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Abstract—A Random Vector Functional Link (RVFL) network
is a depth-2 neural network with random inner weights and
biases. As only the outer weights of such an architecture need
to be learned, the learning process boils down to a linear opti-
mization task, allowing one to sidestep the pitfalls of nonconvex
optimization problems. In this paper, we prove that an RVFL with
ReLU activation functions can approximate Lipschitz continuous
functions provided its hidden layer is exponentially wide in the
input dimension. Although it has been established before that
such approximation can be achieved in L2 sense, we prove it
for L∞ approximation error and Gaussian inner weights. To the
best of our knowledge, our result is the first of this kind. We
give a non-asymptotic lower bound for the number of hidden
layer nodes, depending on, among other things, the Lipschitz
constant of the target function, the desired accuracy, and the
input dimension. Our method of proof is rooted in probability
theory and harmonic analysis.

I. INTRODUCTION

In this paper, we examine the approximation capacity of
the Random Vector Functional Link (RVFL) network. An
RVFL is a depth-2 neural network with random inner weights
and biases. More precisely, an RVFL is a random function
Nn : Rm → R of the form

Nn(x) =

n∑
j=1

ajρ(⟨𝓌j , x⟩+ 𝒷j),

where 𝓌j’s and 𝒷j’s are iid random variables, ρ : R → R is
the activation function, and aj’s are real numbers, chosen or
learned so as to have Nn be close to a target function f .

Despite the simplicity of their architecture, RVFL models
found their applications in signal classification and regression
problems [7], forecasting [10], time-series data prediction [3],
and others; for an overview, see [8]. At the same time, theo-
retical foundation for RVFL networks is still lacking [9, §1].
This paper aims to remedy this discrepancy, bringing us one
step closer to understanding more complicated architectures
on neural networks, widely used in practical applications.

Since only the outer weights of RVFL architectures need to
be optimized, in practice the learning process boils down to a
linear optimization task. Indeed, given training data txpukp=1,
we aim to choose aj’s so that
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Owing to the fact that the learning process boils down to
a linear optimization problem, training RVFL networks side-
steps the usual pitfalls of nonconvex optimization problems,
such as slow convergence and getting stuck in local optima.

In order to compare our main result to the existing literature,
it will be useful to first state an approximate version of our
main theorem.

Main Theorem (approximate). Let K be compact subset
of Rm with at least two elements and circumradius R. Let
p be a circumcenter of K and f : K → R be ℓ-Lipschitz
with 2ζ = max f +min f . There exist outer weights such that
the corresponding RVFL network Nn with n hidden-layer
nodes, ReLU activation functions, Gaussian inner weights, and
uniformly distributed biases satisfies

P
"

max
x∈K+p

|f(x− p)− ζ −Nn(x)| > ε

*

⩽ η

for any η > 0 if

n ⪆
2e

π
ln(2/η)(2ℓR

√
e/ε)2m+6

exp
(
2d(K) ln 2− 21/3am1/3 + 3 lnm

)
for large m and small ε such that ε−1/m ≈ 1. Here
a ≈ −2.3381 is the first negative zero of the Airy function
Ai and d(K) ∈ [1,m] is given by Definition 2 below.

Remark. Although K is in fact allowed to be a low-dimen-
sional compact manifold, the lower bound for n will remain
exponential in the ambient dimension, meaning more refined
methods will be required to capitalize on the low-dimensional
structure insofar possible. Assuming K is a low-dimensional
manifold and trying to get a bound that is exponential in the
manifold dimension in place of the ambient dimension is a
setting commonly adopted to bridge the aforementioned gap
between theory and practice [9].



While many results like this exist in the literature, ours offers
an improvement on all of those in at least one way. To the
best of our knowledge, two of the papers most similar to
ours are [9] and [6]; both of them also examined how many
hidden-layer nodes are sufficient for an RVFL to be able to
approximate (Lipschitz) continuous functions.

In [9], Needell et al. obtained a sufficient number of hidden-
layer nodes depending superexponentially on the dimension.
Unlike us, they use L2 approximation error and the support
of their uniformly distributed weights (and biases) crucially
depend(s) on the approximation error, making their distribu-
tions not very suitable for practical use.

