Diffusion models with group symmetries for biomolecule generation
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Abstract

Generative artificial intelligence is a promising
approach and has achieved great success in var-
ious protein generation tasks. Notably, diffu-
sion models stand out for their robust mathe-
matical foundations and impressive generative
capabilities, offering unique advantages in cer-
tain applications such as protein design. This re-
view summarizes Special Euclidean group SE(3)-
invariant and Euclidean group F(3)-invariant dif-
fusion models tailored to the structural properties
of proteins and small molecules, respectively. We
examine why S E(3)-equivariant models are pre-
dominantly used in protein design, while F(3)-
equivariant models are favored for molecule gen-
eration. Finally, we discuss future directions, in-
cluding multiscale modeling, dynamic integra-
tion, and cross-domain applications, to advance
biomolecular design and drug discovery.
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1. Introduction

For decades, protein engineering and protein design tasks
have been regarded as NP-hard optimization problems
(Mukhopadhyay, 2014). Algorithm challenges continue to
persist despite advances in computational methods (Pierce &
Winfree, 2002). Researchers have been working to explore
effective methods to bridge the sizeable gap. Due to their
ability to learn complex patterns for large datasets, deep
learning approaches have been applied to various tasks such
as protein structure prediction, sequence design for specific
functions, and de novo protein design (DNPD) (Watson
etal., 2023).

Generative modeling is a subfield of machine learning (ML)
that focuses on developing algorithms capable of generating
new data samples that resemble the data distribution of a
given training dataset. Successful applications of generative
modeling have highlighted the potential of protein design by
modeling the probability distribution of protein sequences.
Diffusion models (Kloeden et al., 1992) have given amazing
results for image, audio, and text synthesis, while being
relatively simple to implement. These models use a pa-
rameterized Markov chain trained by variational inference,
enabling the generation of samples that align with the data
distribution within a finite time, providing a structured and
efficient mechanism for generative tasks. Transitions of this
chain are learned to reverse a diffusion process, which is a
Markov chain that gradually adds noise to the data in the
opposite direction of sampling until the signal is destroyed.

Diffusion models address key challenges faced by other
generative approaches: They overcome the difficulty of
accurately matching posterior distributions in Variational
autoencoders (VAEs), mitigate the instability arising from
the adversarial training objectives in Generative adversarial
networks (GANSs), and excel in protein generation tasks,
particularly in producing structures with improved atom
stability (Chen et al., 2024). Moreover, compared to the
above two sets of models, diffusion models are based on
the theory of Brownian processes; they are more suitable
to represent fluctuations in protein sequence and structure
changes (Cadet et al., 2019). This characteristic helps us
deal with the complex problem of evolutionary dynamics in
protein structures and sequences (Morcos, 2021).
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Although there have been several surveys on diffusion mod-
els for biomolecule generation, they have not explored the
difference between SFE(3) and E(3), and also do not answer
why these two types of models are usually used in protein
design and molecule generation, respectively. The motiva-
tion for this work is to provide advanced and comprehensive
insights into the development and comparison of diffusion
models, explaining the advantages and disadvantages of
the diffusion model with equivariant properties SF(3) and
E(3), and the future directions and perspectives of the dif-
fusion models to assist in protein design. We compare our
survey with existing surveys in Table 1 in Appendix.

The main contributions of this review include:

e An accessible introduction to the fundamentals of dif-
fusion models and group invariance.

e A fairly detailed overview of the applications of 13
models for protein structure design and 18 models for
molecule generation.

e Discussion on the future development of diffusion mod-
els to assist in biomolecule design.

This work explores the generation of different biomolecules
through diffusion models, emphasizing protein design.

2. Theoretical preparation

For a better understanding of the models, we provide
some background on the protein structure and graph of
the molecules, the symmetries of the SE(3) group and the
E(3) group, and the theory of the diffusion model.

2.1. From structure to group

There are 3 ”difference” and 1 ”why” to help us better un-
derstand the relation of biomolecular structure and geometry
graph.

Q: What is the difference between protein structure and
molecule graph?

A: Protein structure has 4 levels. The simplest level of pro-
tein structure, primary structure, is simply the sequence of
amino acids in a polypeptide chain. Amino acids, decoded
from mRNA, have a common backbone with a heavy atom
part N—C\,—C—O. The next level of protein structure, sec-
ondary structure, refers to local folded structures that form
within a polypeptide due to interactions between atoms of
the backbone. The overall 3D structure of a polypeptide is
called its tertiary structure, see Fig. 1 (a). The last-level
quaternary structure consists of more than one amino acid
chain. Protein structures are often stored as files with the
suffix .pdb. In this work, we mainly discuss the tertiary
structure.

A molecule graph is a labeled graph whose vertices corre-
spond to the atoms of the compound and the edges corre-
spond to chemical bonds. A molecule can be represented
as G = (A, B, X,Y), where A is the set of atoms, X repre-
sents the matrix of atom content, B is the set of bonds, and
Y represents the matrix of bond content.

Q: What is the difference between SE(3) group and F(3)
group?

