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Abstract

Policy Mirror Descent (PMD) is a general family of algorithms that covers a wide
range of novel and fundamental methods in reinforcement learning. Motivated
by the instability of policy iteration (PI) with inexact policy evaluation, PMD
algorithmically regularises the policy improvement step of PI. With exact policy
evaluation, PI is known to converge linearly with a rate given by the discount factor
γ of a Markov Decision Process. In this work, we bridge the gap between PI and
PMD with exact policy evaluation and show that the dimension-free γ-rate of PI
can be achieved by the general family of unregularised PMD algorithms under
an adaptive step-size. We show that both the rate and step-size are unimprovable
for PMD: we provide matching lower bounds that demonstrate that the γ-rate is
optimal for PMD methods as well as PI and that the adaptive step-size is necessary
to achieve it. Our work is the first to relate PMD to rate-optimality and step-size
necessity. Our study of the convergence of PMD avoids the use of the performance
difference lemma, which leads to a direct analysis of independent interest. We also
extend the analysis to the inexact setting and establish the first dimension-optimal
sample complexity for unregularised PMD under a generative model, improving
upon the best-known result.

1 Introduction

The problem of finding an optimal policy in tabular discounted Markov Decision Processes (MDPs)
was classically solved using dynamic programming approaches such as policy iteration (PI) and
value iteration (VI) [1, 2]. These methods are well understood theoretically and are guaranteed to
converge linearly to the optimal policy in the tabular setting with a rate equal to the discount factor γ
of the MDP [3]. Recently, increased interest has been devoted to the study of policy-gradient (PG)
approaches based on optimising a parameterised policy with respect to an objective [4, 5, 6].

Given their popularity, it is of interest to better understand PG methods and determine if their
guarantees match those of classical algorithms in tabular MDPs. Among the recent works focused on
understanding these methods in the tabular setting, [7] study a general family of algorithms known as
Policy Mirror Descent (PMD). PMD algorithmically regularises the policy improvement step of PI
and as such can be seen as a version of regularised PI, without actually regularising the objective
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of interest. It is also viewed as a policy-gradient method through its connection to mirror descent
[8]. Linear convergence of PMD was established by [7], though their rate depends on an instance-
dependent factor that can scale with the dimension of the problem, such as the size of the state
space. For a specific instance of PMD known as Natural Policy Gradient (NPG), [9] showed that an
instance-independent γ-rate is achievable, although their results do not cover general PMD. In MDPs
where the objective is regularised, the γ-rate has been established for PMD [10, 11, 12]. The classical
approaches (PI and VI) achieve the γ-rate without regularisation, revealing that regularisation is, in
general, not necessary for algorithms to reach the γ-rate. This motivates the following questions:

Can the classical linear γ-rate be matched by unregularised policy-gradient algorithms? And what is
the best rate that unregularised policy-gradient methods can achieve ?

For PMD, our work answers the first question positively and answers the second by establishing
that the γ-rate is in fact the best rate achievable for PMD as well as for a more general family
of algorithms (see Section 4.1). PMD allows for a choice of a mirror map that specifies different
algorithms. Among these, NPG and PI are two ubiquitous instances of PMD each corresponding
to their own mirror map. However, PMD is much more general and other mirror maps will lead
to alternative algorithms endowed with the guarantees of PMD that we establish in this paper. In
particular, the correspondence of mirror maps with exponential families [13] allows us to specify
a wealth of valid mirror maps. This illustrates that PMD is a general framework that encompasses
a wide range of novel but also fundamental algorithms, and motivates the study of its convergence
guarantees. In this work, we make the following contributions and summarise them in Table 1,

• We recover the γ-rate for the general family of PMD algorithms under an adaptive size (see
the third bullet point below). In particular, Theorem 4.1 establishes the following bound
in ℓ∞-norm for the value V πk

of the policy πk after k iterations of PMD compared to the
value V π⋆

of an optimal policy π⋆,

∥V π⋆

− V πk

∥∞ ≤ 2

1− γ
γk,

providing guarantees for any starting-state distribution. This matches the rate of VI and
PI as well as the best known rates for PMD on regularised MDPs. This is also the first
fully dimension-independent linear convergence result for unregularised PMD, by which we
mean that there is no dependence on the size of the state space or the action space.

• We provide a matching lower-bound in Theorem 4.2, establishing the γ-rate as the optimal
rate for PMD methods. This is a worst-case bound in the sense that for a fixed iteration
budget, there exists an MDP for which PMD can do no better than the γ-rate. Our results
show that a particular choice of learning rate allows PMD to reach this lower-bound exactly.

• The γ-rate for PMD in Theorem 4.1 relies on an adaptive step-size, where the adaptivity
comes from the fact that the step-size depends on the policy at the current iteration (see
Section 4). In Theorem 4.3 we show that this adaptivity is necessary for PMD to achieve the
γ-rate, establishing our step-size as both sufficient and necessary.

• We establish a novel theoretical analysis that avoids the use of the performance difference
lemma [14]. This leads to a simple analysis and avoids needing to deal with visitation
distribution mismatches that are the last remains of dimension dependence in prior work.

• By extending our analysis to the inexact setting, with an approach similar to that of in [7],
we establish an instance-independent sample complexity of Õ(|S||A|(1− γ)−8ε−2) under
a generative model, where the notation Õ() hides poly-logarithmic factors, S is the state
space of the MDP, A is the action space and ε is the required accuracy. This improves on
the previous best known sample complexity for PMD by removing the dependence on a
distribution mismatch coefficient that can scale with problem-dependent quantities such as
the size of the state space. More generally, we highlight that the analysis we establish in the
exact setting can easily be combined with any other scheme for estimating the Q functions
(see Section 5), paving the way for further improvements in instance-independent sample
complexity results should more efficient estimation procedures be developed.

Our contributions are primarily on establishing the optimal rate for general (not just NPG) exact PMD
where we assume access to the true action-values of policies (for which the upper and lower-bound
are both novel) and the simplicity of the analysis. The sample complexity result in the inexact setting
illustrates how our analysis can be easily extended to obtain improved results for inexact PMD.
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Table 1: Comparison of contributions with prior work that study PMD. [9] focus on NPG, an instance
of PMD for a specific mirror map (see Section 3). Their analysis is fundamentally different to ours as
it exploits the closed-form update of NPG. Their step-size is similar to ours, though has a dependence
on a sub-optimality gap (see Section 4). The ℓ∞-bound is satisfied if it holds for ∥V π⋆ − V πk∥∞.
Dimension independence is satisfied when there is no instance for which the bound can scale with
the size of the state space or action space. We compare these works in more detail in Section 4.

Linear General ℓ∞ Dimension Matching Step-Size
γ-Rate Mirror Map Bound Independent Lower-Bound Necessity

[9] ✓ × ✓ ✓ × ×
[7] × ✓ × × × ×

This work ✓ ✓ ✓ ✓ ✓ ✓

2 Related work

2.1 Convergence rates for exact policy mirror descent

We first consider the setting where exact policy evaluation is assumed. In this setting, several earlier
works have sub-linear convergence results for PMD [15, 16] and NPG specifically [17], though these
have since been improved to linear convergence results as discussed below.

A line of work has considered PG methods applied to regularised MDPs. In this setting, linear con-
vergence has been established for NPG with entropy regularisation [10], PMD with strongly-convex
regularisers [11] and PMD with convex non-smooth regularisers [12]. The rates of convergence are
either exactly γ or can be made arbitrarily close to γ by letting the step-size go to infinity.

In the setting of unregularised MDPs, which is the focus of this paper, linear convergence of the
special case of NPG was established [18, 9] under an adaptive step-size similar to ours that depends
on the current policy at each step. The bound of [18] has an additive term that can be made arbitrarily
small by making the step-size larger but to which the γ-rate does not apply, while [9] does not have
this term so we focus on this work. Their analysis relies on a link between NPG and PI and consists
of bounding the difference in value between iterates of both methods. [18] also establish linear
convergence for a number of algorithms including PMD, although it is in the idealised setting of
choosing the step size at each iteration that leads to the largest increase in value. This step-size
choice will make PMD at least as good as PI since arbitrarily large step-sizes can be chosen and
PMD with an infinite step-size converges to a PI update. Since PI converges linearly, so will PMD.
This does not establish linear convergence of PMD for step-sizes with a closed-form expression.
However, linear convergence for unregularised general PMD was recently established by [7] under
a geometrically increasing step-size. In general, their rate is instance-dependent and may scale
with problem dependent quantities such as the size of the state space. For general starting-state
distributions, this same instance-dependent rate was established by [19] for a variant of PMD which
augments the update with an added regularisation term. We focus our comparison on the work of [7]
rather than this work as the guarantees are equivalent in both but [19] do not directly study PMD and
have a more complicated algorithm. A summary of our results compared to those of [9] and [7] is
presented in Table 1 and discussed in more detail in Section 4. In terms of optimality, [9] provide a
lower-bound for constant step-size NPG, though it only applies to MDPs with a single-state, which
can be solved in a single iteration with exact policy evaluation as the step-size goes to infinity (for
which the lower-bound goes to 0). We provide a lower-bound in Theorem 4.2 that applies to PMD
with arbitrary step-size on an MDP with any finite state space. To the best of our knowledge, prior to
this work no lower-bound has been established in this general setting.

