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Abstract

Accurately predicting protein fitness with minimal experimental data is a persistent
challenge in protein engineering. We introduce PRIMO (PRotein In-context
Mutation Oracle), a transformer-based framework that leverages in-context learning
and test-time training to adapt rapidly to new proteins and assays without large
task-specific datasets. By encoding sequence information, auxiliary zero-shot
predictions, and sparse experimental labels from many assays as a unified token set
in a pre-training masked-language modeling paradigm, PRIMO learns to prioritize
promising variants through a preference-based loss function. Across diverse protein
families and properties—including both substitution and indel mutations—PRIMO
outperforms zero-shot and fully supervised baselines. This work underscores the
power of combining large-scale pre-training with efficient test-time adaptation to
tackle challenging protein design tasks where data collection is expensive and label
availability is limited.

1 Introduction

Protein engineering has rapidly advanced in recent years, driven by breakthroughs in both
experimental and computational methods. High-throughput (HT) experimental methods, such as
Deep Mutational Scanning (DMS) assays [1], enable large-scale exploration of sequence space by
generating and testing thousands of variants for a desired function. The data generated through
HT approaches can support the training of powerful machine learning (ML) models to learn the
corresponding fitness landscape and further optimize the target properties [2, 3]. However, while
HT assays have become more accessible for certain properties such as thermostability [4, 5] or
fluorescence [6], it can still be prohibitively expensive, time-consuming, or altogether infeasible to
produce large-scale functional measurements for many other properties.

Doing away with experimental annotations entirely, deep generative models such as Protein Language
Models (pLMs) trained on large sets of natural sequences from protein data banks (eg., UniRef [7],
MGnify [8]) have offered a promising avenue to address these shortcomings [9–11]. However,
although the zero-shot predictions they provide can be remarkably effective for protein design in
certain settings [12], they are still insufficiently accurate for many practical applications, providing
rough starting points that need to be further optimized [13]. As a result, few-shot learning has emerged
as a critical challenge in protein engineering: how can we accurately predict or optimize protein
fitness from only a handful of experimental observations? Recent studies have attempted to tackle that
problem by combining zero-shot scores with minimal labeled data [14, 15, 3]. While this approach
offers improved performance, such supervised methods often still demand a separate validation set to
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prevent overfitting, which can easily exceed the available budget in a strict few-shot setting (e.g., a
single 96-well plate) and may fail to accommodate more complex variant types such as insertions and
deletions.

To address these challenges, we introduce PRIMO (PRotein In-context Mutation Oracle), a
transformer-based framework that integrates in-context learning with test-time training to deliver
highly accurate protein fitness predictions with only a handful of labeled samples per assay. PRIMO
treats each sequence and any available measurements (including zero-shot predictions) as a unified
token set in a masked language modeling paradigm, employing a preference-based loss to rank
variants correctly. Pre-training over many assays allows PRIMO to adapt rapidly to new proteins and
properties, circumventing the need for extensive labeled datasets or large validation sets. Moreover,
PRIMO handles both substitution and indel mutations, broadening its applicability across a diverse
range of protein engineering tasks.

Our main contributions are summarized as follows:

• A new few-shot prediction framework. We present PRIMO, a transformer architecture that
combines in-context learning with test-time training, enabling accurate ranking of protein
variants under extreme data scarcity.

• State-of-the-art few-shot performance. We demonstrate that PRIMO significantly
outperforms both zero-shot baselines and fully supervised models in low-data regimes,
achieving superior fitness predictions even with a limited number of labeled examples,
across diverse assays and protein families from the ProteinGym benchmark.

• Broad applicability. Unlike many existing methods, PRIMO accommodates both single-
substitution and indel variants and does not require a separate validation set, making it more
practical for real-world protein design scenarios.

• A novel natural evolution benchmark. We curate a benchmark comprised of several
high-throughput assays that each characterize broad fitness landscapes spanned by natural
sequences from a given protein family. This benchmark allows to assess models in
challenging settings where train and test sequences are farther apart in sequence space.

Our results highlight the promise of large-scale pre-training on diverse deep mutational scans,
followed by efficient test-time adaptation, in tackling challenging protein design tasks where
experimental resources and labeled data are severely constrained.

2 Related Work

As experimental budgets in biomolecule research can be highly constrained, few-shot learning for
property prediction has been a long-standing challenge with high practical relevance.

2.1 Zero-shot fitness prediction

Given that learning from few-shot observations is challenging, a popular alternative approach is zero-
shot fitness prediction, where the likelihood of a model trained on evolutionarily observed sequences
is used to score variant effects. Family specific models learn the distribution of evolutionary sequence
within a protein family by leveraging Multiple Sequence Alignments (MSAs) [16, 17]. Protein
language models trained on large protein sequence databases capture the fitness distribution of many
protein families in a single model without the need for MSAs [9, 10]. Augmenting sequence models
with protein structure has been shown to further improve zero-shot prediction performance [18, 19].

Hybrid methods seek to unify the family-specific and protein language models. MSA Transformer
[20] learns from millions of MSAs across protein families. TranceptEVE [21] complements the
pre-trained protein language model with an alignment-based model at inference. To overcome the
limitations of MSAs, PoET [22] proposed a retrieval-augmented model that scores sequences given
a context set of related sequences, by concatenating and performing self-attention over the context
sequences.

2



2.2 Supervised learning of protein fitness

Shallow ML approaches such as ridge regression models on one-hot encoded amino acids or pLM
embeddings have been successfully applied for few-shot protein engineering [14], and see further
performance boosts when incorporating zero-shot scores as additional features [23]. Using DMS-
scale datasets of protein fitness, ProteinNPT [2] proposed to train transformer models for substitution
variant effect prediction, also incorporating zero-shot scores as input features.

To further bridge the gap between unsupervised zero-shot prediction and supervised learning from
experimental labels, few-shot likelihood-based fine-tuning of generative pLMs using a preference
objective has been proposed by Hawkins-Hooker et al. [15]. However, a key limitation of both
fine-tuning and training ProteinNPT-scale models is the requirement of a validation set to prevent
overfitting: Likelihood-based fine-tuning in [15] requires 128 observations for validation, which
precludes true few-shot usage, and already exceeds the budget afforded by e.g. a single 96-well plate.

Alternatively, rather than treating zero-shot scores as features, Kermut [3] proposed to use a zero-
shot predictor as the prior mean function in a Gaussian process (GP) with a dedicated kernel for
substitution variant effect prediction. As GPs are customarily trained using the likelihood of the
training data, the architecture choice also circumvents the need for a validation dataset.

Machine learning guided Directed evolution [24] can also effectively explore protein fitness landscape
with small number of wet-lab experiments. EVOLVEpro [25] augments experimental directed
evolution by combining Protein Language Models with few-shot learning. The efficient exploration
of fitness landscape with machine learning could further be powered by automated robotic system for
wet-lab experiments [26].

Recently, Beck et al. [27] proposed Metalic, an in-context learning (ICL) approach using a model
trained on many different proteins and fitness assays. As pure in-context learning proved too
limiting to model new proteins, a supervised fine-tuning approach was adopted that again required
128 validation data points. Moreover, as Metalic reused the ProteinNPT transformer architecture,
it cannot model indel variants. Lastly, Metalic was trained using a data split that is inadequate
for transfer learning and yields high overlap between training and evaluation assays, as we will
demonstrate in Section 5.

3 The PRIMO Model

3.1 Architecture

3.1.1 Inputs

PRIMO is a transformer-based masked language model that processes labeled sequence variant sets of
size N . Each sample i consists of an amino acid (AA) sequence xAA

i of length L, a target quantitative
fitness label xFitness

i , a categorical property type ID xID
i denoting the assay type of the measured fitness,

and one or multiple auxiliary zero-shot labels xAuxiliary
i . In PRIMO, we use autoregressive zero-shot

scores from the ProGen pLM [11], as they can be computed for both indel and substitution variants.
All tokens are embedded and concatenated to a sequence hi, using ESM-2 [28] for the AA sequence
and learned embeddings for all other inputs:

hAA
i = ESM(xAA

i )

hID
i = Embed(xID

i )

hFitness
i = Linear(xFitness

i )

hAuxiliary
i = Linear(xAuxiliary

i )

hi = Concat(hAA
i , hFitness

i , hID
i , hAuxiliary

i ) (1)

3.1.2 Transformer stack

To overcome the computational complexity of full sequence-of-sequences self-attention, which suffers
from quadratic scaling by the product of the sequence length and set size, we employ a lightweight
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Figure 1: The PRIMO architecture and training approach. PRIMO processes labeled sets of
proteins drawn from ProteinGym DMS assays. After processing the set with a transformer stack that
allows for exchange of information between samples, it performs preference prediction on samples
with masked fitness, and masked token prediction on amino acids.

pooling attention mechanism to allow sequences to exchange information. Note that, as PRIMO
processes sequences with indel mutations, column attention as used in ProteinNPT is less suitable,
since insertions and deletions result in variable sequence lengths and misaligned positions. We first
perform standard self-attention on each sequence hi individually,

hi = MHA(hi, hi, hi) ∀i ∈ 1, . . . , N. (2)

where MHA(q, k, v) denotes standard multi-head self-attention with query q, key k and value v.
Next, we perform PRIMO’s inter-sequence attention operation. We first pool each sequence hi into a
representation pi of fixed size P using attention pooling [29] (Equation 3). We concatetate the pooled
representations of all sequences in the set (Equation 4), and let each sequence hi cross-attend to the
pooled representations of all the sequences (Equation 5):

pi = MHA(Mean(hi), hi, hi) ∀i ∈ 1, . . . , N (3)
p = Concat(p1, p2, . . . , pN ) (4)
hi = MHA(hi, p, p) ∀i ∈ 1, . . . , N. (5)

As we exchange information between individual sequences only using pool representations, we
can overcome the limiting scaling complexity of sequence-of-sequences self-attention, O(N2L2).
The self-attention on each sequence has complexity of O(NL2), while the sequence pooling and
cross-attention has complexity of O(NPL) and O(N2PL). As the size of the pooled representation
used for cross-attention will typically be smaller than the sequence length, NP << L, the limiting
attention scaling remains O(NL2). Together with a final feedfoward layer, the sequence-wise and
cross-sequence attention operations constitute one PRIMO layer. As in PoET, we employ skip
connections, pre-LayerNorm and rotary positional embeddings [30]. PRIMO uses 6 layers with a
hidden size of 400.

3.1.3 Prediction heads

After the sequences have been processed by the PRIMO layers, we make predictions based on the
updated hidden states hAA

i and hFitness
i . We reuse ESM’s pre-trained prediction head, and train a linear

layer for fitness prediction.
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hAA
i , hFitness

i = Split(hi) (6)

x̂AA
i = ESMHead(hAA

i ) (7)

ŷi = Linear(hFitness
i ) (8)

3.2 Pre-training

PRIMO is pre-trained using a hybrid masked token reconstruction objective [2]: during pre-training,
either the label xFitness

i or a span in xAA
i may be masked. We mask labels with 33% probability, and

mask spans in the remaining samples with 20% probability. As a set of sequences from a given DMS
assay will be highly identical beyond a few mutations, making masked reconstruction mostly trivial,
spans are placed such that the mutated regions are covered. For AA token reconstruction, we use
a simple cross-entropy masked token prediction loss. For label reconstruction, following [15], we
use a preference-based loss that tasks the model with correctly ranking the fitness of the Q masked
samples in the set (non-masked samples are ignored from the loss calculation and serve as support
context only):

L =

Q∑
i=1

Q∑
j=1

−I(xFitness
i > xFitness

j ) log σ(ŷi − ŷj). (9)

I denotes the indicator function, and σ is the sigmoid activation function. The loss is therefore
equivalent to Q ×Q binary classifications. For pre-training, we sample sets of size N = 32 from
one assay at a time, using a batch size of 12. Sequences are cropped to 512 AAs for computational
efficiency. When cropping, we ensure that all relevant mutated positions are still present. The ESM-2
pLM for sequence embedding remains frozen during training.

3.3 Test-time training

After pre-training, we wish to predict the fitness of novel proteins given few-shot observations. As
this usage may result in a distribution shift that makes in-context learning infeasible, we adopt a
test-time training (TTT) [31, 32] approach for PRIMO. In TTT, instead of directly making predictions
after conditioning on the context, the model’s weights are first adapted to the task using fine-tuning
on the context data. After predicting the test problem, the updated weights are discarded. Rather than
using a fully self-supervised objective for TTT, we take advantage of available few-shot observations
and use PRIMO’s hybrid sequence and preference label reconstruction loss, sampling masked sets
from the few-shot data, as typically done for TTT in in-context learning scenarios [33]. We perform
gradient descent for a fixed number of 25 steps, using same loss function and learning rate as in
pre-training. The pLM weights also remain frozen during TTT.

3.4 Prediction

For inference, we condition on Q unmasked samples, and predict each test sample by masking it. The
unnormalized preference score of each sample serves as its fitness prediction. As PRIMO is a model
that was designed to predict relative fitness, we also need to provide context in zero-shot prediction
that serves as the reference. We therefore provide an arbitrary sequence with an arbitrary fitness of
0.5 (center of a min-max scale) as unmasked context when scoring. Note that this is conceptually
similar to zero-shot prediction with masked LMs, where a second sequence (usually the wild type) is
required as reference.

We annotate all results obtained from predictions using direct conditioning on Q samples as PRIMO
(ICL), and any that first uses the same samples to perform TTT prior to conditioning as PRIMO
(TTT).

3.5 Training data

We pre-train PRIMO on DMS assays from ProteinGym [34] that had a fitness readout that falls
into the following categories: Stability, Enzymatic activity, Abundance, Fluorescence, and Binding.
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Table 1: Zero-shot prediction performance (Spearman correlation) of PRIMO when training on
either the PRIMO or Metalic split. The presence of training samples with high sequence identity to
the test set in the Metalic split leads to inflated zero-shot performances.

Test dataset Closest protein in
Metalic training set Identity Zero-shot performance

PRIMO split Metalic split

BLAT_ECOLX_Jacquier_2013 BLAT_ECOLX 100 % 0.23 0.65
DYR_ECOLI_Thompson_2019 DYR_ECOLI 100 % 0.45 0.50
DLG4_RAT_McLaughlin_2012 DLG4_HUMAN 99 % 0.30 0.37
RL40A_YEAST_Roscoe_2013 RL40A_YEAST 100 % 0.30 0.74
GFP_AEQVI_Sarkisyan_2016 Q8WTC7_9CNID 62 % 0.20 0.44

All assays that cover more specific aspects of function that do not fall into this categorization were
excluded. We train on both substitution and indel variants. To overcome different experimental scales
and units, raw DMS fitness values are min-max normalized for each assay.