A: Both SFE(3) group and E(3) belong to the Lie group. A
Lie group is a topological group that is also a differentiable
manifold, and such that the composition and inverse opera-

tions G x G — G and G — G are infinitely differentiable
functions.

The Special Euclidean group SE(3) is defined as:

R

r 3
015 J ,ReSOB3), reR }

SE(S):{A ‘A: {
where:
* R is a proper rotation matrix in SO(3), satisfying

R"R = I and det(R) = 1. For example, for a rora-
tion angle 6, a rotation matrix around the z-axis would

be written:
cos(f) —sin(6) 0
R=| sin(f) cos(f) 0 | € SO(3).
0 0 1

* ris a translation vector in R3.

¢ 0443 denotes a 1 x 3 row vector of zeros.

SE(3) represents translation and rotation in Fig. 1 (b).

E(3) is the notation for the Euclidean group that denotes the
set of isometric transformations in Euclidean space, and the
transformations in £'(3) include translation, rotation, and
reflection, see Fig. 1 (b).

Q: What is the difference between invariance and equivari-
ance?

Definition 2.1. (Duval et al., 2023) Denote the action of a
group G on a space X by py(x), for p, € Gand x € X. If
pg acts on spaces X and Y, we say:

* A function f : X — Y is G-invariant if f(p, - ) =
f(z), i.e. the output remains unchanged under trans-
formations of the input, see Figure 2 (a).

 Afunction f : X — Y is G-equivariant if f(p,-z) =
Py - [(z), 1. e. atransformation of the input must result
in the output transforming correspondingly, see Figure
2 (b).
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Figure 1. (a) Example of protein structure and molecule graph. (b) A molecule graph as an example to show its shape after translation,
rotation and reflection. (c¢) Visualization of diffusion models operating on image generation. During the diffusion process, the image
becomes blurred until it becomes a Gaussian distribution. The reverse process is a denoising process, and the image gradually becomes

clear.

e A function f : X — Y which nether G-invariant

nor G-equivariant is referred to as G-unconstrained.

The transformation of the input results in an unknown
change in the output.

Equivariance

(a) Invariance (b)
f(Pg*X)=p's* f(X)

f(Pe * X)=£(x)

X

Figure 2. Illustration of invariant and equivariant. the meaning of
fypg, X, Y and p’g can be seen at Definition 2.1.

A function f : R® — R (or R") is SE(3)-invariant if it is
unchanged under any rigid transformation in S E(3), which
includes rotations and translations, i.e.,

g = Rx +r

in Definition 2.1, where R € SO(3) for rotation, r € R?
for translation, SE(3) = {(R,r)}.

A function f : R® — R is E(3)-invariant if it is unchanged
under any transformation in the Euclidean group E(3),
which includes rotations, translations, and reflections, i.e.,

pg=Qz+r

in Definition 2.1, where @ € O(3), O(3) includes orthogo-
nal matrices with det(Q)) = =£1, which is all the probability
for rotation and reflection. E(3) = {(Q,r)}.

Q: Why SE(3) be used predominantly for proteins while
E(3) is more common for molecules?

A: In addition to preserving rotational and translational
transformations, E/(3) also includes reflection transforma-
tions, which align with the intrinsic reflection symmetry of
certain small molecules. This makes F(3) more suitable
for describing molecular structures. In contrast, protein
structures are governed by strict chirality constraints (e.g.
L-form amino acids). Reflections would disrupt critical ge-
ometric properties, such as the planarity of peptide bonds
(e.g., Ramachandran angle constraints) and are therefore
physically invalid for biological macromolecules. Conse-
quently, the SE(3) group, which excludes reflections and
preserves rigid-body motions (rotations and translations), is
better suited for modeling protein structures.
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2.2. Diffusion models

A diffusion model (Kingma & Gao, 2023; Nakkiran et al.,
2024) is a deep generative model based on two stages: a
forward diffusion stage and a reverse diffusion stage. In
the forward diffusion stage, the input data are gradually
perturbed over several steps by adding Gaussian noise. In
the reverse phase, a model restores the original input data by
learning to reverse the diffusion process step by step. Figure
1 (c) illustrates how a diffusion model works to generate
scattered points that satisfy a specific distribution.

In discrete form, for a sufficiently large time 7" > 0,
t =0,1,...,T, with the random variable zo € R™, where
n is the dimension, the forward process iteratively adds
isotropic Gaussian noise to the sample. The Gaussian tran-
sition kernel is set as:

q(zi|ai—1) = N (V1 = Bewi—1, Bil), (1)

T

q(zr.7|T0) = HQ<xt|xt—1)a )

t=1

where [ is the identity matrix, 3; are chosen according to
a fixed variance scheme. Noisy data z; can be sampled
directly from xg:

Ty = /aywo + V1 — e, 3

where € ~ N(0, 1) and a; = [T5_, (1 — Bs).

