This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Flash3D: Super-scaling Point Transformers through Joint Hardware-Geometry
Locality

Liyan Chen!, Gregory P. Meyer?, Zaiwei Zhang?, Eric M. Wolff?, Paul Vernaza?
'The University of Texas at Austin
Cruise LLC
liyanc@cs.utexas.edu, eric.wolff@getcruise.com, paul.vernazal@getcruise.com

https://github.com/liyanc/Flash3DTransformer

=

N

FA2 |

Abstract

Recent efforts recognize the power of scale in 3D learn-
ing (e.g. PTv3) and attention mechanisms (e.g. FlashAt-
tention). However, current point cloud backbones fail to
holistically unify geometric locality, attention mechanisms,
and GPU architectures in one view. In this paper, we in-
troduce Flash3D Transformer, which aligns geometric lo-

wsiueyos|y Ajjeoo pajdiouud
3ong PesyIsnQ-0187

Flash3D: 20ms

cality and GPU tiling through a principled locality mecha- %

nism based on Perfect Spatial Hashing (PSH). The common <
alignment with GPU tiling naturally fuses our PSH local-

ity mechanism with FlashAttention at negligible extra cost. Figure 1. Effectiveness our Flash3D transformer by unifying ge-
This mechanism affords flexible design choices throughout ometric locality, FlashAttention (FA2), and GPU tiling architec-
the backbone that result in superior downstream task re- ture. Our unified perspective leads to drastically improved speed
sults. Flash3D outperforms state-of-the-art PTv3 results on and scalability of point transformers.

benchmark datasets, delivering a 2.25x speed increase and

2.4x memory efficiency boost. This efficiency enables scal- In this paper, we tackle the challenges of efficient and
ing to wider attention scopes and larger models without ad- scalable point cloud backbones by introducing Flash3D
ditional overhead. Such scaling allows Flash3D to achieve Transformer, a new architecture that unifies geometric lo-
even higher task accuracies than PTv3 under the same com- cality with GPU memory locality. This is achieved through
pute budget. a principled locality mechanism based on Perfect Spatial

Hashing (PSH). Flash3D is designed to align point cloud

backbones with the tiling architecture of GPUs, leading
1. Introduction to marked improvements in both efficiency and scalabil-
ity. Our work integrates a locality mechanism that bridges
geometric and GPU memory locality, enabling an efficient
mapping of 3D points into compact memory spaces. Ben-
efiting from compact memory layouts, Flash3D introduces
a multilevel attention grouping method, Bucket-and-Swin,
precisely aligned with GPU tiling, allowing zero overhead
region shifting fused with FlashAttention-2 [6]. The joint
locality and efficiency boost are illustrated in Figure 1.

Efficient and scalable processing of point clouds is cru-
cial for a wide range of applications, including autonomous
driving [14, 15, 27, 35, 44], robotic navigation [24, 29, 38,
42, 45], and augmented reality [11, 30]. Point cloud back-
bones are essential architectures that extract meaningful
features from raw 3D data. Recent advancements [17, 18,
22, 39, 41] have explored various strategies to enhance the
performance of these backbones, particularly focusing on
how Multi-Head Self-Attention (MHSA) mechanisms can
be optimized for 3D point clouds. Windowing MHSA and Unified geometric and GPU memory locality: Using

Our key contributions are summarized as follows:

region shifting (e.g., Swin Transformers [21, 43]) enable Perfect Spatial Hashing (PSH), we propose a principled
efficient local-global feature extraction, but scaling point locality mechanism that brings together geometric and
cloud backbones to larger point cloud sizes and model ca- memory locality, benefiting downstream feature quality
pacities remains challenging [21, 39, 41]. and operation throughput.

6595

https://github.com/liyanc/Flash3DTransformer

Attention aligned with GPU tiling: We propose a
novel Bucket-and-Swin attention mechanism, structured
closely to GPU tiling, incorporating zero-overhead region
shifting and striding.

Scalable Performance: Flash3D Transformer outper-
forms PTv3 on benchmark datasets, simultaneously
achieving a 2.25x speed increase and 2.4x memory ef-
ficiency boost.

2. Related Work

3D Point Transformers Many variations of Point Trans-
formers have appeared recently, such as PTvl [46],
PTv2 [40], PTv3 [41], FlatFormer [22], and Oct-
Former [39], each differing in their definitions of geometric
locality. PTv1 and PTv2 introduced foundational concepts
in point cloud transformers, focusing on capturing both
local and global geometric structures within point clouds
through intricate windowing of MHSA.

FlatFormer [22] demonstrated that partitioning point
clouds into equally sized windows benefits MHSA by en-
abling efficient batching. OctFormer [39] proposed octree-
based neighborbood partitioning for fast window compu-
tation. Additionally, region shifting based on Swin Trans-
formers has been utilized to aggregate and distribute global
information through subsequent local windowing, enhanc-
ing the network’s ability to capture both local and global
features [9, 21, 22]. PTv3 [41] incorporated such de-
sign principles and achieved state-of-the-art performance
by scaling up MHSA window sizes and parameter sizes.
However, by relying on abstractions of global serialization
and scattering of points and features, PTv3 overlooks GPU
architectural issues, incurring substantial and unnecessary
computational and memory costs (see Figure 2 and Sec-
tion 3 for details). This highlights the need to holistically
integrate geometric locality with hardware considerations.