2.2 Sample complexity of inexact policy mirror descent

Sample complexity in the inexact policy evaluation setting refers to the number of samples needed to
guarantee an ε-optimal policy is returned. We here give an outline of results, typically established in
high-probability, under a generative model that we formally present in Section 5. The lower bound
on the sample complexity in this setting was shown to be of Ω̃

(
|S||A|

(1−γ)3ε2

)
by [20]. This lower-bound

can be reached by model-based approches [21, 22] and model-free approaches [23, 24].
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iThe sample-complexity for PG methods has been recently studied in [25]. Under a generative model,
some works have considered PMD or NPG under various types of regularisation [10, 11, 12]. We
focus on unregularised methods, for which results for PMD or its instances on tabular MDPs under
a generative model are limited. There are works that obtain sample complexities results for NPG
[17, 26] and for PMD [16] though they do not attain the optimal ε-dependence of O(ε−2). [27] show
that a variant of PI, a special case of PMD, achieves the optimal ε-dependence of O(ε−2). More
recently, [7] show that the general family of PMD methods match the O(ε−2) sample complexity with
a factor of (1− γ)−8. Our result for the inexact setting shares the same dependence on ε and 1− γ
as [7] but removes an instance-dependent quantity which can depend on the size of the state space.
Further comparison to the result in [7] is given in Section 5. Beyond tabular MDPs and generative
models, [28] study NPG under linear function approximation and off-policy sampling, though their
results imply worse sample complexities when restricted to tabular MDPs under a generative model.
PMD under linear function approximation [29, 30] and general function approximation [31] have
also been studied and results similar to [7] were obtained in those settings.

3 Preliminaries

A Markov Decision Process (MDP) is a discrete-time stochastic process, comprised of a set of
states S, a set of actions A, a discount factor γ ∈ [0, 1) and for each state-action pair (s, a) a
next-state transition function p(·|s, a) ∈ ∆(S) and a (assumed here deterministic) reward function
r(s, a) ∈ [0, 1]. ∆(X ) denotes the probability simplex over a set X . We consider both S and A to be
finite, which is known as the tabular setting. In a state s, an agent chooses an action a, which gives
them a reward r(s, a) and transitions them to a new state according to the transition function p(·|s, a).
Once they are in a new state, the process continues. The actions chosen by an agent are formalised
through policies. A policy π : S → ∆(A) is a mapping from a state to a distribution over actions.
We will often write it as an element in Π = ∆(A)|S|. In each state s ∈ S, an agent following policy
π chooses an action a ∈ A according to πs = π(·|s) ∈ ∆(A).

In this work, the goal is to learn how to behave in a γ-discounted infinite-horizon MDP. We measure
the performance of a policy with respect to the value function V π : S → R,

V π(s) = E
[ ∞∑

t=0

γtr(st, at)|π, s0 = s
]
,

where st, at are the state and action in time-step t and the expectation is with respect to both
the randomness in the transitions and the choice of actions under policy π. This is a notion of
long-term reward that describes the discounted rewards accumulated over future time-steps when
following policy π and starting in state s. For a distribution over starting states ρ ∈ ∆(S), we write
V π(ρ) =

∑
s∈S ρ(s)V π(s) for the expected value when starting in a state distributed according to ρ.

It is also useful to work with the state-action value Qπ : S ×A → R:

Qπ(s, a) = E
[ ∞∑

t=0

γtr(st, at)|π, s0 = s, a0 = a
]
,

which is similar to V π , with the additional constraint of taking action a in the first time-step. We will
often write V π ∈ R|S| (resp. Qπ ∈ R|S|×|A|) to refer to the vector form, where each entry represents
the value (resp. action-value) in that state (resp. state-action pair). Similarly, we write Qπ

s ∈ R|A| for
the vector of action-values in state s. The following expressions, which relate Qπ and V π in terms of
each other and when combined give the Bellman equations [3], follow from their definitions above,

V π(s) = ⟨Qπ
s , πs⟩, Qπ(s, a) = r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′).

We now define the discounted visitation-distribution for starting state s′ and policy π,

dπs′(s) = (1− γ)

∞∑
t=0

γtPπ(st = s|s0 = s′), (1)

which plays an important part in the study of PG methods. Note that Pπ(st = s|s0 = s′) is the
probability of being in state s at time t when starting in state s′ and following policy π. We also write
dπρ (s) =

∑
s′∈S ρ(s′)dπs′(s).
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One of the main aims of reinforcement learning is to find a policy π that maximises V π . It is known
that there exists a deterministic policy that simultaneously maximises V π and Qπ for all states and
actions [3]. We call such a policy an optimal policy and denote it by π⋆. We are interested in finding
an ε-optimal policy, i.e a policy π such that ∥V π⋆ − V π∥∞ < ε.

3.1 Exact policy mirror descent

We are interested in PG methods that are based on optimising a parameterised policy πθ with respect
to V πθ (ρ) for some ρ ∈ ∆(S). In the tabular setting, we can use the direct parameterisation of a
policy πθ, which associates a parameter to each state-action pair, i.e. we have πθ(a|s) = θs,a. We
will drop the subscript θ for notational convenience. The gradient of the value function with respect
to this parameterisation [4] is given for each state-action pair (s,a) by

∂

∂π(a|s)
V π(ρ) =

1

1− γ
dπρ (s)Q

π(s, a). (2)

Mirror Descent (MD, [8]) carries out gradient descent in a geometry that is non-Euclidean. Using
−V π(ρ) as the minimising objective, the proximal perspective of MD gives an update of the form

πk+1 = argminp∈Π

{
− ηk⟨∇V πk

(ρ), p⟩+Dh(p, π
k)
}

(3)

where h : dom h → R is the mirror map (with Π ⊂ dom h) and Dh is the Bregman divergence
generated by h. We require h to be of Legendre type [32], i.e strictly convex and essentially smooth
(differentiable and ∥∇h(xk)∥ → ∞ for any sequence xk converging to a point on the boundary of
dom h) on the relative interior (rint) of dom h. The Bregman Divergence is defined as

Dh(π, π
′) = h(π)− h(π′)− ⟨∇h(π′), π − π′⟩ for π, π′ ∈ dom h.

As the objective V π(ρ) is non-convex in general [17], usual techniques from convex theory [33] are
not applicable.

The presence of the visitation-distribution term dπρ (s) in the gradient of the objective in (2) can slow
down learning because it can lead to vanishingly small gradients when states are infrequently visited
under the current policy π [17]. To circumvent this issue, Policy Mirror Descent (PMD) [11, 16, 7]
applies a variant of update (3) with a weighted Bregman divergence DPMD

h that matches the visitation
distribution factors of the gradient DPMD

h (p, πk) =
∑

s d
πk

ρ (s)Dh(ps, π
k
s ) where the mirror map h is

now defined on a subset of R|A|. The resulting update has for all states a factor of dπ
k

ρ (s) in both
terms. The minimisation can then be applied for each state individually to get the PMD update

πk+1
s = argminp∈∆(A)

{
− ηk⟨Qπk

s , p⟩+Dh(p, π
k
s )
}

(4)

for all states s. We will often add a superscript k to any quantity that is associated to πk. For example,
V k(s) = V πk

(s). Similarly for π⋆ and the superscript ⋆. Exact PMD iteratively applies update (4)
for some sequence of step-sizes ηk > 0 and initial policy π0 ∈ rint Π. We call this algorithm exact
because we assume access to the true state-action values Qk.

The update (4) of PMD considered in this work uses the true action-value Qπ. In prior work, PMD
has sometimes been applied to regularised MDPs [11] where the action-value is augmented with
some form of regularisation and is no longer the true action-value. This is a different algorithm that
converges to a policy that is not optimal in the original unregularised MDP.

PMD is a general family that covers many algorithms, specified by the choice of mirror map h. These
will inherit the guarantees of PMD, which motivates the study of the convergence guarantees of
PMD beyond specific instances. Taking h to be the negative entropy yields NPG, whose theoretical
properties have attracted a lot of interest [17, 10, 9]. With a null Bregman Divergence, PMD recovers
PI. PI is generated by a constant mirror map, which is not of Legendre type but the analysis still applies
so all results on PMD remain valid for PI. In fact, PMD can be viewed as a form of regularised PI
since the update (4) converges to a PI update as ηk → ∞, regardless of the mirror map. Beyond these,
providing mirror maps that generate other Bregman Divergences will lead to different algorithms. In
particular, every exponential family has a corresponding mirror map generating a unique Bregman
Divergence [13], highlighting the generality of PMD.

