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Abstract

Latent variable models are powerful tools for characterizing high-dimensional neu-
ral population activity, and recent work has extended these models to multi-region
settings. However, most existing approaches assume linear relationships between
populations, limiting their ability to capture the complex, nonlinear mappings
that may exist between brain regions. Nonlinear methods, while more flexible,
often yield latent spaces whose structure is not uniquely determined, complicating
cross-region comparisons.
We introduce a nonlinear variational framework with an alignment objective in-
spired by stochastic neighbor embedding. Our method enables explicit control
over the degree of alignment between latent spaces via a tunable hyperparameter,
allowing representations to remain independent or become aligned to facilitate
interpretability. We demonstrate the approach on both synthetic data from a four-
layer deep neural network and multi-region neural recordings from the mouse
visual cortex. Across both settings, the method successfully aligns latent spaces
and reveals how manifolds transform across layers or brain regions, providing a
flexible tool for probing neural information transformations.

1 Introduction

Understanding how information is transformed across different brain regions is a fundamental question
in neuroscience. Low-dimensional latent variable models have proven effective in characterizing
high-dimensional neural data [1], and recent work has extended these approaches to multi-region
settings [2–5]. However, many of these approaches assume either a linear latent structure within each
region or linear interactions between regions [6, 3, 2], assumptions that may limit their ability to
capture the nonlinear computations involved in inter-area transformations. Some recent approaches
extend flexible nonlinear dynamical models to multi-region settings [5, 7], building upon a significant
body of work on latent dynamical models in neuroscience [8–13, 7]. Although these dynamical
approaches have provided important insights into multi-region neural computation, the choice of
the dynamical assumptions varies widely, and the appropriate model may depend on the specific
experimental condition or task of an animal. Here, we take a complementary viewpoint: motivated by
image-recognition systems, we treat feedforward neural networks as near-instantaneous computations
progressing sequentially across brain regions, and aim to identify a static transformation that acts on
a latent space from region to region.

In this work, we introduce the Neural Embedding Alignment Tool (NEAT), a nonlinear latent variable
model that extends the standard variational autoencoder (VAE) [14] by incorporating a probabilistic
similarity-preserving penalty inspired by Stochastic Neighbor Embedding (SNE) [15]. Our approach
regularizes the latent spaces of multiple jointly trained VAEs with an objective that encourages the
neighborhood distributions of corresponding data points to align across regions. This allows for
a set of manifold representations with gradual variations between across brain regions or neural
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network layers. This is conceptually related to similarity-based regularization in prior work [16, 17]
but differs in that we train VAEs on multiple neural populations simultaneously while introducing an
explicit cross-region alignment term. By combining a nonlinear generative model with neighborhood-
preserving alignment, our framework both enables direct comparison of latent spaces and supports
hypothesis generation about the functional transformations between network layers or brain areas.

2 Model
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Figure 1: Schematic of our approach
in a simulated setting. A fully trained
4 layer deep neural network has activa-
tions per layer for each presented image
(Xk where k indicates layer). Each of
these activations can be represented with
a corresponding latent manifold, which
are aligned through a SNE objective in
our joint likelihood.

Consider k sets of neural activity, corresponding either to
brain regions or to the activations of a trained deep neural
network,

Xk = {x(n)
k }Nn=1, k = 1, . . . ,K.

Each observation set has an associated set of latent vari-
ables,

Zk = {z(n)k }Nn=1, k = 1, . . . ,K,

where n indexes either the inputs to the neural network,
or a given timebin of neural population data. The map-
ping from latents to observations is given by deep neural
network decoders parameterized by ϕk for each Xk. The
model places independent, standard normal priors on each
latent point across all K sets:

p(Z1, . . . ,ZK) =

K∏
k=1

N∏
n=1

N
(
z
(n)
k ; 0, I

)
.

For a latent set Z = {z(n)}Nn=1, we define conditional
probabilities pj|i(Z) over pairwise distances in the latent
space based on a Gaussian kernel with a global bandwidth
σ:

pj|i(Z) =
exp
(
− ∥z(i) − z(j)∥2/(2σ2)

)∑
ℓ̸=i exp

(
− ∥z(i) − z(ℓ)∥2/(2σ2)

) , j ̸= i.

