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ABSTRACT

Graph neural networks (GNNs) for temporal graphs have recently attracted in-
creasing attentions, where a common assumption is that the class set for nodes is
closed. However, in real-world scenarios, it often faces the open set problem with
the dynamically increased class set as the time passes by. This will bring two big
challenges to the existing temporal GNN methods: (i) How to dynamically propa-
gate appropriate information in an open temporal graph, where new class nodes are
often linked to old class nodes. This case will lead to a sharp contradiction. This
is because typical GNNs are prone to make the embeddings of connected nodes
become similar, while we expect the embeddings of these two interactive nodes to
be distinguishable since they belong to different classes. (ii) How to avoid catas-
trophic knowledge forgetting over old classes when learning new classes occurred
in temporal graphs. In this paper, we propose a general and principled learning
approach for open temporal graphs, called OTGNet, with the goal of addressing
the above two challenges. We assume the knowledge of a node can be disentangled
into class-relevant and class-agnostic one, and thus explore a new message passing
mechanism by extending the information bottleneck principle to only propagate
class-agnostic knowledge between nodes of different classes, avoiding aggregating
conflictive information. Moreover, we devise a strategy to select both important
and diverse triad sub-graph structures for effective class-incremental learning. Ex-
tensive experiments on three real-world datasets of different domains demonstrate
the superiority of our method, compared to the baselines.

1 INTRODUCTION

Temporal graph (Nguyen et al., 2018) represents a sequence of time-stamped events (e.g. addition
or deletion for edges or nodes) (Rossi et al., 2020), which is a popular kind of graph structure in
variety of domains such as social networks (Kleinberg, 2007), citations networks (Feng et al., 2022),
topic communities (Hamilton et al., 2017), etc. For instance, in topic communities, all posts can
be modelled as a graph, where each node represents one post. New posts can be continually added
into the community, thus the graph is dynamically evolving. In order to handle this kind of graph
structure, many methods have been proposed in the past decade (Wang et al., 2020b; Xu et al., 2020;
Rossi et al., 2020; Nguyen et al., 2018; Li et al., 2022). The key to success for these methods is to
learn an effective node embedding by capturing temporal patterns based on time-stamped events.

A basic assumption among the above methods is that the class set of nodes is always closed, i.e.,
the class set is fixed as time passes by. However, in many real-world applications, the class set is
open. We still take topic communities as an example, all the topics can be regarded as the class set of
nodes for a post-to-post graph. When a new topic is created in the community, it means a new class is
involved into the graph. This will bring two challenges to previous approaches: The first problem is
the heterophily propagation issue. In an open temporal graph, a node belonging to a new class is often
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Figure 1: An illustration for an open temporal
graph. In the beginning, there is an old class
(class 1). As the time passes by, a new class
(class 2) occurs. t4 denotes the timestamp the
edge is built. The edge occurred at t4 connects
v4 and v5 (e.g., the same user comments on
both post v4 and post v5 in topic communities).

linked to a node of old class, as shown in Figure 1.
In Figure 1, ‘class 2’ is a new class, and ‘class 1’ is
an old class. There is a link occured at timestamp
t4 connecting two nodes v4 and v5, where v4 and v5
belong to different classes. Such a connection will
lead to a sharp contradiction. This is because typical
GNNs are prone to learn similar embeddings for v4
and v5 due to their connection (Xie et al., 2020; Zhu
et al., 2020), while we expect the embeddings of v4
and v5 to be distinguishable since they belong to dif-
ferent classes. We call this dilemma as heterophily
propagation. Someone might argue that we can sim-
ply drop those links connecting different class nodes.
However, this might break the graph structure and
lose information. Thus, how and what to transfer be-
tween connected nodes of different classes remains
a challenge for open temporal graph.

The second problem is the catastrophic forgetting issue. When learning a new class in an open
temporal graph, the knowledge of the old class might be catastrophically forgot, thus degrading the
overall performance of the model. In the field of computer vision, many incremental learning methods
have been proposed (Wu et al., 2019; Tao et al., 2020), which focus on convolutional neural networks
(CNNs) for non-graph data like images. If simply applying these methods to graph-structured data
by individually treating each node, the topological structure and the interaction between nodes will
be ignored. Recently, Wang et al. (2020a); Zhou & Cao (2021) propose to overcome catastrophic
forgetting for graph data. However, They focus on static graph snapshots, and utilize static GNN for
each snapshot, thus largely ignoring fine-grained temporal topological information.

In this paper, we put forward the first class-incremental learning approach towards open temporal
dynamic graphs, called OTGNet. To mitigate the issue of heterophily propagation, we assume the
information of a node can be disentangled into class-relevant and class-agnostic one. Based on this
assumption, we design a new message passing mechanism by resorting to information bottleneck
(Alemi et al., 2016) to only propagate class-agnostic knowledge between nodes of different classes. In
this way, we can well avoid transferring conflictive information. To prevent catastrophic knowledge
forgetting over old classes, we propose to select representative sub-graph structures generated from
old classes, and incorporate them into the learning process of new classes. Previous works (Zhou
et al., 2018; Zignani et al., 2014; Huang et al., 2014) point out triad structure (triangle-shape structure)
is a fundamental element of temporal graph and can capture evolution patterns. Motivated by this,
we devise a value function to select not only important but also diverse triad structures, and replay
them for continual learning. Due to the combinational property, optimizing the value function is
NP-hard. Thus, we develop a simple yet effective algorithm to find its approximate solution, and
give a theoretical guarantee to the lower bound of the approximation ratio. It is worth noting that our
message passing mechanism and triad structure selection can benefit from each other. On the one
hand, learning good node embeddings by our message passing mechanism is helpful to select more
representative triad structure. On the other hand, selecting representative triads can well preserve the
knowledge of old classes and thus is good for propagating information more precisely.

Our contributions can be summarized as : 1) Our approach constitutes the first attempt to investigate
open temporal graph neural network; 2) We propose a general framework, OTGNet, which can address
the issues of both heterophily propagation and catastrophic forgetting; 3) We perform extensive
experiments and analyze the results, proving the effectiveness of our method.

2 RELATED WORK

Dynamic GNNs can be generally divided into two groups (Rossi et al., 2020) according to the
characteristic of dynamic graph: discrete-time dynamic GNNs (Zhou et al., 2018; Goyal et al., 2018;
Wang et al., 2020a) and continuous-time dynamic GNNs (a.k.a. temporal GNNs (Nguyen et al.,
2018)) (Rossi et al., 2020; Trivedi et al., 2019). Discrete-time approaches focus on discrete-time
dynamic graph that is a collection of static graph snapshots taken at intervals in time, and contains
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dynamic information at a very coarse level. Continuous-time approaches study continuous-time
dynamic graph that represents a sequence of time-stamped events, and possesses temporal dynamics
at finer time granularity. In this paper, we focus on temporal GNNs. We first briefly review related
works on temporal GNNs, followed by class-incremental learning.

Temporal GNNs. In recent years, many temporal GNNs (Kumar et al., 2019; Wang et al., 2021a;
Trivedi et al., 2019) have been proposed. For instance, DyRep (Trivedi et al., 2019) took the advantage
of temporal point process to capture fine-grained temporal dynamics. CAW (Wang et al., 2021b)
retrieved temporal network motifs to represent the temporal dynamics. TGAT (Xu et al., 2020)
proposed a temporal graph attention layer to learn temporal interactions. Moreover, TGN (Rossi
et al., 2020) proposed an efficient model that can memorize long term dependencies in the temporal
graph. However, all of them concentrate on closed temporal graphs, i.e., the class set is always kept
unchanged, neglecting that new classes can be dynamically increased in many real-world applications.

