
Can Agents Fix Agent Issues?

Alfin Wijaya Rahardja∗

Fudan University
24212010055@m.fudan.edu.cn

Junwei Liu∗

Fudan University
jwliu24@m.fudan.edu.cn

Weitong Chen
Fudan University

21307130392@m.fudan.edu.cn

Zhenpeng Chen
Nanyang Technological University
zhenpeng.chen@ntu.edu.sg

Yiling Lou†

University of Illinois Urbana-Champaign
yilingl@illinois.edu

Abstract

LLM-based agent systems are emerging as a new software paradigm and have been
widely adopted across diverse domains such as medicine, robotics, and program-
ming. However, maintaining these systems requires substantial effort, as they are
inevitably prone to bugs and continually evolve to meet changing external require-
ments. Therefore, automatically resolving agent issues (i.e., bug reports or feature
requests) is a crucial and challenging task. While recent software engineering (SE)
agents (e.g., SWE-agent) have shown promise in addressing issues in traditional
software systems, it remains unclear how effectively they can resolve real-world
issues in agent systems, which differ significantly from traditional software. To
fill this gap, we first manually analyze 201 real-world agent issues and identify
common categories of agent issues. We then spend 500 person-hours constructing
AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue res-
olution tasks (each with an executable environment and failure-triggering tests).
We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and re-
veal their limited effectiveness (i.e., with only 0.67% - 4.67% resolution rates).
These results underscore the unique challenges of maintaining agent systems com-
pared to traditional software, highlighting the need for further research to develop
advanced SE agents for resolving agent issues. Data and code are available at
https://github.com/alfin06/AgentIssue-Bench.

1 Introduction

LLM-based agent systems have seen widespread adoption across diverse domains, such as
medicine [38, 56], programming [18, 58, 63, 61], robotics [41, 65], psychology [47, 60], and general-
purpose personal assistants [16, 7]. Driven by rapid advancements, agent systems are emerging as a
new software paradigm, playing an increasingly pervasive role in shaping and supporting the full
spectrum of human activities.

As products of human intellectual labor, similar as traditional software systems, agent systems are
also inevitably prone to quality issues. Recent work [34] has shown that multi-agent systems exhibit
diverse failure modes during operation. Moreover, agent systems are continuously evolving to meet
changing external requirements, making their maintenance both crucial and labor-intensive. For
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instance, by May 2025, the agent system MetaGPT [26] had accumulated over 800 GitHub issues (an
issue is typically a bug report or a feature request), highlighting the substantial maintenance workload
associated with agent systems.

Automating the issue resolution process has been an important and challenging direction with
substantial dedicated research effort. In particular, with the recent advances in agent systems, there is
a growing trend toward developing software engineering agents [52, 66, 58, 18, 28, 9, 27] (referred
to as SE agents in this paper), which can automatically resolve real-world software issues. Recent SE
agents have demonstrated strong potential in resolving issues in traditional software systems. For
instance, Agentless [52] correctly resolves 50.80% of issues on SWE-bench [33], a real-world issue
resolution benchmark for traditional Python software.

Although SE agents have shown promise in resolving issues in traditional software systems, it remains
unclear how effectively they perform on agent systems, which is a new software paradigm that differs
significantly from traditional software. Therefore, in this work, we aim to answer the central question:
can SE agents fix issues in agent systems?

To understand issues in agent systems, we first perform an empirical study to analyze and catalog
real-world agent issues. In particular, we collect 201 real-world GitHub issues along with developer-
committed patches from 18 widely-used agent systems. We further build a taxonomy of agent
issues with human annotators via grounded theory, resulting in 6 categories and 20 sub-categories of
common agent issues. Our taxonomy reveals that real-world agent systems exhibit a diverse range
of issues, many of which possess unique characteristics not typically found in traditional software
systems. The findings highlight the large engineering effort for maintaining agent systems, confirming
that automated issue resolution for agent systems is a challenging and critical problem.

We then build AGENTISSUE-BENCH, the first reproducible benchmark for agent issue resolution.
Reproducing agent issues is particularly more challenging compared to traditional software issues,
largely due to the nondeterminism of LLMs and the volatility of external resources (e.g., tools)
that agents interact with. As a result, from the 201 issues analyzed, we invested 500 person-hours
to successfully reproduce 50 agent issues. Each issue resolution task in AGENTISSUE-BENCH is
packaged within an executable Docker environment, along with failure-triggering tests, user-reported
issue descriptions, the buggy version, and the developer-committed patched version of the codebase.

We further evaluate multiple state-of-the-art SE agents (i.e., Agentless [52], AutoCodeRover [66],
and SWE-agent [58]) with both GPT-4o [1] and Claude-3.5-Sonnet [15] on AGENTISSUE-BENCH.
We find that all of the existing SE agents exhibit limited capabilities in resolving agent issues. For
instance, only 0.67% to 4.67% of agent issues are correctly resolved, which is significantly lower than
the resolution rates achieved when these SE agents are applied to traditional software (e.g., 23.20% -
50.80% resolution rate [33]). We further conduct a qualitative analysis to break down the resolution
capabilities of SE agents across different categories. Notably, the majority of resolved issues pertain
to utility or dependency issues, while the most of LLM-related issues (e.g., compatibility with LLM
providers or LLM operation issues) remain unsolved. Overall, our analysis reveals the limitations of
current SE agents in resolving agent issues, underscoring the need for building advanced SE agents
tailored to the maintenance of agent systems.

In summary, this work makes the following contributions:

• Taxonomy. We present the first taxonomy of issues in agent systems, derived from extensive
manual analysis, which summarizes the common maintenance demands encountered during
agent system evolution.

• Reproducible benchmark AGENTISSUE-BENCH. We manually construct the first issue
resolution benchmark of real-world agent issues. Each task is packed into an executable Docker
environment, including issue descriptions, failure-triggering tests, and both buggy and patched
versions of the codebase, enabling easy reproduction and validation through one-click execution.

• Evaluation. We evaluate state-of-the-art SE agents on AGENTISSUE-BENCH with both quan-
titative and qualitative analysis, and find their limited capabilities in solving agent issues. Our
findings highlight the unique challenges of maintaining agent systems, underscoring the need to
develop more powerful SE agents for resolving agent issues.
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2 Background and Related Work

2.1 LLM-based Agent Systems

LLM-based agent systems are emerging as a new software paradigm, which have been widely
applied across various fields (e.g., medicine [38, 56], programming [18, 58], robotics [41, 65],
psychology [47, 60], and general-purpose personal assistants [16, 7]) with remarkable abilities. An
LLM-based agent system [51, 50] typically consists of: (i) an LLM-controlled brain that decomposes
and schedules tasks (i.e., planning) and records the historical behaviors (i.e., memory); (ii) a perception
component that receives information from the environment; and (iii) an action component that
interacts with the environment by invoking external tools. In addition, single-agent systems can
collaborate to form multi-agent systems, which can tackle more complex tasks with better flexibility
and effectiveness.