Varied definitions of geometric locality call for a gen-
eral approach to encompass a family of such. Ideal geo-
metric locality definitions should be flexible and compute-
efficient to represent striding and shifting and incorporate
global structures within point clouds. Variations among par-
tition sizes lead to negligible differences in downstream task
performances while hindering compute efficiency [36, 39].
Therefore, we motivate our principled locality mechanism
to align flexible geometric locality definitions with evenly
sized windows, which allow regularly batched computa-
tions on GPUs and saturate GPU compute throughput. Our
Bucket-and-Swin attention offers an efficient method for
striding and shifting on top of properly localized points by
leveraging our principled locality mechanism.

FlashAttention FlashAttention algorithms [6, 7, 32]
leverage the tiling structure of GPU chips and optimize at-
tention mechanisms by retaining intermediate results on-

6596

chip and carefully localizing computations. Retention
of intermediate results on-chip helps FlashAttention algo-
rithms to reduce quadratic memory cost down to a linear
one [7, 25, 33, 34]. Partitioning input arrays into tiles
aligned with GPU tiling structures maximizes computation
throughput. Given that GPU architectures have maintained
a tiling structure for over two decades—a fundamental de-
sign aspect unlikely to change [13]—these methods aim to
maximize GPU utilization for a range of GPU chips.

These two principles motivate our design choices of
Bucket-and-Swin attention. We partition point cloud fea-
tures into tiles fit in GPU tiles; each tile is fetched on-the-fly
based on logical assignments; logical partitions and fetch-
ing are fused with FlashAttention-2 CUDA kernel.

Perfect Spatial Hashing (PSH) Spatial hashing was
originally proposed to efficiently locate and query spatially
sparse data points [12, 23]. To enhance memory locality and
computational efficiency, researchers introduced the con-
cept of perfectness [5], compacting the hash table into a
contiguous linear array in memory. This approach resulted
in improved memory access patterns and query speed [20].
Later, [1] proposed a parallelized PSH construction on
GPUs, achieving exceptionally fast constructions even on
early GPUs by leveraging their massive parallel processing
capabilities and placing buckets within GPU tiles.

In our work, we focus on perfectness, propose a princi-
pled locality mechanism, and remove the traditional table
indexing structure. We focus on hashing a large number
of points into a contiguous memory array for MHSA. This
simplification aligns with our goal of unifying geometric lo-
cality with GPU memory locality to optimize performance.

3. Preliminaries

In order to explain how Flash3D achieves fast performance,
we must first understand the bottlenecks in previous work.
Figure 2 depicts the high-level dataflow associated with a
method such as PTv3 (note that some layers are omitted
for the sake of simplicity of exposition). Each numbered
rectangle represents a float stored in memory. We assume
the data has been pre-sorted to ensure contiguous floats are
likely to be close in terms of some meaningful metric.

Before the data can be processed, it must be loaded from
main memory into the L1 cache (which is practically equiv-
alent to shared memory in GPU jargon). An H100 can per-
form this step at a rate of roughly 1 TFloat/s. Although this
seems like an impressive number, it is dwarfed by the max-
imum achievable FLOP throughput of the GPU, which is in
excess of 60 TFloat/s. In our case, the compute-intensive
step consists of FlashAttention, which can perform in ex-
cess of 500 TFLOPs/s (albeit at reduced precision).

After writing results to memory, PTv3 then performs a
global reordering of the points in order to communicate in-

[o [1 [2 13 I4 Is 16 I? Is 19 110 111 112 113 114 115
\ \ \ \ \ [[[[[
yoid i;puts E)‘ 1 T2 13]_k" 5 6 7 "E Jo TJi0o i1 "E{z J13 J14 J15 ’_]
into
(0(1 TFloat/s)) L1 blcck load L1 block load L1 blpck load L1 block load
Inter-block A ‘ ‘
to(eoto00 " o i o 5 o i b 5 o 1 2 5 o i o T
TFloat/s)) L1 block L1 block L1 block L1 block
[[

\ \
Write results

eI

to memory

Is

I?

EPFF

(0(1 TFloat/s))

B NN NI

_ R — — ::,—‘ —_— — -
Global shuffle
(0(0-1 TRlcatrs)y | (2B 7 P IO‘ I“‘ 115‘ 13‘ 19‘ [6 Il‘ 12‘ 15‘ Im‘ 114‘ =)
;ﬁi‘ﬁ i;pUts 12 J13 7 8 0 [4 15 |3 9 8 1 |2 5 Jio J14 Ju
(0(1 TFloat/s)) L1 block load L1 block load L1 block load L1 block load

REPEAT K TIMES

Figure 2. High-level schematic overview of PTv3. Numbered rectangles represent locations in memory. Adjacent rectangles are adjacent
in memory. Arrows indicate data movement. See Section 3 for details.