Class-incremental learning. Class-incremental learning have been widely studied in the computer
vision community (Li & Hoiem, 2017; Wu et al., 2019). For example, EWC (Kirkpatrick et al.,
2017) proposed to penalize the update of parameters that are significant to previous tasks. iCaRL
(Li & Hoiem, 2017) maintained a memory buffer to store representative samples for memorizing the
knowledge of old classes and replaying them when learning new classes. These methods focus on
CNNs for non-graph data like images. It is obviously not suitable to directly apply them to graph data.
Recently, a few incremental learning works have been proposed for graph data (Wang et al., 2020a;
Zhou & Cao, 2021). ContinualGNN (Wang et al., 2020a) proposed a method for closed discrete-time
dynamic graph, and trained the model based on static snapshots. ER-GAT (Zhou & Cao, 2021)
selected representative nodes for old classes and replay them when learning new tasks. Different
from them studying discrete-time dynamic graph, we aim to investigate open temporal graph.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Notations. Let G(t) = {V(t), E(t)} denote a temporal graph at time-stamp t, where V(t) is the set
of existing nodes at t, and E(t) is the set of existing temporal edges at t. Each element eij(tk) ∈ E(t)
represents node i and node j are linked at time-stamp tk(tk ≤ t). Let Ni(t) be the neighbor set of
node i at t. We assume xi(t) denotes the embedding of node i at t, where xi(0) is the initial feature
of node i. Let Y(t) = {1, 2, · · · ,m(t)} be the class set of all nodes at t, where m(t) denotes the
number of existing classes until time t.

Problem formulation. In our open temporal graph setting, as new nodes are continually added
into the graph, new classes can occur, i.e., the number m(t) of classes is increased and thus the
class set Y(t) is open, rather than a closed one like traditional temporal graph. Thus, we formulate
our problem as a sequence of class-incremental tasks T = {T1, T2, · · · , TL, · · · } in chronological
order. Each task Ti contains one or multiple new classes which are never seen in previous tasks
{T1, T2, · · · , Ti−1}. In our new problem setting, the goal is to learn an open temporal graph neural
network based on current task Ti, expecting our model to not only perform well on current task but
also prevent catastrophic forgetting over previous tasks.

3.2 FRAMEWORK
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Figure 2: An illustration of overall architecture.

As aforementioned, there are two key challenges
in open temporal graph learning: heterophily prop-
agation and catastrophic forgetting. To address the
two challenges, we propose a general framework,
OTGNet, as illustrated in Figure 2. Our framework
mainly includes two modules : A knowledge preser-
vation module is devised to overcome catastrophic
forgetting, which consists of two components: a triad structure selection component is devised to
select representative triad structures; a triad structure replay component is designed for replaying the
selected triads to avoid catastrophic forgetting. An information bottleneck based message passing
module is proposed to propagate class-agnostic knowledge between different class nodes, which can
address the heterophily propagation issue. Next, we will elaborate each module of our framework.
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3.3 KNOWLEDGE PRESERVATION OVER OLD CLASS

When learning new classes based on current task Ti, it is likely for the model to catastrophically
forget knowledge over old classes from previous tasks. If we combine all data of old classes with
the data of new classes for retraining, the computational complexities will be sharply increased, and
be not affordable. Thus, we propose to select representative structures from old classes to preserve
knowledge, and incorporate them into the learning process of new classes for replay.

Triad Structure Selection. As previous works (Zhou et al., 2018; Zignani et al., 2014; Huang
et al., 2014) point out, the triad structure is a fundamental element of temporal graph and its triad
closure process could demonstrate the evolution patterns. According to Zhou et al. (2018), the triads
have two types of structures: closed triad and open triad, as shown in Figure 3. A closed triad
consists of three vertices connected with each other, while an open triad has two of three vertices
not connected with each other. The closed triad can be developed from an open triad, and the triad
closure process is able to model the evolution patterns (Zhou et al., 2018). Motivated by this point,
we propose a new strategy to preserve the knowledge of old classes by selecting representative triad
structures from old classes. However, how to measure the ‘representativeness’ of each triad, and
how to select some triads to represent the knowledge of old classes have been not explored so far.
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(a) closed triad.
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(b) open triad.

Figure 3: An illustration for
closed triad and open triad.

To write conveniently, we omit t for all symbols in this section.
Without loss of generality, we denote a closed triad for class k as
gck = (vs, vp, vq), where all of three nodes vs, vp, vq belong to class k
and vs, vp, vq are pairwise connected, i.e., esp(ti), esq(tj), epq(tl) ∈
E(tm) and ti, tj < tl, tm is the last time-stamp of the graph. We denote
an open triad for class k as gok = (vs̃, vp̃, vq̃) with vp̃ and vq̃ not linked
to each other in the last observation of the graph, i.e., es̃p̃(ti), es̃q̃(tj) ∈
E(tm) and ep̃q̃ /∈ E(tm). Assuming Sck = {gck,1, gck,2, ..., gck,M} and
Sok = {gok,1, gok,2, ..., gok,M} is the selected closed triad set and open
triad set for class k, respectively. M is the memory budget for each class. Next, we introduce how to
measure and select closed triads Sck. It is analogous to open triads Sok .

In order to measure the ‘representativeness’ of each triad, one intuitive and reasonable thought is to
see how the performance of the model is affected if removing this triad from the graph. However, if
we retrain the model once one triad is removed, the time cost is prohibitive. Inspired by the influence
function aiming to estimate the parameter changes of the machine learning model when removing
a training sample (Koh & Liang, 2017), we extend the influence function to directly estimate the
‘representativeness’ of each triad structure without retraining, and propose an objective function as:

Iloss(gck, θ) =
dL(Gk, θε,gck)

d ε

∣∣∣∣
ε=0

= ∇θL(Gk, θ)⊤
d θ̂ε,gck
d ε

∣∣∣∣∣
ε=0

= −∇θL(Gk, θ)⊤H−1
θ ∇θL(gck, θ)

(1)

where L represents the loss function, e.g., cross-entropy used in this paper. θ is the parameter of the
model, and Gk is the node set of class k. θε,gck is the retrained parameter if we upweight three nodes
in gck by ε(ε→ 0) during training. ε is a small weight added on the three nodes of the triad gck in the
loss function L. Hθ is the Hessian matrix. ∇θL(gck, θ), ∇θL(Gk, θ) are the gradients of the loss to
gck and Gk, respectively. The full derivation of Eq. (1) is in Appendix A.2.

In Eq. (1), Iloss(gck, θ) estimates the influence of the triad gck on the model performance for class k.
The more negative Iloss(gck, θ) is, the more positive influence on model performance gck provides, in
other words, the more important gck is. Thus, we define the ‘representativeness’ of a triad structure as:

R(gck) = −Iloss(gck, θ) (2)

In order to well preserve the knowledge of old classes, we expect all gck in Sck are important, and
propose the following objective function to find Sck:

Sck = arg max
{gck,1,··· ,g

c
k,M}

M∑
i=1

R(gck,i) (3)

During optimizing (3), we only take the triad gck,i with positive R(gck,i) as the candidate, since gck,i
with negative R(gck,i) can be thought to be harmful to the model performance. We note that only
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optimizing (3) might lead to that the selected gck,i have similar functions. Considering this, we hope
Sck should be not only important but also diverse. To do this, we first define:

C(gck,i) = {gck,j | ||x̄(gck,j)− x̄(gck,i)||2 ≤ δ, gck,j ∈ N c
k}, (4)

where x̄(gck,j) denotes the average embedding of three vertices in gck,j . N
c
k denotes the set containing

all positive closed triads for class k, and δ is a similar radius. C(gck,i) measures the number of gck,j ,
where the distance of x̄(gck,j) and x̄(gck,i) is less or equal to δ. To make the selected triads Sck diverse,
we also anticipate that {C(gck,1), · · · , C(gck,M )} can cover different triads as many as possible by:

Sck = arg max
{gck,1,··· ,g

c
k,M}

|
⋃M
i=1 C(gck,i)|
|N c

k |
(5)

Finally, we combine (5) with (3), and present the final objective function for triad selection as:

Sck = arg max
{gck,1,··· ,g

c
k,M}

F (Sck) = arg max
{gck,1,··· ,g

c
k,M}

(
M∑
i=1

R(gck,i) + γ
|
⋃M
i=1 C(gck,i)|
|N c

k |

)
(6)

where γ is a hyper-parameter. By (6), we can select not only important but also diverse triads to
preserve the knowledge of old classes.

Due to the combinatorial property, solving (6) is NP-hard. Fortunately, we show that F (Sck) satisfies
the condition of monotone and submodular. The proof can be found in Appendix A.3. Based on this
property, (6) could be solved by a greedy algorithm (Pokutta et al., 2020) with an approximation ratio
guarantee, by the following Theorem 1 (Krause & Golovin, 2014).