Quality problems in LLM-integrated systems. Given the widespread adoption of LLMs, recent
work has been looking into quality problems (e.g., bugs or runtime failures) in LLM-integrated
systems. For example, Shao et al. [49] catalog the integration bugs in LLM and RAG systems.
Different from their work, our work specifically focuses on LLM agent systems. This scope distinction
leads to notable differences in taxonomies, as our taxonomy is framed from an agent architecture
perspective (e.g., featuring broader coverage of tool-related issues, finer-grained categorization of
memory issues, API and model binding issues). Along this direction, Cemri et al. [34] build a
taxonomy of failure modes in multi-agent systems. While their work focuses on runtime failure
symptoms by analyzing failure trajectories, our taxonomy centers on agent issue resolution by
analyzing both real-world user-reported issues and developer-committed patches. Therefore, our work
complements existing efforts by providing a perspective on maintaining agent systems, encompassing
a broader scope that includes not only bug fixes but also feature requests. Moreover, our work is
further different from existing work by introducing the first reproducible benchmark for agent issue
resolution and empirically evaluating state-of-the-art SE agents on their ability to resolve agent issues.

2.2 Software Engineering Agents

Software Engineering (SE) agents are a category of agent systems specifically designed to tackle SE
tasks [42]. In particular, there is a growing trend in both industry and academia toward developing
SE agents [18, 28, 52, 66, 27, 58, 9, 46, 62], which can support end-to-end software maintenance
by automatically resolving user-reported issues (e.g., bug fixes or feature requests). For instance,
Devin [18] is one of the first SE agents capable of resolving software issues by invoking file editors,
terminals, and search tools. More recently, SWE-agent [58] interacts with the code repository
environment through a custom Agent-Computer Interface (ACI), capable of performing actions such
as manipulating files and executing bash commands; AutoCodeRover [66] incorporates a suite of
code search tools that iteratively retrieve relevant code contexts to navigate the repository and localize
issue locations; Moatless [27] equips agents with code search and retrieval tools to identify the
issue locations; Agentless [52] optimizes the agent workflow with human expertise, incorporating
hierarchical localization and regression testing to improve issue resolution rates. In this work, we
evaluate the effectiveness of existing SE agents in resolving issues in agent systems.

Benchmarking issue resolution capabilities of SE agents. With the rise of SE agents, an increasing
number of benchmarks have been developed to evaluate their capabilities in addressing real-world
issue resolution tasks. For instance, Jimenez et al. [40] build SWE-bench from GitHub issues of
12 Python libraries. Based on SWE-bench, researchers further propose a series of benchmarks,
e.g., SWE-bench Lite [40], SWE-bench verified [3], and SWE-bench Lite-S [52], which are refined
versions of SWE-bench with additional quality checking. While the SWE-bench series only includes
issues of Python software, Zan et al. [64, 44] further propose SWE-bench Java, an issue resolution
benchmark for Java software, and Yang et al. [59] build SWE-bench Multimodal, comprising frontend
issue resolutions tasks from open-source JavaScript libraries. More recently, OpenAI releases SWE-
Lancer Diamond [24], an issue resolution benchmark with end-to-end tests for Expensify [20]
software. While existing benchmarks focus exclusively on issue resolution in traditional software
systems, our work introduces the first reproducible benchmark targeting issues in agent systems, an
emerging software paradigm with features distinct from traditional software. Using this benchmark,
we find that current SE agents are still unable to resolve the majority of issue resolution tasks in agent
systems.

3



3 Agent Issue Taxonomy

To understand issues during agent system maintenance, we first manually analyze and categorize
real-world GitHub issues in widely-used agent systems.

3.1 Methodology

Figure 1 illustrates our methodology of systematically collecting and analyzing agent issues.

3.1.1 Data Collection

Agent system collection. To select diverse and representative agent systems, we first use the GitHub
search API to obtain 50 repositories with keywords “AI agents” by Feb 2025. We then manually go
through each repository to keep the ones that are LLM-based agent systems (filter out the unrelated
ones like paper lists or tutorials); to focus on agent systems with active maintenance, we only keep
the ones with more than 1k stars and 30 issues. In this way, we collect 18 agent systems, such as
MetaGPT [26], AutoGen [11], GPT-engineer [21], and CrewAI [16]. The full list of our analyzed
agent systems is in Appendix A.

Figure 1: Methodology of agent issue taxonomy construction.

Agent issue extraction. For each studied agent system, we adopt the following inclusion criteria
to extract high-quality issues. (i) The issue has been closed with a developer-committed patch to
address the issue, as patches can serve as ground truth for understanding root causes of agent issues;
(ii) The issue has clear descriptions without misleading information (e.g., exact patches or misleading
patches in the problem description). This criteria has been widely used in constructing high-quality
issue resolution benchmarks for traditional software systems [52, 3, 40]; (iii) The issue should only
report one problem instead of mixing multiple problems. In the end, we obtain 201 issues in total.

3.1.2 Manual Labeling

We randomly separate our collected 201 agent issues into (i) 171 issues (85%) for building the
taxonomy and (ii) 30 issues (15%) for evaluating our constructed taxonomy.

Taxonomy construction. We manually catalog the 171 agent issues with grounded theory [37].
In particular, three human annotators with extensive software development and machine learning
experience apply open coding [35, 36, 48] to annotate each issue based on the issue description and
the developer-committed patch. They break down each issue into segments and label them with
descriptive codes. Then they organize the open codes into structured categories by merging and
linking relevant ones. All the annotators further discuss and review the taxonomy until reaching a
consensus.

Taxonomy evaluation. We further evaluate our taxonomy on the remaining 30 agent issues. Two
annotators independently label each issue. Their annotation reaches a high agreement ratio (Cohen’s
Kappa = 0.849); meanwhile there emerge no new categories in addition to our taxonomy during their
annotation.

3.2 Taxonomy

Table 1 presents our taxonomy of agent issues, mainly covering 6 categories. Appendix F presents
detailed examples for each sub-category. In addition to the “utility issues” category which may also
occur in traditional software systems, the remaining five categories are uniquely tied to key agent
system components (e.g., tools and memory), making them distinctive to agent systems.
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Table 1: Taxonomy of agent issues.

Category Sub-category Description
Incompati-
bility with
LLM
providers
(7.46%)

Incompatible dependencies
(1.49%)

Miss or misuse the libraries of LLM providers.