4 Results

4.1 Baselines

Following Notin et al. [2], we use zero-shot fitness augmented ridge regression models as the baseline.
As demonstrated before [23, 14], such models can be used for few-shot learning without requiring a
separate validation set to prevent overfitting during training. We also evaluate the EvolvePro [25]
random forest (RF) regression model that does not leverage zero-shot scores. Additionally, we
consider a GP with a zero-shot prior mean function and embedding kernel based on Kermut [3].
We omit Kermut’s structure kernel to enable modeling of indels. To match the setup of PRIMO, all
baseline models also use ESM-2 embeddings and ProGen zero-shot scores.

4.2 Fitness prediction performance

We draw an increasing number of N labeled few-shot observations for learning, and report
performance by predicting all samples in an assay and computing the Spearman rank correlation to
the experimental fitness. We also perform zero-shot prediction at N = 0, where we do not condition
on any experimental measurement. We use a hold out subset of ProteinGym for evaluation that was
designed to control for overlap to the training data on the protein level (Table A1). We first trained
two PRIMO models on this holdout ("PRIMO split") and the Metalic split that did not control for
overlap. In direct comparison, we find that the high sequence similarity overlap between Metalics’
training and testing set can cause inflated zero-shot performances. In the most drastic case, on
RL40A_YEAST, where the Metalic pre-training set contains 2,633 observations of the same protein
in two other assays, the 100% similarity train-test overlap results in an apparent increase of 0.4 over
the zero-shot performance obtained with the PRIMO split.

Using the PRIMO split, we first evaluate PRIMO’s in-context learning capability. While zero-shot
prediction shows an average improvement (0.51) over ProGen (0.41), performance mostly stays
flat with increasing N (Table 2). To rule out the possibility that PRIMO fails to process context,
effectively working as a single-sample model (a highly accurate single-sequence regression model
would also perform well on a ranking metric), we ablate the inputs and only provide one unlabeled
sequence at a time. This context-free prediction results in catastrophic failure, with performance
becoming worse than random (Table A4). This confirms that PRIMO did in fact learn to perform
context-based prediction, and fundamentally works by comparing sequences. We therefore consider
it more likely that ICL is ineffective due to the pre-training data available in ProteinGym being too
limiting to mitigate (expected) distribution shifts when testing on new assays.

When using TTT to adapt PRIMO’s parameters to the unseen test assays, we observe a gradual
performance improvement with increasing data, going from a zero-shot average Spearman correlation
of 0.51 to 0.67 with 128 shots. The GP and ridge regression baseline methods exhibit the same trend,
but are outperformed by PRIMO with TTT on all levels of N . Especially at extreme low-N of up to
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Table 2: Few-shot prediction of held-out DMS assays. Average Spearman correlation coefficient
over all held out assays is shown, aggregated over five replicates. Per-assay performances are reported
in Table A9 and Table A10. The zero-shot performances of the GP and Ridge regression models
marked with * are zero-shot predictions from ProGen that either serve as the prior mean (GP) or an
additional input feature (Ridge). The best value per level of N is highlighted in bold, unless zero-shot
prediction is superior. Error bars are computed over different draws for each N .

Method Shots
0 4 8 16 32 64 128

Overall

GP 0.42* 0.24 ± 0.02 0.32 ± 0.03 0.39 ± 0.02 0.45 ± 0.01 0.51 ± 0.01 0.56 ± 0.00
Ridge 0.42* 0.26 ± 0.02 0.33 ± 0.02 0.41 ± 0.01 0.48 ± 0.01 0.56 ± 0.01 0.63 ± 0.00
RF - 0.23 ± 0.01 0.32 ± 0.01 0.39 ± 0.01 0.45 ± 0.02 0.52 ± 0.00 0.59 ± 0.00
PRIMO (ICL) 0.51 ± 0.01 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00
PRIMO (TTT) 0.51 ± 0.01 0.49 ± 0.01 0.51 ± 0.01 0.54 ± 0.01 0.58 ± 0.02 0.63 ± 0.00 0.67 ± 0.01

Stability

GP 0.41 0.36 ± 0.05 0.47 ± 0.04 0.55 ± 0.02 0.61 ± 0.01 0.66 ± 0.01 0.71 ± 0.00
Ridge 0.41 0.39 ± 0.03 0.46 ± 0.04 0.55 ± 0.02 0.61 ± 0.01 0.69 ± 0.01 0.75 ± 0.00
RF - 0.36 ± 0.03 0.46 ± 0.02 0.53 ± 0.01 0.58 ± 0.02 0.65 ± 0.01 0.71 ± 0.00
PRIMO (ICL) 0.61 ± 0.01 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00
PRIMO (TTT) 0.59 ± 0.01 0.59 ± 0.02 0.62 ± 0.02 0.65 ± 0.01 0.69 ± 0.01 0.73 ± 0.01 0.77 ± 0.01

Enzymatic activity

GP 0.52* 0.11 ± 0.06 0.19 ± 0.04 0.25 ± 0.03 0.31 ± 0.01 0.37 ± 0.02 0.42 ± 0.01
Ridge 0.52* 0.11 ± 0.05 0.21 ± 0.03 0.26 ± 0.02 0.35 ± 0.03 0.44 ± 0.02 0.51 ± 0.01
RF - 0.07 ± 0.05 0.17 ± 0.02 0.23 ± 0.04 0.3 ± 0.02 0.38 ± 0.02 0.47 ± 0.01
PRIMO (ICL) 0.49 ± 0.05 0.57 ± 0.00 0.57 ± 0.00 0.57 ± 0.00 0.57 ± 0.00 0.57 ± 0.00 0.57 ± 0.00
PRIMO (TTT) 0.53 ± 0.02 0.44 ± 0.05 0.49 ± 0.01 0.51 ± 0.01 0.54 ± 0.03 0.56 ± 0.01 0.61 ± 0.01

Fluorescence

GP 0.09* 0.01 ± 0.08 0.02 ± 0.09 0.09 ± 0.01 0.14 ± 0.01 0.17 ± 0.02 0.24 ± 0.01
Ridge 0.09* 0.08 ± 0.05 0.08 ± 0.07 0.12 ± 0.05 0.16 ± 0.02 0.21 ± 0.02 0.28 ± 0.02
RF - 0.10 ± 0.08 0.12 ± 0.04 0.15 ± 0.03 0.21 ± 0.03 0.24 ± 0.01 0.32 ± 0.01
PRIMO (ICL) 0.07 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00
PRIMO (TTT) 0.11 ± 0.02 0.14 ± 0.06 0.11 ± 0.02 0.15 ± 0.05 0.20 ± 0.04 0.25 ± 0.02 0.30 ± 0.02

Binding

GP 0.47* 0.18 ± 0.04 0.22 ± 0.05 0.28 ± 0.03 0.34 ± 0.05 0.41 ± 0.02 0.46 ± 0.01
Ridge 0.47* 0.17 ± 0.05 0.24 ± 0.04 0.33 ± 0.04 0.42 ± 0.03 0.51 ± 0.01 0.58 ± 0.01
RF - 0.15 ± 0.05 0.22 ± 0.02 0.3 ± 0.03 0.38 ± 0.05 0.46 ± 0.01 0.55 ± 0.01
PRIMO (ICL) 0.49 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
PRIMO (TTT) 0.47 ± 0.01 0.42 ± 0.05 0.42 ± 0.04 0.48 ± 0.02 0.56 ± 0.04 0.63 ± 0.02 0.69 ± 0.01

32 shots, baseline methods prove ineffective, with the exception of the EvolvePro RF model on GFP
fluorescence prediction. A detailed breakdown by substitution and indel mutations is provided in the
appendix.

4.3 Performance on the natural evolution benchmark

The previous analysis focused on test assays from ProteinGym in which mutated sequences vary from
the reference wild-type sequence by at most a handful of mutations (typically singles or doubles).
In order to assess the ability of models to extrapolate farther away in sequence space, we curate
a new benchmark, comprised of three high-throughput assays that each characterize broad fitness
landscapes spanned by natural sequences for Chorismate mutase [12], Rubisco [35] and PPAT [36]
respectively. We find that PRIMO outperforms all other baselines (Table 3). However, in that context,
it is critical to make use of test-time training to allow the model to adapt more flexibly to the broader
landscapes characterized by the test set.
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Table 3: Performance (Spearman correlation) on the natural evolution benchmark. Values
are reported as mean and standard deviation over five replicates for three assays. The zero-shot
performances of the GP and Ridge regression models marked with * are zero-shot predictions from
ProGen that either serve as the prior mean (GP) or an additional input feature (Ridge).

Shots 0 4 8 16 32

PRIMO ICL 0.10 ± 0.01 0.09 ± 0.02 0.09 ± 0.02 0.07 ± 0.03 0.06 ± 0.01
PRIMO TTT 0.09 ± 0.01 0.07 ± 0.03 0.10 ± 0.03 0.19 ± 0.06 0.30 ± 0.02
GP 0.04* 0.02 ± 0.04 0.04 ± 0.04 0.07 ± 0.02 0.18 ± 0.11
Ridge 0.04* 0.00 ± 0.03 0.08 ± 0.04 0.14 ± 0.02 0.24 ± 0.12
RF – 0.03 ± 0.03 0.08 ± 0.06 0.13 ± 0.06 0.24 ± 0.07
MLP – 0.00 ± 0.03 0.07 ± 0.04 0.13 ± 0.01 0.24 ± 0.11

5 Discussion

Inappropriate splitting inflates prediction performance. Data partitioning strategies are critical
to ensure reliable performance reporting in ML on biological sequences, as widely recognized in
the field [37–39]. When exploring a new paradigm such as pre-training on DMS data, followed
by ICL evaluation, previous ProteinGym test subsets are inadequate, as they were only designed
for single-assay learning and evaluation. As one may expect from finding cases of 100% sequence
identity overlap between partitions, we observed that apparent "zero-shot" performances can be
highly inflated, as they in fact are driven by thousands of training observations of the same property
of the same protein, just measured in a different experiment. While Metalic did not report per-assay
performances, we believe that its claimed average performance of 0.484 suffers from the issue
demonstrated in Table 1, and find that Metalic underperforms PRIMO when training on a clean split
(Table A11).

TTT can boost prediction performance. In our experiments, we find that ICL often fails to
efficiently use the provided context, with performance staying flat and there not being a marginal
benefit from providing more labeled data. While it remains to some degree unclear why ICL is not
effective, it needs to be recognized that using ProteinGym as the pre-training dataset is limiting, only
exposing PRIMO to context sets sampled from 116 distinct experiments. However, we find that TTT
can be an effective remedy to the unavoidable distribution shift at test time, allowing the model to
adapt to new tasks in weight space as more data becomes available.

6 Conclusion and Outlook

In this work, we have introduced PRIMO, a transformer model for in-context learning with test-time
training that enables few-shot protein fitness prediction. By training on a large number of protein
fitness assays, PRIMO learns to extract information from labeled samples and perform relative protein
fitness prediction. While the direct application of ICL can be limiting and fail to efficiently use the
available labeled information, TTT enables PRIMO to adapt to unseen assays, making it an efficient
few-shot learner that achieves state of the art performance. PRIMO demonstrates that while the
problem remains challenging, progress can be made by leveraging existing experimental data.

From a modeling perspective, assuming such a high-diversity, low-N data resource can be established,
a more flexible encoding of property types could be applied to widen the scope. Given sufficient
metadata of the actual experimental protocols, natural language encoding could be considered.
Moreover, future work may find it useful to consider leveraging other pLMs than ESM-2 in PRIMO,
or selectively fine-tune the pLM, as it has been demonstrated that doing so can aid prediction
performance in some cases [40].

In summary, our work demonstrates the potential of the ICL paradigm for few-shot fitness prediction,
which we believe to become increasingly relevant in the future, given the success of ICL and
large-scale pre-training in general across domains [41, 42]. We highlight the need for dedicated
fit-for-purpose data splitting regimes and detailed performance reporting, which we consider to be
crucial for further advancement of the field.
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7 Availability

Code and data is available at https://github.com/fteufel/PRIMO.
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A Few-shot benchmark DMS assay selection

We select a representative collection of assays from ProteinGym for benchmarking few-shot prediction
performance. As opposed to previous selections, such as the one used by ProteinNPT and Metalic,
we also ensure that the assays are reasonably independent with respect to the training data, so that no
close homolog or identical protein was trained on.

We avoid benchmarking on assays that reported abundance, as we consider it an ill-defined target with
less relevance for real-world protein optimization efforts. Abundance, as measured by DMS, could be
understood as a convolution of biological processes such as expression, stability and degradation. In
few-shot protein engineering campaigns, these properties would typically be evaluated one-by-one in
real units. However, we still consider abundance assays to be a useful data resource for pre-training
on diverse experiments.

We excluded both HIS7_YEAST_Pokusaeva_2019 and CAPSD_AAV2S_Sinai_2021 as their scale
proved prohibitive for experimentation given our available GPU resources.

Table A1: The hold out set of ProteinGym DMS assays. Similarity to train is computed as pairwise
Needleman-Wunsch global sequence identity of the wild type proteins.