Our Gaussian weights, which are more common in practice
than uniform ones, do not have variances depending on the
approximation error. Our result additionally improves on [9,
Thm 4.1] in that we measure the error in the L∞ norm and
our bound is only exponential in the dimension. In fact, our
paper is, to the best of our knowledge, the first one to study
Gaussian weights and L∞ approximation error.

Hsu et al. not only managed to obtain a sufficient number of
hidden-layer nodes that depends exponentially on the dimen-
sion, but also a necessary number of hidden-layer nodes, albeit
in the L2 norm [6]. However, unlike our Gaussian weights,
which align with common practice, their weight distribution
is supported on a discrete subset of the unit sphere, which may
be too restrictive for practical use. Their proof method, whilst
conceptually similar to ours, differs in many details, such as
using Fourier series where we use the Fourier transform.

We would also like to draw attention to [1], which also con-
cerns itself with RVFL networks, although without the RVFL
moniker. Whereas the “corrective method” developed therein
is very different from our proof method, their use of spectral
methods has been a great inspiration for this paper.

Lastly, we would be remiss if we did not to mention that this
paper comes with a supplement. Many technical proof details
for the lemmas below have been delegated to the supplement
for brevity’s sake. We highly encourage the interested reader
to check it out as well.

Notation

• Square brackets may denote Iverson brackets
• Derivatives may be denoted by a dot atop the function
• jν is the first positive zero of the Bessel function Jν
• a ≈ −2.3381 symbolizes the first negative zero of the

Airy function Ai
• ρ denotes the ReLU function
• sg denotes the sign function
• Integrals without specified integration domains are under-

stood to integrate over all of Euclidean space
• F tφu(v) ≡

∫
φ(u) exp(−i⟨v, u⟩) du

• δX denotes the pdf of a random variable X (cf., δ0)
• We write φ(♢) in lieu of the more common φ(·)
• Vm denotes the volume of the m-dimensional unit ball

• Absolute value bars may denote either the m-dimensional
Lebesgue measure or the ℓ2 norm in any dimension

•
∥∥♢∥∥

K
≡ max

K
|♢|

II. BIRD’S-EYE OVERVIEW

Our approximation procedure essentially comprises four steps.
We first extend the ℓ-Lipschitz target function f , which is only
defined on some compactum K ⊂ Rm, to a compactly sup-
ported ℓ-Lipschitz function f̃ . The next three steps constitute
a chain of approximations: f̃ ≈ g ≈ h ≈ Nn.

First, we approximate the extension of the target function
f̃ with a “smoothed” version g obtained by convolving f̃
with a specifically-constructed approximate delta function. We
show that g can be viewed as an “infinite width” depth-2
neural network with Gaussian inner weights. The biases of
g, however, are not random, and the activation function is a
cosine function.

Secondly, g is approximated by h, which is an “infinite width”
RVFL with ReLU activation functions and Gaussian inner
weights, and can be viewed as the “infinite width limit” of
the desired RVFL.

Lastly, we will use Hoeffding’s concentration inequality to
approximate h by a finite width counterpart Nn with n hidden-
layer nodes.

III. MAIN RESULT AND PROOF

Before we state our main theorem, the following definitions
will prove useful.

Definition 1. Let K ⊂ Rm be a compactum with at least two
elements. We define its circumradius as

R = min
p

max
u∈K

|u− p|.

Note that R > 0. Any p ∈ Rm achieving the minimum is
called a circumcenter.

Remark. If q /∈ K + tx ∈ Rm : |x| ⩽ diam(K)u, then

max
u∈K

|u− q| > diam(K) ⩾ min
p∈K

max
u∈K

|u− p|,

so every compactum K with at least two elements has at least
one circumcenter within K + tx ∈ Rm : |x| ⩽ diam(K)u.