5



4 Main results for exact policy mirror descent

In this section, we present our main results on the convergence of exact PMD. We first introduce
some relevant notation. Fix a state s ∈ S and an integer k ≥ 0. Let Ak

s = {a ∈ A : Qk(s, a) =

maxa′∈AQ
k(s, a′)} denote the set of optimal actions in state s under policy πk. Denote by Π̃k+1

s the
set of greedy policies w.r.t Qk

s in state s, i.e Π̃k+1
s =

{
p ∈ ∆(A) :

∑
a∈Ak

s
p(a) = 1

}
. We are now

ready to state our main result in the setting of exact PMD, which is proved in Section 6.

Theorem 4.1. Let {ck}k∈Z≥0
be a sequence of positive reals. Consider applying iterative updates of

(4) with π0 ∈ rint Π and step-sizes satisfying for all k ≥ 0,

ηk ≥ 1

ck
max
s∈S

{
min

π̃k+1
s ∈Π̃k+1

s

Dh(π̃
k+1
s , πk

s )
}
. (5)

Then we have for all k ≥ 0,

∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ +

k∑
i=1

γ−ici−1

)
. (6)

Note that the step-size (5) is always finite. It may be unbounded when dom h is the policy space Π,
but the iterates are then in the relative interior of Π and the step-size is well-defined.

The sequence {ck}k∈Z≥0
plays an important role in both the step-size constraint (5) and the bound

(6). In particular, different choices will lead to different guarantees. We focus on ci = γ2(i+1)c0 for
some c0 > 0, giving a step-size with a geometrically increasing component. The resulting bound is

∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ +

c0
1− γ

)
,

which converges linearly with the γ-rate, and matches the bounds of PI and VI as c0 goes to 0. PMD
cannot do better as we will show in Theorem 4.2. We discuss other choices of {ck} in Appendix C.

Comparison to [7]: Linear convergence of unregularised PMD was first established by [7] under
a geometrically increasing step-size ηk = η0/γ

k. We discuss this step-size further and show the
necessity of adaptivity to achieve the γ-rate in Section 4.2. Their rate of convergence is 1− 1

θρ
where

θρ is an instance-dependent term defined as follows

θρ =
1

1− γ

∥∥∥d⋆ρ
ρ

∥∥∥
∞
,

where d⋆ρ is the visitation distribution defined in (1) under an optimal policy and ρ is the starting-state
distribution to which the bound applies, i.e the bound is on V ⋆(ρ)− V k(ρ). This θρ is at best γ when
we use ρ to be the stationary distribution of the optimal policy. However, in this case, the guarantee
only applies to states on the support of this stationary distribution and provides no guarantees for
other states. In general, it is unclear how θρ may scale in a specific MDP. In particular, it is possible
to construct an MDP where θρ scales linearly with the size of the state space |S| (Appendix G.1).
Though this MDP is somewhat trivial, it nonetheless illustrates how θρ can easily be large leading to
slow rates of convergence. It is also not straightforward to obtain convergence in individual states
from the bound in [7] due to the presence of ρ in the denominator of the mismatch coefficient in θρ.
In contrast, we obtain the optimal γ-rate of convergence and our result holds in ℓ∞-norm over all
states so avoids having to deal with a starting-state distribution ρ altogether.

This distribution mismatch coefficient commonly appears in convergence bounds in the literature
[14, 34, 35, 16, 17], both under exact and inexact policy evaluation. For many of these papers
mentioned, removing it would be of great interest though often does not appear possible. Our results
show that it is removable for the general family of PMD algorithms to obtain dimension-free linear
convergence. The techniques we use may be of interest for removing this coefficient in other settings.

Comparison to [9]: The γ-rate was established by [9] for NPG, a specific instance of PMD for which
the Bregman Divergence is the KL-divergence. The bound shown in their work is similar to the one
implied by our result with ci = γ2(i+1)c0. Defining ∆k(s) = maxa∈AQ

k(s, a)−maxa/∈Ak
s
Qk(s, a),
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the minimal sub-optimality gap in state s under πk, then the step-size corresponding to their bound
with the KL as Bregman Divergence is

ηk ≥ maxs,π̃k+1
s ∈Π̃k+1

s

{(
Lk + log|A|+D(π̃k+1

s , πk
s )
) 1

∆k(s)

)}
,

where Lk = Lk for some constant L > 0. This highlights the connection with our step-size condition
(5). In particular, they both have an adaptive component that depends linearly on the Bregman
divergence between the current policy and the greedy policy and a non-adaptive component on which
the bound depends. An important difference is that our step-size is independent of the sub-optimality
gap ∆k(s), and will be robust to situations where this gap is small. We can construct a general family
of MDPs for which we can make ∆k(s) arbitrarily small and the step-size of [9] will correspondingly
become arbitrarily large (Appendix G.2). Despite the apparent similarities with our results, their
analysis is significantly different to ours as it exploits the specific closed-form update of NPG to
bound the difference in value with an update of PI. Our analysis applies to PMD for a general mirror
map (not just NPG) and as such does not utilize specific properties of the mirror map and does not
require the analytic solution of the update to be known. Our analysis also easily extends to inexact
PMD (see Section 5), which theirs does not.

Remark on the step-size The dependence on the action space can be removed: The condition in
(5) is a minimum over π̃k+1

s ∈ Π̃k+1
s . Therefore taking the condition for any π̃k+1

s ∈ Π̃k+1
s will be

sufficient. In particular, we stated it with the minimum to have the smallest condition but that is not
necessary. Also note that in many cases, there will only be one greedy action, i.e. Ak

s will consist of
a single action and there will just be one policy in Π̃k+1

s .

As for the maximum over s ∈ S, this condition is imposed because we are using the same step-size
in all states for simplicity. If we allowed different step-size in each state, then the step-size in state s,
denoted ηk(s) would just have to satisfy

ηk(s) ≥
1

ck

{
min

π̃k+1
s ∈Π̃k+1

s

Dh(π̃
k+1
s , πk

s )
}
.

Furthermore if we choose any π̃k+1
s ∈ Π̃k+1

s , then the following condition would be sufficient:

ηk(s) ≥
1

ck
Dh(π̃

k+1
s , πk

s ).

The computational complexity of computing the step-size is then that of computing the Bregman
divergence between two policies.

4.1 Optimality of PMD

We have established in Theorem 4.1 that PMD achieves a linear γ-rate. The following result shows
that this rate is in fact optimal in a worst-case sense. The proof can be found in Appendix D.
Theorem 4.2. Fix n > 0 and δ ∈ (0, (1− γ)γn). There exists a class of MDPs parameterised by δ
with state-space of size |S| = 2n+ 1 and a policy π0 ∈ rint Π such that running iterative updates of
(4) for any positive step-size regime, we have for k < n:

∥V ⋆ − V k∥∞ ≥ γk∥V ⋆ − V 0∥∞ − 2δ

1− γ
. (7)

A key feature of this result is that the bound holds for k < n. For a fixed iteration budget, Theorem
4.2 implies that there exists an MDP on which PMD will not do better than the linear γ-rate for any
step-size. The γ-rate for PMD that we prove in Theorem 4.1 is optimal in this sense. For any MDP,
Theorem 4.2 establishes that the γ-rate is optimal in the first |S|/2 iterations.

Lower-bound beyond k ≥ n? For MPDs with a fixed state-space size |S| = 2n + 1, it is not
known what lower-bound holds when k ≥ n. However, PI is an instance of PMD (see Section 3.1)
and thus a lower bound that scales with γk for all k > 0 cannot hold since PI converges exactly in
finite-iterations (in fact with a number of iterations that scales linearly with the size of the state space
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[36]). To the best of our knowledge, this lower bound on the value convergence of PMD scaling with
γk is new. We expect this result may have been known for the special case of PI, though we could not
find a proof of it in the literature. The works that establish a lower bound for PI do so in the setting
of exact convergence to the optimal policy [37], not ε-accurate convergence, and for undiscounted
MDPs [38].

However, an asymptotic lower-bound for PMD under arbitrary step-size will not hold even if we
exclude PI from the class of considered algorithms. As the step-size tends to infinity, any PMD
update recovers a PI update. This implies that general PMD can be arbitrarily close to PI’s exact
convergence for the same finite number of iterations. Thus, any lower-bound on the convergence
of PMD must be limited to finite iterations. Since the finite iteration convergence of PI only scales
linearly with |S| [36, Theorem 3], the number of iterations guaranteed by Theorem 4.2 has the same
dependence on |S| as the number of iterations needed for exact convergence of PI.

There have been some results on the super-linear convergence of NPG in the literature, though
these apply once you have a policy within some neighbourhood of the optimal policy or value. [10]
establish such a result for NPG in the regularised case, and [9] in the unregularised case under certain
additional conditions. Theorem 4.2 does not contradict this latter result as for the MDP considered in
the proof, the super-linear convergence would kick-in for iterations beyond the k < n considered
here.

Lower-bound for general PG methods: The lower bound of Theorem 4.2 in fact applies to any
algorithm that at each iteration increases the probability of the current greedy action. The greedy
action is the action with highest action-value for the current policy. This covers algorithms more
general than PMD and in particular, includes the vanilla PG algorithm.

