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ABSTRACT

Despite their outstanding performance in the majority of scenarios, contemporary
language models still occasionally produce undesirable outputs, for example, hal-
lucinated text. While such behaviors have previously been linked to uncertainty,
there is a notable lack of methods that actively consider uncertainty during text
generation. In this work, we show how Minimum Bayes’ Risk (MBR) decoding, a
method that was originally designed to account for the imperfect nature of proba-
bilistic language models, can be generalized into a principled uncertainty-aware
decoding method. In short, we account for model uncertainty during decoding
by incorporating a posterior over model parameters into MBR’s computation of
expected risk. We show that this modified expected risk is useful for both choosing
outputs and deciding when to abstain from generation. We benchmark different
methods for learning posteriors and show that performance correlates with the
diversity of the combined set of models’ predictions.

1 INTRODUCTION

Today’s language models can generate fluent and coherent text. While they perform well in many
scenarios, there are still instances where they fail and, for example, hallucinate factually incorrect
outputs or generate harmful language (Ye et al., 2023; Bhandari & Brennan, 2023). Previous works
have shown that out-of-distribution inputs (Ren et al., 2023) and (epistemic) uncertainty (Xiao &
Wang, 2021; van der Poel et al., 2022; Fadeeva et al., 2024) are indicative of these behaviors—both
phenomena which can be linked to uncertainty about model parameters. Yet there is still a lack of
methods that react to or adjust for this type of uncertainty during decoding in language generation.

Minimum Bayes’ Risk (MBR) decoding was originally proposed for statistical machine transla-
tion (Kumar & Byrne, 2002), motivated by similar model shortcomings. The idea of MBR is to make
use of the entire distribution when choosing an output, because, while the model distribution might be
a good overall representation of the target distribution (Smith, 2011), individual samples might not be
adequate. More recent works have shown that such problems persist with modern models (Stahlberg
& Byrne, 2019; Cohen & Beck, 2019; Eikema & Aziz, 2020), precipitating the resurgence of MBR.
In this work, we show how a small adjustment to MBR decoding can enhance it beyond this scope
and turn it into an uncertainty-aware decoding method.

In short, we modify MBR’s definition of expected risk by incorporating an additional expectation
over a posterior distribution over model parameters. This adjustment enables us to account for
uncertainty in parameter estimates when judging the quality of different hypotheses from a model.
In practice, this boils down to combining the predictions of multiple models—sampled from an
estimate of the Bayesian posterior—when generating hypotheses for MBR. Model combinations have
been shown to provide better-calibrated distributions and can improve robustness and downstream
performance (Blundell et al., 2015; Lakshminarayanan et al., 2017; Maddox et al., 2019; Shen et al.,
2024). Our framework provides theoretical justification for performing such combinations.

We explore both sequence-level and token-level methods for model combination. Overall, we find
strong evidence that accounting for such weight uncertainty can improve decoding and reduce
hallucinations. We find that improvements trend with the expressiveness of the posterior that is used
to sample models for combination. Likely related to this, the performance of uncertainty-aware MBR
is highly correlated with the prediction diversity across the combined models. We also find that weight
uncertainty provides a useful signal for selective prediction, where we observe that uncertainty-aware
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expected risk can be used to decide when to predict or abstain from generation. Furthermore, we
show that performance scales: it improves with more models and larger hypothesis set sizes. Finally,
we show the effectiveness of this framework when used to ensemble outputs from black-box LLMs.

2 BACKGROUND

2.1 PROBABILISTIC LANGUAGE GENERATION

Modern models for language generation are predominantly locally-normalized, autoregressive models
of a conditional distribution over next tokens. The probability of a sequence of tokens forming a
string can be determined by the product of all next-token probabilities in the sequence. Formally,
given input x and model pθ the probability of an output sequence y = ⟨y1, y2, . . . ⟩ is computed as

pθ(y | x) =
|y|∏
t=1

pθ(yt | y<t,x). (1)

Here, each yt is a token from some predetermined vocabulary V and θ ∈ Rd are the parameters of the
model which are also often called weights. The input x could be text but, for example, also images.

Learning pθ. The parameters of models pθ are generally learned given paired examples
D = {x(i),y(i)}Ni=1, a loss function and an optimization procedure. The loss function then in-
dicates how well the model pθ captures the data-generating distribution p(· | x) that we assume D is
sampled from. In most cases, language generation models are learned by minimizing an empirical risk
over data examples in terms of one parameter set θ ∈ Rd, for example, using AdamW (Loshchilov &
Hutter, 2019). However, such approaches can not directly model weight uncertainty. In this work, we
instead use Bayesian methods to model weight uncertainty. We describe them in §3.1 and §4.1.

Decoding from pθ. At inference time, our goal is to generate a string from pθ(· | x). The set of
decision rules used in this process is often referred to as the decoding strategy. One such strategy
is simply to sample tokens autoregressively until a stopping criterion, usually a fixed maximum
length or a special end-of-sequence token, is met. Another strategy is to (approximately) search
for the maximum probability string according to pθ(· | x). Both of these approaches have proved
problematic empirically (Fan et al., 2018; Holtzman et al., 2020; Eikema & Aziz, 2020; Hewitt et al.,
2022), prompting the exploration of alternative strategies. The shortcomings of all of these strategies
have been (at least partially) attributed to the fact that they do not consider a string’s utility, which
may not perfectly align with its probability. Minimum Bayes Risk decoding aims to solve this issue.

2.2 MINIMUM BAYES RISK DECODING

Minimum Bayes Risk decoding is derived from Bayesian Decision Theory, which states that optimal
decisions are those that minimize an expected risk or, equivalently, maximize an expected utility
(see DeGroot, 2005, inter alia). Given a utility function u : V∗ × V∗ → R≥0 which assigns to each
pair of strings a non-negative utility, MBR aims to find the string that maximizes expected utility
with respect to the target distribution. This principle is especially appealing when working with
a possibly imperfect model of the target distribution, such as pθ, because it allows using the full
model distribution instead of relying on the adequacy of individual samples, which is argued to be
the downfall of other decoding strategies (Eikema & Aziz, 2020). We thus choose the hypothesis:

y∗ = argmax
y′∈V∗

E
y∼pθ(·|x)

[u(y,y′)] (2)

= argmax
y′∈V∗

∑
y∈V∗

pθ(y | x)u(y,y′). (3)

There are several obstacles to computing Eq. (3). Both summing over all possible strings in V∗ to
compute the expectation and searching over them to find the expectation-maximizing hypothesis are
computationally infeasible.1 Thus, approximations to Eq. (3) are used in practice.