While the reverse process, starting from noise zp ~
N(0,T), aims to learn the process of denoising:

T
po(z0) = plar) [ | po(wi-a]a); )

t=1
po(wi—i1]zs) = N(i—1; po(e, 1), 09(21, 1)),  (5)

Eq. (5) is defined as a Markov chain with learned Gaussian
transitions stering at p(zr) = N (z7;0, 1), where

ol t) = 2 (p —
" VI=B ' V-

the Denoising Diffusion Probabilistic Models (DDPM) aims
to approximate € using a parametric model structured as oy.
The objective function can be written as follows:

O'e(l't,t)),

0* = argminE,, ¢ [|le — oo (v/arwo + V1 — aze, 1)|?].
0

In addition to DDPM, diffusion models have some other
forms, such as score-based generative model (SGM) (Jo
et al., 2022) and noise-conditional score networks (NCSN)
(Guo et al., 2023), which we will not discuss further due to
space limitations.

3. Diffusion model for protein generation

A protein is a sequence of amino acids (residues) linked
into a chain that folds into a complex 3D structure under
the influence of electrostatic forces. The protein backbone
can be seen as [V rigid bodies that contain four heavy atoms
N — C,, — C — O. This section discusses the generation of
protein backbone.

A protein backbone is a continuous chain of atoms that
runs throughout the length of a protein. Generating a back-
bone is a difficult task because a backbone should fulfill the
following three criteria:

» Physically realizable: The sequence can be found to
fold into the generated structure.

* Functional: We aim for conditional sampling under
diverse functional constraints without retraining.

* Generalizability: The model has multiple application
scenarios.

For the above criteria, we introduce several models that,
in our assessment, meet the highest standards for protein
backbone generation and discuss the effects of these models.

3.1. Physically realizable model: Diffusion on SE/(3)
group

SE(3) is the notation for the special Euclidean 3D group
that includes translational and rotational isometric trans-
formations and keeps the volume constant. Proteins are
not static objects; They naturally exist in an equilibrium of
conformations. The mathematical framework is particularly
relevant for modeling molecular systems, where maintaining
spatial invariance is crucial for accurate predictions.

Building on this principle, RFDiffusion (Watson et al.,
2023) repurposes RoseTTAFold to perform reverse diffu-
sion. RFDiffusion uses RoseTTAFold’s S F(3)-equivariant
architecture to preserve isometric transformations during
structure generation, ensuring geometric consistency; see
Fig. 3. By fine-tuning RoseTTAFold All-Atom (RFAA)
(Krishna et al., 2024), a neural network for predicting
biomolecular structures, to diffusion denoising tasks, RFD-
iffusionAA generates folded protein structures surround-
ing the small molecule from random residue distributions.
ProteinGenerator (Lisanza et al., 2023) is a RoseTTAFold-
based sequence space diffusion model that simultaneously
generates protein sequences and structures. ProteinGener-
ator exhibits a lower success rate than RFDiffusion in pro-
ducing long, structurally accurate sequences, likely due to
inherent challenges in sequence-space diffusion compared
to structure-space approaches.

A group that is a differentiable manifold is called a Lie
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Figure 3. SE(3) equivariant diffusion models for protein structure generation. RFDiffusion, FrameDiff and Genie utilize Rose TTAFold,
IPA and S E(3)-equivariant denoiser as a single step of the denoise process in the diffusion model, respectively. Boxes in pink color are
SE(3) equivariant blocks. SF(3) equivariant keeps the frames of each amino acid physically stable.

group. FrameDiff (Yim et al., 2023) is a diffusion model in
the Lie group SE(3) for the generation of protein back-
bones. The superscript NV indicates that the product space
consists of N independent SF(3) elements; the subscript
0 indicates the constraint on the translation component:
the translation components of all SE(3) transformations
must satisfy the centralization condition, that is, the average
value of the translation components is fixed at the origin,
Zfil x; = 0. This model applies Invariant Point Attention
(IPA) (Jumper et al., 2021) to keep the updates of residues
in coordinate space that are S E/(3)-invariant, see Fig. 3.

FrameDiff is also used for inpainting protein structures and
motif scaffolding, named FrameDiPT (Zhang et al., 2023a)
and TDS (Wu et al., 2024), respectively. VFN-Diff (Mao
et al., 2023) replaces the IPA in FrameDiff with Vector Field
Networks (VFN), which is also a SE(3) equivariant model.
Following the settings and benchmarks of FrameDiff, VFN-
Diff significantly outperforms FrameDiff in terms of des-
ignability (67.04% vs. 53.58%) and diversity (66.54% vs.
51.98%).

Genie (Lin & AlQuraishi, 2023) integrates the SE(3)-
equivariant reasoning framework of IPA with DDPMs, de-
veloping an SE(3)-equivariant denoiser ey (F'(z¢), t) for pro-
tein generation, see Fig. 3. Genie2 (Lin et al., 2024b) ex-
tended Genie to motif scaffolding, and introduced a novel

multi-motifs framework that designs co-occurring motifs
without needing to specify inter-motif positions and orienta-
tions in advance.

The N — C, — C frame of each amino acid means that
for, N: amino group; C,: side group, also called R group;
C': carboxyl group, their coordinates jointly constitute the
geometric configuration of a residue in a protein backbone.
Figure 3 illustrates how RFdiffusion, FrameDiff, and Genie
incorporate S E(3)-equivariant neural networks into their
denoiser architectures. This kind of architecture will keep
the N — C, — C frame of each amino acid invariant to
global rotations and translations.