L[12 13 I 15

16

I’ IS 19

110 111 112 113 114 115]

Global shuffle

10

(0(0.1 TFloat/s))

7 113] 5
Bucket Bucket]—L[Bucket }-L{ Bucket }-L{ Bucket)-L{ Bucket j—L{

Bucket

}-L‘ Bucket]j

Load inputs E T13 J_{]l_{s]_L 5 Tlo]_Ef T11
into L1 Bucket Bucket Bucket Bucket Bucket Bucket Bucket Bucket
(0(1 TFloat/s)) L1 block load L1 block load L1 block load L1 block load

Intra-bucket \ ' \] N
self-attention EZ 113 }‘E Ts 0 |a]‘E‘s 3 |_L9 T6 ’_E 2 5 10 y-Ef 15
gigg;goo Bucket Bucket Bucket Bucket Bucket Bucket Bucket Bucket

2 |_1 block LLblock | L1 block |.1 block
Write results T13 I:LO (1L

to memory

(0(1 TFloat/s)) Bucket

E{Z

4
Bucket)—L{ Bucket)J

5
}-L{ Bucket }—L{ Bucket }—L{ Bucket }-L{ Bucket }-L{ Bucket)-L{

Logical bucket T13]_L 7 Ts]_] 7T (i 73]_L[Tlo
iwtgniggd Bucket Bucket Bucket Bucket Bucket Bucket Bucket Bucket
(0(1 TFloat/s)) L1 block load L1 block load [L1 block load L1 block load

REPEAT K TIMES

Figure 3. High-level schematic overview of Flash3D. Flash3D performs multiple rounds of attention with different neighborhood defini-
tions via our bucket-and-swin approach, which saves an expensive global shuffle in each round. See Section 4 for details.

formation across a different set of neighborhoods. As de-
picted in the figure, this step is orders of magnitude slower
than the other steps. This is because the GPU is optimized
to transfer large amounts of data in transactions of contigu-
ous blocks. Transferring data between random locations is
analogous to using many buckets (memory transactions) to
move water one drop (float) at a time—this process can only
be efficient if we fill the buckets (by transferring the data in
contiguous chunks)'.

IThough global shuffling through raw DRAM channels bottlenecks at
0.1TFloat/s, Flash3D effectively coalesces shuffling in L2 cache and ap-

6597

4. Method

From the preceding discussion, it is clear that the global
shuffle step of PTv3 is a key bottleneck. Our key idea is
to mitigate this bottleneck through our Bucket-and-Swin
strategy. In this approach, illustrated in Figure 3, we ini-
tially bucket the points into spatially similar neighborhoods
using hash functions. This involves an up-front global shuf-

proximates 1TFloat/s limit in reality. One million points FP16[1M, 3]
cost 6MB memory while H100 has 50MB L2 cache to coalesce shuffled
results, write well-packed results, and maximize DRAM bandwidth.

fle operation that places points in the same contiguous block
of memory if they are in the same bucket.

In subsequent iterations, instead of repeating a slow
global shuffle in order to communicate information using
different neighborhoods, we logically shuffle the buckets to
yield different neighborhoods for attention. This shuffle is
logical in the sense that it does not involve any permutation
of bytes in memory—instead, we simply load the appropri-
ate buckets into L1 just before calculating attentions. To
return to the water analogy, this is akin to transferring water
using full buckets of water (by loading entire point-buckets
into L1) instead of nearly empty buckets. We are thus able
to mostly mitigate the global shuffling bottleneck.

Implementing this strategy efficiently involves a few
non-trivial details, which we elaborate upon in the follow-
ing subsections.

4.1. Principled Locality Mechanism with PSH

Our principled locality mechanism leverages Perfect Spa-
tial Hashing (PSH) [1, 20] to map spatially sparse 3D point
clouds into compact and contiguous arrays. PSH constructs
a bijection to scatter 3D points. In the output array, memory
address proximity implies spatial proximity.

Input and Output The PSH algorithm takes as input the
point coordinates C € RV >3, representing N points in 3D
space, and the bucket capacity S, defining the maximum
points per bucket. It outputs the bucket IDs bucket_id €
ZN, assigning each point to a bucket, and bucket off-
sets bucket_offset € Z”, indexing each point’s posi-
tion within its assigned bucket. The index of the i-th
point can be determined by bucket_base[bucket_id[i]] +
bucket_offset[i]. When buckets are concatenated back-
to-back, the resulting indices are guaranteed to be contigu-
ous, and scattering points according to these indices pro-
duces a contiguous array of points. We describe our full
PSH construction algorithm in Alg | and Alg 2.

Stage Orchestration In Flash3D, PSH orchestrates three
key components within each transformer stage. First, PSH
groups spatially adjacent points into contiguous memory ar-
rays and produces bucket_id, bucket_offset. The re-
sulted array suits point-wise MLPs and LayerNorm. The
second component maps buckets to attention scopes dur-
ing FlashAttention without extra cost. Lastly, the bucket
structure directs a tile-level in-bucket pooling layer. Be-
cause points within each bucket are geometrically local,
pooling operations are confined within buckets, reducing
the need for costly global neighbor queries. This localized
pooling achieves high computational efficiency by retaining
geometric coherence in point clusters, enabling efficient,
spatially-aware feature aggregation throughout the model.
Bucket rebalancing Ideally, we would assign a bucket to
each point by simply hashing it. Unfortunately, this would
lead to imbalanced buckets, with some buckets containing

6598

Algorithm 1 Batch PSH Bucketing and Balancing

Require: Coordinates C € RN*D batch indices B, num-
ber of buckets K, bucket capacity S
Ensure: Bucket IDs bucket_id, Bucket Offsets bkt_off
1: for each batch b in parallel do

2 Initialize bucket counters bkt_ctr < 0
3 for each point ¢ in batch b in parallel do
4: Compute voxel coordinate v; from C;
5 Compute initial bucket ID h; from v; using hash
function
6: if bkt_ctr[h;] < Sthen > Assign point i to
bucket h;
7: bucket_id < h;
8: bkt _off[i| + ATOMICINC(bkt_ctr[h;])
9: else
10: OPTIMISTICRACING(7, v;, bkt_ctr, S)
11: end if
12: end for
13: Perform exclusive scan on bkt_ctr to compute

bucket_base

Scatter points into contiguous memory based on
bucket assignments
end for

14:

15:

many points and others containing few points. Such non-
uniform buckets would prevent us from efficiently mapping
buckets onto GPU tiles. To avoid this issue, we aim for best-
effort geometric locality instead of rigidly defining geomet-
ric boundaries, allowing the GPU to settle point-to-bucket
assignments opportunistically. This declarative approach
yields additional advantages.