For each point i, this defines a neighborhood distribution Pi(Z) = {pj|i(Z)}j ̸=i. The full model
combines the priors, the likelihood of the observed data (via the decoders), and the pairwise alignment
between all latent sets. The unnormalized joint likelihood (for K layers) is:

p(X1, . . . ,XK ,Z1, . . . ,ZK) ∝

[
K∏

k=1

p(Zk)

]
K∏

k=1

N∏
n=1

pϕk

(
x
(n)
k | z(n)k

)
× exp

(
− λ

∑
1≤k<ℓ≤K

N∑
i=1

KL(Pi(Zℓ) ∥Pi(Zk))

) (1)

Here, the latents are aligned in a sequential pairwise manner. That is, layer 1 is aligned with layer 2,
layer 2 with layer 3, etc. However, a user can easily change the final term to consider other alignment
schemes.

We optimize the model using a standard evidence lower-bound, and our approximate posteriors
are independent gaussian distributions whose mean and variance are given via a separate encoding
network for each layer k, akin to the standard VAE:

qθk(zk | xk) ∼ N (µθk(xk), σθk(xk))

The variational posterior factorizes across layers and samples:

qθ(Z1, . . . ,ZK | X1, . . . ,XK) =

K∏
k=1

N∏
n=1

qθk
(
z
(n)
k | x(n)

k

)
,

The evidence lower bound for this model is:
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LELBO =

K∑
k=1

N∑
n=1

Eqθk

[
log pϕk

(x
(n)
k | z(n)k )

]
︸ ︷︷ ︸

Reconstruction Loss

−
K∑

k=1

N∑
n=1

KL
(
qθk(z

(n)
k | x(n)

k ) ∥ p(z(n)k )
)

︸ ︷︷ ︸
Prior Regularization

− λ
∑

1≤k<ℓ≤K

Eqθk ,qθℓ

[
N∑
i=1

KL
(
Pi(Zℓ) ∥Pi(Zk)

)]
︸ ︷︷ ︸

Alignment Penalty

(2)

The model is trained by maximizing this objective across all K layers and N data samples (in practice,
we train in batches of size < N ). The first term is the reconstruction loss ensures the latent space
accurately reconstructs the input data. This balances with two regularization terms: the second term
is the standard VAE prior regularization, ensuring latent representations are compact and the third
term is the alignment penalty, which enforces similarity between the probabilistic representation of
the latent geometries. Hence, latent geometries will change across layers only when it helps with
data reconstruction. We also note that there is a computational cost with increasing the batch size. A
large value here is needed for accurate manifold structure estimation in the SNE-inspired penalty, but
the last term scales quadratically with increasing the number of samples.

3 Results

For each dataset, we first train independent VAEs on each layer or region to estimate the latent
dimensionality—successively increasing the dimension until cross-validated predictions explain at
least 95% (synthetic) or 70% (real) of the variance in the data. These latent dimensionalities are
then fixed for NEAT, where we introduce a penalty term to encourage pairwise alignment between
successive latent spaces. By varying the strength of this penalty, we can control the degree of
alignment of the latent space across layers or regions. After joint training, we project the latent
representations into two dimensions for visualization. To identify functional transformations across
layers, we compute the pairwise Euclidean distance between latent points. When two consecutive
layers differ in latent dimensionality, we apply CCA [18] to project them into an optimal shared
latent space defined by the lower dimensionality of the two latent spaces, and compute the Euclidean
distances in this shared subspace. For visualization, we plot the first two principal components of the
CCA-reduced latent space, optimally aligned through a procrustes transformation. Finally, we show
the mean displacement for latent points corresponding to particular MNIST digits/stimuli across
network layers/brain regions.