4.2 Adaptive step-size necessity

We have established in Theorem 4.1 that PMD under an adaptive step-size achieves a linear γ-rate
and in Theorem 4.2 that this rate is optimal for PMD. We now show the adaptivity is in fact necessary
to achieve the γ-rate. This strengthens the notion of optimality from the previous section - both the
rate and step-size are unimprovable. The proof can be found in Appendix E.

Theorem 4.3. Fix n > 0 and γ > 0.2. There exists an MDP with state-space of size |S| = 2n+ 1
and a policy π0 ∈ rint Π such that running iterative updates of NPG (PMD with h as the negative
entropy) that satisfy ∥V ⋆ − V k∥∞ ≤ γk(∥V ⋆ − V 0∥∞ + 1−γ

8 ) requires

ηki ≥ KL(π̃ki+1
si , πki

si )/2γ
ki (8)

for i = 1, ..., n s.t k1 < k2 < ... < kn where {s1, ..., sn} are states of the considered MDP.

This theorem states that there are at least n iterations with n distinct states where the step-size has to
be bigger than a quantity depending on the Bregman divergence between the current policy and its
greedy policy in the considered state in order to achieve a linear γ-rate. This is precisely the notion
of adaptivity that appears in the step-size condition of Theorem 4.1 and [9]. Theorem 4.3 shows we
cannot improve on this in general and provides justification for using an adaptive step-size instead of
the one from [7]. The step-size of [7] also requires the initial policy to be uniform (over actions) in
order to control the multiplicative factors in the bound through η0. Our step-size has more flexibility
on the initial policy, which can be any policy in rint Π. Beyond its necessity, the adaptivity of our
step-size can be a strength: it is large when needed, small when not.

5 Sample complexity of inexact policy mirror descent under generative model

In the previous sections, we have assumed access to the action values Qk
s to carry out the PMD

update. In Inexact PMD (IPMD), we replace Qk
s with an estimate Q̂k

s giving the update

πk+1
s = argminp∈∆(A)

{
− ηk⟨Q̂k

s , p⟩+Dh(p, π
k
s )
}
. (9)

Similarly to the exact case, IPMD iteratively applies update (9) for some sequence of ηk > 0 and
initial policy π0 ∈ rint Π, this time only assuming access to an inexact estimator of Qk.
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We consider the setting of a generative model [39], which is a sampling model where we can draw
samples from the transition probabilities p(·|s, a) for any pair (s, a). We borrow an estimator common
in the literature (see e.g. [7], [27]): for all state-actions pairs (s, a), draw Mk trajectories of length
or horizon H , i.e samples of the form

(
(s

(i)
0 , a

(i)
0 ), (s

(i)
1 , a

(i)
1 ), ..., (s

(i)
H−1, a

(i)
H−1)

)
i=1,...,Mk

, where

a
(i)
t is drawn from πk(·|s(i)t ), s(i)t+1 is drawn from p(·|s(i)t , a

(i)
t ) and (s

(i)
0 , a

(i)
0 ) = (s, a). Using these

samples, we can do a truncated Monte-Carlo estimate of the values as follows,

Q̂k(s, a) =
1

Mk

Mk∑
i=1

Q̂k
(i)(s, a), where Q̂k

(i)(s, a) =

H−1∑
t=0

γtr(s
(i)
t , a

(i)
t ). (10)

We use these Q̂k(s, a) to replace Qk(s, a) in the PMD update step. [7] present a bound on the
accuracy of this estimator which is restated in Appendix F. Following the same ideas as [7], we can
extend Theorem 4.1 to the inexact setting. The following theorem establishes a sample complexity
result, which is the sufficient number of calls to the generative model to obtain an ε-optimal policy.
For simplicity, we focus on the step-size following from the choice ci = γ2(i+1).
Theorem 5.1. Consider applying iterative updates of (9) using the Q-estimator in (10) given access
to a generative model with π0 ∈ rint Π and step-sizes satisfying for all k ≥ 0 (with the definitions of
Ak

s and Π̃k+1
s suitably adjusted with Q̂k

s instead of Qk
s ),

ηk ≥ max
s∈S

{
min

π̃k+1
s ∈Π̃k+1

s

D(π̃k+1
s , πk

s )

γ2k+1

}
.

Fix ε > 0. For any δ ∈ (0, 1), suppose the following are satisfied for all k ≥ 0,

K >
1

1− γ
log

4

(1− γ)ε
, H ≥ 1

1− γ
log

16

(1− γ)3ε
and Mk = M ≥ γ−2H

2
log

2K|S||A|
δ

.

Then with probability at least 1− δ, ∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ + 1

1−γ

)
+ 8

(1−γ)3 γ
H < ε.

Choosing K, H and M to be tight to their lower-bounds, the corresponding sample complexity is
Õ
(

|S||A|
(1−γ)8ε2

)
, where the notation Õ() hides poly-logarithmic factors.

The proof can be found in Appendix F.1. The sample complexity established by [7] (Theorem 16)

under a generative model and the same Q-estimator is Õ
(

|S||A|
(1−γ)8ε2

∥∥∥d⋆
ρ

ρ

∥∥∥3
∞

)
.

In their work, [7] stresses the interest in reducing the dependence on 1/(1− γ) and the distribution
mismatch coefficient in order to scale PMD guarantees to more relevant settings such as function
approximation. Theorem 5.1 partially resolves this matter by removing the dependence on the
distribution mismatch coefficient, which may scale with the size of the state space (Appendix G.1).
This makes the result fully dimension independent, which is crucial when scaling the results to large
or infinite state or action spaces. The dependence on 1/(1− γ) remains distant from the 1/(1− γ)3

lower-bound of [20] (see Section 2). Whether this can be reached by PMD methods remains open,
though using a more suitable Q-estimator than (10) with our step size regime and analysis could bring
the sample complexity closer to this.

6 Analysis

In this section, we present the proof of Theorem 4.1. A key component in establishing the γ-rate is
avoiding the performance difference lemma that we state in Appendix B. In prior works, the quantity
that we are looking to bound V ⋆(ρ)− V k(ρ) arises through the performance difference lemma. In
particular, [7] use the lemma on Es∼d⋆

ρ
[⟨Qk

s , π
⋆
s − πk+1

s ⟩], which introduces a distribution mismatch
coefficient in order to get a recursion. On the other hand, we extract the value sub-optimalities
V ⋆(s)− V k(s) and ∥V ⋆ − V k+1∥∞ directly from ⟨Qk

s , π
⋆
s − πk+1

s ⟩ in (12). This leads to an elegant
analysis that may be of interest in the study of other methods, and ultimately allows us to remove
distribution mismatch factors and obtain an exact γ-rate.

Proof of Theorem 4.1: Fix s ∈ S and k ≥ 0. From Lemma A.2, we have that ⟨Qk
s , π

k+1
s ⟩ ≤

⟨Qk+1
s , πk+1

s ⟩ = V k+1(s). This decouples the dependencies on πk and πk+1 below and is one of

9



the ingredients that allows us to bypass the performance difference lemma. Using this,

⟨Qk
s , π

⋆
s − πk+1

s ⟩ ≥ ⟨Qk
s , π

⋆
s ⟩ − V k+1(s) = ⟨Qk

s −Q⋆
s, π

⋆
s ⟩+ ⟨Q⋆

s, π
⋆
s ⟩ − V k+1(s)

≥ −∥Q⋆
s −Qk

s∥∞ + V ⋆(s)− V k+1(s), (11)

where the last step uses Hölder’s inequality. Now we use that the difference in state-action values of
different policies for the same state-action pair propagates the error to the next time-step, which is
discounted by a factor of γ. Formally, for any state-action pair (s, a) ∈ S ×A,

Q⋆(s, a)−Qk(s, a) = γ
∑
s′

p(s′|s, a)(V ⋆(s′)− V k(s′))

≤ γ
∑
s′

p(s′|s, a)∥V ⋆ − V k∥∞ = γ∥V ⋆ − V k∥∞,

which is the same phenomenon that is responsible for the contraction of the Bellman operator. This
gives ∥Q⋆

s −Qk
s∥∞ ≤ γ∥V ⋆ − V k∥∞. Plugging into Equation (11),

V ⋆(s)− V k+1(s)− γ∥V ⋆ − V k∥∞ ≤ ⟨Qk
s , π

⋆
s − πk+1

s ⟩.

The rest of the proof relies on making the right-hand side of the above arbitrarily small by taking a
large enough step size. Choose any greedy policy with respect to Qk

s , π̃k+1
s ∈ Π̃k+1

s ,

V ⋆(s)− V k+1(s)− γ∥V ⋆ − V k∥∞ ≤ ⟨Qk
s , π

⋆
s − πk+1

s ⟩ (12)

≤ ⟨Qk
s , π̃

k+1
s − πk+1

s ⟩ (13)

where we use that π̃k+1
s is greedy with respect to Qk

s . We then apply Lemma A.1 or (16) to p = π̃k+1
s ,

⟨Qk
s , π̃

k+1
s − πk+1

s ⟩ ≤ D(π̃k+1
s , πk

s )−D(π̃k+1
s , πk+1

s )−D(πk+1
s , πk

s )

ηk
≤ D(π̃k+1

s , πk
s )/ηk.