First, relaxed geometric boundaries allow point-bucket

associations to be resolved in on-chip arbitration, signif-
icantly boosting grouping throughput. Second, softened
boundaries result in diffused geometric patterns, facilitating
more flexible feature extraction through attention mecha-
nisms. Randomly perturbed boundaries regularizes atten-
tion mechanisms without costly feature shuffling as seen in
PTv3 [41]. We show the effects in Table 3.
Hash functions Our principled locality mechanism in
Flash3D leverages the flexibility of hash functions to define
geometric locality. This approach benefits from a declar-
ative structure, allowing geometric locality definitions to
be managed directly through hash functions. In contrast
to learning from data, our hash functions are manually de-
fined to capture common geometric patterns effectively, as
demonstrated by our empirical results.

In this work, we utilize four hash functions that oper-
ate over point coordinates to distribute spatially close points
into buckets. These include XOR-mod, XOR-div, Zorder-
mod, and Zorder-div:

XOR-mod: This function computes the XOR of the voxel

(a) XOR-mod (Rebalanced) (b) XOR-div (Rebalanced)

(¢) Zorder-mod (Rebalanced) (d) Zorder-div (Rebalanced)

Figure 4. Illustration of bucket assignments using four hash functions after rebalancing. Colors of points indicate their bucket assignments.
We demonstrate our PSH algorithm on a sample point cloud with 100k points from BuildingNet [31].

Algorithm 2 Optimistic Racing for Bucket Reassignment

Require: Point index ¢, voxel coordinate v;, bucket coun-
ters bkt _ctr, bucket capacity S
Ensure: Updated bucket assignment for point 4
1: Initialize assigned bucket ID hygsigneq <— —1

2: for each probe offset § do
3: Perturb voxel coordinate v, < v; + ¢
4 Compute new bucket ID A/ from v; using hash
function
5: if bkt_ctr[h] < S then
6: prev_off = ATOMICINC(bkt_ctr[h}])
7 if prev_off < S then > Confirm bucket
capacity after increment
Assign point ¢ to bucket A/
: bucket_offset[i] + prev_off
10: hassigned <~ h;
11: break
12: else
13: ATOoMICDEC(bkt_ctr[h]) > Roll back if
over capacity
14: end if
15: end if
16: end for
17: if hassigned = —1 then
18: Assign point ¢ to recycle bucket r
19: bucket_offset[i] + ATOMICINC(bkt_ctr[r])
20: end if

coordinate bits and applies a modulo operation. Given voxel
coordinate v € Z3, the XOR-mod hash is defined as:

3
h(v) = (@ vd> mod K
d=1

where v, represents the d-th dimension of v, and K is the
number of buckets. XOR-mod evenly spreads the geometric
overage of each bucket.

XOR-div: Similar to XOR-mod, this function computes the
XOR of the voxel coordinate bits but uses division to deter-
mine the bucket. The XOR-div hash is defined as:

6599

h(v) = (@ vd> =S
d=1

where S is a scaling factor that controls the bucket size.
XOR-div ensures uniform bucket distribution across large
voxel ranges, while keeping tight intra-bucket coherence.
Zorder-mod: This function calculates a Z-order (Mor-
ton) [26] code by interleaving the bits of each dimension
in v, then applies a modulo operation:

h(v)=Z(v) mod K

where Z(v) represents the interleaved Z-order code of v.
Zorder-mod preserves spatial proximity, mapping nearby
points to similar buckets.

Zorder-div: This function also uses Z-order coding but di-
vides the Z-order value to allocate points to buckets:

h(v)=2Z(v)+S

where S is a divisor that adjusts the bucket density. Zorder-
div is effective for capturing structured spatial locality over
extensive regions.

These hash functions provide the necessary flexibility to
define geometric locality without the complexity of learning
from data, making them both efficient and versatile. Addi-
tional hash functions can be defined as needed, allowing
Flash3D to adapt to diverse geometric patterns and data dis-
tributions.

4.2. Flash3D Transformer Stage

Windowed attention mechanisms are well-suited to point
clouds, as they capture both local and global features by fo-
cusing on spatially close points and shifting windows across
regions [9, 22, 40, 41]. We describe how Flash3D achieves
local and global feature extraction with minimal computa-
tional costs.

Zero-Overhead Bucket-Swin Attention Flash3D intro-
duces a bucket-based Swin attention mechanism that par-
titions point features into spatially coherent buckets, en-
abling windowed attention shifts at zero additional cost.
This design maximizes memory locality and facilitates ef-
ficient intra- and inter-bucket feature propagation. Given

a feature collection {F4,} over an attention scope 4, the
mechanism is defined as:

Fli, = MHSA(LN({F4,}), PE(Ca4,)) + Fa,.

Fa, = MLP(LN(F4)) + Fh,.