Assay Type Similarity to train Closest protein

AMFR_HUMAN_Tsuboyama_2023_4G3O Stability 23% CUE1_YEAST
RCD1_ARATH_Tsuboyama_2023_5OAO Stability 20% NUSG_MYCTU
SR43C_ARATH_Tsuboyama_2023_2N88 Stability 39% CBX4_HUMAN
FECA_ECOLI_Tsuboyama_2023_2D1U Stability 20% RPC1_BP434
PKN1_HUMAN_Tsuboyama_2023_1URF Stability 21% DN7A_SACS2
CSN4_MOUSE_Tsuboyama_2023_1UFM Stability 20% UBE4B_HUMAN
SPA_STAAU_Tsuboyama_2023_1LP1 Stability 22% HECD1_HUMAN
NKX31_HUMAN_Tsuboyama_2023_2L9R Stability 32% PITX2_HUMAN
EPHB2_HUMAN_Tsuboyama_2023_1F0M Stability 25% PR40A_HUMAN
SQSTM_MOUSE_Tsuboyama_2023_2RRU Stability 29% OTU7A_HUMAN
MAFG_MOUSE_Tsuboyama_2023_1K1V Stability 24% RPB1_HUMAN
SCIN_STAAR_Tsuboyama_2023_2QFF Stability 23% HVP_LAMBD
DNJA1_HUMAN_Tsuboyama_2023_2LO1 Stability 23% HECD1_HUMAN
VRPI_BPT7_Tsuboyama_2023_2WNM Stability 19% MYO3_YEAST
ESTA_BACSU_Nutschel_2020 Stability 15% CALM1_HUMAN
CASP3_HUMAN_Roychowdhury_2020 Enz. Activity 48% CASP7_HUMAN
BLAT_ECOLX_Deng_2012 Enz. Activity 18% CD19_HUMAN
BLAT_ECOLX_Jacquier_2013 Enz. Activity 18% CD19_HUMAN
BLAT_ECOLX_Stiffler_2015 Enz. Activity 18% CD19_HUMAN
BLAT_ECOLX_Firnberg_2014 Enz. Activity 18% CD19_HUMAN
VKOR1_HUMAN_Chiasson_2020_activity Enz. Activity 13% RPC1_BP434
VKOR1_HUMAN_Chiasson_2020_abundance Abundance 13% RPC1_BP434
Q8WTC7_9CNID_Somermeyer_2022 Fluoresence 18% Q6WV13_9MAXI
D7PM05_CLYGR_Somermeyer_2022 Fluoresence 19% MTH3_HAEAE
GFP_AEQVI_Sarkisyan_2016 Fluoresence 18% Q6WV13_9MAXI
DLG4_RAT_McLaughlin_2012 Binding 19% PSAE_SYNP2
RL40A_YEAST_Roscoe_2013 Binding 20% SPG2_STRSG
GRB2_HUMAN_Faure_2021 Binding 27% SRBS1_HUMAN
DYR_ECOLI_Thompson_2019 Enz. Activity 15% NUD15_HUMAN
DLG4_HUMAN_Faure_2021 Binding 25% EPHB2_HUMAN
RL40A_YEAST_Mavor_2016 Binding 20% SPG2_STRSG
DYR_ECOLI_Nguyen_2023 Enz. Activity 15% NUD15_HUMAN
RL40A_YEAST_Roscoe_2014 Binding 20% SPG2_STRSG
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Table A2: The training set of ProteinGym DMS assays.
Assay Type

A4GRB6_PSEAI_Chen_2020 Enz. Activity
AACC1_PSEAI_Dandage_2018 Enz. Activity
ACE2_HUMAN_Chan_2020 Binding
AICDA_HUMAN_Gajula_2014_3cycles Enz. Activity
AMIE_PSEAE_Wrenbeck_2017 Enz. Activity
ANCSZ_Hobbs_2022 Enz. Activity
ARGR_ECOLI_Tsuboyama_2023_1AOY Stability
B2L11_HUMAN_Dutta_2010_binding-Mcl-1 Binding
BBC1_YEAST_Tsuboyama_2023_1TG0 Stability
BCHB_CHLTE_Tsuboyama_2023_2KRU Stability
CALM1_HUMAN_Weile_2017 Binding
CAS9_STRP1_Spencer_2017_positive Enz. Activity
CASP7_HUMAN_Roychowdhury_2020 Enz. Activity
CATR_CHLRE_Tsuboyama_2023_2AMI Stability
CBPA2_HUMAN_Tsuboyama_2023_1O6X Stability
CBS_HUMAN_Sun_2020 Enz. Activity
CBX4_HUMAN_Tsuboyama_2023_2K28 Stability
CD19_HUMAN_Klesmith_2019_FMC_singles Binding
CP2C9_HUMAN_Amorosi_2021_abundance Abundance
CP2C9_HUMAN_Amorosi_2021_activity Binding
CUE1_YEAST_Tsuboyama_2023_2MYX Stability
DN7A_SACS2_Tsuboyama_2023_1JIC Stability
DOCK1_MOUSE_Tsuboyama_2023_2M0Y Stability
ENVZ_ECOLI_Ghose_2023 Enz. Activity
ERBB2_HUMAN_Elazar_2016 Abundance
F7YBW8_MESOW_Aakre_2015 Binding
F7YBW8_MESOW_Ding_2023 Binding
FKBP3_HUMAN_Tsuboyama_2023_2KFV Stability
GDIA_HUMAN_Silverstein_2021 Binding
GLPA_HUMAN_Elazar_2016 Abundance
HCP_LAMBD_Tsuboyama_2023_2L6Q Stability
HECD1_HUMAN_Tsuboyama_2023_3DKM Stability
HMDH_HUMAN_Jiang_2019 Enz. Activity
HXK4_HUMAN_Gersing_2022_activity Enz. Activity
HXK4_HUMAN_Gersing_2023_abundance Abundance
ILF3_HUMAN_Tsuboyama_2023_2L33 Stability
ISDH_STAAW_Tsuboyama_2023_2LHR Stability
KKA2_KLEPN_Melnikov_2014 Enz. Activity
LGK_LIPST_Klesmith_2015 Enz. Activity
LYAM1_HUMAN_Elazar_2016 Abundance
MBD11_ARATH_Tsuboyama_2023_6ACV Stability
MET_HUMAN_Estevam_2023 Enz. Activity
MK01_HUMAN_Brenan_2016 Enz. Activity
MSH2_HUMAN_Jia_2020 Enz. Activity
MTH3_HAEAE_RockahShmuel_2015 Enz. Activity
MTHR_HUMAN_Weile_2021 Enz. Activity
MYO3_YEAST_Tsuboyama_2023_2BTT Stability
NUD15_HUMAN_Suiter_2020 Enz. Activity
NUSA_ECOLI_Tsuboyama_2023_1WCL Stability
NUSG_MYCTU_Tsuboyama_2023_2MI6 Stability
OBSCN_HUMAN_Tsuboyama_2023_1V1C Stability
ODP2_GEOSE_Tsuboyama_2023_1W4G Stability
OPSD_HUMAN_Wan_2019 Abundance
OTC_HUMAN_Lo_2023 Enz. Activity
OTU7A_HUMAN_Tsuboyama_2023_2L2D Stability
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Assay Type

OXDA_RHOTO_Vanella_2023_activity Enz. Activity
P84126_THETH_Chan_2017 Enz. Activity
PAI1_HUMAN_Huttinger_2021 Binding
PIN1_HUMAN_Tsuboyama_2023_1I6C Stability
PITX2_HUMAN_Tsuboyama_2023_2L7M Stability
POLG_PESV_Tsuboyama_2023_2MXD Stability
PPARG_HUMAN_Majithia_2016 Binding
PR40A_HUMAN_Tsuboyama_2023_1UZC Stability
PRKN_HUMAN_Clausen_2023 Abundance
PSAE_PICP2_Tsuboyama_2023_1PSE Abundance
PTEN_HUMAN_Mighell_2018 Enz. Activity
Q53Z42_HUMAN_McShan_2019_binding-TAPBPR Binding
Q59976_STRSQ_Romero_2015 Enz. Activity
Q6WV12_9MAXI_Somermeyer_2022 Fluorescence
RAD_ANTMA_Tsuboyama_2023_2CJJ Stability
RAF1_HUMAN_Zinkus-Boltz_2019 Binding
RASH_HUMAN_Bandaru_2017 Enz. Activity
RASK_HUMAN_Weng_2022_abundance Abundance
RASK_HUMAN_Weng_2022_binding-DARPin_K55 Binding
RBP1_HUMAN_Tsuboyama_2023_2KWH Stability
RCRO_LAMBD_Tsuboyama_2023_1ORC Stability
RD23A_HUMAN_Tsuboyama_2023_1IFY Stability
RFAH_ECOLI_Tsuboyama_2023_2LCL Stability
RL20_AQUAE_Tsuboyama_2023_1GYZ Stability
RNC_ECOLI_Weeks_2023 Enz. Activity
RPC1_BP434_Tsuboyama_2023_1R69 Stability
RS15_GEOSE_Tsuboyama_2023_1A32 Stability
SAV1_MOUSE_Tsuboyama_2023_2YSB Stability
SBI_STAAM_Tsuboyama_2023_2JVG Stability
SDA_BACSU_Tsuboyama_2023_1PV0 Stability
SERC_HUMAN_Xie_2023 Enz. Activity
SHOC2_HUMAN_Kwon_2022 Binding
SOX30_HUMAN_Tsuboyama_2023_7JJK Stability
SPG1_STRSG_Olson_2014 Binding
SPG1_STRSG_Wu_2016 Binding
SPG2_STRSG_Tsuboyama_2023_5UBS Stability
SPIKE_SARS2_Starr_2020_binding Binding
SPIKE_SARS2_Starr_2020_expression Abundance
SPTN1_CHICK_Tsuboyama_2023_1TUD Stability
SRBS1_HUMAN_Tsuboyama_2023_2O2W Stability
SRC_HUMAN_Ahler_2019 Enz. Activity
SRC_HUMAN_Chakraborty_2023_binding-DAS_25uM Enz. Activity
TCRG1_MOUSE_Tsuboyama_2023_1E0L Stability
THO1_YEAST_Tsuboyama_2023_2WQG Stability
TNKS2_HUMAN_Tsuboyama_2023_5JRT Stability
TPK1_HUMAN_Weile_2017 Enz. Activity
TPMT_HUMAN_Matreyek_2018 Abundance
UBC9_HUMAN_Weile_2017 Enz. Activity
UBE4B_HUMAN_Tsuboyama_2023_3L1X Stability
UBE4B_MOUSE_Starita_2013 Enz. Activity
UBR5_HUMAN_Tsuboyama_2023_1I2T Stability
VG08_BPP22_Tsuboyama_2023_2GP8 Stability
VILI_CHICK_Tsuboyama_2023_1YU5 Stability
YAIA_ECOLI_Tsuboyama_2023_2KVT Stability
YAP1_HUMAN_Araya_2012 Binding
YNZC_BACSU_Tsuboyama_2023_2JVD Stability
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B Experimental details

We follow ProteinNPT [2] for the Ridge regression baseline. Specifically, we process the mean-pooled
ESM embedding using a linear layer, and the zero-shot score from ProGen using another linear
layer without bias which is initialized with weight 1.0. We apply an L2 penalty of 5× 10−3 for the
embedding linear layer and 1× 10−8 for the zero-shot linear layer. The models are trained for 1500
steps at a learning rate of 0.01. The Gaussian process (GP) model was adapted from Kermut [3]. We
reuse model components and the training loop from the official Kermut code release, omitting the
structure kernel from the GP’s composite kernel. GP models are trained for 150 steps at a learning
rate of 3× 10−4. The random forest (RF) baseline including all its hyperparameters was taken from
the official EvolvePro codebase [25].

Table A3: Hyperparameters of PRIMO. Unless stated otherwise, the architectural configuration of the
transformer is based on the ESM-2 attention block, with the PRIMO layer adaptations as discussed
in the main text. For the TTT phase, we only list parameters that differ from the pre-training setup.
PRIMO was trained on a single RTX 6000, using gradient accumulation to enable the specified batch
size.

Parameter Value

Layers 6
Hidden size 400
Attention heads 8
Feedforward factor 4
Pooling vectors per sequence 3
AA Embedder ESM-2 650M [28]
Zero-shot predictor ProGen-2 medium [11]

Dropout 0.1
Weight decay 0.01
Gradient norm clipping 1.0
Learning rate 0.0001
Learning rate schedule Triangular
Warmup steps 1000
Total sets 150,000
Set size 32
Batch size 12
AA sequence length 512
Start MLM loss factor 0.5
End MLM loss factor 0.05
MLM loss factor schedule Cosine

Label masking probability 0.33
Span masking probability1 0.2
Minimum span fraction 0.05
Maximum span fraction 0.15
Span length distribution Uniform
Mask all variant positions2 True

TTT learning rate 0.0001
TTT learning rate schedule Flat
TTT training set size min(N , 32)
TTT sequence length L
TTT total steps 25
TTT/ICL inference set size N + 1

1The span masking probability is applied after the label masking probability, so that the effective probability
becomes (1− 0.33) ∗ 0.2.

2This means that the sampled span length will be split over k mutation positions as needed.

15



C Additional results

C.1 Ablations

We ablate the following components of PRIMO:

• Conditioning approach for zero-shot prediction (Table A4)
• Loss function (Table A5)
• Auxiluary inputs (Property type and pLM zero-shot score) (Table A6)
• TTT protocol (Table A7)
• Attention mechanism (Table A8)

For efficiency, ablation experiments are performed at a constant set size of N = 16 (with the
exception of the zero-shot ablation). Overall, the ablations demonstrate that the modeling choices of
PRIMO are sensible, and all individually contribute to improved performance.

Table A4: Effect of providing an arbitrary reference datapoint with fitness set to 0.5 (midpoint of the
min-max scale) for calibration when performing 0-shot prediction with PRIMO. When no context
sequence is provided, the prediction performance of the logits returned by PRIMO collapses.

Approach Average Spearman

Unlabeled sequence only - 0.257
Reference sequence with arbitrary fitness 0.522

Table A5: Performance of PRIMO (TTT) when training using different loss functions at N=16.

Loss Average Spearman

Preference 0.538
MSE 0.528

Table A6: Performance of PRIMO (TTT) when ablating additional inputs at N=16.

Inputs Average Spearman

All 0.538
w/o Property ID 0.532
w/o zero-shot score 0.529

Table A7: Performance of PRIMO (TTT) with different numbers of TTT steps at N=16.

Steps Avg. Spearman

0 (ICL) 0.513
10 0.526
25 0.539
50 0.526
75 0.518
100 0.515
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Table A8: Performance of PRIMO models using different attention mechanisms at N=16. Tiered
refers to PoET’s tiered attention, Pooled is the attention mechanism used by the final PRIMO model
described in the main text. The tiered attention model was trained at a pre-training set size of 16
due to increased computational complexity. Results were obtained on a preliminary data split before
training the final PRIMO model.