Definition 2. Let K ⊂ Rm be a compactum with at least two
elements and circumradius R. We denote

d(K) = lg
|K + tx ∈ Rm : |x| ⩽ Ru|

|tx ∈ Rm : |x| ⩽ Ru|
,

where lg is the binary logarithm. Note that 1 ⩽ d(K) ⩽ m,
so that d(K) may be seen as some sort of unfamiliar notion
of effective dimension.

Our main result is the following.

Main Theorem. Let K ⊂ Rm be compact with at least two
elements and circumradius R. Let p be a circumcenter of K
and f : K → R be ℓ-Lipschitz with max f − min f = 2M



and ζ = M + min f. There exist outer weights such that
the corresponding RVFL network Nn with n hidden-layer
nodes, ReLU activation functions, inner weight distribution
N(0, ãIm) with ã > 0, and biases uniformly distributed on[
−ãR

√
m, ãR

√
m
]

satisfies

P
!∥∥f(♢− p)− ζ −Nn

∥∥
K+p

> ε
)

⩽ η

for any ε, η > 0 if

n ⩾
1

8πe
ln(2/η)(1 + ϑ)2

"

1 +
m+ 1

m(m+ 2)

*2(m+2)

(
2− 21/3am−2/3

)4(
m2 + 3m+ 1

)2+2/m

exp
(
2d(K) ln 2− 21/3am1/3 − lnm

)
(2ℓR

√
e/ε)2m+6+2/m,

where

1

ϑ
=

"

m2 + 3m+ 1

ε
× 2ℓR√

πm
VmR

m

*1/m√
em

2π
"

1 +
m+ 1

m(m+ 2)

*

× ℓ

ε

(
2− 21/3am−2/3

)
.

Note that 1/ϑ ≈ 2ℓRe/ε for large m and small ε such that
ε−1/m ≈ 1 in light of the fact that

V
1/m
m ∼

√
2πe/m,

which follows readily from applying Stirling’s formula to
Vm = πm/2/Γ(m/2 + 1) [4, (5.19.4)].

WLOG we henceforth suppose that p = 0 and ζ = 0, i.e., the
image of f is [−M,M ]. One can interpret ζ as the bias of the
outer layer of Nn, which would be convenient in practice. A
good way to deal with p in practice would be approximating
p as a part of preprocessing.

Proof of the Main Theorem

Our first order of business is extending f . This would make
it easier to construct a smooth approximation of f . Let

f̃(x) = ρ
(
|f(a)| − ℓ|x− a|

)
sg f(a),

where a ∈ argmax
u∈K

(
|f(u)| − ℓ|x− u|

)
.

Lemma 1. f̃ is a compactly supported ℓ-Lipschitz extension
of f.

Proof. To show that f̃ extends f boils down to showing that
x ∈ K ⇒ f̃(x) = f(x). It suffices to show that x maximizes
K ∋ u 7→ |f(u)| − ℓ|x− u|, which is plain from the fact that

|f(u)| − |f(x)| ⩽ |f(x)− f(u)| ⩽ ℓ|x− u|

by the reverse triangle inequality.

Because supp f̃ ⊆ K + tx ∈ Rm : |x| ⩽ M/ℓu, its compact.
Demonstrating the Lipschitz continuity is technical; as such,
see the supplement.

Henceforth, K̃ shall denote the support of f̃ .

Now that we have extended f , we can define g which we do
as follows

g(x) = (2π)−m

∫
F (v) exp(i⟨v, x⟩ − |v|2/2Ý2)Ψ(v/Ý) dv,

where Ý = ãΛ for a TBD Λ > 0 and F = F tf̃u. Moreover,
Ψ(x) = (ω ∗ ω)

(
x/

√
m
)

with

ω(x) ∝
[
|x| ⩽ 1

2

]
Jν

(
2jν |x|

)/
|x|ν ,

where ν = m/2 − 1 and the proportionality constant is such
that ψ = F −1tΨu is a pdf; see [5, §5] for more details.
Note that t−νJν(t) → 2−ν/Γ(ν + 1) as t → 0 [4, (10.7.3)],
whereupon ω(0) is well-defined.