For example, consider bucket indices:
12 3 45 6 7 8

An initial attention scope may cover buckets {1,2,3,4};
a subsequent shift by two buckets yields {3,4,5,6}, en-
abling cross-bucket interactions. This bucket-level or-
ganization permits Swin-style window shifting without
global neighborhood recomputation, achieving memory-
and computation-efficient zero-overhead shifts. Flash3D
thus leverages the intrinsic geometric structure of point
clouds to streamline attention operations and enhance fea-
ture extraction. We visualize Bucket-Swin attention scopes
in Appendix 9.

In-bucket Pooling Conventional grid pooling in PTv2 [40]
incurs significant inter-tile communication overhead. In
contrast, our approach leverages geometric locality by scat-
tering points into contiguous arrays such that each bucket-
aligned subarray contains spatially proximate points that fit
entirely within a GPU tile and its fast L1 cache (i.e., shared
memory, see Section 3). This enables efficient intra-tile
bucketing and balancing, outperforming our main PSH al-
gorithm. Our in-bucket pooling layer employs a fixed re-
duction factor p (e.g., p = 2 for 2x pooling) over 1024
points per tile, applying reduction operations (e.g., sum,
mean, min, max) followed by a bulk memory transaction
to minimize overhead. Unlike PTv3’s globally sorted pool-
ing, our method fully exploits both geometric and memory
locality, thereby eliminating latency penalties. Further de-
tails on sub-bucket construction and balancing are provided
in Appendix 10.5.

5. Experiments

We evaluate both downstream task performance and scal-
ability, demonstrating the impact of design choices from
Section 4 through task performance and ablation studies.
In the subsequent section, we validate the hypotheses from
Section 3 and detail the resulting scalability. Flash3D and
baseline methods are benchmarked on server GPUs (A100,
H100) and edge GPUs (L4), with evaluation metrics re-
ported on a single GPU (A100, H100, L4) to ensure fair
comparisons; training costs on H100 GPUs are provided in
Appendix 8. Our fused Bucket-and-Swin attention is im-
plemented using THUNDERKITTENS [34], with implemen-
tation details in Appendix 10.2.

5.1. Indoor 3D Semantic Segmentation

We benchmark PTv3 and Flash3D on the ScanNet semantic
segmentation task using NVIDIA A100 and L4 GPUs (see

6600

Indoor Sem. Seg. ScanNet A100 L4
Methods Val Test Params. Memory Latency Latency
MinkUNet 722 73.6 379M 4.7G 90ms -
PTv3 775 779 462M 52G 6lms 98ms
Flash3D 7719 78.6 462M 24G 24ms 35ms

Table 1. Indoor scene benchmarks with edge GPUs

Tab. 1). On dense point clouds (500k—2m points per scene),
Flash3D outperforms PTv3 at a fraction of its cost. PTv3’s
latency degrades significantly from A100 to L4 due to im-
balanced workload distribution, whereas Flash3D preserves
its latency advantage across hardware platforms.

5.2. Outdoor 3D Semantic Segmentation

Scalability A100 H100 L4
(nuScenes) Params. Memory mloU Latency Latency Latency
MinkUNet [4] 37.9M 1.7G 73.3 48ms 34.3ms -
PTv3 [41] 46.2M 1.2G 80.4 45ms 30.2ms 69ms
Flash3D 46.2M 0.5G 81.2 20ms 13.4ms 24ms
PTv3 [41] 46.2M 1.2G 80.4 45ms 30.2ms 69ms
Flash3D 129.4M 1.2G 81.5 24ms 15.1ms 29ms

Table 2. Model scalability comparisons of MinkUNet, PTv3 and
Flash3D on A100, H100, and L4 GPUs by fixing model parameter
sizes and memory quotas respectively. Dark cells indicate fixed
budgets. We fix attention scopes of all models at 4096. mloU in-
dicates the semantic segmentation performance on nuScenes vali-
dation set.

We benchmark Flash3D on the nuScenes semantic segmen-
tation task [2, 10] against two prior state-of-the-art methods
(see Tab. 2). Two Flash3D variants were trained under dis-
tinct quotas to assess scalability. In the first setting—equal
parameter counts between Flash3D and PTv3 [41] (upper
half of Tab. 2)—Flash3D achieves a 1.0% mloU improve-
ment and 2.25x faster inference while using 2.4x less
memory. In the second setting—with fixed memory quotas
(lower half of Tab. 2)—Flash3D accommodates 2.8 x more
parameters and yields a 1.4% mloU gain, with inference la-
tency still 1.88x faster. These results confirm Flash3D’s
robust scalability. For additional downstream benchmarks,
see Appendix 7. We further present an ablation study on the
nuScenes validation set.

Hashs standard +rebalance +stride +swin
XD 78.6 78.7 78.9 79.2
XD+ZD 79.1 79.1 79.8 80.6
XD+XM 78.9 78.9 78.9 79.4
XD+XM+ZD+ZM 79.3 79.4 80.2 81.2

Table 3. Hash Function Variants and Bucket-based strides and
swin on the validation split of the nuScenes dataset. +REBAL-
ANCE adds bucket rebalancing and stochastic geometric boundary
perturbations per Alg 2. +STRIDE strides attention scopes at two
buckets. +SWIN shifts attention scopes at one bucket a time.

