory footprint dynamically is crucial for edge devices.

To avoid losing focus of the paper, we only consider the cache for gradient computation on batch-
normalization layers, which has been a substantially-larger memory footprint compared to those of
the widely-studied model and gradient memory in the literature (Yuan et al., 2021; Akin et al., 2019;
Wang et al., 2022b). Admittedly, our work does not cover all memory consumption in the life-span of
model adaptation. In Table 1, we only compute the memory costs (cache) of the back-propagation but
not the forward operations, because the memory costs of the latter will be released immediately. The
actual memory occupation in hardware, like NVIDIA GPU, will be enlarged due to the reservation for
faster inference. The holistic solution that jointly optimizes the inference time and memory requires
extra efforts on low-level computation and could be hardware-dependent. Thus, we leave the solution
as a open problem for future study.

B EXPERIMENTAL DETAILS AND SUPPLEMENTARY

B.1 IMPLEMENTATION DETAILS

Hyper-parameters. All test-time adaptation objectives are optimized by stochastic gradient descent
(SGD) with a momentum of 0.9. Tent and EATA utilize a batch size of 64 with a learning rate of
0.005 (0.00025) for CIFAR-10 (CIFAR100 and ImageNet). In our implementation, we use 0.0025
(0.0001) as learning rates to stabilize the training with smaller batch sizes. EATA uses 2,000 samples
to estimate a Fisher matrix for anti-forgetting regularization. For MECTA, we set the threshold βth for
stopping layer training as 0.0025 for CIFAR100, 0.00125 for CIFAR10, and 0.00125 for ImageNet-C.
The cache pruning rate is set to be 0.7 for all datasets.

We implement our algorithm using PyTorch 1.12.1, cudatoolkit 11.6 on NVIDIA Tesla T4 GPUs.
The codes of baselines are provided by the open sourced codes of EATA1. For gradient checkpointing,
we use the official implementation from PyTorch, torch.utils.checkpoint. For each stage
in the ResNet with m blocks, we will split the blocks sequentially into ⌊m/2⌋ segments. Therefore,
ResNet50 will be split into 7 segments, approximatedly equal to

√
50.

Measuring cache sizes. Without GC, we measure the cache size by summing up the tensor size of
all features zl in a network. With GC, we estimate the cache size as two parts: one is the segment
cache sizes and the other is the maximal cache for backwarding inside a segment. In ablation of β
and evaluation of shift accuracy, we ignore the BN’s in shortcut layers (or downsample layers) in
variants of ResNet and use a simplified implementation.

Measuring full footprint. In Fig. 1, we track the tensors that are cached in the GPU memory using
the public tool2. The memory tracker will find all the PyThorch tensor variables in the garbage
collector of Python. We also leverage tool, torch.cuda.memory_cached, provided by PyTorch
to estimate the maximal GPU memory costs including non-tensor variables.

1https://github.com/mr-eggplant/EATA
2https://github.com/Oldpan/Pytorch-Memory-Utils

14

https://github.com/mr-eggplant/EATA
https://github.com/Oldpan/Pytorch-Memory-Utils


Published as a conference paper at ICLR 2023

Implementation of stochastic cache. During forward, we will only store the remained values of zl
and the indexes of the remained channels (denoted as R). Later, we compute the gradient by

B∑
n=1

∂ℓn
∂γl

i

=

{ ∑B
n=1

∑W
j=1

∑H
k=1

∂ℓn
∂al

i,j,k

zln,i,j,k, i ∈ R,

0, i /∈ R.

As the zero values do not need cache, the implementation can effectively reduce memory consumption
with a small extra space for storing the index set R.

B.2 MORE EXPERIMENTAL RESULTS

50 75 100 125 150
depth

40

42

44

46

48

50

52

m
ea

n-
co

rru
pt

io
n 

ac
c

200

400

600

800

1000

1200

1400

av
g 

ca
ch

e 
siz

e 
(M

b)

method
EATA
EATA+MECTA

Figure 4: Evaluation on different ResNet
models with varying depth.