Algorithm 1 Representative triad selection
Input: all triads N c

k for class k, budget M ;
Output: representative triad set Sck;

1: Initialize Sck = ∅;
2: while |Sck| < M do
3: u = argmaxu∈Nck\SckF (S

c
k ∪ {u});

4: Sck = Sck ∪ u;
5: end while
6: return Sck

Theorem 1. Assuming our value function F : 2N →
R+ is monotone and submodular. If Sck

∗ is an optimal
triad set and Sck is a triad set selected by the greedy
algorithm (Pokutta et al., 2020), then F (Sck) ≥ (1 −
1
e )F (S

c
k
∗) holds.

By Theorem 1, we can greedily select closed triads as
in Algorithm 1. As aforementioned, the open triad set
Sok can be chosen by the same method. The proof of
Theorem 1 can be found in Krause & Golovin (2014).

An Acceleration Solution. We first provide the time complexity analysis of triad selection. When
counting triads for class k, we first enumerate the edge that connects two nodes vs and vd of class
c. Then, for each neighbor node of vs that belongs to class k, we check whether this neighbor node
links to vd. If this is the case and the condition of temporal order is satisfied, these three nodes form
a closed triad, otherwise these three nodes form an open triad. Thus, a rough upper bound of the
number of closed triads in class k is O(dk|Ek|), where |Ek| is the number of edges between two nodes
of class k, and dk is the max degree of nodes of class k. When selecting closed triads, finding a closed
triad that maximizes the value function takes O(|N c

k |2), where |N c
k | is the number of positive closed

triads in class k. Thus, it is of order O(M |N c
k |2) for selecting the closed triad set Sck, where M is the

memory budget for each class. The time complexity for selecting the open triads is the same.

To accelerate the selection process, a natural idea is to reduce N c
k by only selecting closed triads from

gck with large values of R(gck). Specifically, we sort the closed triad gck based on R(gck), and use the
top-K ones as the candidate set N c

k for selection. The way for selecting open triads is the same.

Triad Structure Replay. After obtaining representative closed and open triad sets, Sck and Sok , we
will replay these triads from old classes when learning new classes, so as to overcome catastrophic
forgetting. First, we hope the model is able to correctly predict the labels of nodes from the selected
triad set, and thus use the cross entropy loss Lce for each node in the selected triad set.

Moreover, as mentioned above, the triad closure process can capture the evolution pattern of a
dynamic graph. Thus, we use the link prediction loss Llink to correctly predict the probability
whether two nodes are connected based on the closed and open triads, to further preserve knowledge:

Llink = − 1

Nc

Nc∑
i=1

log(σ(xip(t)
⊤
xiq(t)))−

1

No

No∑
i=1

log(1− σ(x̃ip(t)
⊤
x̃iq(t))), (7)
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where Nc,No are the number of closed, open triads respectively, where Nc = No = Nt ∗M . Nt is
the number of old classes. σ is the sigmoid function. xip(t), x

i
q(t) are the embeddings of vp, vq of

the ith closed triad. x̃ip(t), x̃
i
q(t) are the embeddings of vp̃, vq̃ of the ith open triad. Here the closed

triads and open triads serve as postive samples and negative samples, respectively.

3.4 MESSAGE PASSING VIA INFORMATION BOTTLENECK

When new class occurs, it is possible that one edge connects one node of the new class and one node
of an old class, as shown in Figure 1. To avoid aggregating conflictive knowledge between nodes of
different classes, one intuitive thought is to extract class-agnostic knowledge from each node, and
transfer the class-agnostic knowledge between nodes of different classes To do this, we extend the
information bottleneck principle to obtain a class-agnostic representation for each node.

Class-agnostic Representation. Traditional information bottleneck aims to learn a representation
that preserves the maximum information about the class while has minimal mutual information with
the input (Tishby et al., 2000). Differently, we attempt to extract class-agnostic representations from
an opposite view, i.e., we expect the learned representation has minimum information about the class,
but preserve the maximum information about the input. Thus, we propose an objective function as:

JIB = min
Z(t)

I(Z(t), Y )− βI(Z(t), X(t)), (8)

where β is the Lagrange multiplier. I(·, ·) denotes the mutual information. X(t), Z(t) are the random
variables of the node embeddings and class-agnostic representations at time-stamp t. Y is the random
variable of node label. In this paper, we adopt a two-layer MLP for mapping X(t) to Z(t).

However, directly optimizing (8) is intractable. Thus, we utilize CLUB (Cheng et al., 2020) to
estimate the upper bound of I(Z(t), Y ) and utilize MINE (Belghazi et al., 2018) to estimate the
lower bound of I(Z(t), X(t)). Thus, the upper bound of our objective could be written as:

JIB ≤ LIB = Ep(Z(t),Y )[log qµ(y|z(t))]− Ep(Z(t))Ep(Y )[log qµ(y|z(t))]
− β(supψEp(X(t),Z(t))[Tψ(x(t), z(t))]− log(Ep(X(t))p(Z(t))[e

Tψ(x(t),z(t))])). (9)

where z(t), x(t), y are the instances of Z(t), X(t), Y respectively. Tψ : X × Z → R is a neural
network parametrized by ψ. Since p(y|z(t)) is unknown, we introduce a variational approximation
qµ(y|z(t)) to approximate p(y|z(t)) with parameter µ. By minimizing this upper bound LIB , we
can obtain an approximation solution to Eq. (8). The derivation of formula (9) is in Appendix A.1.

It is worth noting that zi(t) is an intermediate variable as the class-agnostic representation of node i.
We only use zi(t) to propagate information to other nodes having different classes from node i. If one
node j has the same class with node i, we still use xi(t) for information aggregation of node j, so as
to avoid losing information. In this way, the heterophily propagation issue can be well addressed.

Message Propagation. In order to aggregate temporal information and topological information in
temporal graph, many information propagation mechanism have been proposed (Rossi et al., 2020;
Xu et al., 2020). Here, we extend a typical mechanism proposed in TGAT (Xu et al., 2020), and
present the following way to learn the temporal attention coefficient as:

aij(t) =
exp(([xi(t)||Φ(t− ti)]Wq)

⊤([hj(t)||Φ(t− tj)]Wp))∑
l∈Ni(t) exp(([xi(t)||Φ(t− ti)]Wq)⊤([hl(t)||Φ(t− tl)]Wp))

(10)

where Φ is a time encoding function proposed in TGAT. || represents the concatenation operator. Wp

and Wq are two learnt parameter matrices. ti is the time of the last interaction of node i. tj is the
time of the last interaction between node i and node j. tl is the time of the last interaction between
node i and node l. Note that we adopt different hl(t) from that in the original TGAT, defined as:

hl(t) =

{
xl(t), yi = yl
zl(t), yi ̸= yl

, (11)

where hl(t) is the message produced by neighbor node l ∈ Ni(t). If node l and i have different
classes, we leverage its class-agnostic representation zl(t) for information aggregation of node i,
otherwise we directly use its embedding xl(t) for aggregating. Note that our method supports multiple
layers of network. We do not use the symbol of the layer only for writing conveniently.
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Finally, we update the embedding of node i by aggregating the information from its neighbors:

xi(t) =
∑

j∈Ni(t)

aij(t)Whhj(t), (12)

where Wh is a learnt parameter matrix for message aggregation.

3.5 OPTIMIZATION

During training, we first optimize the information bottleneck loss LIB . Then, we minimize L =
Lce + ρLlink, where ρ is the hyper-parameter and Lce is the node classification loss over both nodes
of new classes and that of the selected triads. We alternatively optimize them until convergence. The
detailed training procedure and pseudo-code could be found in Appendix A.5.

In testing, we extract an corresponding embedding of a test node by assuming its label to be the one
that appears the most times among its neighbor nodes in the training set, due to referring to extracting
class-agnostic representations. After that, we predict the label of test nodes based on the extracted
embeddings.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Table 1: Dataset Statistics
Reddit Yelp Taobao

# Nodes 10845 15617 114232
# Edges 216397 56985 455662

# Total classes 18 15 90
# Timespan 6 months 5 years 6 days

# Tasks 6 5 3
# Classes per task 3 3 30

# Timespan per task 1 month 1 year 2 days

Datasets. We construct three real-world datasets to
evaluate our method: Reddit (Hamilton et al., 2017),
Yelp (Sankar et al., 2020), Taobao (Du et al., 2019).
In Reddit, we construct a post-to-post graph. Specif-
ically, we treat posts as nodes and treat the subreddit
(topic community) a post belongs to as the node label.
When a user comments two posts with the time interval less or equal to a week, a temporal edge
between the two nodes will be built. We regard the data in each month as a task, where July to
December in 2009 are used. In each month, we sample 3 large communities that do not appear in
previous months as the new classes. For Yelp dataset, we construct a business-to-business temporal
graph from 2015 to 2019 in the same way as Reddit. For Taobao dataset, we construct an item-to-item
graph in the same way as Reddit in a 6-days promotion season of Taobao. Table 1 summarizes the
statistics of these datasets. More information about datasets could be found in Appendix A.4.