Hash Functions and Rebalancing We evaluate hash and
stacked multi-hash scattering on semantic segmentation

(Tab. 3). When stacking transformer stages, a change in
the hash function indicates a switch (adding a new hash),
whereas using the same hash maintains a constant stage
count. Notably, XOR-div serves as a robust baseline; com-
bining it with a structural hash (e.g., Zorder-div) yields
further gains, while pairing with an evenly distributed hash
(e.g., XOR-mod) offers only marginal improvements. Inte-
grating all hash functions defined in Section 4 attains peak
performance. Additionally, PSH variants with and without
the rebalancing step (Alg. 2) indicate that rebalancing exerts
minimal effect on overall performance.

Stride and Swin We evaluate bucket striding and shifting
(Swin) patterns in conjunction with our stacked multi-hash
scattering (Tab. 3). Bucket strides expand receptive fields,
yielding modest gains, while bucket shifting smooths atten-
tion transitions and further enhances performance.

5.3. Scalability Analysis

Overall Latency

110 A

-

PTv3

100 4

—— Flash3D

90 =

-——

80 4

70

Latency (ms)

60 -
50 |
40
30

T T T T T
1 2 3 4 5 6
Number of Input Points

x105
Figure 5. Overall Latencies vs. Input Sizes for Flash3D and PTv3.

As hypothesized in Section 1, scalable point transform-
ers should respect GPU tiling and memory locality. In this
subsection, we provide detailed profiling results on a single
A100 GPU to analyze Flash3D’s scalability based on these
principles. Specifically, we benchmark Flash3D and PTv3
in terms of latency, compute utilization, and DRAM band-
width utilization under various input sizes. For this subsec-
tion, we fix Flash3D and PTv3 at the same parameter size.

We vary input sizes from 100k points to 600k points
to stress test Flash3D and PTv3. We run both backbones
for 20 iterations for each configuration and input size and
discard the first warm-up run. With NVIDIA Nsight Sys-
tems [28], we collect tracing logs to report the averages
and standard deviations for each metric.

5.3.1 Latency

We measure the overall latencies and latency breakdowns in
this section. We also show the significant latency difference

6601

between Flash3D’s PSH-based principled locality mecha-
nism and the serialization algorithm of PTv3.

PTv3 Flash3D
1.43%
‘embeddin|
2.50%
attention
20.85%

attention

Serialize 33.07%

22.51%

Unaccounted
12.87%

Figure 6. Latency TreeMap breakdowns for Flash3D and PTv3.

Overall Latency We increase the input sizes and show
the overall latency difference of Flash3D and PTv3 in Fig-
ure 5. Flash3D consistently out-speeds PTv3 by more than
2x while keeping slower growth and narrower standard de-
viations. Flash3D carefully spreads workloads to GPU tiles
without global serialization, so Flash3D enjoys a slow lin-
ear growth. On the other hand, global serialization and sort-
ing algorithms in PTv3 incur super-linear complexity and
exhibit super-linear latency costs.
PTv3 Serialization vs Flash3D PSH Latency

it plpiet Aty SESEEERETEEEE S DB S

101 4

10°

Latency (ms)

—— Flash3D

T T T T T
1 2 3 4 5 6
Number of Input Points

x10°

Figure 7. PTv3 Serialization vs. Flash3D PSH, log scale.
Latency Breakdown with Fixed Input Size To further
understand the sources of latency, we perform a detailed
breakdown of the time spent in different components of
Flash3D and PTv3, shown in Figure 6. The global se-
rialization costs a major portion of PTv3’s latency while
Flash3D’s PSH latency cost is negligible (0.19%).
Serialization vs PSH Latency We isolate the latencies of
serialization and Flash3D PSH in Figure 7. Flash3D PSH
latency is consistently two orders of magnitude lower than
PTv3 serialization. This difference is a powerful proof of
scalability impacts by respecting GPU tiling.

5.3.2 Hardware Utilization Analysis

We provide an in-depth analysis of hardware utilization to
evaluate how efficiently Flash3D utilizes GPU resources
during execution. We focus on three key metrics: compute

utilization, matrix multiplication utilization, and memory

bandwidth utilization.
SM Uutilization

SM Active SM Issue
80
35
70
’I
- 30
= 60 -
g et g
w [’3d w 25
& 50 & =
- /, o
E S % 20 4 .
2 404 // & P e
= P L
= S~ % 15 _
30 4 7 oo
s A~
4 10 tad
,r == PTV3 - -=— PTv3
20 14 Flash3D 5 ! Flash3D

2 3 & 5 6
Number of Input Points x105
Figure 8. SM Utilization vs. Input Sizes for Flash3D and PTv3.
We show the overall SM active rates on the left and more specific
SM issuing rates on the right.

General Compute Utilization We report the SM (Stream-
ing Multiprocessor) active rates and SM issuing rates in Fig-
ure 8. Both measure GPU tile utilization while SM issu-
ing rates are more specific to warp dispatcher instruction
throughput.

T T T T T
2 3 4 5 6
Number of Input Points x10°

1

TensorCore Utilization

18 4
16 4
14 4
12 4

... -
-

10 1

TensorCore Active Rates (%)

PTv3
Flash3D

6
Number of Input Points x10%

Figure 9. TensorCore Active Rates vs. Input Sizes for Flash3D
and PTv3.

TensorCore Matrix Multiplication Utilization Tensor-
Cores contribute an overwhelming computing throughput to
modern GPU chips *. TensorCore saturation improvements
have amplified impacts on overall throughputs. PTv3 strug-
gles with less than 5% TensorCore utilization in most point
cloud scenarios, wasting over 95% of GPU resources and
investments. In contrast, Figure 9 highlights Flash3D over-
comes these bottlenecks.