Tiered Pooled

ICL 0.45 0.48
TTT 0.43 0.47

C.2 Assay level performance
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Table A9: Per-assay results on the hold out set (1/2).
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Shots Method

0 ProGen 0.01 0.43 0.64 0.62 0.64 0.19 0.51 0.57 0.13 0.61 0.41 0.75 0.44 0.39 0.65 0.26 0.50
PRIMO (ICL) 0.73 ± 0.03 0.44 ± 0.02 0.54 ± 0.17 0.56 ± 0.03 0.48 ± 0.25 0.67 ± 0.01 0.43 ± 0.21 0.66 ± 0.01 0.06 ± 0.0 0.58 ± 0.0 0.4 ± 0.0 0.84 ± 0.01 0.45 ± 0.06 0.41 ± 0.07 0.87 ± 0.01 0.24 ± 0.01 0.66 ± 0.01
PRIMO (TTT) 0.71 ± 0.02 0.42 ± 0.01 0.66 ± 0.01 0.57 ± 0.02 0.6 ± 0.01 0.65 ± 0.02 0.47 ± 0.14 0.59 ± 0.06 0.18 ± 0.01 0.53 ± 0.01 0.38 ± 0.0 0.8 ± 0.02 0.44 ± 0.06 0.44 ± 0.01 0.85 ± 0.02 0.27 ± 0.01 0.62 ± 0.03

4 GP 0.36 ± 0.24 0.12 ± 0.17 0.21 ± 0.13 0.13 ± 0.51 0.16 ± 0.11 0.17 ± 0.15 0.09 ± 0.18 0.21 ± 0.28 -0.1 ± 0.05 0.27 ± 0.07 0.14 ± 0.25 0.61 ± 0.24 -0.01 ± 0.13 0.04 ± 0.09 0.7 ± 0.04 0.02 ± 0.06 0.38 ± 0.07
PRIMO (ICL) 0.77 ± 0.01 0.45 ± 0.0 0.68 ± 0.0 0.61 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.54 ± 0.18 0.36 ± 0.06 0.57 ± 0.05 0.62 ± 0.06 0.48 ± 0.12 0.46 ± 0.1 0.48 ± 0.05 0.52 ± 0.18 0.14 ± 0.04 0.5 ± 0.11 0.39 ± 0.04 0.79 ± 0.09 0.42 ± 0.07 0.33 ± 0.16 0.86 ± 0.03 0.22 ± 0.04 0.62 ± 0.05
RF 0.19 ± 0.2 0.05 ± 0.07 0.12 ± 0.12 0.34 ± 0.32 0.07 ± 0.13 0.07 ± 0.1 0.1 ± 0.19 0.27 ± 0.32 -0.01 ± 0.15 0.27 ± 0.08 0.05 ± 0.17 0.66 ± 0.18 0.07 ± 0.09 -0.01 ± 0.07 0.67 ± 0.04 0.01 ± 0.08 0.17 ± 0.11
Ridge 0.19 ± 0.21 0.08 ± 0.14 0.13 ± 0.13 0.34 ± 0.26 0.1 ± 0.18 0.1 ± 0.17 0.21 ± 0.25 0.24 ± 0.34 0.03 ± 0.08 0.25 ± 0.17 0.11 ± 0.24 0.68 ± 0.2 0.09 ± 0.1 0.03 ± 0.09 0.73 ± 0.05 0.03 ± 0.07 0.32 ± 0.07

8 GP 0.5 ± 0.05 0.11 ± 0.13 0.28 ± 0.06 0.34 ± 0.39 0.28 ± 0.07 0.19 ± 0.17 0.19 ± 0.19 0.32 ± 0.24 -0.05 ± 0.07 0.31 ± 0.06 0.17 ± 0.26 0.66 ± 0.14 0.11 ± 0.09 0.19 ± 0.1 0.74 ± 0.05 0.09 ± 0.09 0.44 ± 0.07
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 0.61 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.66 ± 0.18 0.35 ± 0.05 0.65 ± 0.04 0.64 ± 0.03 0.54 ± 0.05 0.53 ± 0.07 0.48 ± 0.09 0.55 ± 0.36 0.07 ± 0.07 0.51 ± 0.06 0.32 ± 0.12 0.82 ± 0.02 0.46 ± 0.04 0.4 ± 0.04 0.86 ± 0.02 0.25 ± 0.04 0.64 ± 0.08
RF 0.43 ± 0.09 0.09 ± 0.13 0.27 ± 0.1 0.34 ± 0.12 0.21 ± 0.09 0.19 ± 0.08 0.24 ± 0.18 0.29 ± 0.25 0.03 ± 0.08 0.28 ± 0.06 0.15 ± 0.18 0.66 ± 0.16 0.1 ± 0.11 0.1 ± 0.07 0.75 ± 0.05 0.09 ± 0.05 0.42 ± 0.06
Ridge 0.4 ± 0.14 0.1 ± 0.11 0.27 ± 0.09 0.38 ± 0.16 0.25 ± 0.11 0.2 ± 0.16 0.27 ± 0.25 0.33 ± 0.39 0.03 ± 0.08 0.29 ± 0.14 0.16 ± 0.21 0.66 ± 0.2 0.17 ± 0.12 0.21 ± 0.08 0.76 ± 0.04 0.06 ± 0.04 0.43 ± 0.08

16 GP 0.58 ± 0.06 0.15 ± 0.11 0.32 ± 0.08 0.57 ± 0.04 0.35 ± 0.02 0.21 ± 0.14 0.31 ± 0.15 0.45 ± 0.18 -0.02 ± 0.03 0.33 ± 0.01 0.3 ± 0.01 0.77 ± 0.02 0.18 ± 0.07 0.2 ± 0.04 0.77 ± 0.04 0.16 ± 0.06 0.46 ± 0.08
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 0.6 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.74 ± 0.05 0.4 ± 0.04 0.66 ± 0.02 0.61 ± 0.06 0.58 ± 0.04 0.63 ± 0.03 0.54 ± 0.02 0.73 ± 0.05 0.15 ± 0.08 0.55 ± 0.06 0.41 ± 0.06 0.84 ± 0.02 0.41 ± 0.07 0.38 ± 0.07 0.87 ± 0.01 0.26 ± 0.04 0.68 ± 0.04
RF 0.53 ± 0.07 0.12 ± 0.11 0.34 ± 0.07 0.32 ± 0.07 0.3 ± 0.08 0.22 ± 0.12 0.36 ± 0.06 0.51 ± 0.14 0.05 ± 0.07 0.36 ± 0.05 0.23 ± 0.07 0.78 ± 0.03 0.11 ± 0.08 0.16 ± 0.06 0.78 ± 0.03 0.14 ± 0.06 0.44 ± 0.08
Ridge 0.58 ± 0.07 0.12 ± 0.1 0.35 ± 0.07 0.44 ± 0.11 0.33 ± 0.05 0.23 ± 0.1 0.39 ± 0.06 0.57 ± 0.13 0.09 ± 0.1 0.38 ± 0.06 0.28 ± 0.02 0.8 ± 0.03 0.2 ± 0.09 0.23 ± 0.05 0.77 ± 0.05 0.15 ± 0.06 0.47 ± 0.1

32 GP 0.65 ± 0.05 0.22 ± 0.04 0.39 ± 0.06 0.62 ± 0.02 0.38 ± 0.04 0.33 ± 0.18 0.31 ± 0.11 0.57 ± 0.1 0.05 ± 0.03 0.36 ± 0.04 0.32 ± 0.01 0.8 ± 0.02 0.23 ± 0.11 0.31 ± 0.03 0.79 ± 0.02 0.17 ± 0.05 0.54 ± 0.12
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 0.61 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.78 ± 0.03 0.4 ± 0.05 0.69 ± 0.02 0.72 ± 0.04 0.58 ± 0.04 0.67 ± 0.02 0.54 ± 0.03 0.8 ± 0.02 0.19 ± 0.06 0.59 ± 0.04 0.52 ± 0.05 0.86 ± 0.04 0.45 ± 0.06 0.42 ± 0.07 0.88 ± 0.01 0.31 ± 0.04 0.72 ± 0.04
RF 0.64 ± 0.09 0.23 ± 0.05 0.41 ± 0.06 0.4 ± 0.16 0.36 ± 0.05 0.33 ± 0.09 0.4 ± 0.04 0.6 ± 0.05 0.11 ± 0.06 0.45 ± 0.11 0.32 ± 0.02 0.79 ± 0.03 0.13 ± 0.11 0.21 ± 0.08 0.76 ± 0.07 0.15 ± 0.04 0.5 ± 0.07
Ridge 0.63 ± 0.09 0.22 ± 0.06 0.45 ± 0.06 0.48 ± 0.09 0.43 ± 0.04 0.37 ± 0.08 0.42 ± 0.05 0.69 ± 0.06 0.1 ± 0.06 0.48 ± 0.1 0.34 ± 0.01 0.8 ± 0.04 0.25 ± 0.13 0.3 ± 0.05 0.81 ± 0.01 0.19 ± 0.04 0.62 ± 0.03

64 GP 0.72 ± 0.03 0.28 ± 0.04 0.42 ± 0.03 0.64 ± 0.01 0.45 ± 0.02 0.38 ± 0.12 0.35 ± 0.08 0.67 ± 0.03 0.11 ± 0.03 0.36 ± 0.02 0.33 ± 0.02 0.82 ± 0.01 0.3 ± 0.08 0.38 ± 0.04 0.82 ± 0.01 0.21 ± 0.04 0.65 ± 0.05
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 0.6 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.82 ± 0.02 0.44 ± 0.05 0.72 ± 0.01 0.78 ± 0.03 0.61 ± 0.02 0.7 ± 0.01 0.54 ± 0.03 0.86 ± 0.01 0.24 ± 0.05 0.67 ± 0.04 0.57 ± 0.03 0.88 ± 0.01 0.47 ± 0.04 0.47 ± 0.03 0.89 ± 0.01 0.33 ± 0.02 0.78 ± 0.01
RF 0.73 ± 0.02 0.33 ± 0.05 0.5 ± 0.03 0.56 ± 0.07 0.45 ± 0.04 0.45 ± 0.08 0.45 ± 0.03 0.65 ± 0.04 0.2 ± 0.04 0.5 ± 0.04 0.36 ± 0.03 0.81 ± 0.02 0.18 ± 0.12 0.32 ± 0.05 0.82 ± 0.02 0.21 ± 0.04 0.66 ± 0.02
Ridge 0.75 ± 0.04 0.33 ± 0.05 0.53 ± 0.02 0.57 ± 0.1 0.52 ± 0.04 0.49 ± 0.07 0.46 ± 0.03 0.77 ± 0.03 0.2 ± 0.02 0.54 ± 0.03 0.37 ± 0.02 0.85 ± 0.02 0.36 ± 0.06 0.39 ± 0.03 0.83 ± 0.01 0.25 ± 0.04 0.72 ± 0.03

128 GP 0.78 ± 0.02 0.32 ± 0.03 0.45 ± 0.04 0.66 ± 0.01 0.49 ± 0.01 0.49 ± 0.06 0.4 ± 0.06 0.73 ± 0.02 0.18 ± 0.02 0.37 ± 0.02 0.34 ± 0.02 0.84 ± 0.01 0.39 ± 0.04 0.4 ± 0.03 0.84 ± 0.01 0.27 ± 0.03 0.75 ± 0.01
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 0.61 ± 0.0 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.66 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.87 ± 0.0 0.24 ± 0.0 0.67 ± 0.0
PRIMO (TTT) 0.83 ± 0.01 0.48 ± 0.05 0.74 ± 0.01 0.82 ± 0.02 0.66 ± 0.02 0.73 ± 0.02 0.6 ± 0.01 0.87 ± 0.01 0.29 ± 0.06 0.71 ± 0.04 0.63 ± 0.01 0.91 ± 0.0 0.54 ± 0.04 0.52 ± 0.02 0.91 ± 0.01 0.42 ± 0.03 0.81 ± 0.0
RF 0.78 ± 0.02 0.39 ± 0.04 0.59 ± 0.03 0.67 ± 0.04 0.55 ± 0.02 0.59 ± 0.03 0.52 ± 0.02 0.71 ± 0.04 0.28 ± 0.04 0.58 ± 0.01 0.44 ± 0.02 0.85 ± 0.0 0.27 ± 0.05 0.38 ± 0.03 0.85 ± 0.01 0.33 ± 0.03 0.74 ± 0.04
Ridge 0.82 ± 0.02 0.37 ± 0.04 0.61 ± 0.03 0.63 ± 0.04 0.57 ± 0.03 0.61 ± 0.02 0.5 ± 0.02 0.83 ± 0.03 0.27 ± 0.04 0.58 ± 0.02 0.41 ± 0.02 0.89 ± 0.01 0.44 ± 0.03 0.46 ± 0.03 0.86 ± 0.01 0.32 ± 0.04 0.78 ± 0.03
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Table A10: Per-assay results on the hold out set (2/2).
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Shots

0 ProGen 0.15 0.53 0.51 0.58 0.43 0.01 0.38 0.42 0.48 .38 0.13 -0.09 0.57 0.56 0.50 0.41 0.11
PRIMO (ICL) 0.08 ± 0.0 0.6 ± 0.0 0.2 ± 0.04 0.75 ± 0.0 0.71 ± 0.0 0.05 ± 0.0 0.72 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.51 ± 0.01 0.2 ± 0.0 0.76 ± 0.01 0.78 ± 0.04 0.45 ± 0.0 0.35 ± 0.01 0.78 ± 0.07
PRIMO (TTT) 0.08 ± 0.05 0.59 ± 0.01 0.34 ± 0.07 0.65 ± 0.11 0.55 ± 0.02 0.08 ± 0.01 0.66 ± 0.04 0.38 ± 0.01 0.45 ± 0.02 0.47 ± 0.03 0.57 ± 0.02 0.26 ± 0.02 0.73 ± 0.02 0.81 ± 0.02 0.42 ± 0.01 0.34 ± 0.01 0.76 ± 0.01

4 GP 0.08 ± 0.22 0.23 ± 0.12 0.24 ± 0.3 0.39 ± 0.36 0.4 ± 0.05 0.06 ± 0.02 0.42 ± 0.11 0.11 ± 0.13 0.19 ± 0.19 0.13 ± 0.14 0.29 ± 0.15 0.34 ± 0.09 0.59 ± 0.04 0.62 ± 0.15 0.23 ± 0.16 0.06 ± 0.1 0.44 ± 0.32
PRIMO (ICL) 0.07 ± 0.0 0.6 ± 0.0 0.23 ± 0.01 0.75 ± 0.01 0.71 ± 0.0 0.05 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.52 ± 0.0 0.18 ± 0.01 0.75 ± 0.08 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.24 ± 0.14 0.56 ± 0.06 0.46 ± 0.07 0.7 ± 0.05 0.65 ± 0.03 0.06 ± 0.03 0.69 ± 0.02 0.33 ± 0.11 0.39 ± 0.12 0.34 ± 0.13 0.52 ± 0.04 0.29 ± 0.15 0.76 ± 0.02 0.8 ± 0.08 0.43 ± 0.06 0.25 ± 0.05 0.8 ± 0.02
RF 0.25 ± 0.14 0.17 ± 0.12 0.18 ± 0.26 0.3 ± 0.43 0.35 ± 0.06 0.05 ± 0.04 0.51 ± 0.07 0.15 ± 0.1 0.17 ± 0.22 0.09 ± 0.12 0.35 ± 0.09 0.31 ± 0.1 0.51 ± 0.06 0.65 ± 0.08 0.18 ± 0.09 0.04 ± 0.09 0.67 ± 0.1
Ridge 0.23 ± 0.12 0.24 ± 0.08 0.22 ± 0.17 0.42 ± 0.26 0.26 ± 0.16 -0.0 ± 0.03 0.5 ± 0.05 0.12 ± 0.17 0.15 ± 0.17 0.16 ± 0.12 0.37 ± 0.2 0.37 ± 0.1 0.53 ± 0.05 0.65 ± 0.09 0.23 ± 0.12 0.06 ± 0.07 0.68 ± 0.11