1The latter problem is not unique to MBR, and faced by all maximization-based decoding strategies for
autoregressive language generators. Hence, approximation algorithms are also used for these strategies.
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The common approach to circumvent these obstacles is to employ an (often Monte Carlo) estimator
of the expected utility and limit the search space to a subset of V∗. Since the estimator requires a
sample of strings from the distribution of interest, the same strings are often used in both the utility
estimation and approximate search.2 We refer to this collection as the hypothesis set and denote the
samples used in our estimator as H = [y(i)]Ni=1. In the case of a Monte Carlo estimator, where all
y(i) ∼ pθ, we denote this collection as Hθ. This leads to the following approximation to Eq. (3):3

ŷ∗ = argmax
y′∈Hθ

∑
y∈Hθ

u(y,y′). (4)

Most prior work has focused on making the approximation in Eq. (4) more efficient (Eikema & Aziz,
2022; Fernandes et al., 2022; Cheng & Vlachos, 2023; Vamvas & Sennrich, 2024) or on better choices
for utility functions (Freitag et al., 2022) but few have considered an important underlying assumption:
that pθ is a good substitute for p. If uncertainty over the suitable model parameters θ (i.e. weight
uncertainty) is high, e.g., when training data is limited, using a single pθ may not provide a good
substitute. Bayesian modeling already provides tools to account for such uncertainty by marginalizing
a distribution over possible parameters. However, this has been largely neglected in MBR despite
its roots in Bayesian Decision Theory. We use this approach next to establish uncertainty-aware
decoding schemes that account for weight uncertainty.

3 MINIMUM BAYES’ RISK DECODING WITH WEIGHT-UNCERTAINTY

In this section, we show how a simple change can turn MBR into an uncertainty-aware decoding
method. We first introduce weight uncertainty. Then, we use it to establish an uncertainty-aware
variant of MBR before presenting three practical decoding methods based on it.

3.1 GENERALIZING MBR WITH WEIGHT UNCERTAINTY

Placing a probability distribution over model parameters is an oft-employed method for modeling
weight uncertainty, where each valid parameterization is attached a probability that can be calculated
using Bayes’ theorem as p(θ | D) ∝ p(D | θ) · p(θ) with prior p(θ) and based on data D (Graves,
2011; Blundell et al., 2015; Maddox et al., 2019; Osawa et al., 2019; Möllenhoff & Khan, 2023;
Yang et al., 2024). In general, calculating an exact distribution p(θ | D) over model parameters
is intractable and therefore an approximate distribution q(·) is usually used. There are numerous
methods one can use for obtaining q(·); we discuss the ones that we employ in §4.1 and §4.2.

Access to a posterior q(·) allows prediction by combining the outputs of multiple pθ, weighted by
the probability q(θ) of each parameterization θ. The resulting distribution is often referred to as
the predictive posterior distribution, which we denote as pΘ. Empirically, this has been shown to
improve calibration (Yang et al., 2024) and uncertainty estimation (Shen et al., 2024). However, in
modern language generation, it is not immediately clear how model predictions should be combined
in practice. Combining predictions in probability space is difficult for several reasons: for example,
frequently-used black-box APIs do not provide sequence- or token-level probabilities. Standard
Monte-Carlo-based methods that would avoid this issue are also potentially problematic: even for
larger sample sizes, a given string would likely only be sampled once. And while generations might
be approximately similar, e.g., differing only in punctuation, this approach treats them as completely
disparate. We now show how MBR provides a logical framework for combining model predictions
that circumvents these issues.

We propose the following generalization of standard MBR. By replacing the definition of pθ in Eq. (3)
with the predictive posterior pΘ, we can account for weight uncertainty:4

yΘ = argmax
y′∈V∗

∑
y∈V∗

pΘ(y | x)u(y,y′). (5)

We recover standard MBR when using the delta method to approximate pΘ, i.e., approximating the
predictive posterior using one model parameterized by the mean of q (Khan & Rue, 2023, App. C).

2Some works have explored using different subsets for these two steps (Eikema & Aziz, 2022; Fernandes
et al., 2022); we leave the exploration of the interaction of this design choice with our methods to future work.

3We drop the normalizing term for succinctness as it does not affect the argmax operation.
4Here, Θ denotes all possible parameterizations θ of the model and is used to indicate a predictive posteror.
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The oft-employed Monte-Carlo-based approximations of MBR do not require knowledge of string
probabilities—only the ability to sample from the model. Further, the utility function is often a
quantification of a soft match between strings, meaning similarities between samples are accounted
for rather than treating them as completely distinct.

For autoregressive sequence generation, there are two logical definitions of the predictive posterior
pΘ, each with different Monte Carlo estimators. One averages models’ probabilities for each token
and one for entire sequences. In general, both do not provide the same sequence probabilities and can
lead to differing decisions, as discussed in Malinin & Gales (2021, Sec. 3, App.A), who use them for
uncertainty estimation in structured prediction tasks. We discuss these definitions and our decoding
methods derived from them next.

3.2 SEQUENCE-LEVEL POSTERIORS FOR UNCERTAINTY-AWARE DECODING

While autoregressive language models are trained to model a distribution over tokens, the quantity of
interest is often the probability of an entire sequence. Therefore it is natural to model a predictive
posterior on a sequence-level by using an expectation over sequence probabilities:

p(seq)
Θ (y | x) := E

θ∼q
[pθ(y | x)] . (6)

Using this definition of the predictive posterior to replace the model distribution in Eq. (3) turns out
to allow two convenient ways of soft model averaging, where the latter is due to the following: when
u is bounded5 or non-negative Fubini’s theorem allows to switch the order of the two expectations
in Eq. (5) (the one over models is implicit in the definition of p(seq)

Θ ) (DeGroot, 2005, Sec. 8.9):

yΘ = argmax
y′∈V∗

∑
y∈V∗

E
θ∼q

[pθ(y | x)]u(y,y′) (7)

= argmax
y′∈V∗

E
θ∼q

[ ∑
y∈V∗

pθ(y | x)u(y,y′)
]
. (8)

In practice, we can build simple Monte Carlo estimators of Eq. (7) and Eq. (8) by estimating expected
utilities on all generated hypotheses or by independently estimating utilities for each model and then
summing the per-model utilities of each hypothesis. Formally, this means either using the hypothesis
set HM = ⊎θ∈MHθ in Eq. (4) or using Eq. (4) with each Hθ before summing the expected utility
of each y ∈ ∪θ∈MHθ over the θ. Here, ⊎ indicates the additive union, meaning that HM allows
duplicates to preserve sample counts. Furthermore, we denote with M = {θ(i) ∼ q(θ)}Mi=1 an
ensemble of models sampled i.i.d from q. Our approximate solutions then become:3

ŷΘ = argmax
y′∈HM

∑
y∈HM

u(y,y′) (9) ŷΘ = argmax
y′∈HM

∑
θ∈M

∑
y∈Hθ

u(y,y′). (10)

This is convenient because it allows us to ensemble any set of LLMs given just the ability to sample
from them, i.e., we do not require access to model probabilities, and can easily be parallelized.
For Eq. (10), even utility computation can be parallelized. There are trade-offs between the two
estimators.