Memory Bandwidth Utilization (DRAM Read) Finally,
we evaluate memory read bandwidth utilization (Figure 10).
Flash3D excels in memory bandwidth usage metric by re-
specting memory locality. PTv3 bottlenecks on memory
bandwidth due to its multiple global scattering operations.

2For H100 GPUs, FP16 TensorCores account for 1979 teraFLOPS
among total peak computing capacities while traditional FP32 CUDA
Cores account for 67 teraFLOPS.

6602

DRAM Bandwidth Utilization

)
N
w

20 4

154

10 4

DRAM Read Bandwidth Usage (%

———

PTv3
Flash3D

6
Number of Input Points x10%

Figure 10. DRAM Read Bandwidth Usage vs. Input Sizes for
Flash3D and PTv3.

T
5

5.4. Shuffling Slowness Analysis

Figure 11 precisely corroborates our claim regarding the
slowness of PTv3 shuffling. The x-axis, spanning the
shuffling interval, is marked by gray vertical bars that de-
note minimal GPU occupancy, while persistently low mem-
ory bandwidth indicates severe underutilization. Although
PTv3’s shuffling could be marginally optimized, fundamen-
tal hardware constraints (cf. [19], Fig. 5) inherently bound
scatter performance. These findings directly support our
claim that a geometry-hardware co-design approach is es-
sential for enhancing task performance and achieving over-
all scalability.

Figure 11. Tracing logs of PTv3 Serial Shufffling 120k points. In
reality, PTv3 shuffling takes 738 CUDA kernels.

=
o
=]

—— DRAM read bandwidth %
GPU occupied running kernel

0

o

o
=]

5
S

N
=]

DRAM read bandwidth (% of max)

o

10

Time (ms)

6. Conclusion and Future Work
Flash3D Transformer unifies algorithm design with hard-
ware optimization, enabling rapid training and inference
in point cloud backbones. By leveraging joint hardware-
geometry locality, it achieves a 2.25x speedup and 2.4 X
memory efficiency over prior point transformers, underscor-
ing the need for algorithm-hardware co-design on modern
GPUs. While we recognize the challenges of integrating in-
novative methods into established pipelines, our work pro-
vides a clear, robust framework for adoption. Future re-
search will explore model distillation, early sensor fusion,
and edge deployment strategies on Orin and ThorU (see Ap-
pendix 11). We conclude that Flash3D offers a practical and
transformative solution, paving the way for scalable, high-
performance point cloud processing.

20

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Dan A Alcantara, Andrei Sharf, Fatemeh Abbasinejad,
Shubhabrata Sengupta, Michael Mitzenmacher, John D
Owens, and Nina Amenta. Real-time parallel hashing on
the gpu. In ACM SIGGRAPH asia 2009 papers, pages 1-9.
2009. 2,4

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621-11631, 2020. 6, 1

Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and
Bingbing Liu. 2-s3net: Attentive feature fusion with adap-
tive feature selection for sparse semantic segmentation net-
work. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12547-12556,
2021. 1

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075-3084,
2019. 6, 1,7

Zbigniew J Czech, George Havas, and Bohdan S Majewski.
Perfect hashing. Theoretical Computer Science, 182(1-2):
1-143,1997. 2

Tri Dao. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691,2023. 1,2,4,5

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact at-
tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344-16359, 2022. 2, 4

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 7

Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing single stride 3d object detector with sparse trans-
former. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8458-8468,
2022. 2,5, 1

Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Val-
ada. Panoptic nuscenes: A large-scale benchmark for lidar
panoptic segmentation and tracking. IEEE Robotics and Au-
tomation Letters, 7(2):3795-3802, 2022. 6, 1

Anton Franzluebbers, Changying Li, Andrew H. Paterson,
and Kyle Johnsen. Virtual reality point cloud annotation.
2022 IEEE Conference on Virtual Reality and 3D User In-
terfaces Abstracts and Workshops (VRW), pages 886-887,
2022. 1

Michael L Fredman, Janos Komlds, and Endre Szemerédi.

6603

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Storing a sparse table with 0 (1) worst case access time. Jour-
nal of the ACM (JACM), 31(3):538-544, 1984. 2

John L. Hennessy and David A. Patterson. Computer Ar-
chitecture, Sixth Edition: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edi-
tion, 2017. 2

Xiangwang Hu, Zuduo Zheng, Danjue Chen, Xi Zhang, and
Jian Sun. Processing, assessing, and enhancing the waymo
autonomous vehicle open dataset for driving behavior re-
search. Transportation Research Part C: Emerging Tech-
nologies, 134:103490, 2022. 1

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqgi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17853-17862, 2023. 1
Leela S Karumbunathan. Nvidia jetson agx orin series.
Online at https://www. nvidia. com/content/dam/en-
zz/Solutions/gtcf2 1/jetson-orin/nvidia-jetson-agx-orin-
technical-brief. pdf, 2022. 7

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8500-8509, 2022. 1

Xin Lai, Yukang Chen, Fanbin Lu, Jianhui Liu, and Jiaya Jia.
Spherical transformer for lidar-based 3d recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17545-17555, 2023. 1
Patrick Lavin et al. Evaluating gather and scatter perfor-
mance on cpus and gpus. In Proceedings of the International
Symposium on Memory Systems, 2020. 8

Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hash-
ing. ACM Transactions on Graphics (TOG), 25(3):579-588,
2006. 2, 4