Combining with (13) and noting that this holds for any π̃k+1
s ∈ Π̃k+1

s , we have

V ⋆(s)− V k+1(s)− γ∥V ⋆ − V k∥∞ ≤ 1

ηk
minπ̃k+1

s ∈Π̃k+1
s

D(π̃k+1
s , πk

s ) ≤ ck

from the step-size condition in the statement of the theorem. Rearranging and recalling that s and k
were arbitrary, we can choose s where V ⋆(s)− V k+1(s) reaches its maximum value. We get

∥V ⋆ − V k+1∥∞ ≤ γ∥V ⋆ − V k∥∞ + ck,

and unravelling this recursion completes the proof. ■

7 Conclusion

In this paper, we have shown that the general family of exact policy mirror descent algorithms in
tabular MDPs under an adaptive step-size match the dimension-free linear γ-rate of convergence
of classical algorithms such as policy iteration. We provide matching lower-bounds that establish
this rate as optimal for PMD and the adaptive step-size as necessary. We exploit a new approach
to study the convergence of PMD, for which avoiding the performance difference lemma is a key
element. Though the focus of our work is on the exact policy evaluation setting, the analysis naturally
extends to the inexact setting, given access to an estimator of the action-value of a policy. We provide
a result for a simple estimator under a generative model that improves upon the best-known sample
complexity, although it still does not match the lower bound. Our method is general and applies
to any estimator, meaning our result could be improved by a better estimator. Exploiting further
algorithmic properties of PMD in the inexact setting may be needed to bridge the gap to the optimal
sample complexity, and determine if PMD can match the lower bound.
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A Properties of PMD

We present lemmas relevant to the analysis of PMD. Key to the analysis is the Three-Point Descent
Lemma, that relates the improvement of the proximal gradient update compared to an arbitrary point.
It originally comes from [40] (Lemma 3.2) where a proof can be found, though we use a slightly
modified version from [7] (Lemma 6).
Lemma A.1 (Three-Point Descent Lemma, Lemma 6 in [7]). Suppose that C ⊂ Rn is a closed convex
set, ϕ : C → R is a proper, closed convex function, Dh(·, ·) is the Bregman divergence generated by
a function h of Legendre type and rint domh ∩ C ̸= ∅. For any x ∈ rint domh, let

x+ = argminu∈C{ϕ(u) +Dh(u, x)}. (14)

Then x+ ∈ rint dom h ∩ C and ∀u ∈ C,

ϕ(x+) +Dh(x
+, x) ≤ ϕ(u) +Dh(u, x)−Dh(u, x

+) (15)

The update (4) of PMD is an instance of the proximal minimisation (14) with C = ∆(A), x = πk
s

and ϕ(x) = −ηk⟨Qk
s , x⟩. Plugging these into (15), Lemma A.1 relates the decrease in the proximal

objective of πk+1
s to any other policy, i.e. ∀p ∈ ∆(A),

−ηk⟨Qk
s , π

k+1
s ⟩+Dh(π

k+1
s , πk

s ) ≤ −ηk⟨Qk
s , p⟩+Dh(p, π

k
s )−Dh(p, π

k+1
s ). (16)

This equation is key to the analysis in Section 6. In particular, it allows us to prove the following
lemma regarding the monotonic improvement in action-value of PMD iterates. This is an extension
of Lemma 7 in [7].
Lemma A.2. Consider the policies produced by the iterative updates of PMD in (4). Then for any
k ≥ 0,

Qk+1(s, a) ≥ Qk(s, a), ∀(s, a) ∈ S ×A.

A.1 Proof of Lemma A.2

We first present Lemma 7 from [7], from which Lemma A.2 almost immediately follows.
Lemma A.3 (Descent Property of PMD, Lemma 7 in [7]). Consider the policies produced by the
iterative updates of PMD in (4). Then for any k ≥ 0

⟨Qk
s , π

k+1
s − πk

s ⟩ ≥ 0, ∀s ∈ S,

V k+1(ρ) ≥ V k(ρ), ∀ρ ∈ ∆(S).

Proof. From [7]. Recall that the Three-Point Descent Lemma states that ∀p ∈ ∆(A),

−ηk⟨Qk
s , π

k+1
s ⟩+Dh(π

k+1
s , πk

s ) ≤ −ηk⟨Qk
s , p⟩+Dh(p, π

k
s )−Dh(p, π

k+1
s ).

Using this with p = πk
s ,

Dh(π
k
s , π

k+1
s ) +Dh(π

k+1
s , πk

s ) ≤ ηk⟨Qk
s , π

k+1
s − πk

s ⟩
and since the Bregman divergences are none-negative and ηk > 0,

0 ≤ ⟨Qk
s , π

k+1
s − πk

s ⟩
and the result follows by an application of the performance difference lemma (Appendix B)

V k+1(ρ)− V k(ρ) =
1

1− γ
Es∼dk+1

ρ

[
⟨Qk

s , π
k+1
s − πk

s ⟩
]

≥ 0.

Note that we use the performance difference lemma here because it gives a simple concise proof, but
we do not actually need to. To maintain our claim that we avoid the use of the performance difference
lemma, we can get the same result without it. We sketch how to do this as follows. From the first part
of the lemma, we have

⟨Qk
s , π

k+1
s ⟩ ≥ ⟨Qk

s , π
k
s ⟩ = V k(s),
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in all states s. Now note that the left hand side above is
⟨Qk

s , π
k+1
s ⟩ =

∑
a

πk+1(a|s)Qk(s, a)

=
∑
a

πk+1(a|s)
(
r(s, a) + γ

∑
s′

p(s′|s, a)V k(s′)
)

and we can then apply ⟨Qk
s′ , π

k+1
s′ ⟩ ≥ V k(s′) at state s′:

V k(s) ≤
∑
a

πk+1(a|s)
(
r(s, a) + γ

∑
s′

p(s′|s, a)V k(s′)
)

≤
∑
a

πk+1(a|s)
(
r(s, a) + γ

∑
s′

p(s′|s, a)
∑
a′

πk+1(a′|s′)
(
r(s′, a′) + γ

∑
s′′

p(s′′|s′, a′)V k(s′′)
))

and as proceed iteratively in the limit you get exactly V k+1(s). ■

Since Lemma A.3 holds for any ρ ∈ ∆(S), it guarantees that the value in each state is non-decreasing
for an update of PMD, i.e for all s ∈ S,

V k+1(s)− V k(s) ≥ 0.

Using this, we get

Qk+1(s, a)−Qk(s, a) = γ
∑
s′∈S

p(s′|s, a)
(
V k+1(s′)− V k(s′)

)
≥ 0,

which concludes the proof. ■

A.2 Extension of Lemma A.2 to inexact setting:

As in the exact case, we first present Lemma 12 from [7] which is the extension of Lemma A.3 to the
inexact case. We note that in the inexact case, we lose the monotonic increase of values due to the
inaccuracy in our estimate Q̂k of Qk

s .
Lemma A.4. Consider the policies produced by the iterative updates of IPMD in (9). For any k ≥ 0,
if ∥Q̂k

s −Qk
s∥∞ ≤ τ , then

⟨Q̂k
s , π

k+1
s − πk

s ⟩ ≥ 0, ∀s ∈ S,

V k+1(ρ) ≥ V k(ρ)− 2τ

1− γ
, ∀ρ ∈ ∆(S).

Proof. From [7]. The Three-Point Descent Lemma applied to the IPMD update (9) gives ∀p ∈ ∆(A),

−ηk⟨Q̂k
s , π

k+1
s ⟩+Dh(π

k+1
s , πk

s ) ≤ −ηk⟨Q̂k
s , p⟩+Dh(p, π

k
s )−Dh(p, π

k+1
s ).

Using this with p = πk
s ,

Dh(π
k
s , π

k+1
s ) +Dh(π

k+1
s , πk

s ) ≤ ηk⟨Q̂k
s , π

k+1
s − πk

s ⟩
and since the Bregman divergences are none-negative and ηk > 0,

0 ≤ ⟨Q̂k
s , π

k+1
s − πk

s ⟩,
which proves the first inequality. Now we cannot use the above inequality directly with the perfor-
mance difference lemma since Q̂k

s is not the true action-value. Instead, we have

V k+1(ρ)− V k(ρ) =
1

1− γ
Es∼dk+1

ρ

[
⟨Qk

s , π
k+1
s − πk

s ⟩
]

=
1

1− γ
Es∼dk+1

ρ

[
⟨Qk

s − Q̂k
s , π

k+1
s − πk

s ⟩+ ⟨Q̂k
s , π

k+1
s − πk

s ⟩
]

≥ 1

1− γ
Es∼dk+1

ρ

[
− ∥Qk

s − Q̂k
s∥∞∥πk+1

s − πk
s ∥1

]
≥ 1

1− γ
Es∼dk+1

ρ

[
− 2τ

]
= − 2τ

1− γ
which concludes the proof. ■
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Using the above lemma, we can state and prove the extension of Lemma A.2 to the inexact setting.
Lemma A.5. Consider the policies produced by the iterative updates of IPMD in (9). For any k ≥ 0,
if ∥Q̂k

s −Qk
s∥∞ ≤ τ , then

Q̂k+1(s, a) ≥ Q̂k(s, a)− 2τγ

1− γ
, ∀(s, a) ∈ S ×A.