As special subsets of SF(3) equivariant models, some pro-
tein generation models such as ProtDiff-SMCDiff (Trippe
et al., 2023) satisfy F(3) equivariance. This kind of model
additionally keeps consistency for permutation and transla-
tion.

3.2. Model with strong functionality

Protein design projects often involve complex and compos-
ite requirements that vary over time. Chroma (Ingraham
et al., 2023) explores a programmable generative process
with custom energy functions, which aims to make the gen-
erated protein have desired properties and functions, such
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as symmetry, substructure, shape and semantics.

3.3. Model with generalizability

AlphaFold2 (AF2) (Jumper et al., 2021) comprises two
main strategies: Evoformer provides mechanisms for the ex-
change of information within the Multiple Sequence Align-
ment (MSA) and pair representations that enable direct rea-
soning about spatial and evolutionary relationships; IPA is
used to update a set of residue neural activations without
changing the 3D positions. AlphaFold2 was much more
accurate than the competing methods in CASP14.

AlphaFold3 replaces the IPA of AlphaFold2 with Diffu-
sion model, which reconstructs coordinates from the residue
level to the atomic level. AlphaFold3 (AF3) (Abramson
et al., 2024) exhibits strong generalizability and versatil-
ity, expanding beyond protein generation to handle diverse
molecular tasks, including the prediction of ligand and RNA
structures.

AlphaFold3 takes a larger step in the generation of
biomolecules. It has many more application scenarios: lig-
and docking, protein-nucleic acid complexes, covalent mod-
ifications, and protein complexes. With AF3, it is possible
to handle a more diverse biomolecular space. In CASP16
(Elofsson, 2025), AF3 performs comparably to top predic-
tors for proteins and complexes, with average GDT-TS and
DockQ scores indicating high model quality.

4. Small molecule generation

Similarly to proteins, small molecules can be represented in
both 1D linear formats and 3D graph-based formats. While
1D representations (e.g., SMILES and InChl) are primar-
ily used for rapid retrieval and standardized data exchange,
3D graph representations are widely adopted in Al-driven
molecular modeling. Consequently, all molecular gener-
ation models discussed in this work employ graph-based
representations.

The topic of generating molecules using diffusion models
is equivalent to the following question: How to generate
attributed graphs using diffusion models? To answer this
question, there are two main challenges:

* Complex dependency: Dependency between nodes
and edges.

¢ Non-unique representations: Order of the nodes is
not fixed.

For the first challenge, diffusion models need to define
the atomic positions z; € R? and the atomic types a; =
{C,N, O, ...} and specify independent forward processes

for each data type,
pt(l’t‘xo) = N(mt‘atxty Ut]I)7 (6)
pt(at|(l0) = N(at|atata Utﬂ), @)

If Gt = (ZCt, at), then pt(Gt‘GO) = N(mt|ath, O'tI), and
the continuous forward process is represented as

th = ft(Gt)dt + gt(Gt)dwt,

the reverse-time diffusion process is represented as:

dar = [fa,t(xt) = 95, Va, log pr(Gy)]dt + g2 1dis.
(®)
We use s§(Gy), s§(Gy) to approximate V, logpi(Gy),
V., log p1(G¢) respectively, and train the neural network to
jointly approximate the score functions of the constituent
processes:

{dﬂct = [f1,e(x¢) — g%,tvzt log p¢(Gy)]dt + g1 ¢divn,

L =Eg,allls5(Gt) — Vi, logpe(Ge)) ||
+ |85 (Gt) — V, log pi(G1)]]-

For the second challenge, the nodes representing the atoms
may contain information about the atom type as well as its
3D spatial coordinates. It is desirable to process the latter
part of the features in a manner that would transform in the
same way as the molecule is transformed in space, in other
words, be equivariant to the Euclidean group E(3) of rigid
motions. In the following two subsections, we discuss how
diffusion models capture the system of positional equivari-
ance, such as SFE(3) equivariance and E(3) equivariance.

4.1. Diffusion model on SFE(3) group for molecule

In isolation, a molecule and its mirror image share the same
internal features and properties, regardless of its chiral-
ity. Since ML datasets often showcase molecules in iso-
lation, E(3)-equivariance is desirable. However, molecular
functionality is most often conferred by intermolecular in-
teractions with surrounding components, meaning that a
molecule’s properties may differ from those of its mirror
image. In such cases, we no longer require equivariance
to reflections, making SE(3)-equivariance desirable (Duval
et al., 2023).

Although in section 2, we have discussed that SE(3) equiv-
ariant models are more appropriate to be used in protein
design, there are still several S E(3) equivariant models used
for molecule generation without considering their intrinsic
reflection symmetry. Here, we discuss their applications.