Computational Costs. Eq. (9) requires (|M| · |Hθ|)2 utility computations, which might be im-
practical for large sizes of Hθ but, intuitively, the larger amount of comparisons might be helpful
for MBR. Eq. (10) is fast, as it requires only |M| · |Hθ|2 utility computations and can enable using
larger hypothesis set sizes.

Discussion. In Eq. (9), taking HM to be a multi-set rather than a union of hypothesis sets maintains
sample counts. Formally, this means that Eq. (9) provides an unbiased estimate of Eq. (7). Intuitively,
this is advantageous because it means that highly probable sequences can contribute more to the
decision. This differentiates ours from prior work, such as Kobayashi (2018, Alg. 1), who rather use
a set union. Recent work (Farinhas et al., 2023) also uses Eq. (9) but does not explore the connection

5Many commonly used utility functions for MBR are bounded and non-negative. For example, BLEU (Pap-
ineni et al., 2002) and BERTScore (Zhang et al., 2020) return scores from 0 to 100 or 0 to 1, respectively.
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to weight uncertainty. Our methods draw parallels between MBR, which aims to minimize expected
risk, and PAC-Bayes bounds (Alquier, 2024), which study the expected risk of predictive posteriors.
Finally, it also helps to understand early system aggregation methods that use similar decision rules
as shown here, e.g., by optimizing scalar model weights (González-Rubio et al., 2011, Eq. 8).

3.3 TOKEN-LEVEL POSTERIORS FOR UNCERTAINTY-AWARE DECODING

We further explore predictive posteriors which combine models by averaging token probabilities:

p(tok)
Θ (y | x) :=

T∏
t=1

E
θ∼q

[pθ(yt | y<t,x)] . (11)

Since summing over all possible models is intractable, we use the following Monte Carlo estimator,
which simply averages the token-level probabilities of the models M during generation:

p̂ (tok)
Θ (yt | y<t,x) =

1

|M|
∑
θ∈M

pθ(yt | y<t,x). (12)

When sampling the hypotheses set HΘ from this distribution, i.e., sampling each token according to
p̂ (tok)
Θ , an MBR estimator like the one in Eq. (5) can be used to incorporate weight-uncertainty:3

ŷΘ = argmax
y′∈HΘ

∑
y∈HΘ

u(y,y′). (13)

There are several intuitive reasons why this should improve decoding. Perhaps the foremost is
that probabilities obtained from model averaging are often better-calibrated than those of a single
model (Yang et al., 2024; Shen et al., 2024, inter alia). Connected to this, since predictive uncertainty
has been shown to correlate with hallucinations (Xiao & Wang, 2021), one hope would be that
incorporating weight uncertainty through averaging output probabilities of multiple models would
downweigh potentially hallucinated outputs.

Computational Costs. Token-level posteriors only require |H|2-many MBR comparisons when
the hypothesis set size is equal to |H|. Sequence-level combination requires |M| · |H|2-many
comparisons for Eq. (10) or even (|M| · |H|)2-many comparisons for Eq. (9) if all hypothesis sets
have the same size. However, fitting all models for token-level combination on one GPU can be
hard and communication overhead is high when distributing them across GPUs. Further, token-level
posteriors can not be used with black-box APIs that do not provide token-level probabilities.

3.4 SELECTIVE PREDICTION WITH BAYES’ RISK

For some inputs, for example, grammatically-incorrect strings, even a good model may not provide
good predictions. Then, it can be wise to abstain from answering and, e.g., defer to a human expert
instead. Selective prediction tackles this by abstaining for inputs (or outputs) that score highly in
some criterion s : V∗ → R that assigns a score for a given input x. (Geifman & El-Yaniv, 2017; Ren
et al., 2023; Kuhn et al., 2023). In practice, given α > 0 and a test dataset Dtest, we only evaluate the
model’s answers for the top-⌈α · |Dtest|⌉ examples according to s. If s is reliable, performance should
improve as α decreases and we evaluate a smaller and smaller subset of outputs.

Expected utility promises to be a good criterion: if we expect low utility, we should abstain from
answering; if we expect high utility, we can place more trust in the model’s answer. We compare
different methods for using expected utility as the selective prediction criterion. We first consider the
maximum-utility output in HΘ or HM for Eq. (13) and Eq. (10), i.e:3

s∗tok(x) = max
y′∈HΘ

∑
y∈HΘ

u(y,y′) s∗seq(x) = max
y′∈HM

∑
θ∈M

∑
y∈Hθ

u(y,y′). (14)

Note that we can easily define a similar risk for Eq. (9) by replacing HΘ with HM in the definition
of s∗tok(x). Another strategy is to use the expected utility across outputs for the given input. We can
do this by averaging the utility of all outputs in the hypothesis set HΘ or HM.3

s̄tok(x) =
∑

y′∈HΘ

∑
y∈HΘ

u(y,y′) s̄seq(x) =
∑
θ∈M

∑
y′∈Hθ

∑
y∈Hθ

u(y,y′). (15)
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4 EXPERIMENTS & RESULTS

Here, we demonstrate empirically that incorporating weight uncertainty can improve decoding. First,
we provide brief experimental details and discuss how we learn weight uncertainty in §4.1. More
details about our experiments are found in App. A. Then, we show results using prompted, finetuned
and from-scratch-trained models in §4.2, where we explore different posteriors and model combi-
nation methods. §4.3 looks into the trade-off between performance and ensemble diversity and §4.4
Bayes’ risk for selective prediction. Finally, we show the scaling behavior of various methods in §4.5.