Unsupported models (2.99%) Lack the support of recent LLMs.
Incompatible parameters to
LLM providers (2.99%)

Use undefined parameters or miss parameters of LLM query
interfaces.

Tool-
related
issues
(19.90%)

Tool dependency issues
(3.48%)

Miss or misuse libraries for running agent-invoked tools.

Tool configuration issues
(3.47%)

Misconfigure the settings of agent-invoked tools.

Tool implementation errors
(8.46%)

Incorrect implementation of self-developed agent-invoked
tools.

Misuse tool interfaces (4.48%) Incorrect tool invocation due to missing/wrong parameters.
Memory-
related
issues
(14.43%)

Memory initialization issues
(2.49%)

Incomplete or inconsistent memory states due to database ini-
tialization or workspace resetting issues.

Memory content errors
(10.95%)

Incorrect message attributes, misleading content, or content
loss caused by faulty storage logic.

Memory dependency issues
(1.00%)

Incorrect internal module dependencies or external libraries
required by memory operations.

LLM
operation
issues
(31.34%)

Model access misconfigura-
tion (6.97%)

Model access errors caused by misconfiguration like incorrect
model binding or authentication credentials (e.g., API keys).

Token usage misconfiguration
(3.48%)

LLM token management issues such as incorrect limits or
pricing.

Incorrect model output han-
dlers (8.46%)

Incorrect parsing logic for model output or miss handlers for un-
expected model behaviors like empty or exceptional responses.

Model dependency issues
(2.99%)

Missing/incompatible libraries related to model operation such
as tokenization or transformer dependency conflicts.

Context length issues (4.98%) Truncated outputs caused by exceeding context limits or mis-
calculating context length.

Prompt-related issues (4.48%) Suboptimal prompt content or prompt management issues (e.g.,
fail to set/update prompts).

Workflow issues (6.47%) Abnormal agent workflows like hanging or repeated loops.
Utility
issues
(20.40%)

Utility implementation issues
(8.96%)

Implementation errors in LLM-unrelated components (e.g.,
UI/Docker/logging).

Utility dependency issues
(4.48%)

Miss/incompatible libraries or circular internal dependencies
required by general utilities (e.g., testing or file operations).

Utility configuration issues
(6.97%)

External component misconfiguration (e.g., I/O paths, network
settings).

Incompatibility with LLM providers. Most agent systems incorporate existing LLMs from LLM
providers (e.g., OpenAI [2], DeepSeek [17], and Anthropic [10]), and improper usage of providers’
interfaces impairs agent functionality. Such issues often stem from missing dependencies or incorrect
invocations of provider APIs. Moreover, due to the rapid evolution of LLMs, users frequently request
new feature to support newly-released LLMs.

Tool-related issues. The versatility of agent systems partly stems from their proficiency in utilizing
tools to interact with the environment. As a result, many agent-related issues arise during tool
invocation, including missing tool-dependent libraries, misconfigurations, or incorrect use of tool
interfaces. In addition to external tools, agents may also rely on internal tools (e.g., custom-developed
functions), where implementation flaws can trigger unintended behaviors during tool execution.

Memory-related issues. The memory mechanism in agents tracks the trajectory of agent operation,
and most memory-related issues arise from incorrect memory content. For example, agents may
pollute memory with irrelevant information when they mistakenly extract unrelated attributes from
the current context, or memory entries may be missing or incomplete due to failures in storing data.

Workflow issues. Due to the autonomy and flexibility of agent systems, unexpected behaviors can
emerge along the agent workflow, such as repeated actions or hanging states. Although it is difficult
to completely eliminate such issues, developers commonly mitigate them by incorporating status
checkers to monitor and regulate the agent workflow.
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LLM operation issues. A large portion (31.34%) of agent-related issues occur during LLM operation.
For example, proper configuration of model access and token usage is critical, and misconfiguration in
these areas can disrupt agent functionality. Additionally, many issues stem from incorrect handling of
model outputs, including: (i) flawed parsing implementations, or (ii) missing handlers for unexpected
model responses. Beyond the suboptimal prompt content (e.g., unclear model instructions), prompt
management can also introduce risks: as agent systems often maintain a large and evolving pool of
prompts, failures in prompt updates or configuration can result in models being queried with incorrect
or outdated instructions.

Summary. Our taxonomy reveals that real-world agent systems exhibit a diverse range of issues,
many of which possess unique characteristics not typically found in traditional software systems.
In particular, developing and maintaining agent systems demands substantial engineering effort, as
developers must manage correct dependencies, configurations, and implementations across multiple
components (e.g., model providers, LLM operations, memory mechanisms, and tools). Therefore, we
believe that automatically resolving issues in agent systems represents a challenging and increasingly
vital research direction in the era of LLMs.

4 AGENTISSUE-BENCH Benchmark

We then manually build AGENTISSUE-BENCH, the first reproducible issue resolution benchmark of
real-world agent issues. AGENTISSUE-BENCH can be used to evaluate the efficacy of state-of-the-art
SE agents in solving issues in agent systems.

4.1 Benchmark Construction

We construct AGENTISSUE-BENCH out of the 201 GitHub agent issues we collected in Section 3. In
particular, we try to reproduce each issue according to the following procedure.

Step 1: Failure reproduction. For each issue, we pull its corresponding buggy commit and set
up the agent system. In particular, we manually write a test script (i.e., failure-triggering test) to
reproduce the problematic behaviors according to the issue descriptions. In this step, we filter out the
issues where we cannot observe the same buggy behavior as issue descriptions.

Step 2: Patch reproduction. We then pull the corresponding patched commit and execute the
failure-triggering test on it. In this step, we only keep the issues where the patched version can pass
the failure-triggering tests (i.e., problematic behaviors disappear on the patched version).

Step 3: Non-flakiness verification. Given the nondeterminism of LLMs, we repeat the previous two
steps three times for each issue so as to eliminate the test flakiness. In this step, we filter out issues
where there are inconsistent behaviors on executing one failure-triggering test.

Through such a multi-step filtering process, the original 201 agent issues are narrowed down to
50 reproducible issue resolution tasks, collectively forming AGENTISSUE-BENCH. We find that
reproducing issues in agent systems is significantly more challenging than in traditional software
systems, as agent issues are associated with diverse internal and external components and resources.
In particular, most agent issues fail to reproduce for the following reasons. (i) The nondeterminism
of LLMs leads to unstable model outputs, which hinders the reproduction of agent issues such
as workflow errors; (ii) External resources (e.g., agent-invoked tools, dependent libraries, or LLM
providers) may have changed since the issue was reported, making it impossible to reproduce the same
failure; (iii) Issue descriptions lack sufficient details or steps on how to reproduce the problematic
behaviors; (iv) Agent systems cannot be correctly set up and exhibit unexpected failure behaviors that
are different from the issue descriptions. Overall, the entire reproduction process takes huge manual
effort (approximately 500 person-hours).