GeoDiff (Xu et al., 2022) integrates the diffusion model
with graph field networks (GFN), an equivariant convolu-
tional layer, to generate stable conformations, the difference
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Figure 4. Overview of EDM and its extensions for molecular generation. The top box represents the foundational EDM model. The blue
box indicates that the limitations present in the previous model are addressed by the subsequent model.

being that the GNN is S E/(3)-invariant. According to (Gar-
cia Satorras et al., 2021), it is impossible to have a non-zero
distribution that is invariant to translation, since it cannot
integrate to one. For dealing with this problem, GeoDiff
leverages distributions on the linear subspace to diffusion
models. In the subspace, Zz z; = 0, i.e. the center of
gravity is always zero, the normal distribution NV, over this
subspace and its likelihood can be expressed as:

— 1
Nz(xhjﬂ U2H) = ( 27TU)_(M_1)~TL eXp(_ﬁ”x - M||2)

where p lies in the same subspace as x.

However, GeoDiff treats atoms as individual particles, over-
looking the substructure of molecules, which contains in-
formation on properties. Considering the above problem,
SubGDiff (Zhang et al., 2024) introduces a discrete binary
distribution to the diffusion process, where a mask vector
sampling from the distribution can be used to select a subset
of the atoms (i.e. subgraph) to determine which substructure
the noise should be added to at the current time step. Sub-
GDiff also uses GFN as the denoising network for confor-
mation generation. By using the same data, with 500 steps,
SubGDiff achieves much better performance than GeoDiff

with 5000 steps on 5 out of 8 metrics, which implies that it
can accelerate the sampling efficiency.

After applying GeoDiff’s zero center of gravity trick, the
Geometry-Complete Diffusion Model (GCDM) (Morehead
& Cheng, 2024) parametrizes the transition function using
an SFE(3)-equivariant neural network to assign the same
likelihood to a generated molecule regardless of arbitrary ro-
tations or translations in 3D simulation. Following the noise
process in GCDM, DiffSBDD (Schneuing et al., 2023) for-
mulates a structure-based drug design (SBDD). The nodes
have both geometric atomic coordinates x as well as nuclear
type features h. DiffSBDD uses a simple implementation
of EGNN to update features i and coordinates x.

Both TargetDiff (Guan et al., 2023) and DiffBP (Lin et al.,
2024a) propose a target-aware molecular diffusion process
with a SE(3)-equivariant GNN denoiser. The training
and sampling procedures in TargetDiff are aligned in non-
autoregressive diffusion models and S E/(3) equivariant fash-
ion. DiffBP generates molecules with high protein affinity,
appropriate sizes, and favorable drug-like profiles.
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4.2. Models based on EGNNs

E(3) group is the group in R? with rotations, reflections,
and translations. The graph neural networks equivariant
to rotations, translations, reflections and permutations are
called F(n)- Equivariant Graph Neural Networks (EGNNs).
Because the molecule is mainly on 3D space, in this work
we mainly discuss the case n = 0, i.e., E(3)- Equivariant
Graph Neural Networks.

E(3) Equivariant diffusion model (EDM) (Hoogeboom
et al., 2022) learns a diffusion model that is equivariant
to translation and rotation. It jointly operates on continuous
(atom coordinates) and categorical features (atom types) in
the denoising phase. DiffLinker (Igashov et al., 2024) lever-
ages EDM and develops diffusion models for the design of
molecular linkers.

Context-guided diffusion (CGD) (Klarner et al., 2024) can
consistently generate novel, near-out-of-distribution (near-
OOD) molecules with desirable properties. CGD also ap-
plies to EDM for material design following the setup of
GaUDI (guided diffusion model for inverse molecular de-
sign) (Weiss et al., 2023), which can discover molecules
better than existing ones. Selective iterative latent variable
refinement (SILVR) (Runcie & Mey, 2023) combines It-
erative Latent Variable Refinement (ILVR) and EDM to
perform fragment merging and linker generation.

By building point-structured latent codes with invariant
scalars and equivariant tensors, GeoLDM (Xu et al., 2023)
can effectively learn latent representations while preserving
roto-translational equivariance. It also circumvents the lim-
itations of EDM on irregular training surfaces. Subgraph
latent diffusion model (SubDiff) (Yang et al., 2024) per-
forms subgraph-level encoding in the diffusion process and
is used for 3D molecular generation tasks. For unconditional
generation tasks, SubDiff is generally better than EDM and
GeoLDM.

EDM represents molecular geometries as point clouds,
which makes it difficult to capture the abundance of lo-
cal constraint relations between adjacent atoms with no ex-
plicit indications for chemical bonds. Molecular Diffusion
Model (MDM) (Huang et al., 2022) tackles this drawback
by treating pairs of atoms with atomic spacing below the
specified threshold covalently bonded. It also points out the
lack of consideration for interatomic relations in GCDM,
and addresses the scalability issue by introducing the Dist-
transition Block. Pocket based Molecular Diffusion Model
(PMDM) (Huang et al., 2024) introduces equivariant ker-
nels to MDM to simulate the local chemical boned graph
and the global distant graph.

MiDi (Vignac et al., 2023) utilizes the adaptive noise sched-
ule and relaxedEGNN (rEGNN) to generate 3D molecules.
MiDi outperformed EDM in 2D metrics while obtaining

similar 3D metrics for the generated conformers. EQGAT-
diff (Le et al., 2024) takes Equivariant Graph Attention Net-
works (EQGAT) as the component of the diffusion model
to carry out the de novo 3D molecule design. EQGAT-
diff employs rotation equivariant vector features that can
be interpreted as learnable vector bundles, for which the
denoising networks of EDM and MiDi are lacking.