8 GP 0.08 ± 0.24 0.36 ± 0.04 0.51 ± 0.19 0.57 ± 0.09 0.45 ± 0.05 0.03 ± 0.03 0.53 ± 0.07 0.16 ± 0.12 0.19 ± 0.13 0.12 ± 0.15 0.42 ± 0.18 0.33 ± 0.13 0.62 ± 0.04 0.75 ± 0.07 0.25 ± 0.2 0.03 ± 0.06 0.64 ± 0.11
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.22 ± 0.01 0.75 ± 0.01 0.71 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.75 ± 0.06 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.22 ± 0.08 0.55 ± 0.05 0.6 ± 0.19 0.7 ± 0.06 0.67 ± 0.04 0.04 ± 0.05 0.68 ± 0.04 0.34 ± 0.1 0.43 ± 0.09 0.35 ± 0.12 0.54 ± 0.05 0.33 ± 0.06 0.74 ± 0.02 0.82 ± 0.06 0.38 ± 0.11 0.24 ± 0.08 0.8 ± 0.02
RF 0.34 ± 0.08 0.33 ± 0.08 0.47 ± 0.1 0.51 ± 0.14 0.44 ± 0.02 -0.02 ± 0.04 0.59 ± 0.04 0.21 ± 0.09 0.21 ± 0.12 0.15 ± 0.11 0.43 ± 0.11 0.3 ± 0.16 0.58 ± 0.04 0.72 ± 0.07 0.17 ± 0.14 0.1 ± 0.07 0.7 ± 0.07
Ridge 0.19 ± 0.18 0.35 ± 0.07 0.52 ± 0.16 0.56 ± 0.09 0.38 ± 0.24 0.0 ± 0.04 0.54 ± 0.05 0.22 ± 0.14 0.25 ± 0.19 0.17 ± 0.14 0.47 ± 0.13 0.28 ± 0.25 0.48 ± 0.07 0.76 ± 0.08 0.23 ± 0.17 0.04 ± 0.07 0.73 ± 0.04

16 GP 0.22 ± 0.04 0.42 ± 0.03 0.56 ± 0.1 0.66 ± 0.04 0.5 ± 0.05 0.05 ± 0.02 0.6 ± 0.05 0.2 ± 0.09 0.25 ± 0.04 0.22 ± 0.13 0.54 ± 0.08 0.42 ± 0.1 0.65 ± 0.03 0.81 ± 0.01 0.32 ± 0.12 0.08 ± 0.12 0.74 ± 0.04
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.23 ± 0.01 0.75 ± 0.0 0.71 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.76 ± 0.03 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.23 ± 0.07 0.6 ± 0.04 0.61 ± 0.12 0.76 ± 0.02 0.67 ± 0.04 0.05 ± 0.03 0.72 ± 0.02 0.42 ± 0.08 0.46 ± 0.08 0.45 ± 0.11 0.59 ± 0.06 0.34 ± 0.1 0.67 ± 0.09 0.85 ± 0.01 0.43 ± 0.14 0.24 ± 0.06 0.8 ± 0.02
RF 0.33 ± 0.05 0.39 ± 0.07 0.51 ± 0.14 0.65 ± 0.04 0.49 ± 0.04 0.08 ± 0.04 0.62 ± 0.03 0.26 ± 0.08 0.32 ± 0.06 0.24 ± 0.12 0.52 ± 0.09 0.41 ± 0.12 0.6 ± 0.02 0.8 ± 0.02 0.27 ± 0.07 0.16 ± 0.08 0.75 ± 0.02
Ridge 0.23 ± 0.09 0.45 ± 0.06 0.58 ± 0.1 0.66 ± 0.03 0.53 ± 0.08 0.04 ± 0.02 0.6 ± 0.05 0.29 ± 0.1 0.29 ± 0.14 0.29 ± 0.13 0.53 ± 0.07 0.36 ± 0.15 0.53 ± 0.06 0.81 ± 0.01 0.35 ± 0.12 0.12 ± 0.12 0.74 ± 0.02

32 GP 0.32 ± 0.04 0.43 ± 0.06 0.64 ± 0.04 0.71 ± 0.03 0.61 ± 0.04 0.06 ± 0.01 0.66 ± 0.01 0.29 ± 0.14 0.38 ± 0.1 0.24 ± 0.13 0.57 ± 0.07 0.46 ± 0.06 0.7 ± 0.04 0.83 ± 0.01 0.4 ± 0.1 0.24 ± 0.04 0.77 ± 0.01
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.23 ± 0.01 0.75 ± 0.0 0.71 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.77 ± 0.02 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.31 ± 0.05 0.62 ± 0.04 0.69 ± 0.09 0.77 ± 0.02 0.7 ± 0.02 0.1 ± 0.04 0.73 ± 0.04 0.49 ± 0.08 0.61 ± 0.05 0.51 ± 0.1 0.59 ± 0.07 0.34 ± 0.09 0.77 ± 0.03 0.87 ± 0.01 0.46 ± 0.08 0.31 ± 0.05 0.82 ± 0.01
RF 0.41 ± 0.03 0.45 ± 0.08 0.59 ± 0.13 0.68 ± 0.02 0.58 ± 0.05 0.1 ± 0.05 0.63 ± 0.06 0.39 ± 0.07 0.41 ± 0.05 0.28 ± 0.13 0.59 ± 0.01 0.46 ± 0.07 0.67 ± 0.03 0.8 ± 0.02 0.37 ± 0.1 0.24 ± 0.06 0.76 ± 0.02
Ridge 0.32 ± 0.06 0.5 ± 0.06 0.7 ± 0.07 0.7 ± 0.03 0.65 ± 0.05 0.05 ± 0.05 0.63 ± 0.06 0.38 ± 0.11 0.44 ± 0.04 0.36 ± 0.12 0.56 ± 0.09 0.44 ± 0.11 0.69 ± 0.06 0.83 ± 0.01 0.39 ± 0.11 0.25 ± 0.02 0.75 ± 0.04

64 GP 0.35 ± 0.03 0.5 ± 0.03 0.73 ± 0.03 0.73 ± 0.03 0.65 ± 0.03 0.05 ± 0.04 0.69 ± 0.01 0.41 ± 0.06 0.49 ± 0.08 0.37 ± 0.06 0.63 ± 0.03 0.53 ± 0.03 0.76 ± 0.03 0.85 ± 0.01 0.43 ± 0.04 0.31 ± 0.06 0.8 ± 0.01
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.23 ± 0.01 0.76 ± 0.0 0.71 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.78 ± 0.01 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.35 ± 0.06 0.66 ± 0.03 0.76 ± 0.05 0.79 ± 0.03 0.73 ± 0.02 0.14 ± 0.05 0.75 ± 0.04 0.56 ± 0.05 0.69 ± 0.04 0.61 ± 0.05 0.68 ± 0.03 0.44 ± 0.08 0.81 ± 0.03 0.88 ± 0.01 0.51 ± 0.01 0.35 ± 0.07 0.85 ± 0.02
RF 0.43 ± 0.03 0.5 ± 0.04 0.73 ± 0.03 0.74 ± 0.03 0.63 ± 0.04 0.1 ± 0.01 0.67 ± 0.02 0.49 ± 0.02 0.53 ± 0.02 0.41 ± 0.06 0.65 ± 0.02 0.51 ± 0.05 0.72 ± 0.04 0.82 ± 0.02 0.43 ± 0.03 0.37 ± 0.04 0.81 ± 0.02
Ridge 0.37 ± 0.06 0.6 ± 0.02 0.8 ± 0.02 0.75 ± 0.01 0.68 ± 0.04 0.05 ± 0.07 0.69 ± 0.04 0.51 ± 0.04 0.56 ± 0.04 0.49 ± 0.04 0.67 ± 0.03 0.56 ± 0.05 0.77 ± 0.03 0.86 ± 0.01 0.46 ± 0.03 0.37 ± 0.05 0.81 ± 0.01

128 GP 0.42 ± 0.03 0.54 ± 0.03 0.8 ± 0.01 0.76 ± 0.02 0.71 ± 0.02 0.11 ± 0.04 0.74 ± 0.01 0.49 ± 0.03 0.57 ± 0.03 0.43 ± 0.04 0.69 ± 0.01 0.62 ± 0.01 0.81 ± 0.02 0.87 ± 0.0 0.51 ± 0.04 0.37 ± 0.02 0.82 ± 0.02
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.24 ± 0.0 0.75 ± 0.0 0.71 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.78 ± 0.0 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.82 ± 0.0
PRIMO (TTT) 0.42 ± 0.03 0.71 ± 0.01 0.77 ± 0.07 0.83 ± 0.03 0.75 ± 0.03 0.2 ± 0.04 0.81 ± 0.02 0.65 ± 0.02 0.75 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.56 ± 0.03 0.85 ± 0.01 0.9 ± 0.01 0.56 ± 0.03 0.47 ± 0.04 0.86 ± 0.01
RF 0.49 ± 0.01 0.59 ± 0.02 0.79 ± 0.02 0.78 ± 0.01 0.68 ± 0.02 0.18 ± 0.03 0.74 ± 0.0 0.58 ± 0.02 0.62 ± 0.03 0.48 ± 0.03 0.71 ± 0.02 0.61 ± 0.02 0.78 ± 0.01 0.85 ± 0.01 0.54 ± 0.03 0.45 ± 0.04 0.83 ± 0.03
Ridge 0.46 ± 0.04 0.66 ± 0.02 0.85 ± 0.02 0.81 ± 0.02 0.74 ± 0.03 0.13 ± 0.05 0.8 ± 0.01 0.59 ± 0.02 0.67 ± 0.02 0.58 ± 0.04 0.77 ± 0.02 0.71 ± 0.03 0.84 ± 0.02 0.89 ± 0.01 0.57 ± 0.02 0.43 ± 0.04 0.85 ± 0.02
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C.3 PRIMO vs Metalic

Table A11: Performance of a PRIMO and Metalic model on substitution few-shot prediction of
held-out DMS assays, using the PRIMO split.

Method Shots
0 4 8 16 32 64 128

Overall

PRIMO (ICL) 0.43 ± 0.0 0.44 ± 0.0 0.44 ± 0.0 0.44 ± 0.0 0.44 ± 0.0 0.44 ± 0.0 0.45 ± 0.01
PRIMO (TTT) 0.46 ± 0.0 0.46 ± 0.01 0.47 ± 0.02 0.52 ± 0.02 0.56 ± 0.01 0.61 ± 0.01 0.66 ± 0.01
Metalic 0.34 ± 0.02 0.34 ± 0.01 0.38 ± 0.01 0.39 ± 0.01 0.43 ± 0.00 0.47 ± 0.00 0.54 ± 0.00

Stability

PRIMO (ICL) 0.58 ± 0.0 0.58 ± 0.0 0.59 ± 0.0 0.59 ± 0.0 0.59 ± 0.0 0.59 ± 0.0 0.59 ± 0.0
PRIMO (TTT) 0.55 ± 0.01 0.59 ± 0.02 0.62 ± 0.03 0.67 ± 0.02 0.71 ± 0.02 0.74 ± 0.02 0.79 ± 0.01
Metalic 0.50 ± 0.01 0.54 ± 0.01 0.60 ± 0.01 0.64 ± 0.00 0.70 ± 0.00 0.73 ± 0.00 0.78 ± 0.00

Enzymatic activity

PRIMO (ICL) 0.36 ± 0.0 0.36 ± 0.0 0.36 ± 0.0 0.36 ± 0.0 0.36 ± 0.0 0.36 ± 0.0 0.36 ± 0.0
PRIMO (TTT) 0.47 ± 0.0 0.39 ± 0.02 0.4 ± 0.02 0.44 ± 0.02 0.48 ± 0.01 0.52 ± 0.02 0.57 ± 0.02
Metalic 0.27 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 0.26 ± 0.02 0.28 ± 0.02 0.29 ± 0.02 0.35 ± 0.01

Fluorescence

PRIMO (ICL) 0.13 ± 0.0 0.13 ± 0.0 0.13 ± 0.0 0.13 ± 0.0 0.13 ± 0.0 0.13 ± 0.0 0.13 ± 0.0
PRIMO (TTT) 0.14 ± 0.03 0.15 ± 0.05 0.13 ± 0.03 0.15 ± 0.06 0.21 ± 0.02 0.26 ± 0.03 0.32 ± 0.01
Metalic 0.32 ± 0.02 0.30 ± 0.02 0.34 ± 0.01 0.31 ± 0.01 0.36 ± 0.01 0.40 ± 0.01 0.45 ± 0.01

Binding

PRIMO (ICL) 0.32 ± 0.0 0.33 ± 0.0 0.33 ± 0.0 0.33 ± 0.0 0.33 ± 0.0 0.33 ± 0.0 0.38 ± 0.03
PRIMO (TTT) 0.36 ± 0.0 0.39 ± 0.04 0.39 ± 0.05 0.45 ± 0.03 0.53 ± 0.03 0.59 ± 0.03 0.66 ± 0.03
Metalic 0.28 ± 0.03 0.31 ± 0.03 0.37 ± 0.02 0.40 ± 0.02 0.46 ± 0.01 0.52 ± 0.01 0.60 ± 0.01
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C.4 Performance on Substitution and Indel

Table A12: Substitution few-shot prediction of held-out DMS assays.