4.2 Benchmark Details

Benchmark statistics. Figure 2 shows the distribution of AGENTISSUE-BENCH across different
issue categories. Overall, we can observe that the 50 reproduced agent issues in AGENTISSUE-
BENCH cover all the main categories identified in our taxonomy of agent issues, indicating that
AGENTISSUE-BENCH is representative of real-world agent issue distribution. Moreover, issues in
AGENTISSUE-BENCH involve patches of different scales (Detailed statistics are in Table 5).
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Figure 2: Distribution of AGENTISSUE-BENCH

Each issue resolution instance in AGENTISSUE-BENCH consists of the following components: (i)
Issue description: a user-reported textual description of the problem; (ii) Buggy version of the agent
system: the buggy commit of the agent code repository in which the issue occurs; (iii) Developer-
committed patch: the code changes between the buggy and correct versions, serving as the ground
truth for issue resolution; (iv) Failure-triggering tests: test scripts that reproduce the issue on the
buggy version but pass on the patched version; (v) Docker environment: a container with all necessary
dependencies and configurations to execute the agent system.

Figure 3: A task example in AGENTISSUE-BENCH.

Task formulation. The agent issue resolution task can be formulated as follows: (i) Input: the
issue description and the buggy codebase of the agent system; (ii) Output: a patch (i.e., a code
edit to the buggy codebase) that aims to resolve the issue. Figure 3 shows the task example in
AGENTISSUE-BENCH.

Evaluation metrics. To evaluate how a technique tackles the agent issue resolution task, we
adopt the following metrics to evaluate the patches output by the technique (i.e., SE agents in our
experiments). (i) Localization accuracy: if the generated patch modifies the same location as the
developer-committed patch, we consider it to have accurately localized the issue. We then compute
the percentage of issues for which the generated patches can achieve accurate localization. (ii)
Plausible resolution rate: if the generated patch makes the failure-triggering tests pass after being
applied, we consider it to plausibly resolve the issue (i.e., denoted as a plausible patch). We then
compute the percentage of issues for which the generated patches are plausible patches. (iii) Correct
resolution rate: if the generated plausible patch is further semantically-equivalent to the developer-
committed patch, we consider it to correctly resolve the issue (i.e., denoted as a correct patch).
In particular, given the insufficiency of tests in practice, it is common [45, 57, 43] that plausible
patches are not necessarily correct patches but are just overfitting to the failure-triggering tests.
Therefore, only reporting the plausible resolution rate can overestimate the effectiveness of issue
resolution techniques. Following the common practice in the program repair area [55, 54, 53, 39], we
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Table 2: Overall results of SE agents on AGENTISSUE-BENCH

SE Agent LLM Plausibly
resolved%

Correctly
resolved%

Localization % Avg.
File-level Function-level $Cost

Agentless GPT-4o 12.00 3.33 27.82 12.99 0.65
Claude-3.5-S 12.00 4.00 27.35 17.50 0.33

AutoCodeRover GPT-4o 7.33 1.33 22.07 14.77 0.23
Claude-3.5-S 12.67 4.67 25.81 19.18 0.05

SWE-agent GPT-4o 0.67 0.67 11.67 4.22 1.15
Claude-3.5-S 2.00 2.00 9.52 6.78 0.57

further involve human annotators to manually check whether the plausible patches are semantically
equivalent to developer-committed patches. In particular, two participants independently review
each plausible patch by comparing it to the golden patch (i.e., developer-committed), focusing on
whether the semantics of the patch fully resolve the underlying issue as intended and do not introduce
other functional or semantic errors. If both reviewers agree that the patch is semantically equivalent
and correctly resolved the issue, it is labeled as correct. If there is a disagreement between the two
reviewers, a third participant would be involved as an adjudicator. The final label is determined only
after all three reviewers reach a consensus. We then compute the percentage of issues for which the
generated patches are correct patches.

5 Experiments

In this section, we investigate how state-of-the-art SE agents can automatically resolve real-world
issues in agent systems by evaluating their efficacy on AGENTISSUE-BENCH.

5.1 Experimental Setup

Studied SE agents. We include three state-of-the-art SE agents, including SWE-agent [58], Au-
toCodeRover [66], and Agentless [52]. These agents are selected given that they are fully open-
sourced and achieve superior effectiveness in resolving issues for traditional software systems [33].
We directly adopt their released implementation with the original hyperparameter settings.

Backbone LLMs. Based on the recent SWE leaderboard [33], state-of-the-art SE agents achieve
higher fixing rate on general software issues when equipped with backbone LLMs GPT-4o [1] and
Claude-3.5 Sonnet [15]. Therefore, in our experiments, we mainly study how effective SE agents are
in resolving agent issues with these two backbone LLMs (temperature = 0).

Evaluation pipelines. We apply studied SE agents on AGENTISSUE-BENCH and collect their
generated patches for each issue resolution task. We then calculate the metrics of fault localization
accuracy, plausible and correct resolution rates for each studied SE agent. To eliminate the randomness
from LLMs, we repeat all experiments three times and present the average results. In particular, our
major metric (average resolution rate over three runs) is essentially average pass@1 over three runs.
Table 8 in Appendix G further presents the pass@1 and pass@3 over one run.

5.2 Quantitative Results

Overall resolution effectiveness. Table 2 shows the results of the studied SE agents on AGENTISSUE-
BENCH. In general, state-of-the-art SE agents can only correctly resolve a small number (i.e., 0.67%
- 4.67%) of agent issues. In addition, in most cases, SE agents even fail to correctly identify the
location (i.e., files or functions) for resolving the issue, e.g., file-level/function-level localization
accuracy is less than 28%/20%. Such observations reveal the limited capabilities of state-of-the-art
SE agents in understanding and resolving the issues in agent systems.

In addition, Figure 4 compares the correct resolution rate of SE agents on agent issues (on our
benchmark AGENTISSUE-BENCH) versus on traditional software issues (results from SWE-bench
Lite [33]). As there is no previous data of AutoCodeRover with Claude-3.5-S on SWE-bench, we
leave it as blank. Overall, SE agents demonstrate significantly lower resolution rates on agent issues
compared to traditional software issues. These findings highlight the unique challenges posed by
agent systems and underscore the need for developing SE agents specifically tailored to maintain
agent systems, which is an emerging and distinctive software paradigm.
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Table 3: Breakdown of resolved agent issues (unresolved categories are not presented).