Taking advantage of the strong relationship between the
types and lengths of the bonds to guide the generation
of atom positions, MolDiff (Peng et al., 2023) produces
high-quality 3D molecular graphs and effectively addresses
the problem of atom bond inconsistency with the E(3)-
equivariant diffusion model. Because MolDiff models and
diffuses the bonds of molecules, it exceeds SILVR and EDM
in the generation of molecules with better validity. (Ziv
et al., 2024b) extends MolDiff to structure-based drug de-
sign and creates a model called MolSnapper, which can
sample molecules for given pockets. Compared with MolD-
iff, MolSnapper generates molecules better tailored to fit the
given binding site, achieving a high structural and chemical
similarity to the original molecules.

A full overview of the developments based on EDM can be
seen in Figure 3. The examples above show that the combi-
nation of EGNN and diffusion model has been widely used
in the generation of proteins and small molecules. EGNN
is also used alone for the identification of protein binding
sites (Sestak et al., 2024). But EGNN is not always optimal
if EGNN and Geometric Vector Perceptron (GVP) are both
integrated with Keypoint Diffusion (Dunn & Koes, 2023),
a diffusion model for de novo ligand design: the GVP key-
point model can approach all-atom levels of performance,
while the EGNN keypoint model may exhibit poor perfor-
mance on structure representations where a node cannot be
adequately described by a single point-mass i.e., residue or
fragment point clouds.

5. Discussion

Here, we highlight several landmark models:

* The IPA in AlphaFold2 satisfies the property of SE(3)
equivariant, but was replaced by the diffusion trans-
former in AlphaFold3. Therefore, Alphafold3 does
not satisfy the properties of an equivariant.

¢ The reverse diffusion in RFDiffusion is composed of
RoseTTAFold. This model inherits the good properties
of RoseTTAFold, making the generated model physi-
cally realizable.

* FrameDiff is the first model to introduce S F'(3) mani-
folds into protein structure generation problems. The
properties of the SE(3) group provide a mathematical
basis for the expression of structural information.
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* As a better type of SE(3) equivariant, E(3) equivari-
ant is widely used in the generation of small molecules.
The most successful example so far is EDM.

Due to the large size and complexity of protein structures,
most current protein models can only satisfy SE(3) equivari-
ance but do not have as good properties as E(3) equivariance.
How to establish a diffusion model in the E(3) group to com-
plete protein generation is a topic we can study in the future.

While progress in the field has demonstrated that diffusion
models can accelerate early-stage drug discovery, challenges
remain in adapting such workflows to real-world discovery
campaigns:

* Addressing synthesizability is an ongoing challenge
because many proposed ideas may not have known syn-
thetic routes, and a chemist can only triage a function
of proposed ideas.

* Despite various widely adopted evaluation metrics,
measuring and comparing the performance of diffu-
sion models remains a major challenge given the lack
of ground-truth and universal metrics.

* Complex dynamics. Cohesive models tend to be static
and ignore the fact that proteins and ligands are am-
phipathic, which is a factor that should be considered
when analyzing protein functions.

* Protein structure prediction models typically predict
static structures as seen in PDB, not the dynamical
behavior of biomolecular systems in solution.

What are potential directions the community could consider
exploring further?

» RFDiffusion and ProteinGenerator, which adapt the dif-
fusion model with the traditional model, Rose TTAFold,
have done a variety of tasks, such as peptide binder
generation, motif-scaffolding, and sequence-structure
codesign. We can explore more applications of these
two models.

* Alongside SFE(3)-invariant models for protein struc-
ture and FE(3)-invariant models for small molecule,
there are some O(3)-invariant models for crystal struc-
ture prediction (Jiao et al., 2023) and SO(3)-invariant
models for antibody generation (Zhu et al., 2024; Ucar
et al., 2024) worth paying attention.

* Traditional models are more analytical and closely
match the physical properties of proteins. We can use
them for more fruitful tasks, such as protein-nucleic
acid and protein-ligand interactions.

* Can E(n)-Equivariant Topological Neural Networks
(ETNN) deformations of EGNN (Battiloro et al., 2024)
and NequlP (Batzner et al., 2022) be applied to the
generation of molecules? Can EGNN be used to study
peptide structures?

6. Conclusion

This review comprehensively summarizes the application of
the diffusion model for bioengineering. It captures the pro-
gression of Al model architectures, highlighting the emer-
gence of EGNN and diffusion models as game changers in
recent works. Diffusion Models are particularly promising
generative frameworks.
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A. Outline of Appendix

This appendix includes:

Table 1: Comparison with other existing review papers.

Table 2: Information list of the models mentioned in main text.

* Section B: Description of the benchmark for protein and small molecule, respectively.

¢ List of abbreviations.

Here we list the existing reviews on diffusion models for protein design, along with their frameworks and applications; see
Table 1.