4.1 EXPERIMENTAL DETAILS

Datasets. We use WMT14 (Bojar et al., 2014), IWSLT14 (Cettolo et al., 2014), afroMT (Reid et al.,
2021), IWSLT17 (Cettolo et al., 2017), WMT18 (Bojar et al., 2018), and WMT19 (Barrault et al.,
2019) for machine translation, XSUM (Narayan et al., 2018) and SAMSum (Gliwa et al., 2019) for
summarization, E2E-NLG (Novikova et al., 2017) for data-to-text generation, and STS-B (Cer et al.,
2017) for scoring. For the latter, the model outputs a string representation of its numerical prediction
and MBR corresponds to an empirical mean of the numerical predictions (Lukasik et al., 2024).

Models. We zero-shot prompt Llama-3 8B (Dubey et al., 2024), Mistral 7B (Jiang et al., 2023),
Gemma-2 9B (Gemma Team, 2024a), and Qwen-2 7B (Yang et al., 2024). We finetune Gemma-2B-
it (Gemma Team, 2024b) using LoRA (Hu et al., 2022) with ca. 0.9M trainable parameters. For
training from scratch, we use the Transformerbig architecture with ca. 261M parameters for WMT14
and Transformerbase with 86M-126M parameters otherwise, following Vaswani et al. (2017).

Metrics. For machine translation, we use the SacreBLEU implementation (Post, 2018) of BLEU (Pa-
pineni et al., 2002), chrF (Popović, 2015), the quality estimator COMET22 (Rei et al., 2022), and
LaBSE (Feng et al., 2022) to evaluate hallucinations which has shown strong correlation with human
judgements (Dale et al., 2023; Himmi et al., 2024). For Summarization and data-to-text generation
we use ROUGE (Lin, 2004) and regression is evaluated using root mean-squared error (RMSE). We
use FactCC for hallucination evaluation on XSUM (Kryscinski et al., 2020). For the utility function
u we use BERTScore (Zhang et al., 2020), except for IWSLT14 and afroMT, where we use BLEU.

Learning weight uncertainty. We use the variational learning algorithm IVON (Shen et al., 2024)
to estimate a posterior distribution over model weights. It is also possible to use other Bayesian Deep
Learning methods, such as, Laplace (Daxberger et al., 2021) or SWAG (Maddox et al., 2019). IVON
learns a unimodal Gaussian posterior q(θ) := N (θ | m,Σ) with mean m and covariance matrix
Σ. Setting model parameters equal to the mean of this distribution (m) is similar to standard neural
network training but Σ also provides an estimate of its stability. To be precise, for each parameter mi

the variance Σii indicates how much this parameter can be changed without significant performance
degradation. Each training run has only negligible overhead compared to AdamW (Loshchilov &
Hutter, 2019) and gives comparable performance. We also use multiple models obtained from IVON
training runs to form a Deep Ensemble (Lakshminarayanan et al., 2017) in order to study multimodal
posteriors. This can be seen as constructing a mixture-of-Gaussian posterior with equal mixture
component weights but incurs training overhead. Unless otherwise stated, we use four models in
total for MBR, i.e. |M| = 4. For deep ensembles, we use the mean of each training run and for the
unimodal method using IVON we use four samples from the posterior. For smaller models we train
all parameters but for larger models we only train newly-inserted LoRA parameters. By denoting
these with θ′ ∈ Re, IVON then learns a distribution q(θ′) := N (θ′ | m′,Σ′) while the original
pretrained model parameters θ are deterministic and stay fixed.

4.2 WEIGHT UNCERTAINTY & DECODING

Weight uncertainty improves decoding. Tab. 1 and Tab. 2 show results using finetuned Gemma-
2B and Transformer models that were pretrained from scratch, respectively, on various language
generation and scoring benchmarks. Results on two low-resource tasks from afroMT are found
in App. B.1. For a fair comparison, we match the number of MBR comparisons, i.e. evaluations of the
utility function u for the estimator, with the single-model MBR baseline, as described in App. A.4.
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IWSLT17 En-De WMT18 Tr-En XSUM SAMSum E2E NLG STSB
Method BLEU COMET LaBSE BLEU COMET LaBSE R-1 R-L FactCC R-1 R-L R-1 R-L RMSE

MBR@Mean 19.73 76.60 83.51 15.27 78.44 77.12 33.04 25.19 23.56 46.17 35.98 68.74 45.16 0.284
Sequence-level - Eq. (9)

Unimodal 20.89 77.42 84.01 15.66 79.01 77.79 33.39 25.73 26.07 46.40 36.51 69.36 45.57 0.271
Deep Ensemble 21.24 77.94 84.20 15.63 79.01 77.60 33.37 25.68 27.40 46.71 36.87 69.56 45.77 0.269

Sequence-level - Eq. (10)
Unimodal 21.08 77.63 83.96 15.46 78.84 77.35 33.05 25.46 27.50 46.21 36.44 69.13 45.38 0.271
Deep Ensemble 21.20 77.91 84.04 15.69 79.10 77.56 33.10 25.50 32.86 46.14 36.48 69.19 45.31 0.269

Table 1: Sequence-level model combination to account for weight-uncertainty can improve the
performance of a finetuned Gemma-2B model on various language generation and scoring tasks.
Even simple posteriors that do not incur overhead during finetuning can give “for-free” improvements
(unimodal). The number of total MBR comparisons is the same for all methods and each dataset.
MBR@mean denotes decoding with a single model that is the mean of a variational distribution.

WMT14 En-De IWSLT14 De-En
Sampling Beam Search Sampling Beam Search MBR Effective

Method BLEU COMET BLEU COMET BLEU COMET BLEU COMET comparisons beam size
MBR@Mean 23.37 71.04 27.56 75.23 33.69 74.71 35.90 76.65 400 20

24.30 72.15 27.53 75.18 34.53 75.18 36.07 76.76 1600 40
Sequence-level - Eq. (9)

Unimodal 24.31 72.09 27.52 75.16 34.59 75.15 35.78 76.55 1600 40
Deep Ensemble 24.70 72.39 28.99 76.02 36.03 75.79 38.30 78.01 1600 40

Sequence-level - Eq. (10)
Unimodal 24.21 72.15 27.56 75.21 34.65 75.20 35.99 76.67 1600 80
Deep Ensemble 24.67 72.58 28.29 75.70 35.42 75.84 37.42 77.69 1600 80

Token-level
Unimodal 23.44 71.36 27.75 75.19 33.62 74.68 35.94 76.66 400 80
Deep Ensemble 23.95 71.58 28.98 76.08 34.61 75.06 38.56 78.31 400 80

Table 2: Weight uncertainty improves decoding for models trained from scratch when using ancestral
sampling and beam search. More complex posteriors (Deep Ensemble) provide better improvements.
Results for Transformerbig on WMT14 and Transformerbase on IWSLT17. Effective beam size equals
the number of beams per model times the number of ensembled models (we use four models).