Experiment Settings. For each task, we use 80% nodes for training, 10% nodes for validation, 10%
nodes for testing. We use two widely-used metrics in class-incremental learning to evaluate our
method (Chaudhry et al., 2018; Bang et al., 2021): AP and AF. Average Performance (AP) measures
the average performance of a model on all previous tasks. Here we use accuracy to measure model
performance. Average Forgetting (AF) measures the decreasing extent of model performance on
previous tasks compared to the best ones. More implementation details is in Appendix A.6.

Baselines. First, we compare with three incremental learning methods based on static GNNs: ER-
GAT (Zhou & Cao, 2021), TWC-GAT (Liu et al., 2021) and ContinualGNN (Wang et al., 2020a).
For ER-GAT and TWC-GAT, we use the final state of temporal graph as input in each task. Since
ContinualGNN is based on snapshots, we split each task into 10 snapshots. In addition, we combine
three representative temporal GNN (TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), TREND (Wen
& Fang, 2022)) and three widely-used class-incremental learning methods in computer vision (EWC
(Kirkpatrick et al., 2017), iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019)) as baselines. For our
method, we set M as 10 on all the datasets.

4.2 RESULTS AND ANALYSIS

Overall Comparison. As shown in Table 2, our method outperform other methods by a large margin.
The reasons are as follows. For the first three methods, they are all based on static GNN that can not
capture the fine-grained dynamics in temporal graph. TGN, TGAT and TREND are three dynamic
GNNs with fixed class set. When applying three typical class-incremental learning methods to TGN,
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Table 2: Comparisons (%) of our method with baselines. The bold represents the best in each column.

Method Reddit Yelp TaoBao

AP(↑) AF(↓) AP(↑) AF(↓) AP(↑) AF(↓)

ContinualGNN 52.17 ± 2.46 25.59 ± 5.39 49.73 ± 0.27 28.76 ± 1.52 58.39 ± 0.24 47.03 ± 0.50
ER-GAT 52.03 ± 2.59 22.67 ± 3.30 62.05 ± 0.70 18.91 ± 1.09 70.09 ± 0.88 23.24 ± 0.36

TWC-GAT 52.88 ± 0.53 19.60 ± 3.64 60.90 ± 3.74 16.92 ± 0.63 59.91 ± 1.71 42.78 ± 1.39

TGAT 48.47 ± 1.81 31.03 ± 4.48 64.89 ± 1.27 27.31 ± 3.99 60.62 ± 0.23 43.35 ± 0.77
TGAT+EWC 50.16 ± 2.45 28.27 ± 4.00 66.58 ± 3.11 25.48 ± 1.75 64.03 ± 0.62 38.26 ± 1.20
TGAT+iCaRL 54.50 ± 2.04 27.66 ± 1.11 71.71 ± 2.48 17.56 ± 2.46 73.74 ± 1.40 23.90 ± 2.04

TGAT+BiC 54.61 ± 0.89 25.42 ± 2.72 74.73 ± 3.54 16.42 ± 4.41 74.05 ± 0.48 23.27 ± 0.65

TGN 47.49 ± 0.48 32.06 ± 1.91 56.24 ± 1.65 41.27 ± 2.30 65.89 ± 1.20 36.15 ± 1.55
TGN+EWC 49.45 ± 1.45 31.74 ± 1.11 60.83 ± 3.55 35.73 ± 3.48 68.89 ± 2.09 32.08 ± 3.88
TGN+iCaRL 50.86 ± 4.83 31.01 ± 2.78 73.34 ± 1.99 15.43 ± 0.93 77.42 ± 0.80 19.57 ± 1.29

TGN+BiC 53.16 ± 1.53 26.83 ± 0.95 73.98 ± 2.07 16.79 ± 2.90 77.40 ± 0.80 18.63 ± 1.69

TREND 49.61 ± 2.92 28.68 ± 4.20 57.28 ± 2.83 37.48 ± 3.26 61.02 ± 0.16 42.44 ± 0.14
TREND+EWC 53.12 ± 3.30 25.70 ± 3.08 65.45 ± 4.79 26.80 ± 4.98 62.72 ± 1.18 40.00 ± 2.09
TREND+iCaRL 52.53 ± 3.67 30.63 ± 0.18 69.93 ± 5.55 15.81 ± 7.48 74.49 ± 0.05 23.27 ± 0.25

TREND+BiC 54.22 ± 0.56 22.42 ± 3.15 71.15 ± 2.42 12.78 ± 5.12 75.13 ± 1.06 21.70 ± 0.63

OTGNet (Ours) 73.88 ± 4.55 19.25 ± 5.10 83.78 ± 1.06 4.98 ± 0.46 79.92 ± 0.12 12.82 ± 0.61

1 2 3 4 5 6task learning sequence

40

60

80

100

Av
er

ag
e 

Pe
rfo

rm
an

ce

Reddit

1 2 3 4 5task learning sequence

40

60

80

100 Yelp

1 2 3task learning sequence

40

60

80

100 Taobao
TWC-GAT ER-GAT ContinualGNN TGAT+BiC TGN+BiC TREND+BiC OTGNet

Figure 4: The changes of average performance (AP) (%) on three datasets with the increased tasks.

TGAT and TREND, the phenomenon of catastrophic forgetting is alleviative. However, they still
suffer from the issue of heterophily propagation.

Performance Analysis of Different Task Numbers. To provide further analysis of our method,
we plot the performance changes of different methods along with the increased tasks. As shown
in Figure 4, our method generally achieves better performance than baselines as the task number
increases. Since BiC based methods achieve better performance based on Table 2, we do not report
the results of the other two incremental learning based methods. In addition, the curves of OTGNet
are smoother that those of other methods, which indicates our method can well address the issue of
catastrophic forgetting. Because of space limitation, we provide the curves of AF in Appendix A.7.

Ablation Study of our proposed propagation mechanism. We further study the effectiveness of
our information bottleneck based message propagation mechanism. OTGNet-w.o.-IB represents
our method directly transferring the embeddings of neighbor nodes instead of class-agnostic rep-
resentations. OTGNet-w.o.-prop denotes our method directly dropping the links between nodes
of different classes. We take GBK-GNN (Du et al., 2022) as another baseline, where GBK-GNN
originally handles the heterophily for static graph. For a fair comparison, we modify GBK-GNN to
an open temporal graph: Specifically, we create two temporal message propagation modules with
separated parameters as the two kernel feature transformation matrices in GBK-GNN. We denote

Table 3: Ablation study of our proposed information bottleneck based propagation mechanism.

Setting Reddit Yelp TaoBao

AP(↑) AF(↓) AP(↑) AF(↓) AP(↑) AF(↓)

OTGNet-w.o.-IB 54.10 ± 2.01 34.00 ± 1.63 76.93 ± 5.14 14.96 ± 5.61 79.00 ± 0.37 13.41 ± 0.57
OTGNet-w.o.-prop 54.67 ± 2.05 28.73 ± 2.63 75.67 ± 1.69 12.87 ± 1.19 79.07 ± 0.02 14.48 ± 0.34

OTGNet-GBK 58.79 ± 1.08 25.22 ± 2.22 77.03 ± 2.99 9.79 ± 1.15 77.73 ± 0.27 15.49 ± 0.34
OTGNet 73.88 ± 4.55 19.25 ± 5.10 83.78 ± 1.06 4.98 ± 0.46 79.92 ± 0.12 12.82 ± 0.61
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Table 4: Results of triad selection strategy on the three datasets.