Category Resolved% Sub-category Resolved%
Tool-related issues 2/12 (16.67%) Tool dependency issues 2/3 (66.67%)
LLM operation issues 1/11 (9.09%) Prompt-related issues 1/2 (50.00%)
Utility issues 2/12 (16.67%) Utility configuration issues 2/6 (33.33%)

Comparison among SE agents and backbone LLMs. As shown in Table 2, SE agents with
Claude-3.5-S achieve better effectiveness than with GPT-4o in terms of plausible resolution, correct
resolution, and localization accuracy. In particular, AutoCodeRover with Claude-3.5-S achieves the
highest resolution rate (i.e., 4.67%) and the highest function-level localization accuracy (i.e., 19.18%).
Overall, we observe a larger potential of Claude-3.5-S in understanding agent issues than GPT-4o.

Figure 5 shows the unique and overlapped agent issues that are correctly resolved by each SE agent.
An issue is counted as correctly resolved by an agent if it was solved in at least one of the three
experimental runs. We could observe that each SE agent can uniquely fix 1 - 2 bugs that cannot be
resolved by any other SE agents. In addition, there is no agent issue that can be fixed by all SE agents.
In other words, existing SE agents exhibit complementary capabilities to resolve agent issues.

Figure 4: Resolution rate of agent issues v.s. tradi-
tional software issues. Figure 5: Venn diagrams of resolved issues.

Costs. As shown in Table 2, the average costs of applying SE agents to agent issue are controllable,
ranging from $0.05 to $1.15. The cost range is similar as applying these SE agents to resolve
traditional software issues (e.g., $0.45 - $2.53 [52]).

5.3 Qualitative Results

In this section, we further break down the issues that SE agents can and cannot resolve, aiming to
better understand their strengths and limitations in resolving agent issues. Table 3 presents the issue
categories that can be resolved by at least one studied SE agent.

Resolved agent issues. Overall, the majority of agent issues resolved by SE agents are still related to
utility (e.g., log/file operation/UI), which actually share high commonality with traditional software
systems. As a result, SE agents are inherently able to resolve issues of this category in agent
systems. Moreover, besides common utility issues, some of the dependency issues on agent-specific
components (e.g., tool) can also be resolved by SE agents. The reason why SE agents can handle such
agent issues might be that the dependency issues often contain explicit error messages (e.g., missing
libraries or incompatible variables/interfaces). As a result, even if the dependencies are unique to
agent components (e.g., tool), they can still be similar to dependency issues in other general software
components, which are straightforward and informative to resolve.

Unresolved agent issues. Overall, the majority of agent-specific issues cannot be resolved by any
SE agent. For example, SE agents resolve a very few (or even none) issues on LLM provider
incompatibility, memory, or LLM operation. The reason might be that the exchanges with LLM
providers are unique features in agent systems and agent systems are emerging in the recent period,
which thus are less covered in the LLM training data. In addition, the autonomous and flexible nature
of agent systems stemming from LLMs makes it challenging to identify the root causes of LLM
operation issues. Figure 6 and Figure 7 in Appendix E show two unresolved issues for which all SE
agents cannot even correctly localize the buggy files.
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In summary, our analysis further confirms the limitations of existing SE agents in resolving the agent
issues which are particularly related to agent-specific features, highlighting the necessity of building
more advanced SE agents for maintaining agent systems.

6 Limitation and Future work

While AGENTISSUE-BENCH is representative of real-world agent issues by covering a wide range
of different categories, the generality of our findings can still be restricted due to the data source and
the benchmark scale. First, our work only focuses on reactive agent issues (i.e., first-expose-then-fix),
as our data source (i.e., user-reported Github issues) inherently captures problems reported by agent
users. This scope intentionally excludes other maintenance aspects such as preventative strategies
(e.g., proactive LLM monitoring) and performance optimization, which are typically observed from
the developers’ perspective using internal logs. Second, the current benchmark size is limited as
reproducing issues in agent systems is significantly more challenging than in traditional software
systems. Due to the nondeterminism of LLMs and changeable external resources (e.g., tools and LLM
providers) interacted with agent systems, only a small number of agent issues (50 out of 201 issues)
can be successfully reproduced. Moreover, huge manual effort (approximately 500 person-hours)
are dedicated to preparing the Docker environment, configuring agent systems, and writing failure-
triggering tests. In the future, we plan to continuously maintain and extend our benchmark to support
future research on agent system maintenance. The continuous work of our benchmark is available at
our website [6]. In particular, the benchmark has been extended with 20 more reproducible issues
since the paper submission time. Similar trends (i.e., poor resolution rate) can be observed in those
additional issues. Detailed results are presented in Appendix H.

Discussion. Based on our findings, we further discuss implications for future research towards
building more effective SE agents for resolving agent issues. (i) Adding a knowledge base on agent-
needed external resources. Our findings show that existing SE agents struggle with issues related
to external resources. A promising direction is to augment agents with an evolving knowledge base
built from API documentation, release notes, and historical issues. Integrating this knowledge could
empower SE agents to better reason about and diagnose the issues related to external resources.
(ii) Training SE agents with instances and trajectories collected from AGENTISSUE-BENCH. Our
benchmark and study provide training data specifically on the emerging agent systems. As our work
provides executable environments and tests of buggy/fixed agent systems, future work can collect
instances and trajectories (e.g., agent-environment/tool interactive trajectories) for fine-tuning more
powerful SE agents that specifically targets at agent issue resolution. (iii) Adding a dynamic analysis
component in SE agents. Our results highlight the limited localization accuracy of current agents,
suggesting a large gap between an issue description and its root cause. To address this, future SE
agent architectures could move beyond static analysis and incorporate a dynamic analysis component.
By utilizing runtime information like execution trajectories and tool outputs, the agent can gather
richer signals for more accurate bug localization and patch generation.

7 Conclusion

In this work, we analyze 201 GitHub issues from 18 real-world agent systems and construct the first
taxonomy of agent issues. We further build AGENTISSUE-BENCH, the first reproducible benchmark
of 50 high-quality agent issue resolution tasks. Experiments on state-of-the-art SE agents demonstrate
their limited effectiveness in addressing agent issues (with resolution rates ranging from 0.67% to
4.67%), highlighting the unique challenges in maintaining agent systems and the pressing need for
more advanced SE agents tailored to this emerging software paradigm.
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capabilities of SE agents.
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: Our replication package (including both the benchmark and the code) is
available at [5].
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our replication package [5] includes the data and code for reproducing the
experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified the data splits in Section 3.1.2 and the hyperparameters in
and Section 4.2 and Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have presented the mean values along with their corresponding two-
sigma(±2σ) errors for the main experimental results in Table 6 and explained the detailed
calculation method in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Table 2 reports the average token/money costs needed to run experiments.
Our experiments solely on online LLMs and thus do not impose strict requirements on
computational resources

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work empirically evaluating SE agents in solving agent issues, which does
not involve any societal impact.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper mainly focuses on an empirical study.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited and respected the license of our analyzed agent systems in
Table 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces a new issue resolution benchmark AGENTISSUE-BENCH.
Its statistics are described in Section 4.2 and in our replication package [5].