Method Shots
0 4 8 16 32 64 128

Overall

GP - 0.25 ± 0.01 0.32 ± 0.02 0.38 ± 0.02 0.44 ± 0.01 0.5 ± 0.01 0.55 ± 0.0
Ridge - 0.25 ± 0.02 0.32 ± 0.02 0.4 ± 0.01 0.48 ± 0.01 0.56 ± 0.01 0.63 ± 0.0
RF - 0.22 ± 0.01 0.31 ± 0.01 0.38 ± 0.01 0.45 ± 0.01 0.52 ± 0.01 0.59 ± 0.0
PRIMO (ICL) 0.5 ± 0.01 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0
PRIMO (TTT) 0.5 ± 0.01 0.48 ± 0.01 0.5 ± 0.01 0.53 ± 0.01 0.58 ± 0.02 0.62 ± 0.0 0.67 ± 0.01

Stability

GP - 0.37 ± 0.03 0.47 ± 0.03 0.54 ± 0.02 0.6 ± 0.01 0.66 ± 0.01 0.71 ± 0.0
Ridge - 0.38 ± 0.03 0.45 ± 0.04 0.55 ± 0.02 0.62 ± 0.01 0.7 ± 0.01 0.76 ± 0.0
RF - 0.35 ± 0.02 0.45 ± 0.02 0.53 ± 0.01 0.58 ± 0.01 0.65 ± 0.0 0.71 ± 0.0
PRIMO (ICL) 0.6 ± 0.01 0.61 ± 0.0 0.61 ± 0.0 0.61 ± 0.0 0.61 ± 0.0 0.62 ± 0.0 0.62 ± 0.0
PRIMO (TTT) 0.58 ± 0.01 0.58 ± 0.02 0.61 ± 0.02 0.64 ± 0.01 0.68 ± 0.01 0.72 ± 0.01 0.76 ± 0.01

Enzymatic activity

GP - 0.11 ± 0.06 0.19 ± 0.04 0.25 ± 0.03 0.31 ± 0.01 0.37 ± 0.02 0.42 ± 0.01
Ridge - 0.11 ± 0.05 0.21 ± 0.03 0.26 ± 0.02 0.35 ± 0.03 0.44 ± 0.02 0.51 ± 0.01
RF - 0.07 ± 0.05 0.17 ± 0.02 0.23 ± 0.04 0.3 ± 0.02 0.38 ± 0.02 0.47 ± 0.01
PRIMO (ICL) 0.49 ± 0.05 0.57 ± 0.0 0.57 ± 0.0 0.57 ± 0.0 0.57 ± 0.0 0.57 ± 0.0 0.57 ± 0.0
PRIMO (TTT) 0.53 ± 0.02 0.44 ± 0.05 0.49 ± 0.01 0.51 ± 0.01 0.54 ± 0.03 0.56 ± 0.01 0.61 ± 0.01

Fluorescence

GP - 0.01 ± 0.08 0.02 ± 0.09 0.09 ± 0.01 0.14 ± 0.01 0.17 ± 0.02 0.24 ± 0.01
Ridge - 0.08 ± 0.05 0.08 ± 0.07 0.12 ± 0.05 0.16 ± 0.02 0.21 ± 0.02 0.28 ± 0.02
RF - 0.1 ± 0.08 0.12 ± 0.04 0.15 ± 0.03 0.21 ± 0.03 0.24 ± 0.01 0.32 ± 0.01
PRIMO (ICL) 0.07 ± 0.0 0.06 ± 0.0 0.06 ± 0.0 0.06 ± 0.0 0.06 ± 0.0 0.06 ± 0.0 0.06 ± 0.0
PRIMO (TTT) 0.11 ± 0.02 0.14 ± 0.06 0.11 ± 0.02 0.15 ± 0.05 0.2 ± 0.04 0.25 ± 0.02 0.3 ± 0.02

Binding

GP - 0.18 ± 0.04 0.22 ± 0.05 0.28 ± 0.03 0.34 ± 0.05 0.41 ± 0.02 0.46 ± 0.01
Ridge - 0.17 ± 0.05 0.24 ± 0.04 0.33 ± 0.04 0.42 ± 0.03 0.51 ± 0.01 0.58 ± 0.01
RF - 0.15 ± 0.05 0.22 ± 0.02 0.3 ± 0.03 0.38 ± 0.05 0.46 ± 0.01 0.55 ± 0.01
PRIMO (ICL) 0.49 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0
PRIMO (TTT) 0.47 ± 0.01 0.42 ± 0.05 0.42 ± 0.04 0.48 ± 0.02 0.56 ± 0.04 0.63 ± 0.02 0.69 ± 0.01
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Table A13: Indel few-shot prediction of held-out DMS assays.

Method Shots
0 4 8 16 32 64 128

Overall/Stability

GP - 0.29 ± 0.09 0.43 ± 0.09 0.5 ± 0.02 0.54 ± 0.03 0.59 ± 0.02 0.64 ± 0.02
Ridge - 0.42 ± 0.06 0.49 ± 0.07 0.56 ± 0.04 0.59 ± 0.02 0.63 ± 0.02 0.71 ± 0.03
RF - 0.39 ± 0.05 0.48 ± 0.06 0.55 ± 0.05 0.56 ± 0.03 0.64 ± 0.02 0.69 ± 0.02
PRIMO (ICL) 0.64 ± 0.0 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0
PRIMO (TTT) 0.65 ± 0.01 0.65 ± 0.02 0.66 ± 0.03 0.67 ± 0.01 0.69 ± 0.01 0.71 ± 0.01 0.75 ± 0.02
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Table A14: Substititution per-assay results on the hold out set (1/2).
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Shots Method

1 PRIMO (ICL) 0.73 ± 0.03 0.44 ± 0.02 0.54 ± 0.17 - 0.48 ± 0.25 0.67 ± 0.01 0.43 ± 0.21 0.64 ± 0.01 0.06 ± 0.0 0.58 ± 0.0 0.4 ± 0.0 0.84 ± 0.0 0.45 ± 0.06 0.41 ± 0.07 0.87 ± 0.0 0.24 ± 0.01 0.63 ± 0.01
PRIMO (TTT) 0.7 ± 0.02 0.42 ± 0.01 0.66 ± 0.01 - 0.6 ± 0.01 0.65 ± 0.02 0.47 ± 0.14 0.56 ± 0.06 0.18 ± 0.01 0.53 ± 0.01 0.38 ± 0.0 0.81 ± 0.02 0.44 ± 0.06 0.44 ± 0.01 0.85 ± 0.02 0.27 ± 0.01 0.59 ± 0.04

4 GP 0.42 ± 0.25 0.12 ± 0.17 0.21 ± 0.13 - 0.16 ± 0.11 0.17 ± 0.15 0.09 ± 0.18 0.14 ± 0.31 -0.1 ± 0.05 0.27 ± 0.07 0.14 ± 0.25 0.61 ± 0.25 -0.01 ± 0.13 0.04 ± 0.09 0.7 ± 0.04 0.02 ± 0.06 0.31 ± 0.08
PRIMO (ICL) 0.77 ± 0.02 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.63 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.53 ± 0.18 0.36 ± 0.06 0.57 ± 0.05 - 0.48 ± 0.12 0.46 ± 0.1 0.48 ± 0.05 0.48 ± 0.2 0.14 ± 0.04 0.5 ± 0.11 0.39 ± 0.04 0.79 ± 0.1 0.42 ± 0.07 0.33 ± 0.16 0.86 ± 0.03 0.22 ± 0.04 0.6 ± 0.06
RF 0.18 ± 0.19 0.05 ± 0.07 0.12 ± 0.12 - 0.07 ± 0.13 0.07 ± 0.1 0.1 ± 0.19 0.25 ± 0.3 -0.01 ± 0.15 0.27 ± 0.08 0.05 ± 0.17 0.66 ± 0.17 0.07 ± 0.09 -0.01 ± 0.07 0.67 ± 0.05 0.01 ± 0.08 0.16 ± 0.08
Ridge 0.18 ± 0.19 0.08 ± 0.14 0.13 ± 0.13 - 0.1 ± 0.18 0.1 ± 0.17 0.21 ± 0.25 0.2 ± 0.35 0.03 ± 0.08 0.25 ± 0.17 0.11 ± 0.24 0.68 ± 0.2 0.09 ± 0.1 0.03 ± 0.09 0.73 ± 0.05 0.03 ± 0.07 0.28 ± 0.07

8 GP 0.56 ± 0.06 0.11 ± 0.13 0.28 ± 0.06 - 0.28 ± 0.07 0.19 ± 0.17 0.19 ± 0.19 0.26 ± 0.27 -0.05 ± 0.07 0.31 ± 0.06 0.17 ± 0.26 0.66 ± 0.14 0.11 ± 0.09 0.19 ± 0.1 0.74 ± 0.05 0.09 ± 0.09 0.38 ± 0.08
PRIMO (ICL) 0.79 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.63 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.66 ± 0.19 0.35 ± 0.05 0.65 ± 0.04 - 0.54 ± 0.05 0.53 ± 0.07 0.48 ± 0.09 0.53 ± 0.38 0.07 ± 0.07 0.51 ± 0.06 0.32 ± 0.12 0.83 ± 0.02 0.46 ± 0.04 0.4 ± 0.04 0.87 ± 0.02 0.25 ± 0.04 0.62 ± 0.1
RF 0.44 ± 0.11 0.09 ± 0.13 0.27 ± 0.1 - 0.21 ± 0.09 0.19 ± 0.08 0.24 ± 0.18 0.28 ± 0.25 0.03 ± 0.08 0.28 ± 0.06 0.15 ± 0.18 0.66 ± 0.16 0.1 ± 0.11 0.1 ± 0.07 0.75 ± 0.05 0.09 ± 0.05 0.41 ± 0.07
Ridge 0.38 ± 0.15 0.1 ± 0.11 0.27 ± 0.09 - 0.25 ± 0.11 0.2 ± 0.16 0.27 ± 0.25 0.31 ± 0.41 0.03 ± 0.08 0.29 ± 0.14 0.16 ± 0.21 0.66 ± 0.18 0.17 ± 0.12 0.21 ± 0.08 0.77 ± 0.04 0.06 ± 0.04 0.4 ± 0.09

16 GP 0.65 ± 0.06 0.15 ± 0.11 0.32 ± 0.08 - 0.35 ± 0.02 0.21 ± 0.14 0.31 ± 0.15 0.41 ± 0.19 -0.02 ± 0.03 0.33 ± 0.01 0.3 ± 0.01 0.77 ± 0.02 0.18 ± 0.07 0.2 ± 0.04 0.78 ± 0.04 0.16 ± 0.06 0.4 ± 0.1
PRIMO (ICL) 0.79 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.64 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.74 ± 0.06 0.4 ± 0.04 0.66 ± 0.02 - 0.58 ± 0.04 0.63 ± 0.03 0.54 ± 0.02 0.72 ± 0.05 0.15 ± 0.08 0.55 ± 0.06 0.41 ± 0.06 0.85 ± 0.02 0.41 ± 0.07 0.38 ± 0.07 0.88 ± 0.01 0.26 ± 0.04 0.67 ± 0.05
RF 0.53 ± 0.09 0.12 ± 0.11 0.34 ± 0.07 - 0.3 ± 0.08 0.22 ± 0.12 0.36 ± 0.06 0.52 ± 0.11 0.05 ± 0.07 0.36 ± 0.05 0.23 ± 0.07 0.77 ± 0.03 0.11 ± 0.08 0.16 ± 0.06 0.78 ± 0.04 0.14 ± 0.06 0.42 ± 0.07
Ridge 0.58 ± 0.09 0.12 ± 0.1 0.35 ± 0.07 - 0.33 ± 0.05 0.23 ± 0.1 0.39 ± 0.06 0.58 ± 0.11 0.09 ± 0.1 0.38 ± 0.06 0.28 ± 0.02 0.8 ± 0.02 0.2 ± 0.09 0.23 ± 0.05 0.78 ± 0.03 0.15 ± 0.06 0.47 ± 0.09

32 GP 0.72 ± 0.06 0.22 ± 0.04 0.39 ± 0.06 - 0.38 ± 0.04 0.33 ± 0.18 0.31 ± 0.11 0.54 ± 0.11 0.05 ± 0.03 0.36 ± 0.04 0.32 ± 0.01 0.8 ± 0.02 0.23 ± 0.11 0.31 ± 0.03 0.8 ± 0.01 0.17 ± 0.05 0.5 ± 0.14
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.64 ± 0.02 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.78 ± 0.03 0.4 ± 0.05 0.69 ± 0.02 - 0.58 ± 0.04 0.67 ± 0.02 0.54 ± 0.03 0.8 ± 0.03 0.19 ± 0.06 0.59 ± 0.04 0.52 ± 0.05 0.86 ± 0.05 0.45 ± 0.06 0.42 ± 0.07 0.89 ± 0.01 0.31 ± 0.04 0.72 ± 0.05
RF 0.66 ± 0.09 0.23 ± 0.05 0.41 ± 0.06 - 0.36 ± 0.05 0.33 ± 0.09 0.4 ± 0.04 0.62 ± 0.04 0.11 ± 0.06 0.45 ± 0.11 0.32 ± 0.02 0.79 ± 0.03 0.13 ± 0.11 0.21 ± 0.08 0.76 ± 0.06 0.15 ± 0.04 0.49 ± 0.07
Ridge 0.64 ± 0.1 0.22 ± 0.06 0.45 ± 0.06 - 0.43 ± 0.04 0.37 ± 0.08 0.42 ± 0.05 0.69 ± 0.06 0.1 ± 0.06 0.48 ± 0.1 0.34 ± 0.01 0.8 ± 0.04 0.25 ± 0.13 0.3 ± 0.05 0.82 ± 0.01 0.19 ± 0.04 0.62 ± 0.04

64 GP 0.78 ± 0.03 0.28 ± 0.04 0.42 ± 0.03 - 0.45 ± 0.02 0.38 ± 0.12 0.35 ± 0.08 0.66 ± 0.03 0.11 ± 0.03 0.36 ± 0.02 0.33 ± 0.02 0.81 ± 0.02 0.3 ± 0.08 0.38 ± 0.04 0.83 ± 0.01 0.21 ± 0.04 0.63 ± 0.07
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.64 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.82 ± 0.02 0.44 ± 0.05 0.72 ± 0.01 - 0.61 ± 0.02 0.7 ± 0.01 0.54 ± 0.03 0.85 ± 0.02 0.24 ± 0.05 0.67 ± 0.04 0.57 ± 0.03 0.89 ± 0.01 0.47 ± 0.04 0.47 ± 0.03 0.9 ± 0.01 0.33 ± 0.02 0.79 ± 0.02
RF 0.74 ± 0.01 0.33 ± 0.05 0.5 ± 0.03 - 0.45 ± 0.04 0.45 ± 0.08 0.45 ± 0.03 0.67 ± 0.02 0.2 ± 0.04 0.5 ± 0.04 0.36 ± 0.03 0.81 ± 0.02 0.18 ± 0.12 0.32 ± 0.05 0.82 ± 0.02 0.21 ± 0.04 0.65 ± 0.03
Ridge 0.76 ± 0.04 0.33 ± 0.05 0.53 ± 0.02 - 0.52 ± 0.04 0.49 ± 0.07 0.46 ± 0.03 0.78 ± 0.03 0.2 ± 0.02 0.54 ± 0.03 0.37 ± 0.02 0.85 ± 0.02 0.36 ± 0.06 0.39 ± 0.03 0.84 ± 0.01 0.25 ± 0.04 0.72 ± 0.02