Setting Reddit Yelp TaoBao

AP(↑) AF(↓) AP(↑) AF(↓) AP(↑) AF(↓)

OTGNet-w.o.-triad 60.81 ± 4.46 34.94 ± 4.73 69.28 ± 1.73 23.79 ± 1.75 67.05 ± 0.44 31.44 ± 0.41
OTGNet-random 69.66 ± 3.81 23.24 ± 3.83 78.76 ± 2.62 9.19 ± 1.65 79.09 ± 0.36 13.89 ± 0.45

OTGNet-w.o.-diversity 71.06 ± 5.73 22.96 ± 6.91 80.76 ± 2.60 9.91 ± 3.83 78.84 ± 0.46 13.87 ± 1.18
OTGNet 73.88 ± 4.55 19.25 ± 5.10 83.78 ± 1.06 4.98 ± 0.46 79.92 ± 0.12 12.82 ± 0.61

Table 5: Results of evolution pattern preservation on the three datasets.

Setting Reddit Yelp TaoBao

AP(↑) AF(↓) AP(↑) AF(↓) AP(↑) AF(↓)

OTGNet-w.o.-pattern 70.23 ± 5.56 23.10 ± 7.44 81.44 ± 1.38 6.97 ± 3.10 79.01 ± 0.19 14.05 ± 0.46
OTGNet 73.88 ± 4.55 19.25 ± 5.10 83.78 ± 1.06 4.98 ± 0.46 79.92 ± 0.12 12.82 ± 0.61

Table 6: Results of of our acceleration solution with different K.
Reddit Yelp Taobao

AP(↑) AF(↓) Time (h) AP(↑) AF(↓) Time (h) AP(↑) AF(↓) Time (h)

K=1000 73.88 19.25 1.23 83.78 4.98 0.25 79.92 12.82 1.61
K=500 71.26 22.45 0.45 83.48 6.32 0.07 79.19 13.94 0.53
K=200 66.83 26.88 0.07 81.86 6.87 0.02 79.14 13.73 0.10
K=100 66.22 28.86 0.04 78.83 10.54 0.01 78.81 14.58 0.04

this baseline as OTGNet-GBK. As shown in Table 3, OTGNet outperforms OTGNet-w.o.-IB and
OTGNet-GBK on the three datasets. This illustrates that it is effective to extract class-agnostic
information for addressing the heterophily propagation issue. OTGNet-w.o.-prop generally performs
better than OTGNet-w.o.-IB. This tells us that it is inappropriate to directly transfer information
between two nodes of different classes. OTGNet-w.o.-prop is inferior to OTGNet, which means that
the information is lost if directly dropping the links between nodes of different nodes. An interesting
phenomenon is AF score decreases much without using information bottleneck. This indicates that
learning better node embeddings by our message passing module is helpful to triad selection.

Triad Selection Strategy Analysis. First, we design three variants to study the impact of our triad
selection strategy. OTGNet-w.o.-triad means our method does not use any triad (i.e. M = 0).
OTGNet-random represents our method selecting triads randomly. OTGNet-w.o.-diversity means our
method selecting triads without considering the diversity. As shown in Table 4, The performance of
our method decreases much when without using triads, which shows the effectiveness of using triads
to prevent catastrophic forgetting. OTGNet achieves better performance than OTGNet-random and
OTGNet-w.o.-diversity, indicating the proposed triads selection strategy is effective.

Evolution Pattern Preservation Analysis. We study the effectiveness of evolution pattern preserva-
tion. OTGNet-w.o.-pattern represents our method without evolution pattern preservation (i.e. ρ = 0).
As shown in Table 5, OTGNet has superior performance over OTGNet-w.o.-pattern, which illustrates
the evolution pattern preservation is beneficial to memorize the knowledge of old classes.

Acceleration Performance of Triad Selection. As stated aforementioned, to speed up the triad
selection, we can sort triads gck based on the values of R(gck), and use top K triads as the candidate
set N c

k for selection. We perform experiments with different K, fixing M = 10. Table 6 shows the
results. We notice that when using smaller K, the selection time drops quickly but the performance of
our model degrades little. This illustrates our acceleration solution is efficient and effective. Besides,
the reason for performance dropping is that the total diversities of the triad candidates decreases.

5 CONCLUSION

In this paper, we put forward a general framework, OTGNet, to investigate open temporal graph.
We devise a novel message passing mechanism based on information bottleneck to extract class-
agnostic knowledge for aggregation, which can address heterophily propagation issue. To overcome
catastrophic forgetting, we propose to select representative triads to memorize knowledge of old
classes, and design a new value function to realize the selection. Experimental results on three
real-world datasets demonstrate the effectiveness of our method.
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A APPENDIX

A.1 DERIVATION OF OUR INFORMATION BOTTLENECK OBJECTIVE

Our message passing mechanism is motivated by traditional information bottleneck (Alemi et al.,
2016; Tishby et al., 2000). The objective of traditional information bottleneck is maxZ I(Z, Y )−
βI(Z,X), which attempts to maximize the mutual information between label Y and latent represen-
tation Z, and minimize the mutual information between input feature X and latent representation Z.
Different from that, we intend to extract class-agnostic information from node embeddings. Thus, we
aim to minimize the mutual information between node label Y and class-agnostic representation Z(t),
and maximize the mutual information between input embedding X(t) and class-agnostic representa-
tion Z(t). Our objective could be written as: JIB = minZ(t) I(Z(t), Y )− βI(Z,X(t)). First, we
give a proof of the upper bound of I(Z(t), Y ), motivated by Cheng et al. (2020). Let Iclub(Z(t), Y ) =
Ep(Z(t),Y )[log p(y|z(t))]−Ep(Z(t))Ep(Y )[log p(y|z(t))]. Let o = Iclub(Z(t), Y )− I(Z(t), Y ), then
we have:

o =

∫
dz(t)dyp(z(t), y) log p(y|z(t))−

∫
dz(t)p(z(t))

∫
dyp(y) log p(y|z(t))

−
∫
dz(t)dyp(z(t), y) log

p(y|z(t))
p(y)

=

∫
dz(t)dyp(z(t), y) log p(y)−

∫
dz(t)p(z(t))

∫
dyp(y) log p(y|z(t))

=

∫
dyp(y) log p(y)− dyp(y)

∫
dz(t)p(z(t)) log p(y|z(t))

=

∫
dyp(y)(log p(y)−

∫
dz(t)p(z(t)) log p(y|z(t))). (13)

Since log(·) is a concave function, according to Jensen’s Inequality (Kian, 2014), we have:

log p(y)−
∫
dzp(z(t)) log p(y|z(t))=log(

∫
dz(t)p(z(t))p(y|z(t)))−

∫
dz(t)p(z(t)) log p(y|z(t))≥0.

(14)
Then, we have:

o =

∫
dyp(y)(log p(y)−

∫
dz(t)p(z(t)) log p(y|z(t))) ≥ 0. (15)

Thus, we derive the upper bound of I(Z(t), Y ):

I(Z(t), Y ) ≤ Iclub(Z(t), Y ) = Ep(Z(t),Y )[log p(y|z(t))]− Ep(Z(t))Ep(Y )[log p(y|z(t))]. (16)

Since p(y|z(t)) is unknown, we introduce a variational approximation distribution qµ(y|z(t)) to
approximate p(y|z(t)), following Cheng et al. (2020).

Next, we give a proof to the lower bound of I(X(t), Z(t)), based on Belghazi et al. (2018). According
to Donsker-Varadhan representation (Donsker & Varadhan, 1975), we know:

I(X(t), Z(t)) = KL(p(X(t), Z(t)), p(X(t))p(Z(t)))

= supT :Ω→REp(X(t),Z(t))[T ]− log(Ep(X(t))p(Z(t))[e
T ]), (17)

where Ω = X × Z is the input space. Let F be any class of functions T : Ω → R, we have:

KL(p(X(t), Z(t)), p(X(t))p(Z(t))) ≥ supT∈FEp(X(t),Z(t))[T ]− log(Ep(X(t))p(Z(t))[e
T ]). (18)

We could choose F to be the family of functions Tψ : X ×Z → R parameterized by a neural network
ψ:

KL(p(X(t), Z(t)), p(X(t))p(Z(t))) ≥ supψEp(X(t),Z(t))[Tψ]− log(Ep(X(t))p(Z(t))[e
Tψ ]). (19)

Thus, we have:

I(X(t), Z(t)) ≥ Imine(X(t), Z(t)) = supψEp(X(t),Z(t))[Tψ]− log(Ep(X(t))p(Z(t))[e
Tψ ]). (20)
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Therefore, we could derive an upper bound of JIB :

JIB ≤ LIB = Iclub(Z(t), Y )− βImine(X(t), Z(t))

=Ep(Z(t),Y )[log qµ(y|z(t))]−Ep(Z(t))Ep(Y )[log qµ(y|z(t))]
− β(supψEp(X(t),Z(t))[Tψ]−log(Ep(X(t))p(Z(t))[e

Tψ ])). (21)

In order to minimize JIB , we attempt to minimize its upper bound, i.e., LIB , and utilize the Monte
Carlo sampling to approximate the expectations in LIB , motivated by (Wan et al., 2021; Alemi et al.,
2016). Therefore, the final loss function of LIB can be expressed as:

LIB =
1

|Sd|
∑
i∈Sd

[ log qµ(yi|zi(t))−
1

|Sd|
∑
j∈Sd

log qµ(yj |zi(t)) ]

− β

|Sd|
∑
i∈Sd

[ Tψ(xi(t),zi(t))− log (
1

|Sd|
∑
j∈Sd

eTψ(xi(t),zj(t))) ] , (22)

where Sd is a batch of nodes and |Sd| is the size of Sd. xi(t), zi(t) are the embedding, the class-
agnostic representation of node i respectively at time-stamp t. yi is the label of node i.