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Appendix C shows the details in human-involving tasks, including the instruc-
tions and compensation.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Human-involving tasks were approved by the Institutional Review Board (IRB)
at our institution (as mentioned in Appendix C).

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper empirically studies LLM agents and describes the usage of LLMs
in Section 5.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Analyzed agent systems

Table 4 presents the full list of our analyzed agent systems and their statistics.

Table 4: Statistics of analyzed agent systems

Agent #stars #Loc Creation time License

agent-squad [4] 5.4k 109,019 07/23/2024 Apache-2.0 License
AGiXT [7] 3k 111,946 04/04/2023 MIT License
AI SDK [8] 18.4k 365,300 05/23/2023 Apache-2.0 License
autogen [11] 44.2k 197,969 08/18/2023 CC-BY-4.0, MIT License
camel [13] 12.4k 206,152 03/17/2023 Apache-2.0 License
babyagi [12] 21.4k 8,800 04/03/2023 MIT License
CrewAI [16] 31.3k 171,395 10/27/2023 MIT License
Haystack [23] 22.9k 180,500 11/14/2019 Apache-2.0 License
Lagent [25] 2.1k 13,075 08/20/2023 Apache-2.0 License
MetaGPT [26] 55.4k 90,709 06/30/2023 MIT License
RagaAI-Catalyst [30] 16.2k 47,252 10/01/2024 Apache-2.0 License
ChatDev [14] 26.8k 40,478 11/04/2023 Apache-2.0 License
gpt-engineer [21] 54.1k 17,460 04/29/2023 MIT License
Pythagora [29] 1.8k 5,859 01/21/2023 Apache-2.0 License
SWE-agent [32] 15.7k 63,388 04/02/2024 MIT License
evo.ninja [19] 1.1k 31,862 08/18/2023 MIT License
Superagent [31] 5.8k 58,602 05/10/2023 MIT License
gpt-researcher [22] 21.3k 168,849 05/12/2023 Apache-2.0 License

B Patch Scales of AGENTISSUE-BENCH

Table 5 presents the statistics of the patch scales in AGENTISSUE-BENCH.

C Human Participation

All human-involved tasks in our experiments (including taxonomy construction, taxonomy evaluation,
and issue reproduction) were approved by the Institutional Review Board (IRB) at our institution.
Additionally, all participants were compensated at a rate of $15 per hour.

In taxonomy evaluation, each human annotator is provided with the following instructions: “Given
the taxonomy of agent issues (along with the definition of each agent issue category), please label
each agent issue with any category in the taxonomy. If there are no applicable categories in the given
taxonomy, please return the label as non-applicable.”

D Experiment Statistical Significance

Table 6 presents the mean results of SE agents on AGENTISSUE-BENCH, along with their corre-
sponding two-sigma (±2σ) errors. To calculate the two-sigma errors, we conducted the experiment
on AGENTISSUE-BENCH three times, computed the standard deviation for the results and multiplied
it by 2, as shown in Equation 1:

2σ = 2×

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (1)

where N is the number of experimental runs, xi is the result of the i-th run, and x̄ is the mean result.

E Examples of Unresolved Issues

In this section, we provide two issue examples that all SE agents fail to localize the buggy files and
generate correct patches.

For the example depicted in Figure 6, the agent lacks up-to-date knowledge regarding which LLMs
currently support the “stop” parameter. As a result, the agent incorrectly passed the “stop” parameter
to LLMs that do not support it (i.e., o1-preview and o1-mini), ultimately aggravating the issue.
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Table 5: Mean and maximum values for various patch attributes in studied agents

Attribute Mean Max
# Lines edited 66.05 355
# Files edited 3.58 34
# Functions edited 6.79 54

Table 6: Mean results with 2-sigma(±2σ) errors of SE agents on AGENTISSUE-BENCH

SE Agent LLM Plausibly
resolved%

Correctly
resolved%

Localization %
File-level Function-level

Agentless GPT-4o 12.00 (±4.00) 3.33 (±4.62) 27.82 (±5.51) 12.99 (±2.78)
Claude-3.5-S 12.00 (±0.00) 4.00 (±0.00) 27.35 (±0.00) 17.50 (±0.00)

AutoCodeRover GPT-4o 7.33 (±2.31) 1.33 (±2.31) 22.07 (±7.21) 14.77 (±2.62)
Claude-3.5-S 12.67 (±6.11) 4.67 (±2.31) 25.81 (±11.43) 19.18 (±5.54)

SWE-agent GPT-4o 0.67 (±2.31) 0.67 (±2.31) 11.67 (±5.17) 4.22 (±4.07)
Claude-3.5-S 2.00 (±0.00) 2.00 (±0.00) 9.52 (±5.24) 6.78 (±2.59)

For the example depicted in Figure 7, the agent fails to identify the root cause of the KeyError,
i.e., a conflict arising from generating multiple diffs for a single file. This issue is specific to the
agent system, as it involves the handling of model outputs. However, instead of performing a deeper
analysis, the agent merely prints an error message, resulting in an unsuccessful patch.

Figure 6: This unresolved issue arises because not all LLMs support the ‘stop’ parameter, requiring
users to control its use (e.g., via use_stop_words in the Golden Patch). The agent-generated patch
aggravated the issue by passing ‘stop’ to unsupported models (i.e., o1-preview and o1-mini).

F Examples of Issues in Different Categories

In this section, we provide detailed issue examples of each sub-category in Table 1. For each issue,
we provide the repository name, the user-provided issue description and the summarization of the
developer-committed patch (along with the link to the original issue and Pull Request (PR) pages).

F.1 Incompatibility with LLM providers

1. Incompatible dependencies
• Repository: gpt-researcher
• Link to the Issue: https://github.com/assafelovic/gpt-researcher/issues/1106
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Figure 7: This unresolved issue stems from the LLM generating multiple diffs for a single file,
resulting in conflicts. The Golden Patch resolves this by retaining only the first diff. In contrast, the
agent-generated patch fails to investigate the root cause and simply logs an error message.