MECTA in different network architectures. It is known
that larger and deeper models will merit the robustness of
neural networks (Hendrycks et al., 2020a). In Fig. 4, we
compare the EATA and EATA+MECTA on varying model
depths. We adopt the protocol in Table 2 but reduce the
batch size to 32 to accommodate the huge memory cost
of deeper networks. The experiments are conducted with
4 perturbations. By increasing the depth of ResNet, the
cache size increases steeply. Instead, MECTA reduces the
cache consumption to a low level and achieves even better
accuracy. Beyond ResNet, we evaluate more network
architectures in Table 5. For example, MobileNet (Howard
et al., 2017) is designed for edge devices with limited computation resources. Since our method only
modify the batch-normalization layers, it can be easily plugged into these networks. Except wide
ResNet (WRN), our method outperforms EATA with much lower cache sizes and higher accuracy.

Table 5: Evaluation on different model architectures retrived from PyTorch pre-trained models.

Acc. (%) Cache (Mb)
Architecture Alg. Avg Avg Max

MobileNetV2 (Howard et al., 2017) EATA 26.8 854.8 854.8
EATA+MECTA 28.0 233.5 250.5

MobileNetV3 (Howard et al., 2017) EATA 30.8 563.2 563.2
EATA+MECTA 32.2 158.1 163.7

VGG19+BN (Simonyan & Zisserman, 2015) EATA 34.9 1901.1 1901.1
EATA+MECTA 35.7 544.8 564.9

WRN101×2 (Zagoruyko & Komodakis, 2017) EATA 54.7 2716.7 2716.7
EATA+MECTA 53.2 803.2 810.4

ResNet101 EATA 41.2 1885.0 1885.0
EATA+MECTA 51.3 449.1 569.8

ResNet152 EATA 44.0 2694.3 2694.3
EATA+MECTA 52.9 635.6 813.6

ResNeXt101 32×8d (Xie et al., 2017) EATA 53.9 3802.1 3802.1
EATA+MECTA 54.5 1094.7 1136.1

DenseNet121 (Huang et al., 2018) EATA 45.9 2005.4 2005.4
EATA+MECTA 42.2 594.3 597.6

EfficientNetV2-S (Tan & Le, 2021) EATA 45.9 1556.3 1556.3
EATA+MECTA 47.1 454.4 463.3

Does layer-sparse training help? In Fig. 5, we evaluate EATA with fewer trainable layers, which
can reduce the cache size, following the protocol in Table 2. During adaptation, we keep k deepest
layers to be trained and freeze other layers, which is denoted as Lk in the figure. We also include the
EATA+GC where we use gradient checkpointing for the trainable layers. We observe that reducing the
trainable layers can significantly decrease the cache size which is even lower than MECTA. However,
the corresponding accuracy is significantly decreased by 5% compared to EATA+MECTA meanwhile.
In comparison, though MECTA also uses the layer-sparse training, our method presents the best
accuracy-memory trade-off in the experiment. The key difference is that our method sparsifies the
training only on demand, specifically when a layer is well adapted without need for further training.

Does MECTA-B works with BN adaptation and Tent? We show that MECTA-B can generally
works well with BN adaptation and Tent, in Table 7. Consistent on all three backbone methods, the
MECTA-B can outperforms EMA and base methods without extra hyper-parameters. EMA and
MECTA-B can salvage BN and Tent from pooer performance using small batch sizes.

15



Published as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500
max cache (Mb)

35.0

37.5

40.0

42.5

45.0

47.5

m
ea

n-
co

rru
pt

io
n 

ac
c 

(%
)

L25

L45

L50

L1
L5

L25

L35

L45 L50

L25

L35

L45L50

EATA+MECTA
EATA
EATA+GC

Figure 5: Compare MECTA to layer-
sparse training using ResNet50 and
batch size of 64. L1 means that only
the deepest 1 layer is trained. Likewise,
L45 denotes the deepest 45 layers.

More shift-accuracy evaluation. We consider more cases
of (K, k) pairs in Table 8. In all three trials, MECTA-B
reduce the shift-accuracy drops w.r.t. the baseline. Given
more new-domain samples, e.g., k = 5, the shift-accuracy
using EMA and MECTA-B becomes higher than the base-
line, implying the quick convergence of the adaptation.

Cache size and β by iteration. We extend Fig. 3 to a full
life-cycle version in Fig. 6. For evaluating β, we run the
experiment on ImageNet-C using ResNet50 and we use
MECTA with EATA for adaptation. In more corruptions,
we find the periodic fluctuation of β by the distributional
shifts, which results in the dynamic cache sizes.