A.2 DERIVATION OF TRIAD INFLUENCE FUNCTION

In this section, we prove that our triad influence function Iloss(gck, θ) could estimate the influence of
the triad gck on the model performance for class k. The triad influence function Iloss(gck, θ) is defined
as:

Iloss(gck, θ) = −∇θL(Gk, θ)⊤H−1
θ ∇θL(gck, θ), (23)

where θ is the parameter of the model and Gk is the training node set of class k. Hθ is the Hessian
matrix. ∇θL(gck, θ), ∇θL(Gk, θ) are the gradient of loss to gck and Gk, respectively.

The basic idea of the influence function (Cook & Weisberg, 1980; Koh & Liang, 2017) is to estimate
the parameter change if a training sample is upweighted by some small ε (ε→ 0). Thus, we add a
small weight ε on three nodes of the triad gck in the loss function L(θ). The new loss function could
be written as:

Lε,gck(θ) = argmin θ

∑
v∈Gk

l(v, θ) + ε
∑
v∈gck

l(v, θ)

= L(Gk, θ) + εL(gck, θ),
(24)

where l(v, θ) is the loss of node v. With the new loss function, the parameter of model is changed to
θ̂ε,gck = argmin θ Lε,gck(θ).
According to Cook & Weisberg (1980), we know that the influence of upweighting ε could be

evaluated by
d θ̂ε,gck
d ε

∣∣∣∣∣
ε=0

.

Since the new loss function (24) is minimized by θ̂ϵ,gck , we examine the first-order optimality
condition:

0 = ∇θL(Gk, θ) + ε∇θL(gck, θ). (25)

Then, since we have θ̂ε,gck → θ as ε→ 0, we perform a Taylor expansion on the right-hand side of
Eq. (25) and the higher order infinitesimal o(θ̂ε,gck − θ) terms are dropped :

0 ≈ [∇θL(Gk, θ) + ϵ∇θL(gck, θ)] + [∇2
θL(Gk, θ) + ϵ∇2

θL(gck, θ)](θ̂ε,gck − θ). (26)

From Eq. (26), we could derive that

θ̂ε,gck − θ ≈ −[∇θL(Gk, θ) + ϵ∇θL(gck, θ)][∇2
θL(Gk, θ) + ϵ∇2

θL(gck, θ)]−1. (27)

Because θ minimizes L(Gk, θ), ∇θL(Gk, θ) equals 0. By dropping the higher order infinitesimal
o(ε) terms, we have:

θ̂ε,gck − θ ≈ −[∇2
θL(Gk, θ)]−1∇θL(gck, θ)ε. (28)
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We denote the Hθ = ∇2
θL(Gk, θ), and thus have:

θ̂ε,gck − θ ≈ −H−1
θ ε∇θL(gck, θ). (29)

Then, we could estimate the change of parameters influenced by a triad as follows:

d θ̂ε,gck
d ε

∣∣∣∣∣
ε=0

=
θ̂ε,gck − θ

ε

∣∣∣∣∣
ε=0

=
−εH−1

θ ∇θL(gck, θ)
ε

∣∣∣∣
ε=0

= −H−1
θ ∇θL(gck, θ).

(30)

Finally, we could derive the triad influence function Iloss(gck, θ) by the chain rule:

Iloss(gck, θ) =
dL(Gk, θε,gck)

d ε

∣∣∣∣
ε=0

= ∇θL(Gk, θ)⊤
d θ̂ε,gck
d ε

∣∣∣∣∣
ε=0

= −∇θL(Gk, θ)⊤H−1
θ ∇θL(gck, θ).

(31)

A.3 PROOF OF MONOTONICITY AND SUBMODULARITY

Our proposed value function is defined as:

F (Sck) =
∑

gck,i∈S
c
k

∇θL(Gk, θ)⊤H−1
θ ∇θL(gck,i, θ) + γ

|
⋃
gck,i∈S

c
k
Cgck,i |

|N c
k |

, (32)

where Cgck,i = {gck,j | ||x̄(gck,j) − x̄(gck,i)||2 ≤ δ, gck,j ∈ N c
k} and N c

k is the set containing all triads
with positive R(gck). As stated before, finding a fixed size set Sck (Sck ⊆ N c

k) that maximizes F (Sck)
is NP-hard due to the combinatorial complexity. Thus, we first prove that our value function F is
monotone and submodular. Then our optimization problem could be solved by a greedy algorithm
with an approximation ratio guarantee according to Krause & Golovin (2014).

Definition 1. (Monotonicity) A function f : 2N → R is monotone if for ∀A ⊆ B ⊆ N , it holds that
F (A) ≤ F (B).

Lemma 1. Our value function F in Eq. (32) is monotone.

Proof. We define two triad sets A,B that satisfy A ⊆ B ⊆ N c
k . Let ∆ = F (B)− F (A). We have:

∆ =
∑
gck,i∈B

∇θL(Gk, θ)TH−1
θ ∇θL(gck,i, θ)−

∑
gck,i∈A

∇θL(Gk, θ)TH−1
θ ∇θL(gck,i, θ)

+
|
⋃
gck,i∈B

Cgck,i |

|Nc|
−

|
⋃
gck,i∈A

Cgck,i |

|Nc|
= ∇θL(Gk, θ)TH−1

θ (
∑
gck,i∈B

∇θL(gck,i, θ)−
∑
gck,i∈A

∇θL(gck,i, θ))

+
|
⋃
gck,i∈B

Cgck,i |

|Nc|
−
|
⋃
gck,i∈A

Cgck,i |

|Nc|

= ∇θL(Gk, θ) TH−1
θ

∑
gck,i∈T

∇θL(gck,i, θ) +
|
⋃
gck,i∈B

Cgck,i |

|Nc|
−

|
⋃
gck,i∈A

Cgck,i |

|Nc|

≥
|
⋃
gck,i∈B

Cgck,i |

|Nc|
−

|
⋃
gck,i∈A

Cgck,i |

|Nc|
≥

|
⋃
gck,i∈A

Cgck,i |

|Nc|
−

|
⋃
gck,i∈A

Cgck,i |

|Nc|
= 0.

Thus, we have:

∆ = F (B)− F (A) ≥ 0. (33)
⇒ F (A) ≤ F (B). (34)
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Definition 2. (Submodularity) A function f : 2N → R is submodular if for ∀A ⊆ B ⊆ N and
∀x ∈ N\B, it holds that F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B).

Lemma 2. Our value function F in Eq. (32) is submodular.

Proof. We define two triad sets A,B that satisfy A ⊆ B ⊆ N c
k . Let T = B\A. Define ∆ =

(F (A ∪ {x})− F (A))− (F (B ∪ {x})− F (B)). Then we have:

∆ =∇θL(Gk, θ)TH−1
θ (
∑

gck,i∈A∪{x}

∇θL(gck,i, θ)−
∑
gck,i∈A

∇θL(gck,i, θ)+
∑

gck,i∈B∪{x}

∇θL(gck,i, θ)−
∑
gck,i∈B

∇θL(gck,i, θ))

+
|
⋃
gck,i∈A∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈A

Cgck,i |

|N c
k |

− (
|
⋃
gck,i∈B∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈B

Cgck,i |

|N c
k |

). (35)

∆ = ∇θL(Gk, θ) TH−1
θ (

∑
gck,i∈{x}

∇θL(gck,i, θ)−
∑
gck,i∈x

∇θL(gck,i, θ))

+
|
⋃
gck,i∈A∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈A

Cgck,i |

|N c
k |

− (
|
⋃
gck,i∈B∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈B

Cgck,i |

|N c
k |

). (36)

∆ =
|
⋃
gck,i∈A∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈A

Cgck,i |

|N c
k |

− (
|
⋃
gck,i∈B∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈B

Cgck,i |

|N c
k |

). (37)

∆ =
|
⋃
gck,i∈A∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈A

Cgck,i |

|N c
k |

− (
|
⋃
gck,i∈A∪T∪{x} Cgck,i |

|N c
k |

−
|
⋃
gck,i∈A∪T Cgck,i |

|N c
k |

).