• Link to the PR: https://github.com/assafelovic/gpt-researcher/pull/1161

• Issue Description: Testing revealed that the invocation method for token_counter and related
functions in Claude has changed, requiring verification.

• Fix Strategy: Update the version of anthropic library and use the latest released APIs.

2. Unsupported models
• Repository: ChatDev
• Link to the Issue: https://github.com/OpenBMB/ChatDev/issues/284
• Link to the PR: https://github.com/OpenBMB/ChatDev/pull/277
• Issue Description: Can’t do anything with 3.5 turbo. The code it makes is brutal. Can it be

possible to add GPT 4 Turbo? gpt-4-1106-preview
• Fix Strategy: Update the version of openai library and add support for GPT-4 Turbo.

3. Incompatible parameters to LLM providers
• Repository: CrewAI
• Link to the Issue: https://github.com/crewAIInc/crewAI/issues/1323
• Link to the PR: https://github.com/crewAIInc/crewAI/pull/1322
• Issue Description: I defined the model to o1-preview or o1-mini and temperature to 1, and

I get the following error. Unsupported parameter: “stop” is not supported with this model.
Apparently the stop parameter is used, and is not supported. I didn’t find a way for the crew to
no use this parameter.

• Fix Strategy: Added the option use_stop_words to allow users to configure whether to use
the stop parameter.

F.2 Tool-related issues

1. Tool dependency issues
• Repository: lagent
• Link to the Issue: https://github.com/InternLM/lagent/issues/279
• Link to the PR: https://github.com/InternLM/lagent/pull/280
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• Issue Description: When running the agent with web search capabilities, an error occurred.
ModuleNotFoundError: No module named “tenacity”

• Fix Strategy: Add tenacity in the dependency configuration file.

2. Tool configuration issues
• Repository: gpt-researcher
• Link to the Issue: https://github.com/assafelovic/gpt-researcher/issues/922
• Link to the PR: https://github.com/assafelovic/gpt-researcher/pull/925
• Issue Description: It looks like we cannot set RETRIVER solely

to duckduckgo or others. It always throws an exception about
Exception: Tavily API key not found. Please set the TAVILY_API_KEY environment variable.

• Fix Strategy: Ensure the retriever is set up according to the user’s configuration specified via
environment variables.

3. Tool implementation issues
• Repository: SWE-agent
• Link to the Issue: https://github.com/SWE-agent/SWE-agent/issues/697
• Link to the PR: https://github.com/princeton-nlp/SWE-agent/pull/731
• Issue Description: If the agent tries to cat out the content of a word file (.docx), then line

buffer.decode() fails, and the program crashes.

• Fix Strategy: Replace buffer.decode() with buffer.decode(“utf-8”,errors=“backslashreplace”)
so that the program will not crash when reading non-utf8 encoded bytes.

4. Misuse tool interfaces
• Repository: camel
• Link to the Issue: https://github.com/camel-ai/camel/issues/256
• Link to the PR: https://github.com/camel-ai/camel/pull/258
• Issue Description: When “KAUST” is the entity word to be searched, the returned result by

wikipedia API (wikipedia.summary) is the summary about KAIST.
• Fix Strategy: Set the auto_sugget parameter to False when invoking wikipedia.summary()

so that it does not change the search word (such as KAUST -> KAIST)

F.3 Memory-related issues

1. Memory initialization issues
• Repository: CrewAI
• Link to the Issue: https://github.com/crewAIInc/crewAI/issues/2123
• Link to the PR: https://github.com/crewAIInc/crewAI/pull/2182
• Issue Description: Looks like reset-memories is throwing an error on -a .

An unexpected error occurred: No crew found.

• Fix Strategy: Fix the get_crew method to obtain the correct crew instance, and ensure that

memory is only reset when it is not None .

2. Memory content issues
• Repository: camel
• Link to the Issue: https://github.com/camel-ai/camel/issues/915
• Link to the PR: https://github.com/camel-ai/camel/pull/916
• Issue Description: Current (memory storage) logic checks the content in the chunk, if the

content is None then the message would be appended, but for some API like SambaNova,
there may include many None content in chunks in the middle of response. We need to change
the logic, checking choice.finish_reason then append the message would be better.

• Fix Strategy: Update the logic for storing messages. Determine whether a chunked message
has been fully stored by checking if the finish_reason attribute is not None .
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3. Memory dependency issues
• Repository: autogen
• Link to the Issue: https://github.com/microsoft/autogen/issues/4245
• Link to the PR: https://github.com/microsoft/autogen/pull/4246

• Issue Description: Running autogenstudio ui –port 8081 fails with

ImportError: cannot import name ‘InnerMessage’ from ‘autogen_agentchat.messages’

• Fix Strategy: Since ‘InnerMessage’ has been renamed to ‘AgentMessage’, all references to
‘InnerMessage’ are renamed to ‘AgentMessage’.

F.4 LLM operation issues

1. Model access misconfiguration
• Repository: camel
• Link to the Issue: https://github.com/camel-ai/camel/issues/1273
• Link to the PR: https://github.com/camel-ai/camel/pull/1277/commits

• Issue Description: The decorator api_keys_required() currently only supports setting the
value of “DUMMY_TOKEN” in the environment variable, but does not support directly calling
DummyClass(api_key="xxxx") .

• Fix Strategy: Refactor the api_keys_required() decorator and make it compatible with the
method of directly setting API key.

2. Token usage misconfiguration
• Repository: camel
• Link to the Issue: https://github.com/camel-ai/camel/issues/1018
• Link to the PR: https://github.com/camel-ai/camel/pull/1071

• Issue Description: For LLM API served by OpenAI-compatible providers, if the max_tokens
is not provided then it would use NOT_GIVEN from openai, which will lead to
TypeError: ‘<=’ not supported between instances of ‘int’ and ‘NotGiven’

• Fix Strategy: Unify the default token_limit property in the base model class to make sure it is
provided for different models.

3. Incorrect model output handlers
• Repository: MetaGPT
• Link to the Issue: https://github.com/geekan/MetaGPT/issues/1100
• Link to the PR: https://github.com/geekan/MetaGPT/pull/1105

• Issue Description: When running python3 debate.py “Talk about Artificial General Intelligence” ,

an error occurs: ValueError: The response.text quick accessor only works for simple (single-Part) text responses .

• Fix Strategy: The root cause is that the Gemini model flags the request as poten-
tially involving sensitive or harmful content and blocks it. To address this scenario, the
BlockedPromptException has been added to catch exceptions triggered by blocked prompts.

4. Model dependency issues
• Repository: lagent
• Link to the Issue: https://github.com/InternLM/lagent/issues/244
• Link to the PR: https://github.com/InternLM/lagent/pull/245

• Issue Description: Encounter AttributeError: ‘GenerationConfig’ object has no attribute ‘_eos_token_tensor’
when running code in the transformers library.