We find in Tab. 1 and Tab. 2 that weight uncertainty improves performance across all benchmarks,
even with matched compute budgets. In particular, when using Eq. (9) with unimodal posteriors both
training time and time needed for decoding are the same as for the single-model MBR baseline. We
ensure that the time needed for decoding is the same by using only as many MBR comparisons as
MBR@mean for our methods and always using the same or smaller effective beam size, which is
measured by the number of beams per model times the number of models. Not only do results improve
when using word-overlap metrics like BLEU, but also when using quality estimation (COMET) and
hallucination metrics (LaBSE). Notably, on IWSLT17 all improvements observed in COMET score
when using uncertainty-aware vs. standard MBR indicate there is a >85% chance that humans would
distinguish the former system as better—as per the results of Kocmi et al. (2024). Improvements also
hold for the STS-B sentence similarity scoring task. The estimators of Eq. (9) and Eq. (10) perform
similarly even though Eq. (9) uses a smaller hypothesis set size than Eq. (10).

Comparison of uni- and multimodal posteriors. Next, we compare unimodal posteriors that can
be learned without overhead during training to multimodal posteriors based on Deep Ensembles. Such
posteriors incur significant overhead during training, because one separate training run with different
initialization and data order is required per ensemble member, but can incorporate knowledge from
different loss basins—a characteristic that has proven to be beneficial (Lion et al., 2023).

When training from scratch (Tab. 2), unimodal posteriors do not consistently outperform the single
model baseline when compute budgets are equivalent. In contrast, multimodal Deep Ensemble
posteriors can deliver significant improvements. On the other hand, when finetuning (Tab. 1),
unimodal posteriors can provide strong improvements, performing on par with Deep Ensembles. We
hypothesize that this difference can be attributed to the use of LoRA for finetuning—which explores
a smaller subspace of potential posterior parameters and may therefore pose a comparably easier
learning problem than estimating the variance of a posterior over all parameters. Further, finetuning
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IWSLT17 De-En WMT19 Cs-En XSUM MBR Effective
2 Models 3 Models 2 Models 3 Models Comparisons Beam size

Method BLEU COMET BLEU COMET BLEU COMET R-1 R-L
Single Model 24.59 80.24 24.59 80.24 28.65 82.95 26.99 19.05 100 10
Sequence-level - Eq. (9) 26.66 81.60 29.12 83.06 30.60 84.12 28.27 20.22 400/900 20/30
Sequence-level - Eq. (10) 26.02 81.47 26.50 81.86 30.25 83.99 27.43 19.33 200/300 20/30

Table 3: The sequence-level model combinations from Eq. (9) and Eq. (10) are also useful for
ensembling zero-shot prompted LLMs. Eq. (9) performs better but requires more computation.
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Figure 1: Our methods are more successful when the ensembled models are diverse. We compare a
unimodal to mixture-based posteriors using Snapshot Ensembles and Deep Ensembles. Sampling
from a unimodal posterior with higher temperature can increase diversity and improve performance
(in blue). Left: token-level combination on IWSLT14 using beam search and Transformerbase. Right:
sequence-level combination (Eq. (10)) on IWSLT17 using ancestral sampling and Gemma-2B.

may not work that well for Deep Ensembles due to the models still landing in the same basin (Frankle
et al., 2020). We connect our findings to prediction diversity in §4.3.

Comparison of sequence- and token-level posteriors. Here, we compare the use of sequence-
and token-level posteriors (Eqs. (9), (10) and (13)) in MBR. Tab. 2 shows that improvements over the
baseline with token-level combination are much stronger when using beam search instead of ancestral
sampling to create hypothesis sets6. When using a mixture-based posterior, performance is improved
in both settings. Sequence-level combination, on the other hand, provides similar improvements for
both settings, with Eq. (9) providing similar results to token-level aggregation. Hence, the preferred
method may also depend on the decoding algorithm used to create the hypothesis set.

Ensembling zero-shot models. Tab. 3 shows results obtained when ensembling the outputs of
various zero-shot prompted LLMs on IWSLT17 De-En with a hypothesis set size of 10. We compare
the estimator using an additive union of hypothesis sets (Eq. (9)) to using a soft model average
(Eq. (10)) and the average single model performance. Both estimators are effective for ensembling
but Eq. (9) performs best, albeit with the highest computational complexity. Details are in App. A.3.

4.3 CORRELATION OF QUALITY AND DIVERSITY

Next, we show that the performance of MBR with weight-uncertainty is correlated with the prediction
diversity of ensembled models, potentially, due to incorporating knowledge from multiple loss basins.
This is in line with prior works on ensembling which have found that diversity is important for good
performance (Fort et al., 2019; Masegosa, 2020) but can form a trade-off with individual model
performance (Abe et al., 2022; Wood et al., 2023).

We empirically validate this in Fig. 1, where we plot BLEU and COMET on IWSLT14 and IWSLT17
against the prediction diversity. We measure diversity as 100 minus average self-BLEU; self-BLEU
scores are measured on the set of greedy decoding outputs of each ensemble member, similar to Shen
et al. (2019). For finetuning, the models from the unimodal posterior are more diverse than when
pretraining. The plot shows a clear correlation between both metrics. We ask two questions: 1) can

6Beam search provides a biased estimate and is similar to sampling from a low-temperature distribution.
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Figure 2: Total risk and best-output-risk are useful for selective prediction. (a) Creating hypothesis
sets with sampling performs better than beam search. (b) Increasing temperature when sampling from
unimodal posteriors improves selective prediction. (c) When using beam search more Deep Ensembles
work best. (d) For sampling, all methods work well. Results on IWSLT14 with Transformerbase.

diversity be promoted in unimodal pretrained posteriors to improve performance and 2) can we find a
method with the same pretraining overhead as a unimodal posterior but more expressiveness?

For the first, note that the variance of the IVON posterior is σ2 = 1/λ(h + δ), where h is the
expected Hessian of the loss, δ is weight-decay and λ the effective sample size which can be seen
as an (inverse) temperature parameter. We decrease λ gradually, which samples models from the
posterior with higher temperature. This improves diversity and can improve performance. For the
latter, we use a mixture-of-Gaussian consisting of checkpoints from one training run, denoted by
“snapshot” (Huang et al., 2017). This comes at no training time increase but can improve performance
by incorporating knowledge from different regions along the optimization trajectory.