∆ =
1

N c
k

(|(
⋃

gck,i∈A
Cgck,i) ∪ (

⋃
gck,i∈{x}

Cgck,i)| − |(
⋃

gck,i∈A
Cgck,i)|

− |(
⋃

gck,i∈A
Cgck,i) ∪ (

⋃
gck,i∈T

Cgck,i) ∪ (
⋃

gck,i∈{x}

Cgck,i)|+ |(
⋃

gck,i∈A
Cgck,i) ∪ (

⋃
gck,i∈T

Cgck,i)|). (38)

For convenience, we denote
⋃
gck,i∈Q

Cgck,i = C∗
Q. We have:

∆ =
1

|N c
k |
(|C∗

A ∪ C∗
{x}| − |C∗

A| − |C∗
A ∪ C∗

{T} ∪ C∗
{x}|+ |C∗

A ∪ C∗
T |)

=
1

|N c
k |
(|C∗

A|+ |C∗
{x}| − |C∗

A ∩ C∗
{x}| − |C∗

A|+ |C∗
A ∪ C∗

{T} ∪ C∗
{x}|+ |C∗

A ∪ C∗
T |)

=
1

|N c
k |
(|C∗

{x}| − |C∗
A ∩ C∗

{x}| − |C∗
A| − |C∗

T | − |C∗
{x}|+ |C∗

A ∩ C∗
T |

+ |C∗
A ∩ C∗

{x}|+ |C∗
T ∩ C∗

{x}| − |C∗
A ∩ C∗

{T} ∩ C∗
{x}|+ |C∗

A ∪ C∗
T |)

=
1

|N c
k |
(−|C∗

A| − |C∗
T |+|C∗

A ∩ C∗
T |+|C∗

T ∩ C∗
{x}|−|C∗

A ∩ C∗
{T} ∩ C∗

{x}|+|C∗
A ∪ C∗

T |)

=
1

|N c
k |
(−|C∗

A| − |C∗
T |+ |C∗

A ∩ C∗
T |+ |C∗

T ∩ C∗
{x}| − |C∗

A ∩ C∗
{T} ∩ C∗

{x}|

+ |C∗
A|+ |C∗

T | − |C∗
A ∩ C∗

T |)

=
1

|N c
k |
(|C∗

T ∩ C∗
{x}| − |C∗

A ∩ C∗
{T} ∩ C∗

{x}|)

≥ 0. (39)

Then, we can derive:

∆ = (F (A ∪ {x})− F (A))− (F (B ∪ {x})− F (B)) ≥ 0. (40)
⇒ F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B). (41)
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A.4 DATASET DETAILS

Reddit Dataset Reddit is a large platform of topic communities where people could write and
upload their posts to share their opinions. For the Reddit dataset 1, we construct a post-to-post
graph, similar to Hamilton et al. (2017). We omit the top 20 largest communities, because they are
large and generic default communities, which could skew the class distribution (Hamilton et al.,
2017). From the rest of communities, in each month we sample 3 largest communities that doesn’t
appear in previous months as new classes for each task. We take the data from July to November in
2009 and construct 6 tasks based on the selected data. In the graph, the posts are regarded as nodes
and their corresponding communities are regarded as node labels. When a user comments a post
at time t, the temporal edges at timestamp t will be built, connecting this post to other posts this
user has commented within a week. We initialize the feature representation of a node by averaging
300-dimensional GloVe word embeddings of all comments in this post, following Hamilton et al.
(2017).

Yelp Dataset Yelp is a large business review website where people could upload their reviews for
commenting business, and find their interested business by others’ reviews. For the Yelp dataset2, we
construct a business-to-business temporal graph, in the same way as Reddit. Specifically, we take the
data from 2015 to 2019, and treat the data in each year as a task, thus forming 5 tasks in total. In each
year, we sample 3 largest business categories as three classes in each task. Note that the business
categories in each task have never occurred in previous tasks. We regard each business as a node and
set the business’s category as its node label. The temporal edge will be formed, once a user reviews
the corresponding two businesses within a month. We initialize the feature representation for each
node by averaging 300-dimensional GloVe word embeddings of all reviews for this business.

Taobao Dataset Taobao is a large online shopping platform where items (products) could be
viewed and purchased by people online. For the Taobao dataset3(Du et al., 2019), we construct an
item-to-item graph, in the same way as Reddit. The data in the Taobao dataset is a 6-days promotion
season of Taobao in 2018. We set the time duration for each task as 2 days. In each two days, we take
the top 30 largest item categories according to the number of items as the new classes for this task.
The categories in each task have never occurred in previous tasks. We regard the items as nodes and
take the categories of items as the node labels. The temporal edge will be built if a user purchases
two corresponding items in the promotion season. We use the 128-dimensional embedding provided
by the original dataset as the initial feature of the node.

A.5 PSEUDO-CODE OF PROPOSED METHOD

We provide the pseudo-code of our training procedure, as shown in Algorithm 2. When learning task
Ti, we input the interactions in current task and triads of previous tasks together into our proposed
message passing framework. All nodes in current interactions and previous triads are used to calculate
node classification loss for training. The closed triads and open triads serve as positive and negative
samples to preserve evolution patterns, respectively. After learning task Ti, we select representative
triads for the classes in Ti and then begin to learn task Ti+1. Note that our algorithm does not
guarantee that the selected triads must be connected with the nodes in the new task. This is because
the selected triads play two roles in our method: on one hand, when the nodes in the triads are
connected with the nodes in a new task, it will propagate knowledge among these nodes by extracting
class-agnostic representations; on the other hand, triads are used to preserve the knowledge of old
classes, so as to avoid catastrophic knowledge forgetting when learning new classes. Even though
the selected triad does not connect with the nodes in the new task, we think it still is important for
learning old classes by simultaneously considering both importance and diversity.

A.6 IMPLEMENTATION DETAILS

We perform our experiments using GeForce RTX 3090 Ti GPU. We use the Adam optimizer for
training with learning rate η = 0.0001 on the Reddit dataset, learning rate η = 0.005 on the Yelp

1https://files.pushshift.io/reddit/comments/
2https://www.yelp.com/dataset
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716
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Algorithm 2 OTGNet: Open Temporal Graph Neural Networks
Input: task number L, last time-stamp t, interaction set E(t), node label set Y(t) = {1, 2, ...,m(t)},

node initial feature xi(0), epochs Ne, memory budget per class M , trade-off parameter ρ;
Output: prediction of node classes;

1: Initialize node embeddings;
2: Initialize triad memory buffer S = ∅;
3: for each task Ti from T1 to TL do
4: for each epoch e from 1 to Ne do
5: for each batch b in epoch e do
6: let H be the set containing all interactions in batch b;
7: if Ti ̸= T1 then
8: let Hpre be the set containing the interactions for all triads in S;
9: H = H ∪Hpre;

10: end if
11: extract class-agnostic embeddings for all interactive nodes and their neighbors in H;
12: propagate message for all interactive nodes in H;
13: calculate node classification loss Lce for all interactive nodes in H;
14: let L = Lce;
15: if Ti ̸= T1 then
16: calculate link prediction loss Llink for all triads in S;
17: L = Lce + ρLlink;
18: end if
19: minimize the information bottleneck loss LIB ;
20: minimize the training loss L;
21: end for
22: end for
23: for each class k in task Ti do
24: select representative closed triad set Sok for class k by Algorithm 1;
25: select representative open triad set Sok for class k by Algorithm 1;
26: S = S ∪ Sck ∪ Sok
27: end for
28: for each task Tj from T1 to Ti do
29: evaluate the performance of our model on the unseen test data of Tj ;
30: end for
31: end for

datasets and learning rate η = 0.001 on the Taobao datasets. For all baselines and our method, we
train each new task until convergence, and then evaluate the performance of the model on current task
and all previous tasks. For the Reddit dataset and the Yelp dataset, we train each task 500 epochs.
For the Taobao dataset, we train each task 100 epochs. We set the dropout rate to 0.5 on all the
datasets. The node classification head is a two-layer MLP with hidden size 128. The selected triad
pairs per class M is set to 10 on all datasets. The sub-network extracting class-agnostic information
is a two-layer MLP with hidden size 100. Note that we do not use a whole graph in the forward pass
computation. For replaying the triads, we sample 5 neighbors of each node in the triad for forward
propagation, motivated by the sampling strategy in TGAT and TGN. For the nodes on the current
new task, we also sample 5 neighbor nodes (maybe from old class nodes) for each node to aggregate
the neighborhood information.