Proof. As in the exact case, since Lemma A.4 holds for any ρ ∈ ∆(S), it applies to each state, i.e for
all s ∈ S,

V k+1(s)− V k(s) ≥ − 2τ

1− γ
.

Using this, we immediately have

Qk+1(s, a)−Qk(s, a) = γ
∑
s′∈S

p(s′|s, a)
(
V k+1(s′)− V k(s′)

)
≥ −2τγ

1− γ
,

which concludes the proof. ■

B Performance difference lemma

Lemma B.1 (Performance Difference Lemma). For any π, π′ ∈ Π, we have

V π(ρ)− V π′
(ρ) =

1

1− γ
Es∼dπ

ρ

[
⟨Qπ′

s , πs − π′
s⟩
]
.

The performance difference lemma [14] is a property that relates the difference in values of policies
to the policies themselves. The proof can be found in their paper under Lemma 6.1.

C Guarantees of Theorem 4.1 for various step-size choices

We give here two more choices of {ck}k∈Z≥0
for the step-size 5 of PMD and their corresponding

guarantees from Theorem 4.1:

• ci = c0 for some c0 > 0 yields a step-size with a constant component. The resulting bound
is

∥V ⋆ − V k∥∞ ≤ γk∥V ⋆ − V 0∥∞ +
c0

1− γ
,

which converges linearly up to some accuracy controlled by c0.
• ci = γi+1c0 for some initial c0 > 0 will yield a step-size with a component that is

geometrically increasing as in [7], though at a slower rate than the one discussed in Section
4. The resulting bound is

∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ + kc0

)
,

which converges linearly with the sought-for γ-rate, though in early iterations the k factor
may dominate.
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Figure 1: Example MDP used in the proof of Theorem 4.2

D Proof of Theorem 4.2

Fix n > 0 and δ ∈ (0, (1 − γ)γn). Consider the MDP shown in Figure 1. The state space is
S = {s0, s1, s′1, ..., sn, s′n} and the action space is A = {a1, a2}. There is a chain of states of length
n+ 1 with the states indexed from 0 to n. The left-most state (s0) is absorbing with reward +1. In
the other states in the chain (si for i = 1, ..., n), the agent can take action a1 and move left (to si−1)
with reward of 0, or take action a2 and move to an additional absorbing state unique to the state it is
currently in (s′i) with reward ri = γi+1 + δ (that the agent also receives in that state for all future
time-steps). Summarising, we have for 1 ≤ i ≤ n

p(si−1|si, a1) = 1, r(si, a1) = 0,

p(s′i|si, a2) = 1, r(si, a2) = ri = γi+1 + δ,

p(s′i|s′i, a) = 1, r(s′i, a) = ri = γi+1 + δ ∀a ∈ A.

The value of δ is carefully restricted so that the optimal action in all the states of the chain is a1. The
proof will consist in showing that if the agent starts with an initial policy that places most probability
mass on the sub-optimal action a2, then it has to learn that a1 is the optimal action in the state directly
to the left before it can start switching from action a2 to a1 in the current state. And this can at best
happen one iteration at a time starting starting from the left-most state. In particular, we consider π0

s.t π0(a1|s) = α, π0(a2|s) = 1− α for all states and some α s.t 0 < α ≤ δ(1− γ). We make the
following claim from which the result will follow straightforwardly.

Claim: Fix k < n. The policies produced by PMD satisfy πk(a1|si) ≤ α for k < i ≤ n.

We prove this claim by induction.

Base Case: We want to show that π1(a1|si) ≤ α for i > 1. We do this by showing that Q0(si, a1) ≤
Q0(si, a2) for i > 1 so that the probability of π1(a1|si) cannot increase w.r.t π0(a1|si), which is α

17



(this follows from ⟨Qk
s , π

k+1
s − πk

s ⟩ ≥ 0 for all iterations of PMD). We have:

Q0(si, a1) = γV 0(si−1)

= γ
(
αQ0(si−1, a1) + (1− α)Q0(si−1, a2)

)
≤ γ

(
α
γi−1

1− γ
+

ri−1

1− γ

)
(a)

≤ γ
(
δ(1− γ)

γi−1

1− γ
+

γi + δ

1− γ

)
=

γi+1

1− γ
+

δγ(1 + γi−1 − γi)

1− γ
(b)

≤ γi+1

1− γ
+

δ

1− γ

= Q0(si, a2),

where we used α ≤ δ(1− γ) in (a) and γ(1 + γi−1 − γi) < 1 for γ ∈ [0, 1) in (b). This concludes
the base case.

Inductive Step: Now assume that the claim is true for k and we want to show that πk+1(a1|si) ≤ α
for i > k + 1. We do this in the same way as the base case by showing that Qk(si, a1) ≤ Qk(si, a2)
for i > k + 1 so that the probability of πk+1(a1|si) cannot increase w.r.t πk(a1|si), which is less
than or equal to α by the inductive hypothesis. We have:

Qk(si, a1) = γV k(si−1)

= γ
(
πk(a1|si−1)Q

k(si−1, a1) + πk(a2|si−1)Q
k(si−1, a2)

)
(a)

≤ γ
(
αQk(si−1, a1) +Qk(si−1, a2)

)
≤ γ

(
α
γi−1

1− γ
+

ri−1

1− γ

)
(b)

≤ γ
(
δ(1− γ)

γi−1

1− γ
+

γi + δ

1− γ

)
=

γi+1

1− γ
+

δγ(1 + γi−1 − γi)

1− γ
(c)

≤ γi+1

1− γ
+

δ

1− γ

= Qk(si, a2),

where we used in (a) that πk(a1|si−1) ≤ α for i > k + 1, which is true by the inductive hypothesis
since i− 1 > k, in (b) that α ≤ δ(1− γ) and in (c) that γ(1 + γi−1 − γi) < 1 for γ ∈ [0, 1). This
concludes the proof of the claim.

Now using the claim

V k(sk+1) = πk(a1|sk+1)Q
k(sk+1, a1) + πk(a2|sk+1)Q

k(sk+1, a2)

≤ α
γk+1

1− γ
+

rk+1

1− γ

= α
γk+1

1− γ
+

γk+2 + δ

1− γ
,
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so

V ⋆(sk+1)− V k(sk+1) ≥
γk+1

1− γ
− α

γk+1

1− γ
− γk+2 + δ

1− γ

=
γk+1(1− γ)

1− γ
− αγk+1 + δ

1− γ

≥ γk+1 − α+ δ

1− γ

≥ γk+1 − 2δ

1− γ
, (17)

where we used that α ≤ δ. Now note that

V 0(s1) = αQ0(s1, a1) + (1− α)Q0(s1, a2)

= α
γ

1− γ
+ (1− α)

γ2 + δ

1− γ
,

so

V ⋆(s1)− V 0(s1) =
γ

1− γ
− α

γ

1− γ
− (1− α)

γ2 + δ

1− γ

= (1− α)
γ

1− γ
− (1− α)

γ2 + δ

1− γ

=
1− α

1− γ

(
γ − γ2 − δ

)
≤ 1− α

1− γ

(
γ − γ2

)
= γ

1− α

1− γ

(
1− γ

)
= γ(1− α)

≤ γ

and by induction we can show this is the case for all states (above is base case), the inductive step is
as follows (assuming V ⋆(sk)− V 0(sk) ≤ γ),

V ⋆(sk+1)− V 0(sk+1) =
γk+1

1− γ
− (1− α)

γk+2 + δ

1− γ
− αγV 0(sk)

= (1− α)
[γk+1 − γk+2 − δ

1− γ

]
+ αγ

[
V ⋆(sk)− V 0(sk)

]
≤ (1− α)γk+1 + αγ2

≤ γ

and so

∥V ⋆ − V 0∥∞ ≤ γ,

which combining with (17) gives,

V ⋆(sk+1)− V k(sk+1) ≥ γk∥V ⋆ − V 0∥∞ − 2δ

1− γ

=⇒ ∥V ⋆ − V k∥∞ ≥ γk∥V ⋆ − V 0∥∞ − 2δ

1− γ
,

which concludes the proof. ■
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E Proof of Theorem 4.3

Consider the same MDP as in the proof of Theorem 4.2 in Appendix D (see Figure 1). Denote
c = 1−γ

8 and note that c <
√
γ

1+
√
γ

1−γ
2 since 1

4 <
√
γ

1+
√
γ for γ > 0.2.

Suppose you consider NPG updates with initial policy π0(a1|si) = α. Recall that NPG is the instance
of PMD with relative entropy as the mirror map. It can be shown that NPG has the closed form update

πk+1(a|s) = πk(a|s)eηkQ
k(s,a)∑

a′ πk(a′|s)eηkQk(s,a′)
.

We know from the proof of Theorem D that for any step-size regime, for i > k + 1

Qk(si, a1) ≤ Qk(si, a2).