Upon recognizing g as an inverse Fourier transform, we see
that g can be interpreted as f̃ convolved with an approximate
delta function, that is, g is a smoothed version of f̃ , in light
of the convolution theorem and the scaling property of the
Fourier transform.

Lemma 2.
∥∥f̃ − g

∥∥
∞ ⩽

ℓ

Ý

(
2− 21/3am−2/3

)√
m.

Proof. Let Z ∼ N(0, Im). Essentially, we first show that

g(x) =

∫
f̃(x− s/Ý)(δZ ∗ ψ)(s) ds.

using standard integral manipulation. Since ψ is a pdf,

|f̃(x)− g(x)| =
∣∣∣∣f̃(x)− ∫

f̃(x− s/Ý)(δZ ∗ ψ)(s) ds
∣∣∣∣ =∣∣∣∣∫ f̃(x)(δZ ∗ ψ)(s) ds−

∫
f̃(x− s/Ý)(δZ ∗ ψ)(s) ds

∣∣∣∣ ⩽∫
|f̃(x)− f̃(x− s/Ý)|(δZ ∗ ψ)(s) ds ⩽

ℓ

Ý

∫
|s|(δZ ∗ ψ)(s) ds,

so all that remains is to bound the integral. For the remaining
details, see the supplement.

Before we introduce h, it is useful to rewrite g in a yet different
form. Since

(2π)−m

∫
F (v) exp(i⟨v, x⟩ − |v|2/2Ý2)Ψ(v/Ý) dv =

g(x) =

∫
f̃(x− s/Ý)(δZ ∗ ψ)(s) ds ∈ R,



the inverse Fourier transform integral equals its own real part,
that is, g(x) is equal to

(2π)−m

∫
|F (v)|c(v, x) exp(−|v|2/2Ý2)Ψ(v/Ý) dv =

(2π)−mÝm

∫
|F (Ýw)|c(Ýw, x) exp(−|w|2/2)Ψ(w) dw =

(2π)−m/2Ým

∫
|F (Ýw)|c(Ýw)δZ(w)Ψ(w) dw =

(2π)−m/2ÝmE
(
|F (Ý𝓃)|Ψ(𝓃)c(Ý𝓃, x)

)
,

where c(v, x) := cos(⟨v, x⟩ + argF (v)) and 𝓃 ∼ N(0, Im).
We now approximate the above expectation by

h(x) =

"

Ý√
2π

*m

E
(
|F (Ý𝓃)|Ψ(𝓃)

[
|𝓃| > ϑ

√
m
]
c(Ý𝓃, x)

)
.

Lemma 3.
∥∥g − h

∥∥
∞ ⩽

2ℓR√
πm

Vm

"

RϑÝ√
2π/e

*m

.

Proof. Since
∥∥F t♢u

∥∥
∞ ⩽

∥∥♢∥∥
1
, and ψ is a pdf,

|g(x)− h(x)| ⩽
"

Ý√
2π

*m

E
∣∣∣|F (Ý𝓃)|Ψ(𝓃)

[
|𝓃| ⩽ ϑ

√
m
]
c(Ý𝓃, x)

∣∣∣ ⩽
(2π)−m/2Ým

∥∥f̃∥∥
1
P

!

|𝓃| ⩽ ϑ
√
m

)

.

The remaining details may be found in the supplement.

In Section II, we said that h would be an “infinite width”
RVFL with ReLU activation functions and Gaussian inner
weights. The following lemma corroborates this claim.

Lemma 4. h = E(G(𝓌,𝒷)ρ(⟨𝓌,♢⟩+ 𝒷)) on K, where

• G(w, b) = −2ãR
√
mΛ2(2π)−m/2Ým|F (Λw)|Ψ(w/ã)[

|w| ⩾ ϑã
√
m
]
cos(Λb− argF (Λw));

• 𝒷 ∼ Unif
[
−ãR

√
m, ãR

√
m
]
;

• 𝓌 ∼ N(0, ãIm).

Proof. The statement follows from straightforward manipula-
tions of unwieldy integrals, that are crucially relying on the
fact that the ReLU activation function satisfies “ρ̈ = δ0”. As
always, the details can be found in the supplement.