Does MECTA works on even smaller batches? In Ta-
ble 6, we extend Table 1 with more batch sizes. One
interesting observation is that our method outperforms or is comparable to other baselines given even
smaller caches. For example, given a batch size of 16, EATA+MECTA can outperform BN at the best
batch size, when MECTA reduces the cache size to 71 Mb on average compared to the 134 Mb by
BN.

Table 6: Continual evaluation on three datasets with the highest severity level 5 regarding accuracy
(%). For a fair comparison, batch sizes (BS) are chosen such that the corresponding cache sizes are
lower than those of BN with batch size of 128. Blue cells highlight the accuracy that is the highest
among all methods, and the bold texts indicate the best accuracy given the same base algorithm.

Noise Blur Weather Digital Acc. Cache

Alg. BS Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg Avg Max

CIFAR10-C
BN 32 80.2 82.0 78.7 91.2 79.2 89.9 91.0 86.9 86.6 84.5 91.9 88.8 84.2 86.8 81.8 93.2 86.1 34 34
BN 64 81.3 82.7 79.6 91.9 79.9 90.8 91.6 87.5 87.0 85.5 92.3 89.4 85.3 87.5 82.6 93.7 86.8 67 67
BN 128 81.5 83.2 79.9 92.4 80.7 91.1 92.1 87.9 87.7 85.7 92.7 89.8 85.6 87.6 83.0 94.2 87.2 134 134

TENT 8 68.8 46.3 16.4 12.8 11.8 8.9 9.9 10.7 10.3 10.2 10.3 10.2 10.1 10.0 10.2 10.2 16.7 114 114
16 81.8 82.2 71.8 68.9 52.8 43.7 39.0 30.7 22.8 17.7 10.1 6.7 7.4 8.2 8.1 9.0 35.1 229 229
32 86.0 87.5 84.1 88.8 81.2 85.5 86.6 85.5 86.6 83.5 88.5 87.0 83.0 85.7 80.7 87.2 85.5 457 457

+MECTA 16 86.6 86.3 79.1 82.8 73.3 76.3 76.9 72.6 71.5 67.3 70.6 64.5 60.4 60.5 56.1 60.4 71.6 49 67
+MECTA 31 86.5 87.2 81.3 88.3 78.9 84.1 85.8 81.3 80.8 77.4 82.1 77.4 74.9 76.6 71.7 77.5 80.7 93 129

EATA 8 74.5 70.9 66.6 69.7 55.5 54.6 47.2 38.4 33.1 35.1 35.2 18.8 12.2 14.5 13.3 8.5 40.5 114 114
16 83.4 84.3 81.3 86.4 77.0 83.8 86.5 84.5 84.7 83.9 88.1 87.9 80.9 85.5 79.3 87.9 84.1 229 229
32 85.7 87.6 85.7 89.8 82.5 88.3 90.0 88.2 88.8 88.7 91.4 91.0 85.5 89.5 85.3 90.6 88.0 457 457

+MECTA 16 86.1 86.4 81.0 86.9 80.3 84.9 87.4 83.8 85.3 85.5 88.3 86.3 83.2 86.4 82.5 88.6 85.2 53 68
+MECTA 31 86.6 88.3 84.4 89.2 82.4 87.4 89.3 86.5 87.6 86.4 89.6 88.0 85.1 87.7 83.1 90.3 87.0 102 130

CIFAR100-C
BN 32 56.2 57.1 54.7 70.5 56.3 68.6 70.2 63.0 63.5 56.6 71.9 68.0 62.2 64.8 56.7 73.8 63.4 34 34
BN 64 56.8 58.7 55.8 71.5 57.7 69.5 71.5 64.1 64.3 57.4 73.1 69.0 63.6 66.1 58.4 75.3 64.6 67 67
BN 128 57.6 59.0 56.6 72.5 58.2 69.9 71.8 64.7 64.8 57.9 73.5 69.8 64.3 66.7 58.6 75.8 65.1 134 134