A.7 ADDITIONAL EXPERIMENTS

Forgetting Analysis of Different Task Numbers. We study the average forgetting (AF) changes
of different methods along with the increased tasks. As stated in the main body of this paper, AF
measures the decreasing extent of model performance on previous tasks compared to the best ones.
Note that AF does not count the last task since the forgetting for the last task has not yet happened. As
shown in Figure 5, AF of our method is generally smaller than that of other methods. This indicates
that our method generally suffers from less catastrophic forgetting than other methods.
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Figure 5: The changes of average forgetting (AF) (%) on three datasets with the increased tasks.
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Figure 6: Convergence analysis. A new task is added for every 100 epochs.

Convergence Analysis. We analyze the convergence of our method. We plot the loss curves
(including the total training loss L and the information bottleneck loss LIB on the largest dataset,
Taobao. As shown in Figure 6, our method can be eventually convergent when learning for each task.

Sensitivity Analysis of M . We analyze the influence of the number M of selected triads when
fixing K = 1000. As shown in Figure 7(a)(b), it could be observed that when we fix K = 1000,
our method obtains good performance when M ≥ 10. This is because with a relatively large K, we
could select not only important but also diverse triads to preserve knowledge for achieving good
performance. Thus, we set M = 10 throughout the experiment.

Sensitivity Analysis of ρ. We analyze the sensitiveness of ρ. ρ is the hyper-parameter on the link
prediction loss for evolution pattern preservation. As shown in Figure 8(a)(b), we observe that our
method is not sensitive to ρ in a relatively large range.

Sensitivity Analysis of γ. We analyze the sensitivity of γ in our method. Recall that γ is a
trade-off parameter for balancing the contributions between diversity and importance when selecting
representative triads. As shown in Figure 9, our method is not sensitive to γ in a relatively large
range.
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Figure 7: The sensitivity of M in our method on three datasets
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Figure 8: The sensitivity of ρ in our method on three datasets
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Figure 9: The sensitivity of γ in our method on three datasets.
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Figure 10: The sensitivity of β in our method on three datasets
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Figure 11: The sensitivity of δ in our method on three datasets

Sensitivity Analysis of β. We analyze the sensitivity of β in our method. β is the Lagrange
multiplier in the objective of information bottleneck. As shown in Figure 10, we observe that our
method has stable performance when changing β in a certain range.

Sensitivity Analysis of δ. We further analyze the sensitivity of δ in our method. δ is a hyper-
parameter for measuring the diversity of a triad set. As shown in Figure 11, our method is not
sensitive to δ in a relatively large range.

A.8 AP AND AF FOR EACH TASK.

Here we provide the AP and AF metric for each task of our method and two baselines (TGAT+BiC,
TGN+BiC) which generally perform well among all baselines. As shown in Table 7 8 9, our method
generally outperforms two baselines for most tasks.

Table 7: AP and AF for each task on the Reddit dataset.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

AP AF AP AF AP AF AP AF AP AF AP AF

TGAT+BiC 50.52 23.96 47.18 23.59 42.31 21.15 63.03 26.86 46.18 31.53 78.46 -
TGN+BiC 52.26 22.22 56.34 9.15 35.34 29.09 63.03 30.05 31.85 43.63 80.15 -
OTGNet 61.02 15.80 71.83 20.25 39.30 45.43 83.38 13.16 91.72 1.59 95.97 -

Table 8: AP and AF for each task on the Yelp dataset.

Method Task 1 Task 2 Task 3 Task 4 Task 5

AP AF AP AF AP AF AP AF AP AF

TGAT+BiC 71.61 9.76 78.89 9.63 73.68 21.84 62.23 24.46 87.25 -
TGN+BiC 55.50 23.07 79.63 7.04 74.47 22.63 72.83 14.40 87.45 -
OTGNet 76.38 0.26 88.89 0.74 83.95 10.79 79.62 8.15 90.08 -

Table 9: AP and AF for each task on the Taobao dataset.

Method Task 1 Task 2 Task 3

AP AF AP AF AP AF

TGAT+BiC 68.82 22.69 63.16 23.86 90.15 -
TGN+BiC 74.23 17.62 67.96 19.65 90.00 -
OTGNet 77.62 12.86 72.81 12.80 89.35 -
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Table 10: Running time (hours) comparison with baselines.

Method Reddit Yelp Taobao

AP AF Time (h) AP AF Time (h) AP AF Time (h)

TGAT+BiC 54.61 25.42 5.05 74.73 16.42 3.03 74.05 23.27 5.82
TGN+BiC 53.16 26.83 5.81 73.98 16.79 3.17 77.40 18.63 6.23

TGAT-retrain 75.86 3.71 26.31 87.64 0.61 10.07 83.35 0.78 32.75
TGN-retrain 77.41 3.34 31.58 80.83 3.47 10.80 81.63 3.64 35.65

OTGNet 73.88 19.25 6.78 83.78 4.98 3.73 79.92 12.82 7.81

A.9 RUNNING TIME ANALYSIS

When new classes occur, if we combine all data of old classes with the data of new classes for
retraining, the computational complexities will be sharply increased, and be not affordable. Here, we
compare the running time of our method with the retraining methods (TGAT-retrain, TGN-retrain)
and two baselines (TGAT+BiC, TGN+BiC) which generally perform well among baseline methods.
For the retraining methods, we use all data of old tasks for training when learning new tasks.

As shown in in Table 10, the running time of our method is comparable to the two incremental
learning baselines (TGAT+BiC, TGN+BiC), while our model outperforms them on AP and AF
metric with a large margin. For the retraining methods (TGAT-retrain, TGN-retrain), we can see the
running time is increased by several times. In real-world applications, new classes might frequently
occur. If we use all history data for training once a new class occurs, the time consuming could be
unaffordable. Note that their Average Forgetting (AF) are better than our model. This is because they
use all training data for learning each time, and thus can avoid forgetting.

A.10 LIMITATIONS AND FUTURE WORKS

The quadratic time complexity of triad selection is a limitation of our method. Although only
considering partial triads could be efficient, the performance of our model would be degraded to some
extent. How to develop a more efficient and effective algorithm for representative triad selection is
our future work. For example, we could design a hierarchical selection policy to reduce the time
complexity, or develop a divide-and-conquer method for efficient triad selection. What’s more, we
can design better practical approximations to the theoretical optimal solution of our value function to
select representative triads.

A.11 VISUALIZATIONS

t-SNE 2D

(a) OTGNet-w.o.-IB

t-SNE 2D

(b) OTGNet

Figure 12: t-SNE visualization of learned node embeddings on Reddit when task 1 is finished.
Different colors denote different classes.
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t-SNE 2D

(a) OTGNet-w.o.-IB

t-SNE 2D

(b) OTGNet

Figure 13: t-SNE visualization of learned node embeddings on Reddit after a new task is added.
Different colors denote different classes. The new task contains 3 new classes.

To qualitatively demonstrate the effectiveness of our class-agnostic representations, we adopt t-SNE
(Van der Maaten & Hinton, 2008) to visualize the learned node embeddings of our OTGNet. For
comparison, we also visualize the node embeddings of OTGNet-w.o.-IB (i.e., OTGNet directly
transferring the embeddings of neighbor nodes instead of class-agnostic representations). Figure 12
shows the results of their learned node embeddings on Reddit when task 1 is finished, and Figure 13
demonstrates the results after a new task is added. We can clearly observe that OTGNet possesses
better representation ability by considering class-agnostic representations.
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