Table 1. Comparison of this review with existing surveys on Diffusion model for biomolecule generation: Frameworks and applications
are enumerated

Surveys Frameworks Applications

Challenges

Ours

(Norton & Bhattacharya, 2024)
(Guo et al., 2023)

(Zhang et al., 2023b)

N\ > N\ \ | mathematics behind

N N N N\ | Protein generation

> X% % & | Peptide design

N N\ X N | Molecule generation

N N N N\ | Protein-ligand interaction|

N N N N\ | Categorization
N X \ N\ | Benchmarks
> N\ \ \ | Future Works

AR AN

Models mentioned in this review have been implemented as open-source tools. We list their task, input, output, dataset for
training, data size, and code link in Table 2. There are 12 models for protein design, and 18 models for small molecule
generation, and 9 models for protein-ligand interaction, i.e., 30 models in total. This table may help users with their research
problems and help developers further improve them.

Table 2: List of 30 models mentioned in the manuscript with their task, input, output, dataset, data size, code link and reference.

Task Paper Input output Dataset Data Size Code Ref
RFDiffusion structures structures PDB - code (Watson
etal.,
2023)
RFAA sequence structures PDB 121,800 code (Krishna
etal.,
2024)
FrameDiff structures structures PDB 20,312 back- code (Yim
bones etal.,
. 2023)
Protein -
FrameDiPT  structures structures; RCEB; 9K clusters code (Zhang
Full- PDB etal.,
atom 2023a)
TDS structures structures - - code (Wu
etal.,
2024)
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https://github.com/RosettaCommons/RFdiffusion
https://www.biorxiv.org/content/10.1101/2023.10.09.561603v1
https://github.com/baker-laboratory/rf_diffusion_all_atom
https://arxiv.org/abs/2302.02277
https://github.com/jasonkyuyim/se3_diffusion
https://www.biorxiv.org/content/10.1101/2023.11.21.568057v1
https://github.com/instadeepai/FrameDiPT
https://arxiv.org/abs/2306.17775
https://github.com/blt2114/twisted_diffusion_sampler
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SMCDiff motif scaffolds PDB 4,269 code (Trippe
etal.,
2023)
VEN- structures structures PDB - code (Mao
Diff etal.,
2023)
Genie structures structures SCOPe 195,214 code (Lin
&
AlQuraishi,
2023)
Genie2 structures structures PDB; 588,570 code (Lin
AFDB structures etal.,
2024b)
Chroma sequence structures PDB, 28,819 struc- code (Ingraham
UniProt, tures etal.,
PFAM 2023)
AlphaFold3  sequence; structures PDB 2021 41,000,000 code (Abramson
SMILES structures etal.,
2024)
PG sequences structures, - - code (Lisanza
se- etal.,
quences 2023)
EDM structures structures QMO9; 100K - (Hoogeboom
GEOM- etal.,
Drugs 2022)
MDM geometries ~ geometries =~ QMO9; 290K - (Huang
GEOM etal.,
2022)
GCDM 3D graph 3D graph QM9; 100K code (Morehead
GEOM- &
Drugs Cheng,
2024)
DiffSBDD pockets ligands CrossDocked; code (Schneuing
Binding etal.,
Molecule MOAD 2023)
GeoLDM geometries structures QMO9; - code Xu
GEOM- etal.,
Drugs 2023)
MiDi graph graph QM9; - code (Vignac
struc- GEOM- etal.,
tures Drugs 2023)
DiffLinker structures Molecule ZINC, 185,678 ex- code (Igashov
struc- CASF, amples etal.,
tures GEOM 2024)
PMDM Molecule, molecule CrossDocked 22.5 million code (Huang
protein struc- docked etal.,
pocket tures protein- 2024)
ligand pairs
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EQGAT- structures molecule QMO9; - code (Le
Diff struc- GEOM- etal.,
tures Drugs; 2023)
Cross-
Docked;
Pub-
Chem3D
DiffBP binding molecule CrossDocked 10,000 - (Lin
site struc- protein- etal.,
tures ligand paired 2024a)
samples
Keypoint molecule ligands BindingMOAD 40,000 code (Dunn
Diffu- struc- &
sion tures Koes,
2023)
Geodiff molecular molecular QMO9; 200,000 con- code Xu
graphs confor- GEOM- formations etal.,
mations Drugs 2022)
TargetDiff binding binding CrossDocked2021 00,000 code (Guan
site molecules complexes etal.,
2023)
MolDiff molecular molecular QMO9; 231,523 code (Peng
struc- struc- GEOM- molecules etal.,
tures tures Drugs 2023)
MolSnapper  Protein- molecules CrossDocked; code (Ziv
ligand Binding etal.,
complex MOAD 2024a)
CGD molecule molecule Zink 250 000 code (Klarner
graph graph small etal.,
molecules 2024)
GDSS graph structures QM9 and 10,000 code Jo
struc- ZINC250k molecules etal.,
tures 2022)
CDGS graph graph ZINC250k; 383,340 code (Huang
QM9 molecules etal.,
2023a)
JODO graph graph QMO9; 2,621,542 code (Huang
GEOM- molecules etal.,
Drugs; 2023b)
ZINC250k;
MOSES
SubGDiff molecular graph PCQM4Mv2 3.4 million code (Zhang
graph molecules etal.,
2024)
GaUDI molecular graph cc-PBH; 509,000 code (Weiss
graph PAS molucules etal.,
2023)
SILVR multiple graph COVID - code (Runcie
superim- Moonshot &
posed dataset Mey,
frag- 2023)
ments
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SubDiff subgraph generative GEOM- - - (Yang
graph Drug; etal.,
QM9 2024)

B. Benchmarks
B.1. Benchmarks for protein

To evaluate the performance of the models for protein backbone generation, it is crucial to establish and utilize robust
benchmarks. These benchmarks not only facilitate the assessment of different generation methods, but also provide a
standardized framework for comparing their strengths and limitations across various criteria. In the following, we outline
several widely used benchmarks for evaluating protein backbone generation methods.