TENT 8 53.0 53.9 46.8 50.4 31.2 29.8 23.8 14.4 10.1 6.7 5.9 3.5 4.0 3.7 3.6 3.5 21.5 114 114
16 56.8 61.4 59.6 68.5 56.1 65.3 66.9 59.7 60.0 54.9 65.0 57.0 54.2 56.2 46.8 58.6 59.2 229 229
32 58.5 63.0 61.6 71.8 60.3 69.7 71.8 65.1 66.3 60.9 72.4 68.7 64.7 67.8 59.7 74.3 66.0 457 457

+MECTA 16 60.6 63.0 59.8 71.7 59.4 67.9 69.7 61.2 61.3 55.0 67.9 59.5 59.3 61.0 52.3 67.0 62.3 44 68
+MECTA 31 58.8 61.2 58.2 73.2 60.7 71.4 73.4 65.8 66.7 60.1 73.6 68.4 65.5 67.3 59.1 75.1 66.2 77 130

EATA 8 52.1 54.4 53.2 65.4 51.7 63.9 64.8 59.3 58.8 54.0 66.6 63.3 56.4 61.4 52.9 70.1 59.3 114 114
16 57.3 60.5 58.5 69.9 57.1 68.9 69.8 63.7 64.4 59.4 71.6 67.9 62.8 67.1 58.2 74.4 64.5 229 229
32 58.4 62.4 60.9 72.1 59.5 70.3 72.4 66.3 66.5 62.2 74.4 70.8 65.3 69.4 61.0 76.9 66.8 457 457

+MECTA 16 59.6 62.2 59.3 73.5 60.7 71.5 73.4 66.7 66.9 61.3 74.9 71.3 66.2 68.8 61.0 77.5 67.2 44 68
+MECTA 31 58.7 60.7 57.8 72.7 59.4 70.9 73.6 65.8 66.8 60.4 74.7 70.7 66.0 68.4 60.6 77.7 66.6 75 130

ImageNet-C
BN 64 38.4 41.6 38.8 29.1 32.1 40.1 46.4 44.1 46.8 54.8 67.7 35.1 53.7 64.7 54.6 73.5 47.6 206 206
BN 128 39.2 42.6 39.6 29.9 32.9 40.8 47.4 45.0 47.7 55.8 68.5 36.0 54.8 65.4 55.7 74.2 48.5 411 411

TENT 16 43.3 46.1 42.8 25.8 14.8 5.0 1.3 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 11.6 711 711
32 46.1 50.6 49.2 37.2 38.2 41.2 42.5 36.6 36.2 38.8 46.8 27.5 30.5 34.3 26.9 34.8 38.6 2845 2845

+MECTA 16 48.6 49.3 46.6 33.6 34.6 34.8 37.5 28.9 26.7 29.2 35.7 14.0 20.6 21.9 15.1 19.3 31.0 194 212
+MECTA 30 48.6 50.9 48.5 35.7 38.3 39.6 44.2 37.0 37.4 42.1 51.9 31.7 42.9 47.6 42.5 53.6 43.3 338 397

EATA 16 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4 711 711
32 49.0 52.3 51.1 44.4 45.2 52.3 55.1 54.0 52.7 61.3 67.6 52.7 58.8 65.3 60.4 72.3 55.9 2845 2845

+MECTA 16 49.9 52.6 50.7 44.3 45.3 52.1 55.6 53.8 53.1 62.5 69.3 51.9 60.6 67.6 61.9 74.2 56.6 194 212
+MECTA 30 50.6 53.3 51.7 44.7 46.1 52.2 56.1 53.4 53.0 62.0 68.9 52.9 60.4 67.1 61.7 73.6 56.7 342 397

16



Published as a conference paper at ICLR 2023

Table 7: Ablation study of MECTA-B on ImageNet-C with the highest severity level 5 regarding
accuracy (%) and a batch size of 16. Blue cells highlight the accuracy that is the highest among all
methods, and the bold texts indicate the best accuracy among ablations of EMA and MECTA-B.