4.4 SELECTIVE PREDICTION WITH BAYES’ RISK

Here, we explore the use of expected Bayes’ risk for selective prediction on IWSLT14. We observe
that both the maximum output utility and the expected output utility (i.e., average expected utility
across outputs) can be used effectively for selective prediction. Our results are summarized in Fig. 2.

First, we find in Fig. 2 (a) that using the average expected utility for selective prediction performs
slightly better than using the best-expected-output utility. This is especially true when creating
hypothesis sets with beam search, which performs much worse than ancestral sampling. Next, we
again sample from the unimodal posterior with different temperatures (via decreasing λ). We find
that this improves selective prediction with MBR when using beam search (Fig. 2 (b)).

Finally, we evaluate the influence of the posterior approximation. First, we find that a hypothesis set
built with ancestral sampling is reliable independent of the used posterior. Even the single model
baseline works well but is outperformed by using an ensemble and more expressive posteriors give
bigger improvements. For beam search, the baseline completely fails and token-level combination
can be unreliable. Sequence-level combination (Eq. (10)) performs much better, especially with more
expressive multimodal posteriors. These results are shown in Fig. 2 (c, d).

4.5 SCALING BEHAVIOR

Lastly, we examine the scaling behavior of token- and sequence-level combination (Eq. (10)) with
different posteriors. Results are summarized in Fig. 3. First, we show scaling the ensemble size
in Fig. 3 (a) for ancestral sampling and beam search (b). Using beam search, both token- (in blue)
and sequence-level (in black) combination using unimodal posteriors provide no improvements. For
ancestral sampling, we find improvements with a unimodal posterior, especially at larger ensemble
sizes of 32 models, but sequence-level combination of a unimodal posterior only improves until 4
models. In all other settings, scaling the ensemble size is usually beneficial.

When scaling hypothesis sets with beam search, the improvements are small, likely because the
hypothesis sets lack diversity. Ancestral sampling shows a different picture and we obtain strong
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Figure 3: Scaling behavior on IWSLT14 with Transformerbase in terms of ensemble (a, b) and
hypothesis set size (c, d). (a, b) For a unimodal posterior (□), larger ensembles improve token-level
combination using sampling but not beam search. For Deep Ensemble posteriors (◦), larger ensembles
generally improve performance. (c, d) Sequence-level combination (Eq. (10)) performs better for
smaller beam sizes but is outperformed by token-level combination at larger ones. Scaling the
hypothesis set produces stronger improvements for ancestral sampling than beam search.

improvements when scaling hypothesis sets. For small hypothesis sets it is better to use sequence-level
ensembling but for larger sizes token-level combination can be better.

5 CONCLUSION

In this work, we explore the effects of using a Minimum Bayes’ Risk approach to account for weight
uncertainty in language model decoding. We investigate different methods, combining predictions
from multiple models during generation or afterwards, ensembling their individual hypothesis sets. We
benchmark the methods on different language generation and scoring tasks for prompted, finetuned,
and from-scratch trained models and show that weight uncertainty can effectively improve decoding.
We evaluate the effects of using different posterior distributions. More complex distributions can
sometimes provide stronger performance improvements but also simple methods without overhead
can improve performance. Perhaps related, prediction diversity is important for both standard MBR
and when using its expected utility for selective prediction. Overall, we find that the uncertainty-aware
variant of MBR proposed in this paper leads to better and more robust language generation.

ETHICS STATEMENT

Our work uses probabilistic language models to generate language. Even when used with care, such
models can produce outputs that are, among others, harmful, toxic, and hallucinated and our methods
can not guarantee that such outputs are not generated. However, we aim to improve the robustness
of language generation methods and, therefore, aim to alleviate these issues. Therefore, we believe
there to be no direct ethical concern in our work.
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of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3259–3269. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/frankle20a.html.

Markus Freitag, David Grangier, Qijun Tan, and Bowen Liang. High quality rather than high
model probability: Minimum Bayes risk decoding with neural metrics. Transactions of the
Association for Computational Linguistics, 10:811–825, 2022. doi: 10.1162/tacl a 00491. URL
https://aclanthology.org/2022.tacl-1.47.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. Advances in
neural information processing systems, 30, 2017. URL https://papers.nips.cc/paper files/
paper/2017/hash/4a8423d5e91fda00bb7e46540e2b0cf1-Abstract.html.

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024a. URL https://arxiv.org/abs/2408.00118.

Gemma Team. Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024b. URL https://arxiv.org/abs/2403.08295.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Lu Wang, Jackie Chi Kit Cheung,
Giuseppe Carenini, and Fei Liu (eds.), Proceedings of the 2nd Workshop on New Frontiers in
Summarization, pp. 70–79, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409.
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Thomas Möllenhoff and Mohammad Emtiyaz Khan. SAM as an optimal relaxation of bayes.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=k4fevFqSQcX.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 1797–1807, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL
https://aclanthology.org/D18-1206.
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A EXPERIMENTAL DETAILS

A.1 TRAINING FROM SCRATCH

Datasets Our usage of the WMT14 English-to-German translation tasks (Bojar et al., 2014) follows
the set-up from (Vaswani et al., 2017) but augments the training data by the news-commentary-v12
data from WMT17 (Bojar et al., 2017). In total, we train on ca. 3.9M paired examples. We also use a
validation set during training in order to pick checkpoints which consists of ca 39.4K examples. We
use the original newstest2014 data which consists of 3,003 examples for evaluation.

We also use the IWSLT14 German-to-English translation task (Cettolo et al., 2014) which consists of
ca 160K training examples. The validation set consists of ca. 7.3K examples. The test set consists of
6,750K examples.

Furthermore, we use two language pairs from AfroMT (Reid et al., 2021), namely En-Bem (English-
Bemba) which consists of 275K training, 3K validation, and 3K test examples. We do not use any
monolingual data but only train from scratch on the parallel data. We use En-Run (English-Rundi) in
the same way, which consists of 253K training, 3k validation, and 3k test examples.

All data usages can be reproduced by following the instructions from the Fairseq repository
under https://github.com/facebookresearch/fairseq/tree/main/examples/translation
and will be published along our code.