Now, ∥V ⋆ − V 0∥∞ = V ⋆(s1)− V 0(s1) ≤ γ − δ
1−γ (see Section E.1 below). The idea of the proof

is to show that satisfying the bound given in the statement of the theorem will imply that a certain
condition on the step-size.

Fix a state sk and let k0 be the first iteration where Qk0(sk, a1) > Qk0(sk, a2). By the above, we
must have k ≤ k0 + 1, or k0 ≥ k − 1. By the proof of Theorem D, we also have πk0(a1|sk) ≤ α
(before iteration k0, Q(sk, ·) favors a2, so πk0(a1|sk) has not increased compared to π0(a1|sk) = α).

We want a γ-contraction at every iteration, i.e. we assume the following is satisfied:

V ⋆(sk)− V k0+1(sk) ≤ γk0+1(∥V ⋆ − V 0∥∞ + c) ≤ γk0+1(γ − δ

1− γ
+ c).

Now, by direct computation,

V ⋆(sk)− V k0+1(sk) = πk0+1(a1|sk)γ(V ⋆(sk−1)− V k0+1(sk−1)) + πk0+1(a2|s2)
γk − rk
1− γ

≥ πk0+1(a2|s2)
γk − rk
1− γ

= πk0+1(a2|s2)(γk − δ

1− γ
).

Putting this together with the above (this is an implication as this is about the necessity rather than
sufficiency), we must have:

πk0+1(a2|s2)(γk − δ

1− γ
) ≤ γk0+1(γ − δ

1− γ
+ c)

=⇒ πk0+1(a2|s2) ≤
γk0+1(γ − δ

1−γ + c)

(γk − δ
1−γ )

= β

If we choose δ < 1
2 (1− γ)(1−√

γ)γk then β <
√
γ and require

πk0+1(a2|s2) ≤
√
γ.
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To see this, start from β ≤ √
γ, this is equivalent to

γk0+1(γ − δ
1−γ + c)

(γk − δ
1−γ )

≤ √
γ

⇐=
γk(γ − δ

1−γ + c)

(γk − δ
1−γ )

≤ √
γ since k0 + 1 ≥ k

⇐⇒ γk(γ − δ

1− γ
+ c) ≤ √

γ(γk − δ

1− γ
)

⇐= γk(γ + c) ≤ √
γ(γk − δ

1− γ
)

⇐⇒ γk− 1
2 (γ + c) ≤ γk − δ

1− γ

⇐⇒ δ

1− γ
≤ γk− 1

2 (
√
γ − γ − c)

⇐=
δ

1− γ
≤ γk− 1

2 (
√
γ − γ −

√
γ

1 +
√
γ

1− γ

2
) since − c > −

√
γ

1 +
√
γ

1− γ

2

⇐⇒ δ

1− γ
≤ γk− 1

2 (
√
γ − γ −

√
γ

2
(1−√

γ))

⇐⇒ δ

1− γ
≤ γk− 1

2 (
√
γ − γ −

√
γ

2
+

γ

2
)

⇐⇒ δ

1− γ
≤ γk− 1

2 (

√
γ

2
− γ

2
)

⇐⇒ δ ≤ 1

2
γk(1−√

γ)(1− γ),

which is the condition for δ we imposed initially.

To achieve the above condition πk0+1(a2|s2) ≤
√
γ, recalling that πk0(a2|s2) ≥ 1− α, ηk0 has to

satisfy

ηk0
≥ 1

Qk0(sk, a1)−Qk0(sk, a2)

[
log((1− α)(1−√

γ)) +KL(π̃k0+1
sk

, πk0
sk
)
]

To see this, again start from πk0+1(a2|s2) ≤
√
γ, this is equivalent to (use k0 = m for simplicity of

notation) using the closed-form update of NPG:
πm(a2|s2) exp(ηmQm(sk, a2)) ≤√
γ(πm(a2|s2) exp(ηmQm(sk, a2)) + πm(a1|s2) exp(ηmQm(sk, a1)))

⇐⇒ 1
√
γ
≤ 1 +

πm(a1|s2)
πm(a2|s2)

exp(ηm(Qm(sk, a1)−Qm(sk, a2)))

⇐⇒
1−√

γ
√
γ

πm(a2|s2)
πm(a1|s2)

≤ exp(ηm(Qm(sk, a1)−Qm(sk, a2)))

⇐⇒ ηm(Qm(sk, a1)−Qm(sk, a2)) ≥ log
(1−√

γ
√
γ

πm(a2|s2)
πm(a1|s2)

)
⇐⇒ ηm ≥ 1

Qm(sk, a1)−Qm(sk, a2)

[
log

(1−√
γ

√
γ

πm(a2|s2)
)
+ log

( 1

πm(a1|s2)

)]
=⇒ ηm ≥ 1

Qm(sk, a1)−Qm(sk, a2)

[
log

(
(1− α)

1−√
γ

√
γ

)
+KL(π̃m+1

sk
, πm

sk
)
]

=⇒ ηm ≥ 1

Qm(sk, a1)−Qm(sk, a2)

[
log

(
(1− α)(1−√

γ)
)
+KL(π̃m+1

sk
, πm

sk
)
]
.

As we take α → 0, the KL term will dominate. In particular, note α < 1− γ so 1− α > γ and
(1− α)(1−√

γ) > γ(1−√
γ)
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and if we further impose the condition α < γ2(1−√
γ)2 then

(1− α)(1−√
γ) >

√
α >

√
πk0(a1|s2)

and the step-size needs to satisfy the following condition:

ηk0 ≥ 1

Qk0(sk, a1)−Qk0(sk, a2)

[
log(

√
πk0(a1|s2)) +KL(π̃k0+1

sk
, πk0

sk
)
]

=
1

Qk0(sk, a1)−Qk0(sk, a2)

[
− 1

2
KL(π̃k0+1

sk
, πk0

sk
) +KL(π̃k0+1

sk
, πk0

sk
)
]

=
1

2(Qk0(sk, a1)−Qk0(sk, a2))
KL(π̃k0+1

sk
, πk0

sk
) (18)

Distinct Iterations: Note that the iteration k0(sk) where Q(·, sk) starts becoming bigger at a1 that
a2 is distinct for each sk. Fix any sk and k0 = k0(sk). We have

Qk0(sk, a1) < Qk0(sk, a2)

Qk0+1(sk, a2) ≤ Qk0+1(sk, a1)

then πk0+1(a1|sk) ≤ πk0(a1|sk) ≤ α (since Qt points towards a2 in sk for all t ≤ k0). Then
applying exactly the same steps as in the proof of Theorem 4.2, we have

Qk0+1(sk+1, a1) < Qk0+1(sk+1, a2),

meaning that k0(sk) is disctinct to k0(sk+1).

Upper Bounding Q-value difference: We want to upper-bound the Q-value difference appearing in
the step-size condition above. We have,

Qk0(sk, a2) =
rk

1− γ
=

γk+1 + δ

1− γ

Qk0(sk, a1) = γV k0(sk−1) ≤
γk

1− γ
.

So,

Qk0(sk, a1)−Qk0(sk, a2) ≤
γk

1− γ
− γk+1 + δ

1− γ

= γk − δ

1− γ

≤ γk.

Plugging this into the above bound (18), if the iterates of NPG are to satisfy the bound with the γ-rate
in the statement of the theorem, the step-size must at least satisfy the following condition:

ηk0 ≥ 1

2γk
KL(π̃k0+1

sk
, πk0

sk
),

which concludes the proof. ■

E.1 Largest sub-optimality gap at iteration 0

In this section, we prove the claim that

∥V ⋆ − V 0∥∞ = V ⋆(s1)− V 0(s1) ≤ γ − δ

1− γ

Proof: First of all, V ⋆(s1)− V 0(s1) = π0(a2|s1)γ−r1
1−γ = (1− α)(γ − δ

1−γ ) ≤ γ − δ
1−γ . For the

first part, we proceed by induction. We will use throughout that

γk − rk
1− γ

= γk − δ

1− γ
≤ V ⋆(s1)− V 0(s1) = (1− α)(γ − δ

1− γ
).
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This is true if (when LHS is the largest)

γ2 − δ

1− γ
≤ (1− α)(γ − δ

1− γ
)

which holds when

α ≤ γ(1− γ)2

γ(1− γ)− δ

⇐= α ≤ 1− γ

Base Case:

V ⋆(s2)− V 0(s2) = αγ(V ⋆(s1)− V 0(s1)) + (1− α)
γ2 − r2
1− γ

≤ αγ(V ⋆(s1)− V 0(s1)) + (1− α)(V ⋆(s1)− V 0(s1))

≤ V ⋆(s1)− V 0(s1)

Inductive Step: Assume true for k. Then,

V ⋆(sk+1)− V 0(sk+1) = αγ(V ⋆(sk)− V 0(sk)) + (1− α)
γk+1 − rk+1

1− γ

≤ αγ(V ⋆(s1)− V 0(s1)) + (1− α)(V ⋆(s1)− V 0(s1))

≤ V ⋆(s1)− V 0(s1),

which concludes the proof. ■
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F Inexact policy mirror descent and the generative model

The following Lemma from [7] controls the accuracy of the estimator Q̂k
s specified in (10) of Section

5 with respect to H and Mk:
Lemma F.1 (Lemma 15 in [7]). Consider using (10) to estimate Qk

s for all state-action pairs for K
iterations of IPMD. Then for δ ∈ (0, 1), if for all k ≤ K,

Mk ≥ γ−2H

2
log

(2K|S||A|
δ

)
.