EMA MECTA-B Noise Blur Weather Digital

Alg. β = 0.1 auto β Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig. Avg

BN
✗ ✗ 33.7 36.5 34.0 24.6 27.2 35.0 40.5 39.1 42.3 49.4 62.7 30.7 47.6 59.1 48.9 69.1 42.5
✓ ✗ 38.7 42.0 39.1 29.2 32.4 40.3 47.2 44.4 47.4 55.4 68.3 35.4 54.3 65.2 55.2 74.1 48.0
✓ ✓ 39.8 43.3 40.3 30.3 33.4 41.1 48.3 45.2 48.3 56.6 69.1 36.0 55.4 66.1 56.2 74.7 49.0

Tent
✗ ✗ 43.3 46.1 42.8 25.8 14.8 5.0 1.3 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 11.6
✓ ✗ 49.2 53.3 51.6 38.8 37.8 40.1 40.3 32.5 29.4 28.1 31.4 10.1 11.8 10.2 4.4 6.0 29.7
✓ ✓ 50.3 54.6 53.0 40.7 40.2 42.3 42.9 35.3 33.0 32.2 36.7 14.3 15.9 15.2 8.5 11.8 32.9

EATA
✗ ✗ 44.4 47.1 45.4 39.0 39.4 47.4 49.7 49.7 48.4 57.6 64.3 47.8 54.5 61.7 56.3 69.5 51.4
✓ ✗ 49.2 52.0 50.6 43.8 45.1 52.5 55.5 54.4 53.5 62.3 69.6 52.1 60.0 67.4 61.6 74.4 56.5
✓ ✓ 50.0 53.1 51.5 44.8 45.7 53.2 56.5 55.3 54.3 63.2 70.3 52.6 61.1 68.1 62.5 75.0 57.3

Table 8: Evaluation of k-new K-old shift accuracy by EATA. Average accuracy (AA %) and worst
accuracy (WA %) are reported for each target perturbation. Values in the brackets denote the difference
between the current method and the base method using batch statistics.

K k EMA MECTA-B Impul. Motion Fog Elast.

β = 0.1 Auto β AA WA AA WA AA WA AA WA

49 1
✗ ✗ 35.5 34.6 37.0 36.8 50.1 49.8 48.3 47.8
✓ ✗ 35.4 (-0.1) 30.6 (-4.0) 26.6 (-11.0) 20.1 (-16.7) 41.0 (-9.1) 25.9 (-23.9) 42.8 (-5.5) 39.3 (-8.5)
✓ ✓ 34.4 (-1.1) 32.0 (-2.6) 28.6 (-8.4) 25.7 (-11.1) 43.6 (-6.5) 39.1 (-10.7) 42.6 (-5.7) 41.2 (-6.6)

9 1
✗ ✗ 34.1 33.4 35.7 35.6 49.4 48.9 47.4 47.1
✓ ✗ 32.8 (-1.3) 27.0 (-6.4) 25.0 (-10.7) 17.3 (-18.3) 38.4 (-11.0) 23.9 (-25.0) 41.1 (-6.3) 35.7 (-11.4)
✓ ✓ 34.1 (0.0) 32.3 (-1.1) 27.4 (-8.3) 23.1 (-12.5) 42.4 (-7.0) 36.5 (-12.4) 41.9 (-5.5) 40.0 (-7.1)

45 5
✗ ✗ 35.4 34.6 36.9 36.5 50.3 49.3 48.5 47.7
✓ ✗ 38.4 (+3.0) 37.5 (+2.9) 35.4 (-1.5) 30.6 (-5.9) 53.3 (+3.0) 50.2 (0.9) 52.0 (+3.5) 50.8 (+3.1)
✓ ✓ 37.8 (+2.4) 37.2 (+2.6) 35.4 (-1.5) 33.0 (-3.5) 51.5 (+1.2) 49.6 (+0.3) 50.8 (+2.3) 49.6 (+1.9)

0 5000 10000 15000 20000 25000
iteration

200

250

300

350

ca
ch

e 
siz

e 
(M

b)

Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig.

0 5000 10000 15000 20000 25000
index

0.2
0.3
0.5

1.0

2.0

(×
10

2 )

Gauss. Shot. Impul. Defoc. Glass. Motion Zoom. Snow Frost Fog Bright. Contr. Elast. Pixel. JPEG Orig.
norm 2
norm 4
norm 23
norm 40
norm 45

Figure 6: Dynamic cache size and β using MECTA on ImageNet-C.

17


	Introduction
	Related Works
	Problem Formulation
	Proposed Method
	Experiments
	Benchmarks on OOD Performance
	Qualitative Studies

	Conclusion
	Discussion
	Memory footprint for test-time adaptation

	Experimental Details and Supplementary
	Implementation Details
	More experimental results