Models All models follow the Transformer architecture from Vaswani et al. (2017) which consists
of an encoder-decoder Transformer with 6 encoder and 6 decoder layers. We use the Transformerbase
architecture for IWSLT2014 and afroMT and Transformerbig for WMT14 which has larger embedding
and feed forward dimensions. The models use a vocabulary of Byte-Pair-Encoding tokens (Sennrich
et al., 2016). The input and output embedding parameters of the decoder are shared. The IWSLT
model has an input vocabulary size of 8848 and an output vocabulary size of 6632 for in total
39, 469, 056 parameters. The en-run and en-bem models both have an input and output vocabulary
size of 80000 each and a total of 126, 058, 496 parameters. The WMT model has an input vocabulary
size of 40480 and an output vocabulary size of 42720 for a total of 261, 431, 296 parameters.

Training & Decoding We train all models from scratch using the fairseq library (Ott et al., 2019)
which we extend for variational learning and a Bayesian interpretation of neural networks. Fairseq
is licensed under MIT license7 which permits our form of usage. We will release our code publicly
in the future for further research in a software repository under Apache License 2.08. We train all
models with the IVON optimizer (Shen et al., 2024) and place a diagonal Gaussian posterior over
neural networks. We use IVON with a isotropic Gaussian prior and initialize all entries of the Hessian
with 0.1. We use an effective sample size of 1 · 10−8, a small weight-decay of 0.0001, and a learning
rate of 0.1. We set β1 = 0.9 and β2 = 0.9999. All models are trained with a batch size of 32 or up to
1024 tokens and we use 2 MC samples from the posterior during training for afroMT and IWSLT2014.
For WMT14 we just use one MC sample due to the heavier compute requirements. We clip gradients
elementwise at 0.001 and use a dropout rate of 0.2. We train the models until performance in terms
of BLEU has not improved for at least 3 epochs and then stop with the exception for WMT14, where
we train only up to 20 epochs. The results for the single model baseline and unimodal posterior are
averaged over four runs.

7https://github.com/facebookresearch/fairseq/blob/main/LICENSE
8https://www.apache.org/licenses/LICENSE-2.0
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Dataset Instruction
IWSLT17 En-De Translate from English to German:
WMT18 Tr-En Translate from Turkish to English:
XSUM Summarize:
SamSum Summarize:
E2E-NLG Convert a set of two-to-nine key-value attribute pairs in the restaurant domain to a simple English-language text:
STSB How similar are these sentences from 0 to 1?

Table 4: Simple instructions used when finetuning Gemma-2B-it.

For the snapshot-like approach, we add 3 randomly-sampled distributions that were trained with
at least 10 epochs to the best-performing one. For Deep Ensembles we always use four runs with
different random seeds unless stated otherwise and for unimodal posteriors we sample four models
from each posterior. In all experiments we sample from the posterior “as-is” and only vary the
temperature by reducing the effective sample size when explicitly mentioned.

All models are trained on a single GPU which is an NVIDIA GPU with either 80GB, 40GB, 32GB or
24GB GPU memory. Training takes around 1-3 hours for the IWSLT14 and afroMT models and ¿2
days for the WMT models.

Following prior work, we use a length-penalty of 0.6 for decoding (Vaswani et al., 2017).

A.2 FINETUNING

Datasets For all datasets we use the versions from the huggingface hub (https://huggingface.
co/). We use the En-De split of the IWSLT17 evaluation campaign (https://huggingface.co/
datasets/IWSLT/iwslt2017) (Cettolo et al., 2017) with 206,122 training and 8079 test examples
and the WMT18 Tr-En split (https://huggingface.co/datasets/wmt/wmt18) (Bojar et al., 2018)
with 205,756 training and 3,000 test examples for machine translation. For summarization ex-
periments, we use XSUM (https://huggingface.co/datasets/EdinburghNLP/xsum) (Narayan
et al., 2018) and SAMSum (https://huggingface.co/datasets/Samsung/samsum) (Gliwa et al.,
2019). XSUM has 204,045 training examples—we train only on the first 50% to reduce computational
load—and 11,334 test examples. SAMSum is much smaller and consists only of 14,732 train and
819 test examples. Finally, we use E2E-NLG (https://huggingface.co/datasets/tuetschek/
e2e nlg) (Novikova et al., 2017) with 33,524 train and 1,846 test examples for data-to-text generation,
as well as STS-B (https://huggingface.co/datasets/sentence-transformers/stsb) (Cer
et al., 2017) with 5,749 train and 1,379 test examples for sentence similarity scoring. Note that we
use the version provided with the sentence transformers library (Reimers & Gurevych, 2019) which
uses ratings from 0 to 1.

Models For finetuning results, we use the Gemma-2B-it (Gemma Team, 2024b) checkpoint, which
can be found under https://huggingface.co/google/gemma-2b-it on the huggingface hub, with
in total 2.51B parameters.

Training & Decoding We finetune the model using LoRA (Hu et al., 2022) with a rank r = 8,
α = 32 and a dropout rate of 0.1. In total, this introduces 921, 600 new parameters that are learned
with IVON and, correspondingly, the diagonal variance consists of 921, 600 further parameters that
are learned. We use the chat template provided with huggingface (Wolf et al., 2020), which we adapt
to organize our experiments in line with the Apache 2.0 license it is distributed under, to organize
training and decoding. As we use an instruction-tuned model, we use simple instructions for each
dataset which are outlined in Tab. 4. We train the model on both the prompt and the output labels and
do not only calculate gradients for the latter.

We again use IVON to learn a unimodal diagonal Gaussian posterior. We use four separate runs with
different random seeds for the Deep Ensembles (which entails different data order and initialization
of new parameters) and sample four models for the unimodal posterior. Results for the unimodal
posterior and single model baseline are averaged over four seeds. For all experiments we use the
same hyperparameter setting. We use an initial learning rate of 0.03 which we anneal to 0 with a
cosine decay. We set β1 = 0.9, β2 = 0.99999, and use a small weight decay of 10−6. We again
clip gradients to unit norm and element-wise with a maximum value of 0.001. All hessian values
are initialized at 0.0003 We set the effective sample size (or inverse temperature) to 107 for training
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Dataset Instruction
IWSLT17 De-En Translate the following English text to German. Make sure to only generate the translation without extra text:
WMT19 Cs-En Translate the following Czech text to English. Make sure to only generate the translation without extra text:
XSUM Given a BBC article, write a short summary of the article in one sentence.

Table 5: Prompts used for zero-shot experiments.

but 109 for decoding, because we have found this to perform better empirically, potentially due to
the cold posterior effect (Wenzel et al., 2020). We train for 1 epoch for IWSLT17 and XSUM, 5
epochs for E2ENLG, 2 epochs for WMT18, and for 4 epochs on SamSUM. We always take the final
checkpoints after training has ended.