We now want to approximate our “infinite width” RVFL
with a finite width one. Essentially, we are going to utilize
Hoeffding’s inequality to approximate the expectation h by a
sample mean.

There is a problem, however. Using Hoeffding’s inequality
directly would yield an upper bound for

P

#∣∣∣∣ 1n
n∑

p=1

Hp(x)− E(H(x))

∣∣∣∣ > t

+

,

where H(x) = G(𝓌,𝒷)ρ(⟨𝓌, x⟩ + 𝒷)) and H1, . . . ,Hn are
iid copies of H . Instead, we need an upper bound for

P

#∥∥∥∥ 1n
n∑

p=1

Hp − E(H)

∥∥∥∥
K

> t

+

.

Arguably the cleanest solution is to find a measurable selector,
that is, a random variable Xn such that∣∣∣∣ 1n

n∑
p=1

Hp(Xn)− E(H(Xn))

∣∣∣∣ = ∥∥∥∥ 1n
n∑

p=1

Hp − E(H)

∥∥∥∥
K

.

Such a measurable selector turns out to exist [2, thm 18.3]
and can be used to deduce the following bound.

Lemma 5. Let Nn = 1
n

∑n
p=1Hp and t > 0. Then

P
!∥∥Nn − E(H)

∥∥
K
> t

)

⩽

2 exp

(
−n
2

(
t

2R2
√
m(2π)−m/2Ým+1(1 + 1/ϑ)ℓ|K̃|

)2)
.

Proof. Technical; see the supplement.

We are now ready to put Lemmas 2, 3, and 5 together to yield
the desideratum. By setting

α =
m(m+ 2)

m2 + 3m+ 1
;

β =
1

m2 + 3m+ 1
;

Λ =
1

ã
× ℓ

αε

(
2− 21/3am−2/3

)√
m;

1

ϑ
=

"

1

βε
× 2ℓR√

πm
VmR

m

*1/m
Ý√
2π/e

,

we obtain by design that
∥∥f−g∥∥∞ ⩽ αε and

∥∥g − h
∥∥
∞ ⩽ βε.

As such, letting γ = 1− α− β yields that

P
!∥∥f −Nn

∥∥
K
> ε

)

= P
!∥∥f̃ −Nn

∥∥
K
> ε

)

⩽

P
!∥∥f̃ − g

∥∥
∞ + ∥g − h

∥∥
∞ +

∥∥h−Nn

∥∥
K
> ε

)

⩽

P
!

αε+ βε+
∥∥h−Nn

∥∥
K
> ε

)

=

P
!∥∥h−Nn

∥∥
K
> γε

)

⩽

2 exp

(
−n
2

(
γε

2R2
√
m(2π)−m/2Ým+1(1 + 1/ϑ)ℓ|K̃|

)2)
⩽ η,

upon plugging in the lower bound for n and doing a lot of
simplifications, chief among them being

|K̃| ⩽ |K + tx ∈ Rm : |x| ⩽ Ru|

= VmR
m |K + tx ∈ Rm : |x| ⩽ Ru|

|tx ∈ Rm : |x| ⩽ Ru|
= VmR

m exp(d(K) ln 2).

It follows from the fact that K̃ ⊆ K+ tx ∈ Rm : |x| ⩽M/ℓu
and M ⩽ ℓR (this is derived while proving Lemma 3 in the
supplement). We also used the following inequalities.



• Since 1− x ⩽ e−x, it follows that(
2− 2−1/3am−2/3

)2m
=

4m
(
1− a(2m)−2/3

)2m
⩽

4m exp(−21/3am1/3).

• Since Vm = πm/2/Γ(m/2 + 1) [4, (5.19.4)], inequal-
ity [4, (5.6.1)] yields that

Vm ⩽
1√
πm

(
2πe

m

)m/2

.

Ergo, V 2
m ⩽

1

πm

(
2πe

m

)m
and V 2/m

m ⩽ 2πe/m.

Finally, note that Nn is indeed an RVFL with outer weights
of the form G(𝓌,𝒷)/n.
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