Then with probability at least 1− δ, we have for all k ≤ K,

∥Q̂k
s −Qk

s∥∞ ≤ 2γH

1− γ
.

The proof of this result can be found in Lemma 15 of [7].

F.1 Proof of Theorem 5.1

This proof is similar to that of [7] (Theorem 14). It is also similar in structure to the proof of Theorem
4.1 in Section 6.

Fix a state s ∈ S and an integer k ≥ 0. For now let’s assume that our Q-estimates are τ -accurate
(τ > 0), i.e.

∥Qk − Q̂k∥∞ ≤ τ

for all k ≥ 0. With this assumption, we have from Lemma A.5 in Appendix A.1,

Qk+1(s, a) ≥ Qk(s, a)− 2γτ

1− γ
, ∀(s, a) ∈ S ×A.

Now proceeding in a similar way to Section 6,

⟨Q̂k
s , π

⋆
s − πk+1

s ⟩ = ⟨Qk
s , π

⋆
s − πk+1

s ⟩+ ⟨Q̂k
s −Qk

s , π
⋆
s − πk+1

s ⟩
≥ ⟨Qk

s , π
⋆
s ⟩ − ⟨Qk

s , π
k+1
s ⟩ − ∥Q̂k

s −Qk
s∥∞∥π⋆

s − πk+1
s ∥1

≥ ⟨Qk
s , π

⋆
s ⟩ − ⟨Qk+1

s , πk+1
s ⟩ − 2γτ

1− γ
− 2τ

≥ ⟨Qk
s , π

⋆
s ⟩ − V k+1(s)− 4γτ

1− γ

= ⟨Qk
s −Q⋆

s, π
⋆
s ⟩+ V ⋆(s)− V k+1(s)− 4γτ

1− γ

≥ −∥Q⋆
s −Qk

s∥∞ + V ⋆(s)− V k+1(s)− 4γτ

1− γ

≥ −γ∥V ⋆ − V k∥∞ + V ⋆(s)− V k+1(s)− 4γτ

1− γ
.

Now again proceeding exactly as in Section 6 with this extra τ -term using the step-size condition
(ck = γ2k+1), we end up with

∥V ⋆ − V k+1∥∞ ≤ γ∥V ⋆ − V k∥∞ + γ2k+1 +
4γτ

1− γ
.

Unravelling this recursion yields

∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ +

k∑
i=1

γ−iγ2(i−1)+1
)
+

4γτ

1− γ

k−1∑
i=0

γi

≤ γk
(
∥V ⋆ − V 0∥∞ +

1

1− γ

)
+

4γτ

(1− γ)2
.
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Now using the properties of the estimator (10) in Lemma F.1, we have with probability 1− δ for all
0 ≤ k ≤ K,

τ =
2γH

1− γ
,

giving

∥V ⋆ − V k∥∞ ≤ γk
(
∥V ⋆ − V 0∥∞ +

1

1− γ

)
+

8γH

(1− γ)3

≤ 2

1− γ
γk +

8γH

(1− γ)3
.

This establishes the first bound. Now

K >
1

1− γ
log

4

(1− γ)ε
=⇒ 2

1− γ
γk ≤ ε/2,

H ≥ 1

1− γ
log

16

(1− γ)3ε
=⇒ 8γH

(1− γ)3
≤ ε/2

giving

∥V ⋆ − V k∥∞ ≤ ε/2 + ε/2 = ε

as required. In terms of M, we have

M ≥ γ−2H

2
log

2K|S||A|
δ

≥ 1

2

( 16

(1− γ)3ε

)2

log
2K|S||A|

δ

=
162

2(1− γ)6ε2
log

2K|S||A|
δ

and the corresponding number of calls to the sampling model, i.e. the sample complexity is (what we
have shown above is actually a lower bound but can choose K,H,M so that it is of the following
order),

|S| · |A| ·K ·H ·M = Õ
( |S||A|
(1− γ)8ε2

)
,

where the notation Õ() hides poly-logarithmic factors. This completes the proof. ■
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G MDP examples

G.1 MDP on which distribution-mismatch coefficient scales with size of state space

We construct an MDP on which

θρ =
1

1− γ

∥∥∥d⋆ρ
ρ

∥∥∥
∞
,

scales with |S|, and hence so does the iteration complexity of the bound of [7] for exact PMD.

Consider an MDP with state-space S = {s1, s2, ..., sn} of size n and arbitrary action space A. s1 is
an absorbing state giving out rewards of 1 at each time-step, regardless of the action taken, i.e

p(s1|s1, a) = 1, r(s1, a) = 1 ∀a ∈ A.

All others states have an action, say a1, that gives out a reward of 1 and with probability 1− δ brings
the agent to state s1 for some δ > 0 and spreads the remaining δ probability arbitrarily amongst the
other states. The other actions have arbitrary rewards strictly less than 1 associated to them, and
arbitrary transition probabilities that place 0 mass on state s1, i.e

p(s1|s, a1) = 1− δ, r(s, a1) = 1 ∀s ̸= s1,

p(s1|s, a) = 0, r(s, a) < 1 ∀s ̸= s1,∀a ̸= a1.

Denote rmax = maxs̸=s1,a̸=a1
r(s, a) < 1. The following condition ensures that a1 is the optimal

action in all states,

δ ≤ 1− γ

γ
(1− rmax)

so that π⋆(s) = a1 for all states s. To see this, consider si ̸= s1, am ̸= a1 and an arbitrary policy π,

Qπ(si, a1) = 1 + γ
( 1− δ

1− γ
+

n∑
j=2

p(sj |si, a1)V π(sj)
)

≥ 1 + γ
1− δ

1− γ

Qπ(si, am) = r(si, am) + γ

n∑
j=2

p(sj |si, a1)V π(sj)

≤ rmax + γ
1

1− γ

and solving

rmax + γ
1

1− γ
≤ 1 + γ

1− δ

1− γ

will yield the condition above.

Then for t ≥ 1 (abusing notation, st denotes the state at time t),

Pπ⋆

(st = s1|s0 = s) =
∑
s′

Pπ⋆

(st = s1, st−1 = s′|s0 = s)

=
∑
s′

p(s1|s′, a1)Pπ⋆

(st−1 = s′|s0 = s)

≥
∑
s′

(1− δ)Pπ⋆

(st−1 = s′|s0 = s)

= 1− δ
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and

d⋆ρ(s1) = (1− γ)
∑
s

ρ(s)

∞∑
t=0

γtPπ⋆

(st = s1|s0 = s)

≥ (1− γ)
∑
s

ρ(s)

∞∑
t=1

γt(1− δ)

≥ (1− γ)
∑
s

ρ(s)
γ

1− γ
(1− δ)

= γ(1− δ).

Now ∥∥∥d⋆ρ
ρ

∥∥∥
∞

≥
d⋆ρ(s1)

ρ(s1)
≥ γ(1− δ)

ρ(s1)

and depending on what ρ you consider, θρ can be arbitrarily large. In particular, the natural choice of
the uniform starting-state distribution ρ(s) = 1/n leads to

θρ ≥ n
γ(1− δ)

(1− γ)

which gives an iteration complexity under the result of [7] for an ε-optimal policy that is

n
γ(1− δ)

(1− γ)
log

2

(1− γ)ε
.

Recall that n = |S|, so this iteration complexity scales linearly with the size of the state space.

G.2 Family of MDPs on which sub-optimality gaps can be made arbitrarily small

We present how to construct a family of MDPs on which ∆k(s) defined in Section 4 can be made
arbitrarily small.

Consider an arbitrary MDP M with state space S and action space A. For each state-action pair
(s, a) ∈ S × A, create a duplicate action a′ s.t the transitions from that action in that state are the
same as for the original pair, i.e

p(s′|s, a) = p(s′|s, a′) ∀s′ ∈ S

and the reward is shifted down by δ > 0 from the original reward, i.e

r(s, a′) = r(s, a)− δ.

This results in a new MDP M′ with an augmented action space A′, that is twice the size of the action
space of the original MDP M. In terms of action-value of an arbitrary policy π, this results in

Qπ
M′(s, a)−Qπ

M′(s, a′) = δ,

where the notation Qπ
M′ refers to action-values in the MDP M′. In terms of sub-optimality gaps, this

gives

∆π(s) ≤ δ.

Choosing δ small enough, we can make the step-size of [9] arbitrarily large, at least in early iterations.
The step-size condition (5) of Theorem 4.1 will be less affected by this issue as it does not depend
directly on ∆k(s), and not at all in the first iteration. Beyond its generality to PMD, this illustrates
the benefit of our result restricted to NPG over the result of [9].
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