A.3 ZERO-SHOT RESULTS

In addition to trained models, we also evaluate zero-shot prompted models. While we do not have an
explicit posterior in this setting, ensembling such models can be understood as a crude approximation
to sampling from the unknown Bayes’ posterior.

Datasets In addition to IWSLT17 De-En and XSUM, which are described in App. A.2, we use
the Cs-En partition of WMT19 (https://huggingface.co/datasets/wmt/wmt19) (Barrault et al.,
2019). On XSUM we only evaluate on the first 1000 examples of the test set due to computational
load.

Models We use different models for our experiments. In particular, we use Gemma-2
9B (https://huggingface.co/google/gemma-2-9b-it) (Gemma Team, 2024a), Llama-3 8B
(https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (Dubey et al., 2024), Mis-
tral 7B (https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) (Jiang et al., 2023),
and Qwen-2 7B (https://huggingface.co/Qwen/Qwen2-7B-Instruct) (Yang et al., 2024). We
use the instruction-tuned version of each model. We select the models used for each dataset based
on a manual inspection of their performance on each dataset. For example, Gemma sometimes
returned czech text when asked to translate from czech to english and was therefore not included
in the experiment, and Mistral tended to produce too long summaries for XSUM when compared
to other models. We use the following models for each dataset: Gemma-2, Llama-3, and Mistral
for IWSLT17, Gemma-2, Qwen-2, Llama-3 for XSUM, and Llama-3 and Mistral for WMT19. The
prompts are shown in Tab. 5 Our prompt for XSUM is taken from (Suzgun et al., 2023).

Decoding We use ancestral sampling with a temperature of 1.0 for all experiments.

A.4 HYPOTHESIS SET SIZES

For the finetuning experiments, we use 40 candidate hypotheses for the single model baseline and
token-level combination, and 20 per model for Eq. (10) and 10 per model for Eq. (9), except for
XSUM, where we use 20, 10, and 5 candidate hypotheses, respectively.

A.5 SELECTIVE PREDICTION

For selective prediction we reuse the models and set-up from App. A.1 which were used for Tab. 2. In
particular, we use the sequence-level model combination of Eq. (10) and token-level combination with
both ancestral sampling and beam search. The beam size is always 40 for MBR@mean, 20 for each
model used in sequence-level combination and 10 for each model used in token-level combination.
All training details are the same as in App. A.1.

A.6 SCALING EXPERIMENT

Again, we use the set-up from App. A.1 with Transformerbase trained from scratch on IWSLT14. We
scale all methods according to the same training recipe as described there but with different random
seeds to train the different models.
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AfroMT En-Bem AfroMT En-Run MBR
Sampling Beam Search Sampling Beam Search MBR Effective

BLEU chrF BLEU chrF BLEU chrF BLEU chrF comparisons beam size
MBR (Mean) 18.26 47.47 19.70 49.02 24.97 53.29 26.67 54.79 400 20

18.63 47.89 19.70 49.02 25.58 53.76 26.67 54.80 1600 40
Sequence-level (Eq. (9))
Unimodal 18.58 47.84 19.46 48.88 25.80 53.86 26.38 54.65 1600 40
Deep Ensemble 19.71 48.77 21.28 50.35 26.52 54.56 28.19 56.02 1600 40
Sequence-level (Eq. (10))

Unimodal 18.43 47.75 19.62 48.95 25.34 53.66 26.58 54.77 1600 80
Deep Ensemble 19.48 48.49 20.69 49.88 25.86 54.22 27.40 55.42 1600 80

Token-level
Unimodal 17.90 47.29 19.60 48.94 24.86 53.29 26.57 54.79 400 80
Deep Ensemble 19.32 48.49 21.51 50.54 25.46 53.71 28.44 56.28 400 80

Table 6: Results on afroMT with Transformerbase trained from scratch.

Sampling Beam Search
Method BLEU COMET LaBSE BLEU COMET LaBSE

MBR@Mean 33.69 74.71 85.33 35.90 76.65 86.44
Sequence-level - Eq. (9)
Unimodal 34.59 75.15 85.65 35.78 76.55 86.42
Deep Ensemble 36.03 75.79 85.98 38.30 78.01 87.16
Sequence-level - Eq. (10)

Unimodal 34.65 75.20 85.68 35.99 76.67 86.45
Mixture 35.42 75.84 86.07 37.42 77.69 86.97

Token-level
Unimodal 33.62 74.68 85.39 35.94 76.66 86.45
Mixture 34.61 75.06 85.88 38.56 78.31 87.34

Table 7: Measuring hallucinations with LaBSE (higher is better) on IWSLT14 with Transformerbase
shows similar trends as quality estimation metrics: incorporating weight-uncertainty can reduce
hallucinations, especially when a complex posterior is used. Here, we use a hypothesis set size of 20
for all methods but Eq. (9) which uses a size of 10.

B ADDITIONAL RESULTS

B.1 RESULTS ON AFROMT

Tab. 6 shows results on the En-Run and En-Bem partitions of afroMT. We find similar patterns to our
results presented in Tab. 2: Deep-Ensemble-based weight uncertainty always improves performance,
even with matched compute budgets, while unimodal posteriors perform similarly to a single model
baseline.

B.2 RESULTS WITH LABSE FOR FROM-SCRATCH-TRAINED MODELS

Tab. 7 and Tab. 8 show LaBSE scores for hallucination evaluation for the same evaluation setting as
in Tab. 2. Again, we find hallucinations to be reduced when weight uncertainty is accounted for.
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Sampling Beam Search
Method BLEU COMET LaBSE BLEU COMET LaBSE

MBR@Mean 23.37 71.04 86.97 27.56 75.23 88.46
Sequence-level - Eq. (9)
Unimodal 24.31 72.09 87.36 27.52 75.16 88.42
Deep Ensemble 24.70 72.39 87.61 28.99 76.02 88.68
Sequence-level - Eq. (10)
Unimodal 24.21 72.15 87.32 27.56 75.21 88.44
Deep Ensemble 24.67 72.58 87.56 28.29 75.70 88.75
Token-level
Unimodal 23.44 71.36 86.84 27.75 75.19 88.35
Deep Ensemble 23.95 71.58 87.16 28.98 76.08 88.75

Table 8: Measuring hallucinations with LaBSE (higher is better) on WMT14 with Transformerlarge
shows similar trends as quality estimation metrics: incorporating weight-uncertainty can reduce
hallucinations, especially when a complex posterior is used. Here, we use a hypothesis set size of 20
for all methods but Eq. (9) which uses a size of 10.
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