* PDB-struct (Wang et al.) suggests that encoder-decoder methods generally outperform structure-prediction-based
methods in terms of refoldability, recovery, and stability metrics.

* Scaffold-Lab (Zheng et al., 2024) focuses on the evaluation of unconditional generation across metrics such as
designability, novelty, diversity, efficiency, and structural properties.

* Melodia (Montalvao et al., 2024) is a Python library with a complete set of components devised for protein structural
analysis and visualization using the differential geometry of three-dimensional curves and knot theory. Residue-wise
confidence predicted local distance different test (pLDDT) and pairwise confidence predicted alignment error (PAE).

* PINDER (Kovtun et al., 2024) offers substantial advancement in the field of deep learning-based protein-protein
docking and complex modeling by addressing key limitations of existing training and benchmark datasets.

* ProteinlnvBench (Gao et al., 2024) is a benchmark for protein design, which comprises extended protein design tasks,
integrated models, and diverse evaluation metrics (see Fig. 5).

B.2. Benchmarks for molecule generation
The goal of unconstrained molecular generation is to generate molecules that are:
* Valid and unique. Validity is the percentage of valid molecules measured by RDKit (Bento et al., 2020); Uniqueness is
the percentage of unique molecules among valid molecules.
* Based on a chemical distribution corresponding to the training set.

* Novel and diverse. Novelty is the percentage of valid molecules not found in the training set. Diversity is the opposite
of recovery and is meaningless if we measure it alone. If we examine sequence diversity and structural sc-TM together,
we could gain a more comprehensive understanding of the designable protein space. To expand sequence diversity, we
need to allow perturbations in the conformation of the protein backbone.

Continuous Automated Model Evaluation (CAMEO) (Haas et al., 2018) ligand-docking evaluation, publishes weekly
benchmarking results based on models collected during a 4-day prediction window and evaluates their performance. The
Frachet ChemNetDistance (FCD) measures the similarity between molecules in the training set and in the test set using the
embedding learned by a neural network.

List of Abbreviations
SE(3) special euclidean 3D group

AF2  AlphaFold2
AF3  AlphaFold3
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Tasks: Designing proteins over single-chain, multi-chain and de-novo structures

L ]
I

Single-chain Multi-chain De-novo

Models: Recent strong baselines that provide open-source training code

(GraphTrans) (StrchNN)
(AlphaDesign) (ProteinMPNN) (" PiFold )

Metrics: The most comprehensive evaluation metrics to date

‘.

| Widely considered | [ Partially considered | [ New contents |

Figure 5. The framework of ProteinInvBench (Gao et al., 2024): tasks = models = metrics. Green, blue, yellow: widely considered,
partially considered, newly introduced contents.

AMPs Antimicrobial peptides

CDGS Conditional Diffusion model based on discrete Graph Structures
CGD  context-guided diffusion

DDPM Denoising Diffusion Probabilistic Models

DFM Discrete Flow Model

DisCo-Diff Discrete-Continuous Latent Variable Diffusion Models
DNPD De Novo Protein Design

EDM E(3) equivariant diffusion model

EGNN E(3) Equivariant Graph Neural Networks

EQGAT Equivariant Graph Attention Networks

ETNN E(n)-Equivariant Topological Neural Networks

FrameDipT FrameDiff inPainTing

GANs Generative Adversarial Networks

GCDM Geometry-Complete Diffusion Model

GDSS Graph Diffusion via the System of Stochastic differential equations
GeoLDM Geometric Latent Diffusion Models

GNN  Graph Neural Network
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GVP  Geometric Vector Perception

IPA Invariant Point Attention

JODO joint 2D and 3D diffusion models

MiDi Mixed Graph+3D Denoising Diffusion
MSE  Mean Square Error

NequlP Neural Equivariant Interatomic Potentials
ODE  Ordinary Differential Equation

OOD  out-of-distribution

PAE  Predicted Alignment Error

pLDDT Predicted Local Distance Different Test
PLM  ProteinLanguage Model

rEGNN relaxedEGNN

RFAA RoseTTAFold All-Atom

RFDiffusion RoseTTAFold Diffusion

RMSD Root Mean Square Deviation

SBDD Structure-based Drug Design

SDE  Stochastic Differential Equation

SGM  Score-based Generative Models

SI Supplementary Information

SILVR Selective Iterative Latent Variable Refinement
SubDiff subgraph latent diffusion model

TDS  Twisted Diffusion Sampler

VAEs Variational Autoencoders

VEN  Vector Field Networks
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