3.1 Synthetic Data

Figure 2: Similarity of latent representations of layers of a
deep neural network trained on MNIST for varying alignment
penalties (λ = 0, 1, 100, 1000)

We first trained a four-layer deep neu-
ral network (DNN) with 64 nodes per
layer on the MNIST dataset for digit
classification, achieving a prediction
accuracy of 95 %. We extract activa-
tions from the trained DNN for each
presented digit, and train independent
VAEs directly on the four sets of acti-
vations to identify dimensionality per
layer. With optimal dimensions from
each layer fixed at 12, 6, 2 and 2 for
layers 1 through 4 respectively, we run
our NEAT model for varying align-
ment strengths (λ =0,1,100,1000).
To quantify the geometric alignment
achieved by NEAT, we calculated the
average cosine similarity between the
latent representations of all layers after embedding them using the Euclidean embedding scheme with
5 anchor points described by Moschella et al. [19] (Fig 2). As expected in a feedforward network, the
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similarity of subsequent layers to the input layer (Layer 1) showed a steady decrease as processing
advanced. Importantly, we see an overall increase in the similarity of our latent representations for
increasing λ values, showing that NEAT successfully aligns latent representations. Furthermore,
the reconstruction accuracy of the activations remains very high for all penalty strengths except
for λ = 1000, at which point we observed a decrease in reconstruction fidelity at the expense of
maximized latent alignment (see appendix for more details).
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Figure 3: (a) Latent manifold of each NN layer. (b) Visualizing manifold displacement across layers.
(c) Magnitude of displacement per digit across layers.

We next visualize information in each DNN layer through two-dimensional projections of the
latent spaces (Fig 3A). We see that, irrespective of alignment strength, digits clusters become more
segregated as they pass through the neural network, suggesting the network is progressively isolating
the digit categories. We note that this can be further quantified by identifying linear classification
accuracy of these digit categories in the varying latent spaces (see appendix for more details). In
Figure 3B, we visualize the displacement of data points between consecutive layers, highlighting
how the representations of specific digits are transformed during layer transitions. For increasing
alignment strengths, NEAT identifies displacements that are smaller in magnitude. To further quantify
these transitions, we calculate the mean displacement for each digit (Fig 3C). This provides insight
into which representations are preferentially transformed between layers. For instance, at a high
alignment strength (λ = 100), digits 1 and 3 exhibit maximal displacement during the Layer 3 to
Layer 4 transition. This finding suggests that these final layers may specialize in isolating or refining
the features corresponding to these particular digits within this DNN’s processing hierarchy.

3.2 Visual cortex data

We applied the same framework to mouse neural data recorded from the visual cortex [20], focusing
only on time points corresponding to the presentation of four distinct drifting orientation stimuli.
Recordings were obtained from the primary visual cortex (V1) and two simultaneously recorded
downstream areas: the lateral visual cortex (LM) and the posteromedial visual cortex (PM). Dimen-
sionality of latent spaces was found to be 4 for all regions. A schematic of the visual cortical areas
and the visual stimuli (see [20] for details) is shown in Fig. 4A,B. We systematically modulated the
degree of alignment between V1 and LM, and between V1 and PM, across three values of λ (0, 20,
50).

The resulting manifold transformations illustrate how neural representations evolve as information
propagates from V1 to these downstream areas (Fig. 4D). We quantified these changes by measuring
the average displacement for each stimulus orientation (Fig. 4E). Notably, at the highest penalty, the
transformation from V1 to PM increasingly separates the representations of 90◦ and 135◦ gratings
from those of 0◦ and 45◦. This finding suggests that the V1-PM interaction serves to refine the
categorical distinction between these two groups of stimuli.
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Figure 4: (a) schematic of mouse visual cortical areas and (b) four selected visual stimuli. (c)
visualization of the latent spaces (d) visualization of the latent displacements, (e) magnitude of latent
displacement categorized by stimuli for three alignment values (top λ = 0, middle λ = 20, bottom
λ = 50).

4 Conclusion

We introduced NEAT, a tool for quantifying the transformations of latent manifolds in sequential
systems like biological and artificial neural networks. Unlike traditional similarity measures of
neural network geometries (CKA, SVCCA) [21–24] or techniques that identify a shared subspace for
network comparisons [19], NEAT’s primary contribution is the ability to use neighborhood structure
of a latent representation to inform the latent identification in subsequent layers. This regularization
allows a user to find perturbations of latent representations across layers. As such, NEAT provides a
principled approach for visualizing nonlinear mappings and generating hypotheses about information
processing in both artificial deep networks and in the brain. Future directions include: benchmarking
against competing alignment methods, evaluating the effect of different batch sizes, and learning
optimal λ values.
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