128 GP 0.82 ± 0.02 0.32 ± 0.03 0.45 ± 0.04 - 0.49 ± 0.01 0.49 ± 0.06 0.4 ± 0.06 0.72 ± 0.02 0.18 ± 0.02 0.37 ± 0.02 0.34 ± 0.02 0.84 ± 0.01 0.39 ± 0.04 0.4 ± 0.03 0.84 ± 0.01 0.27 ± 0.03 0.75 ± 0.01
PRIMO (ICL) 0.8 ± 0.0 0.45 ± 0.0 0.68 ± 0.0 - 0.62 ± 0.0 0.68 ± 0.0 0.59 ± 0.0 0.64 ± 0.01 0.06 ± 0.0 0.57 ± 0.0 0.41 ± 0.0 0.85 ± 0.0 0.5 ± 0.0 0.45 ± 0.0 0.88 ± 0.0 0.24 ± 0.0 0.65 ± 0.0
PRIMO (TTT) 0.84 ± 0.01 0.48 ± 0.05 0.74 ± 0.01 - 0.66 ± 0.02 0.73 ± 0.02 0.6 ± 0.01 0.88 ± 0.01 0.29 ± 0.06 0.71 ± 0.04 0.63 ± 0.01 0.92 ± 0.0 0.54 ± 0.04 0.52 ± 0.02 0.91 ± 0.01 0.42 ± 0.03 0.81 ± 0.0
RF 0.79 ± 0.02 0.39 ± 0.04 0.59 ± 0.03 - 0.55 ± 0.02 0.59 ± 0.03 0.52 ± 0.02 0.72 ± 0.03 0.28 ± 0.04 0.58 ± 0.01 0.44 ± 0.02 0.85 ± 0.0 0.27 ± 0.05 0.38 ± 0.03 0.85 ± 0.01 0.33 ± 0.03 0.74 ± 0.03
Ridge 0.83 ± 0.02 0.37 ± 0.04 0.61 ± 0.03 - 0.57 ± 0.03 0.61 ± 0.02 0.5 ± 0.02 0.83 ± 0.02 0.27 ± 0.04 0.58 ± 0.02 0.41 ± 0.02 0.89 ± 0.01 0.44 ± 0.03 0.46 ± 0.03 0.87 ± 0.01 0.32 ± 0.04 0.78 ± 0.03
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Table A15: Substitution per-assay results on the hold out set (2/2).
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Shots

1 PRIMO (ICL) 0.08 ± 0.0 0.6 ± 0.0 0.17 ± 0.04 0.74 ± 0.0 0.65 ± 0.01 0.05 ± 0.0 0.72 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.51 ± 0.01 0.2 ± 0.0 0.76 ± 0.01 0.78 ± 0.05 0.45 ± 0.0 0.35 ± 0.01 0.75 ± 0.09
PRIMO (TTT) 0.08 ± 0.05 0.59 ± 0.01 0.34 ± 0.08 0.64 ± 0.12 0.43 ± 0.02 0.08 ± 0.01 0.64 ± 0.04 0.38 ± 0.01 0.45 ± 0.02 0.47 ± 0.03 0.57 ± 0.02 0.26 ± 0.02 0.72 ± 0.03 0.8 ± 0.02 0.42 ± 0.01 0.34 ± 0.01 0.73 ± 0.02

4 GP 0.08 ± 0.22 0.23 ± 0.12 0.25 ± 0.29 0.39 ± 0.34 0.25 ± 0.06 0.06 ± 0.02 0.5 ± 0.07 0.11 ± 0.13 0.19 ± 0.19 0.13 ± 0.14 0.29 ± 0.15 0.34 ± 0.09 0.57 ± 0.05 0.64 ± 0.15 0.23 ± 0.16 0.06 ± 0.1 0.5 ± 0.26
PRIMO (ICL) 0.07 ± 0.0 0.6 ± 0.0 0.21 ± 0.01 0.75 ± 0.01 0.65 ± 0.0 0.05 ± 0.0 0.73 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.52 ± 0.0 0.18 ± 0.01 0.76 ± 0.05 0.81 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.24 ± 0.14 0.56 ± 0.06 0.47 ± 0.07 0.69 ± 0.04 0.58 ± 0.04 0.06 ± 0.03 0.68 ± 0.02 0.33 ± 0.11 0.39 ± 0.12 0.34 ± 0.13 0.52 ± 0.04 0.29 ± 0.15 0.76 ± 0.02 0.79 ± 0.09 0.43 ± 0.06 0.25 ± 0.05 0.77 ± 0.02
RF 0.25 ± 0.14 0.17 ± 0.12 0.19 ± 0.23 0.31 ± 0.42 0.24 ± 0.07 0.05 ± 0.04 0.48 ± 0.07 0.15 ± 0.1 0.17 ± 0.22 0.09 ± 0.12 0.35 ± 0.09 0.31 ± 0.1 0.48 ± 0.07 0.65 ± 0.09 0.18 ± 0.09 0.04 ± 0.09 0.63 ± 0.1
Ridge 0.23 ± 0.12 0.24 ± 0.08 0.23 ± 0.17 0.42 ± 0.24 0.21 ± 0.14 -0.0 ± 0.03 0.5 ± 0.02 0.12 ± 0.17 0.15 ± 0.17 0.16 ± 0.12 0.37 ± 0.2 0.37 ± 0.1 0.5 ± 0.05 0.66 ± 0.08 0.23 ± 0.12 0.06 ± 0.07 0.65 ± 0.13

8 GP 0.08 ± 0.24 0.36 ± 0.04 0.53 ± 0.2 0.56 ± 0.07 0.32 ± 0.06 0.03 ± 0.03 0.56 ± 0.06 0.16 ± 0.12 0.19 ± 0.13 0.12 ± 0.15 0.42 ± 0.18 0.33 ± 0.13 0.6 ± 0.04 0.76 ± 0.07 0.25 ± 0.2 0.03 ± 0.06 0.67 ± 0.08
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.2 ± 0.01 0.75 ± 0.01 0.65 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.76 ± 0.04 0.82 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.22 ± 0.08 0.55 ± 0.05 0.61 ± 0.2 0.69 ± 0.06 0.61 ± 0.05 0.04 ± 0.05 0.67 ± 0.04 0.34 ± 0.1 0.43 ± 0.09 0.35 ± 0.12 0.54 ± 0.05 0.33 ± 0.06 0.74 ± 0.02 0.82 ± 0.06 0.38 ± 0.11 0.24 ± 0.08 0.78 ± 0.01
RF 0.34 ± 0.08 0.33 ± 0.08 0.5 ± 0.1 0.5 ± 0.14 0.31 ± 0.03 -0.02 ± 0.04 0.56 ± 0.04 0.21 ± 0.09 0.21 ± 0.12 0.15 ± 0.11 0.43 ± 0.11 0.3 ± 0.16 0.55 ± 0.04 0.73 ± 0.07 0.17 ± 0.14 0.1 ± 0.07 0.66 ± 0.07
Ridge 0.19 ± 0.18 0.35 ± 0.07 0.55 ± 0.16 0.56 ± 0.09 0.33 ± 0.18 0.0 ± 0.04 0.54 ± 0.03 0.22 ± 0.14 0.25 ± 0.19 0.17 ± 0.14 0.47 ± 0.13 0.28 ± 0.25 0.46 ± 0.08 0.76 ± 0.08 0.23 ± 0.17 0.04 ± 0.07 0.7 ± 0.05

16 GP 0.22 ± 0.04 0.42 ± 0.03 0.57 ± 0.11 0.66 ± 0.03 0.38 ± 0.06 0.05 ± 0.02 0.62 ± 0.05 0.2 ± 0.09 0.25 ± 0.04 0.22 ± 0.13 0.54 ± 0.08 0.42 ± 0.1 0.64 ± 0.02 0.81 ± 0.02 0.32 ± 0.12 0.08 ± 0.12 0.73 ± 0.04
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.2 ± 0.01 0.75 ± 0.0 0.65 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.77 ± 0.02 0.82 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.23 ± 0.07 0.6 ± 0.04 0.62 ± 0.14 0.75 ± 0.03 0.62 ± 0.03 0.05 ± 0.03 0.71 ± 0.03 0.42 ± 0.08 0.46 ± 0.08 0.45 ± 0.11 0.59 ± 0.06 0.34 ± 0.1 0.67 ± 0.11 0.85 ± 0.01 0.43 ± 0.14 0.24 ± 0.06 0.78 ± 0.02
RF 0.33 ± 0.05 0.39 ± 0.07 0.53 ± 0.15 0.65 ± 0.04 0.38 ± 0.05 0.08 ± 0.04 0.59 ± 0.04 0.26 ± 0.08 0.32 ± 0.06 0.24 ± 0.12 0.52 ± 0.09 0.41 ± 0.12 0.58 ± 0.03 0.8 ± 0.02 0.27 ± 0.07 0.16 ± 0.08 0.72 ± 0.03
Ridge 0.23 ± 0.09 0.45 ± 0.06 0.6 ± 0.11 0.66 ± 0.03 0.45 ± 0.09 0.04 ± 0.02 0.6 ± 0.05 0.29 ± 0.1 0.29 ± 0.14 0.29 ± 0.13 0.53 ± 0.07 0.36 ± 0.15 0.53 ± 0.05 0.82 ± 0.01 0.35 ± 0.12 0.12 ± 0.12 0.72 ± 0.02

32 GP 0.32 ± 0.04 0.43 ± 0.06 0.65 ± 0.05 0.7 ± 0.04 0.53 ± 0.05 0.06 ± 0.01 0.67 ± 0.03 0.29 ± 0.14 0.38 ± 0.1 0.24 ± 0.13 0.57 ± 0.07 0.46 ± 0.06 0.7 ± 0.05 0.83 ± 0.01 0.4 ± 0.1 0.24 ± 0.04 0.77 ± 0.02
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.2 ± 0.01 0.75 ± 0.0 0.65 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.77 ± 0.01 0.82 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.31 ± 0.05 0.62 ± 0.04 0.7 ± 0.1 0.77 ± 0.02 0.65 ± 0.01 0.1 ± 0.04 0.72 ± 0.04 0.49 ± 0.08 0.61 ± 0.05 0.51 ± 0.1 0.59 ± 0.07 0.34 ± 0.09 0.76 ± 0.04 0.87 ± 0.02 0.46 ± 0.08 0.31 ± 0.05 0.79 ± 0.01
RF 0.41 ± 0.03 0.45 ± 0.08 0.61 ± 0.12 0.68 ± 0.02 0.49 ± 0.07 0.1 ± 0.05 0.61 ± 0.06 0.39 ± 0.07 0.41 ± 0.05 0.28 ± 0.13 0.59 ± 0.01 0.46 ± 0.07 0.66 ± 0.04 0.81 ± 0.02 0.37 ± 0.1 0.24 ± 0.06 0.73 ± 0.03
Ridge 0.32 ± 0.06 0.5 ± 0.06 0.72 ± 0.07 0.7 ± 0.02 0.6 ± 0.05 0.05 ± 0.05 0.63 ± 0.04 0.38 ± 0.11 0.44 ± 0.04 0.36 ± 0.12 0.56 ± 0.09 0.44 ± 0.11 0.7 ± 0.07 0.84 ± 0.02 0.39 ± 0.11 0.25 ± 0.02 0.72 ± 0.05

64 GP 0.35 ± 0.03 0.5 ± 0.03 0.75 ± 0.03 0.72 ± 0.03 0.58 ± 0.04 0.05 ± 0.04 0.69 ± 0.02 0.41 ± 0.06 0.49 ± 0.08 0.37 ± 0.06 0.63 ± 0.03 0.53 ± 0.03 0.75 ± 0.03 0.85 ± 0.01 0.43 ± 0.04 0.31 ± 0.06 0.8 ± 0.02
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.21 ± 0.01 0.75 ± 0.0 0.65 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.78 ± 0.0 0.82 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.35 ± 0.06 0.66 ± 0.03 0.77 ± 0.05 0.79 ± 0.02 0.67 ± 0.03 0.14 ± 0.05 0.74 ± 0.03 0.56 ± 0.05 0.69 ± 0.04 0.61 ± 0.05 0.68 ± 0.03 0.44 ± 0.08 0.81 ± 0.03 0.89 ± 0.01 0.51 ± 0.01 0.35 ± 0.07 0.83 ± 0.01
RF 0.43 ± 0.03 0.5 ± 0.04 0.76 ± 0.03 0.73 ± 0.03 0.55 ± 0.05 0.1 ± 0.01 0.66 ± 0.02 0.49 ± 0.02 0.53 ± 0.02 0.41 ± 0.06 0.65 ± 0.02 0.51 ± 0.05 0.7 ± 0.05 0.83 ± 0.02 0.43 ± 0.03 0.37 ± 0.04 0.78 ± 0.02
Ridge 0.37 ± 0.06 0.6 ± 0.02 0.83 ± 0.02 0.75 ± 0.01 0.62 ± 0.03 0.05 ± 0.07 0.71 ± 0.03 0.51 ± 0.04 0.56 ± 0.04 0.49 ± 0.04 0.67 ± 0.03 0.56 ± 0.05 0.78 ± 0.03 0.87 ± 0.01 0.46 ± 0.03 0.37 ± 0.05 0.79 ± 0.01

128 GP 0.42 ± 0.03 0.54 ± 0.03 0.82 ± 0.01 0.75 ± 0.02 0.64 ± 0.03 0.11 ± 0.04 0.75 ± 0.01 0.49 ± 0.03 0.57 ± 0.03 0.43 ± 0.04 0.69 ± 0.01 0.62 ± 0.01 0.81 ± 0.02 0.87 ± 0.0 0.51 ± 0.04 0.37 ± 0.02 0.81 ± 0.02
PRIMO (ICL) 0.06 ± 0.0 0.6 ± 0.0 0.21 ± 0.0 0.75 ± 0.0 0.65 ± 0.0 0.06 ± 0.0 0.74 ± 0.0 0.4 ± 0.0 0.45 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0.17 ± 0.0 0.78 ± 0.0 0.82 ± 0.0 0.45 ± 0.0 0.36 ± 0.0 0.79 ± 0.0
PRIMO (TTT) 0.42 ± 0.03 0.71 ± 0.01 0.78 ± 0.07 0.82 ± 0.02 0.71 ± 0.03 0.2 ± 0.04 0.8 ± 0.02 0.65 ± 0.02 0.75 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.56 ± 0.03 0.85 ± 0.01 0.9 ± 0.01 0.56 ± 0.03 0.47 ± 0.04 0.85 ± 0.01
RF 0.49 ± 0.01 0.59 ± 0.02 0.81 ± 0.02 0.78 ± 0.01 0.61 ± 0.03 0.18 ± 0.03 0.73 ± 0.01 0.58 ± 0.02 0.62 ± 0.03 0.48 ± 0.03 0.71 ± 0.02 0.61 ± 0.02 0.77 ± 0.01 0.86 ± 0.01 0.54 ± 0.03 0.45 ± 0.04 0.81 ± 0.03
Ridge 0.46 ± 0.04 0.66 ± 0.02 0.87 ± 0.0 0.8 ± 0.02 0.69 ± 0.04 0.13 ± 0.05 0.81 ± 0.02 0.59 ± 0.02 0.67 ± 0.02 0.58 ± 0.04 0.77 ± 0.02 0.71 ± 0.03 0.86 ± 0.02 0.89 ± 0.0 0.57 ± 0.02 0.43 ± 0.04 0.83 ± 0.02
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Table A16: Indel per-assay results on the hold out set (1/2).