• Fix Strategy: Update the version constraint of transformers to avoid conflict.

5. Context length issues
• Repository: gpt-researcher
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• Link to the Issue: https://github.com/assafelovic/gpt-researcher/issues/1196
• Link to the PR: https://github.com/assafelovic/gpt-researcher/pull/1195
• Issue Description: Exceed maximum context length error in generate_report:

Expected a string with maximum length 1048576, but got a string with length 1304783 instead.

• Fix Strategy: Limit context to 25k words (with safety margin) by trimming older records while
keeping recent and relevant ones.

6. Prompt-related issues
• Repository: gpt-researcher
• Link to the Issue: https://github.com/assafelovic/gpt-researcher/issues/1100
• Link to the PR: https://github.com/assafelovic/gpt-researcher/pull/1101
• Issue Description: “Introduction” and “Conclusion” sections remain in English even when

LANGUAGE is set to a different language (e.g., “japanese”) in the configuration.
• Fix Strategy: Update the prompts for “Introduction” and “Conclusion” generation to include

language specification instructions.

F.5 Workflow issues

1. Workflow issues
• Repository: CrewAI
• Link to the Issue: https://github.com/crewAIInc/crewAI/issues/1463
• Link to the PR: https://github.com/crewAIInc/crewAI/pull/1531
• Issue Description: Execution fails for steps with multiple preceding parallel steps.
• Fix Strategy: Modify the asynchronous listening mechanism to ensure that subsequent steps

can proceed smoothly after the preceding parallel steps are completed.

F.6 Utility issues

1. Utility implementation issues
• Repository: SWE-agent
• Link to the Issue: https://github.com/SWE-agent/SWE-agent/issues/362
• Link to the PR: https://github.com/SWE-agent/SWE-agent/pull/497
• Issue Description: In the React frontend framework, the default value of a textbox is supposed

to update based on another selected dropdown item, but this dynamic binding is not functioning
as intended.

• Fix Strategy: Use useEffect to monitor the change of the dropdown item, and when it changes,
reset the textbox to display the default value.

2. Utility dependency issues
• Repository: autogen
• Link to the Issue: https://github.com/microsoft/autogen/issues/1436
• Link to the PR: https://github.com/microsoft/autogen/pull/1437
• Issue Description: Running pytest with the latest version 8.0.0 released an hour ago is not

working.
• Fix Strategy: Limit version of pytest to under 8.0.0

3. Utility configuration issues
• Repository: CrewAI
• Link to the Issue: https://github.com/crewAIInc/crewAI/issues/1270
• Link to the PR: https://github.com/crewAIInc/crewAI/pull/1316
• Issue Description: When loading a variable from the yaml environment, the crewai library tries

to load it in gbk encoding as soon as Chinese is present in it, but my yaml file is utf-8. You want
to add a measure to detect file encoding when loading yaml files.

• Fix Strategy: Explicitly specify UTF-8 encoding when reading the YAML file.
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Table 7: Overall results of SE agents on AGENTISSUE-BENCH with task difficulty

SE Agent LLM Plausibly
resolved%

Correctly
resolved%

Localization %
File-level Function-level

Agentless GPT-4o 11.46 3.51 27.25 12.08
Claude-3.5-S 11.32 3.77 26.82 16.88

AutoCodeRover GPT-4o 6.84 1.40 21.62 14.37
Claude-3.5-S 11.58 4.33 25.21 18.46

SWE-agent GPT-4o 0.70 0.70 11.26 3.85
Claude-3.5-S 2.11 2.11 9.15 6.40

Table 8: Pass@1 vs. Pass@3 on AGENTISSUE-BENCH

Pass@k GPT-4o (%) Claude-3.5-S (%)
Agentless AutoCodeRover SWE-agent Agentless AutoCodeRover SWE-agent

Pass@1 6.00 2.00 2.00 4.00 6.00 2.00
Pass@3 6.00 2.00 2.00 4.00 6.00 2.00

G Comparison among SE agents with various metrics

We further evaluate the fixing capabilities of SE agents by considering task difficulties. In particular,
we consider the utility errors as of low severity/difficulty while the other agent-specific issues as
of high severity/difficulty. Table 7 presents the weighted resolution rate (0.2 for utility errors and
0.8 for other agent-specific errors) among SE agents. Overall, we could observe similar findings
between weighting and non-weighting results, including (1) limited capabilities of agents in agent
issue resolution, (2) the superiority of AutoCodeRover with Claude-3.5-S, and (3) outperformance of
Claude-3.5-S over GPT-4o.

Table 8 presents the pass@1 and pass@3 over one run. Overall, we could observe consistent trends
on these metrics as our current findings, including (1) overall limited capabilities of agents in agent
issue resolution, (2) the superiority of AutoCodeRover with Claude-3.5-S, and (3) outperformance of
Claude-3.5-S over GPT-4o.

H Extended AGENTISSUE-BENCH

Table 9 presents the results of SE agents on the 20 more issues [6] that are additionally reproduced
after the paper submission time. Overall, we could observe similar trends on these additional issues
that SE agents exhibit limited capabilities of resolving agent issues (i.e., up to 5% correct resolution
rate).

Table 9: Results of SE agents on additional issues

SE Agent LLM Plausibly
resolved%

Correctly
resolved%

Localization %
File-level Function-level

Agentless GPT-4o 5.00 0.00 10.00 6.67
Claude-3.5-S 5.00 0.00 12.50 6.67

AutoCodeRover GPT-4o 5.00 0.00 12.50 5.83
Claude-3.5-S 5.00 5.00 20.83 11.25

SWE-agent GPT-4o 0.00 0.00 0.00 0.00
Claude-3.5-S 0.00 0.00 0.00 0.00

27


	Introduction
	Background and Related Work
	LLM-based Agent Systems
	Software Engineering Agents

	Agent Issue Taxonomy
	Methodology
	Data Collection
	Manual Labeling

	Taxonomy

	AgentIssue-Bench Benchmark
	Benchmark Construction
	Benchmark Details

	Experiments
	Experimental Setup
	Quantitative Results
	Qualitative Results

	Limitation and Future work
	Conclusion
	Analyzed agent systems
	Patch Scales of AgentIssue-Bench
	Human Participation
	Experiment Statistical Significance
	Examples of Unresolved Issues
	Examples of Issues in Different Categories
	Incompatibility with LLM providers
	Tool-related issues
	Memory-related issues
	LLM operation issues
	Workflow issues
	Utility issues

	Comparison among SE agents with various metrics
	Extended AgentIssue-Bench