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012-10022, 2021. 1,2

Zhijian Liu, Xinyu Yang, Haotian Tang, Shang Yang, and
Song Han. Flatformer: Flattened window attention for
efficient point cloud transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1200-1211, 2023. 1,2, 5

Ming-Ling Lo and Chinya V Ravishankar. Spatial hash-
joins. In Proceedings of the 1996 ACM SIGMOD interna-
tional conference on Management of data, pages 247-258,
1996. 2

Kenzo Lobos-Tsunekawa and Tatsuya Harada. Point cloud
based reinforcement learning for sim-to-real and partial ob-
servability in visual navigation. 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 5871-5878, 2020. 1

Maxim Milakov and Natalia Gimelshein. Online normalizer
calculation for softmax. arXiv preprint arXiv:1805.02867,
2018. 2

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

Guy M Morton. A computer oriented geodetic data base and
a new technique in file sequencing. 1966. 5

Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Re-
becca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal,
David J. Weiss, Benjamin Sapp, Zhifeng Chen, and Jonathon
Shlens. Scene transformer: A unified multi-task model for
behavior prediction and planning. ArXiv, abs/2106.08417,
2021. 1

CUDA Nvidia. Nvidia nsight systems 2024.6.1. NVIDIA:
Santa Clara, CA, 2024. 7

Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, and
Xiaolong Wang. Dexpoint: Generalizable point cloud rein-
forcement learning for sim-to-real dexterous manipulation.
In Conference on Robot Learning, 2022. 1

Shi Qiu, Saeed Anwar, and Nick Barnes. Semantic segmen-
tation for real point cloud scenes via bilateral augmentation
and adaptive fusion. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1757—
1767, 2021. 1

Pratheba Selvaraju, Mohamed Nabail, Marios Loizou, Maria
Maslioukova, Melinos Averkiou, Andreas Andreou, Sid-
dhartha Chaudhuri, and Evangelos Kalogerakis. Build-
ingnet: Learning to label 3d buildings. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, pages 10377—
10387. IEEE, 2021. 5

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar,
Pradeep Ramani, and Tri Dao. Flashattention-3: Fast and
accurate attention with asynchrony and low-precision. arXiv
preprint arXiv:2407.08608, 2024. 2, 4

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi,
and Hongsheng Li. Efficient attention: Attention with lin-
ear complexities. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 3531—
3539, 2021. 2

Benjamin F Spector, Simran Arora,
Daniel Y Fu, and Christopher Ré.
Simple, fast, and adorable ai kernels.
arXiv:2410.20399,2024. 2, 6, 4

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446-2454, 2020. 1

Pei Sun, Mingxing Tan, Weiyue Wang, Chenxi Liu, Fei Xia,
Zhaoqi Leng, and Dragomir Anguelov. Swformer: Sparse
window transformer for 3d object detection in point clouds.
In European Conference on Computer Vision, pages 426—
442. Springer, 2022. 2

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin,
Hanrui Wang, and Song Han. Searching efficient 3d architec-
tures with sparse point-voxel convolution. In European con-
ference on computer vision, pages 685-702. Springer, 2020.
1

Halil Ibrahim Ugurlu, Huy Xuan Pham, and Erdal Kayacan.

Aaryan Singhal,
Thunderkittens:
arXiv preprint

6604

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[46]

(47]

Sim-to-real deep reinforcement learning for safe end-to-end
planning of aerial robots. Robotics, 11:109, 2022. 1
Peng-Shuai Wang. Octformer: Octree-based transformers
for 3d point clouds. ACM Transactions on Graphics (TOG),
42(4):1-11,2023. 1,2

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. Advances in Neural Infor-
mation Processing Systems, 35:33330-33342, 2022. 2, 5, 6,
1

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xi-
hui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang
Zhao. Point transformer v3: Simpler faster stronger. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4840—4851,2024. 1,2,4, 5,
6

Xinchen Yan, Mohi Khansari, Jasmine Hsu, Yuanzheng
Gong, Yunfei Bai, Soren Pirk, and Honglak Lee. Data-
efficient learning for sim-to-real robotic grasping using deep
point cloud prediction networks. ArXiv, abs/1906.08989,
2019. 1

Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu,
Hao Pan, Peng-Shuai Wang, Xin Tong, and Baining Guo.
Swin3d: A pretrained transformer backbone for 3d indoor
scene understanding. arXiv preprint arXiv:2304.06906,
2023. 1

Tengju Ye, Wei Jing, Chunyong Hu, Shikun Huang, Ling-
ping Gao, Fangzhen Li, Jingke Wang, Ke Guo, Wencong
Xiao, Wei Mao, Hang Zheng, Kun Li, Junbo Chen, and
Kaicheng Yu. Fusionad: Multi-modality fusion for pre-
diction and planning tasks of autonomous driving. ArXiv,
abs/2308.01006, 2023. 1

Uksang Yoo, Hanwen Zhao, Alvaro Altamirano, Wenzhen
Yuan, and Chen Feng. Toward zero-shot sim-to-real transfer
learning for pneumatic soft robot 3d proprioceptive sensing.
2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 544-551, 2023. 1

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259-16268, 2021. 2

Hui Zhou, Xinge Zhu, Xiao Song, Yuexin Ma, Zhe Wang,
Hongsheng Li, and Dahua Lin. Cylinder3d: An effective
3d framework for driving-scene lidar semantic segmentation.
arXiv preprint arXiv:2008.01550, 2020. 1