A
M

FR
_H

U
M

A
N

_T
suboyam

a_2023_4G
3O

B
L

A
T

_E
C

O
L

X
_D

eng_2012

B
L

A
T

_E
C

O
L

X
_Firnberg_2014

B
L

A
T

_E
C

O
L

X
_G

onzalez_2019

B
L

A
T

_E
C

O
L

X
_Jacquier_2013

B
L

A
T

_E
C

O
L

X
_Stiffler_2015

C
A

SP3_H
U

M
A

N
_R

oychow
dhury_2020

C
SN

4_M
O

U
SE

_T
suboyam

a_2023_1U
FM

D
7PM

05_C
LY

G
R

_Som
erm

eyer_2022

D
L

G
4_H

U
M

A
N

_Faure_2021

D
L

G
4_R

A
T

_M
cL

aughlin_2012

D
N

JA
1_H

U
M

A
N

_T
suboyam

a_2023_2L
O

1

D
Y

R
_E

C
O

L
I_N

guyen_2023

D
Y

R
_E

C
O

L
I_T

hom
pson_2019

E
PH

B
2_H

U
M

A
N

_T
suboyam

a_2023_1F0M

E
STA

_B
A

C
SU

_N
utschel_2020

FE
C

A
_E

C
O

L
I_T

suboyam
a_2023_2D

1U

Shots Method

1 PRIMO (ICL) 0.69 ± 0.02 - - 0.56 ± 0.03 - - - 0.81 ± 0.0 - - - 0.76 ± 0.03 - - 0.7 ± 0.02 - 0.47 ± 0.01
PRIMO (TTT) 0.7 ± 0.02 - - 0.57 ± 0.02 - - - 0.82 ± 0.03 - - - 0.75 ± 0.03 - - 0.68 ± 0.06 - 0.46 ± 0.02

4 GP -0.45 ± 0.21 - - 0.13 ± 0.51 - - - 0.65 ± 0.05 - - - 0.65 ± 0.2 - - 0.49 ± 0.1 - 0.41 ± 0.04
PRIMO (ICL) 0.71 ± 0.01 - - 0.61 ± 0.0 - - - 0.8 ± 0.0 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.47 ± 0.01
PRIMO (TTT) 0.45 ± 0.4 - - 0.62 ± 0.06 - - - 0.81 ± 0.04 - - - 0.78 ± 0.01 - - 0.76 ± 0.03 - 0.4 ± 0.11
RF 0.24 ± 0.57 - - 0.34 ± 0.32 - - - 0.4 ± 0.53 - - - 0.53 ± 0.37 - - 0.48 ± 0.1 - -0.02 ± 0.22
Ridge 0.21 ± 0.51 - - 0.34 ± 0.26 - - - 0.49 ± 0.28 - - - 0.57 ± 0.34 - - 0.61 ± 0.1 - 0.19 ± 0.2

8 GP -0.31 ± 0.24 - - 0.34 ± 0.39 - - - 0.71 ± 0.03 - - - 0.7 ± 0.14 - - 0.5 ± 0.08 - 0.43 ± 0.04
PRIMO (ICL) 0.71 ± 0.01 - - 0.61 ± 0.0 - - - 0.79 ± 0.0 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.46 ± 0.0
PRIMO (TTT) 0.66 ± 0.09 - - 0.64 ± 0.03 - - - 0.67 ± 0.28 - - - 0.77 ± 0.05 - - 0.73 ± 0.08 - 0.43 ± 0.04
RF 0.31 ± 0.37 - - 0.34 ± 0.12 - - - 0.37 ± 0.36 - - - 0.58 ± 0.26 - - 0.61 ± 0.06 - 0.21 ± 0.12
Ridge 0.53 ± 0.08 - - 0.38 ± 0.16 - - - 0.42 ± 0.28 - - - 0.53 ± 0.39 - - 0.62 ± 0.12 - 0.27 ± 0.1

16 GP -0.27 ± 0.2 - - 0.57 ± 0.04 - - - 0.72 ± 0.04 - - - 0.8 ± 0.03 - - 0.52 ± 0.07 - 0.44 ± 0.04
PRIMO (ICL) 0.69 ± 0.02 - - 0.6 ± 0.0 - - - 0.79 ± 0.01 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.46 ± 0.0
PRIMO (TTT) 0.66 ± 0.05 - - 0.61 ± 0.06 - - - 0.75 ± 0.06 - - - 0.83 ± 0.03 - - 0.7 ± 0.08 - 0.45 ± 0.09
RF 0.42 ± 0.3 - - 0.32 ± 0.07 - - - 0.51 ± 0.49 - - - 0.78 ± 0.06 - - 0.62 ± 0.03 - 0.27 ± 0.1
Ridge 0.49 ± 0.17 - - 0.44 ± 0.11 - - - 0.54 ± 0.34 - - - 0.76 ± 0.11 - - 0.57 ± 0.18 - 0.31 ± 0.09

32 GP -0.22 ± 0.28 - - 0.62 ± 0.02 - - - 0.75 ± 0.03 - - - 0.84 ± 0.02 - - 0.54 ± 0.03 - 0.47 ± 0.05
PRIMO (ICL) 0.69 ± 0.01 - - 0.61 ± 0.0 - - - 0.79 ± 0.0 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.46 ± 0.0
PRIMO (TTT) 0.56 ± 0.13 - - 0.72 ± 0.04 - - - 0.72 ± 0.09 - - - 0.84 ± 0.01 - - 0.69 ± 0.06 - 0.4 ± 0.06
RF 0.31 ± 0.3 - - 0.4 ± 0.16 - - - 0.48 ± 0.22 - - - 0.78 ± 0.04 - - 0.57 ± 0.07 - 0.32 ± 0.16
Ridge 0.38 ± 0.14 - - 0.48 ± 0.09 - - - 0.67 ± 0.18 - - - 0.77 ± 0.1 - - 0.65 ± 0.08 - 0.4 ± 0.12

64 GP -0.09 ± 0.28 - - 0.64 ± 0.01 - - - 0.77 ± 0.02 - - - 0.85 ± 0.03 - - 0.65 ± 0.11 - 0.53 ± 0.07
PRIMO (ICL) 0.7 ± 0.01 - - 0.6 ± 0.0 - - - 0.78 ± 0.0 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.46 ± 0.0
PRIMO (TTT) 0.55 ± 0.16 - - 0.78 ± 0.03 - - - 0.82 ± 0.04 - - - 0.84 ± 0.03 - - 0.71 ± 0.1 - 0.39 ± 0.05
RF 0.47 ± 0.09 - - 0.56 ± 0.07 - - - 0.57 ± 0.17 - - - 0.8 ± 0.04 - - 0.65 ± 0.09 - 0.45 ± 0.12
Ridge 0.46 ± 0.13 - - 0.57 ± 0.1 - - - 0.7 ± 0.12 - - - 0.79 ± 0.06 - - 0.66 ± 0.12 - 0.45 ± 0.09

128 GP 0.03 ± 0.22 - - 0.66 ± 0.01 - - - 0.8 ± 0.03 - - - 0.87 ± 0.02 - - 0.72 ± 0.08 - 0.63 ± 0.07
PRIMO (ICL) 0.69 ± 0.0 - - 0.61 ± 0.0 - - - 0.78 ± 0.0 - - - 0.78 ± 0.0 - - 0.69 ± 0.0 - 0.46 ± 0.0
PRIMO (TTT) 0.55 ± 0.14 - - 0.82 ± 0.02 - - - 0.84 ± 0.04 - - - 0.87 ± 0.02 - - 0.75 ± 0.06 - 0.51 ± 0.08
RF 0.5 ± 0.09 - - 0.67 ± 0.04 - - - 0.68 ± 0.11 - - - 0.82 ± 0.05 - - 0.69 ± 0.08 - 0.58 ± 0.11
Ridge 0.51 ± 0.13 - - 0.63 ± 0.04 - - - 0.79 ± 0.04 - - - 0.84 ± 0.04 - - 0.7 ± 0.1 - 0.58 ± 0.11

25



Table A17: Indel per-assay results on the hold out set (2/2).
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1 PRIMO (ICL) - - 0.11 ± 0.03 0.75 ± 0.01 0.84 ± 0.01 - 0.52 ± 0.01 - - - - - 0.61 ± 0.02 0.66 ± 0.02 - - 0.85 ± 0.02
PRIMO (TTT) - - 0.01 ± 0.05 0.69 ± 0.01 0.85 ± 0.01 - 0.71 ± 0.03 - - - - - 0.61 ± 0.03 0.72 ± 0.02 - - 0.84 ± 0.02

4 GP - - 0.18 ± 0.35 0.39 ± 0.57 0.79 ± 0.05 - -0.29 ± 0.35 - - - - - 0.32 ± 0.1 0.48 ± 0.27 - - 0.05 ± 0.53
PRIMO (ICL) - - 0.12 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 - 0.53 ± 0.03 - - - - - 0.61 ± 0.08 0.66 ± 0.02 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.23 ± 0.12 0.76 ± 0.07 0.78 ± 0.09 - 0.69 ± 0.04 - - - - - 0.59 ± 0.05 0.74 ± 0.07 - - 0.83 ± 0.05
RF - - 0.09 ± 0.36 0.26 ± 0.56 0.6 ± 0.19 - 0.63 ± 0.04 - - - - - 0.26 ± 0.05 0.53 ± 0.11 - - 0.75 ± 0.07
Ridge - - 0.17 ± 0.24 0.39 ± 0.51 0.42 ± 0.31 - 0.48 ± 0.32 - - - - - 0.28 ± 0.06 0.59 ± 0.11 - - 0.75 ± 0.06

8 GP - - 0.42 ± 0.11 0.59 ± 0.37 0.79 ± 0.04 - 0.06 ± 0.28 - - - - - 0.32 ± 0.09 0.68 ± 0.14 - - 0.4 ± 0.23
PRIMO (ICL) - - 0.11 ± 0.0 0.77 ± 0.01 0.83 ± 0.0 - 0.52 ± 0.03 - - - - - 0.61 ± 0.07 0.66 ± 0.01 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.34 ± 0.1 0.76 ± 0.07 0.82 ± 0.04 - 0.58 ± 0.2 - - - - - 0.57 ± 0.04 0.75 ± 0.03 - - 0.81 ± 0.08
RF - - 0.32 ± 0.08 0.52 ± 0.26 0.7 ± 0.08 - 0.62 ± 0.1 - - - - - 0.28 ± 0.09 0.62 ± 0.12 - - 0.78 ± 0.07
Ridge - - 0.32 ± 0.11 0.63 ± 0.14 0.49 ± 0.32 - 0.47 ± 0.4 - - - - - 0.24 ± 0.05 0.69 ± 0.07 - - 0.8 ± 0.01

16 GP - - 0.45 ± 0.09 0.73 ± 0.12 0.74 ± 0.12 - 0.12 ± 0.23 - - - - - 0.28 ± 0.1 0.73 ± 0.06 - - 0.62 ± 0.1
PRIMO (ICL) - - 0.12 ± 0.0 0.76 ± 0.0 0.84 ± 0.0 - 0.53 ± 0.03 - - - - - 0.61 ± 0.03 0.64 ± 0.01 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.34 ± 0.1 0.8 ± 0.03 0.75 ± 0.13 - 0.68 ± 0.04 - - - - - 0.53 ± 0.08 0.77 ± 0.03 - - 0.8 ± 0.07
RF - - 0.36 ± 0.08 0.7 ± 0.11 0.69 ± 0.07 - 0.65 ± 0.08 - - - - - 0.33 ± 0.04 0.68 ± 0.04 - - 0.78 ± 0.03
Ridge - - 0.4 ± 0.09 0.71 ± 0.12 0.68 ± 0.14 - 0.54 ± 0.16 - - - - - 0.27 ± 0.11 0.73 ± 0.07 - - 0.78 ± 0.03

32 GP - - 0.48 ± 0.03 0.78 ± 0.04 0.77 ± 0.07 - 0.26 ± 0.2 - - - - - 0.3 ± 0.14 0.78 ± 0.03 - - 0.69 ± 0.02
PRIMO (ICL) - - 0.12 ± 0.01 0.76 ± 0.0 0.84 ± 0.0 - 0.53 ± 0.03 - - - - - 0.62 ± 0.02 0.63 ± 0.01 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.41 ± 0.12 0.8 ± 0.04 0.83 ± 0.05 - 0.71 ± 0.1 - - - - - 0.62 ± 0.06 0.79 ± 0.03 - - 0.83 ± 0.05
RF - - 0.42 ± 0.09 0.72 ± 0.14 0.76 ± 0.04 - 0.67 ± 0.05 - - - - - 0.41 ± 0.09 0.7 ± 0.06 - - 0.8 ± 0.02
Ridge - - 0.44 ± 0.09 0.69 ± 0.17 0.7 ± 0.12 - 0.48 ± 0.32 - - - - - 0.42 ± 0.1 0.75 ± 0.03 - - 0.8 ± 0.04

64 GP - - 0.55 ± 0.04 0.8 ± 0.02 0.81 ± 0.03 - 0.28 ± 0.17 - - - - - 0.37 ± 0.13 0.78 ± 0.04 - - 0.72 ± 0.01
PRIMO (ICL) - - 0.12 ± 0.0 0.76 ± 0.0 0.84 ± 0.0 - 0.53 ± 0.01 - - - - - 0.63 ± 0.01 0.63 ± 0.01 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.5 ± 0.13 0.8 ± 0.06 0.85 ± 0.03 - 0.61 ± 0.14 - - - - - 0.7 ± 0.06 0.78 ± 0.03 - - 0.85 ± 0.02
RF - - 0.5 ± 0.02 0.79 ± 0.02 0.81 ± 0.03 - 0.66 ± 0.09 - - - - - 0.53 ± 0.1 0.68 ± 0.09 - - 0.82 ± 0.03
Ridge - - 0.52 ± 0.09 0.75 ± 0.05 0.78 ± 0.1 - 0.38 ± 0.26 - - - - - 0.54 ± 0.09 0.77 ± 0.02 - - 0.8 ± 0.04

128 GP - - 0.57 ± 0.05 0.81 ± 0.02 0.84 ± 0.03 - 0.45 ± 0.1 - - - - - 0.47 ± 0.11 0.79 ± 0.02 - - 0.74 ± 0.02
PRIMO (ICL) - - 0.12 ± 0.0 0.76 ± 0.0 0.84 ± 0.0 - 0.52 ± 0.01 - - - - - 0.63 ± 0.01 0.63 ± 0.01 - - 0.87 ± 0.0
PRIMO (TTT) - - 0.55 ± 0.14 0.82 ± 0.02 0.87 ± 0.02 - 0.79 ± 0.04 - - - - - 0.73 ± 0.01 0.79 ± 0.05 - - 0.85 ± 0.02
RF - - 0.54 ± 0.03 0.81 ± 0.02 0.81 ± 0.03 - 0.71 ± 0.04 - - - - - 0.61 ± 0.09 0.73 ± 0.04 - - 0.82 ± 0.02
Ridge - - 0.54 ± 0.12 0.8 ± 0.04 0.86 ± 0.02 - 0.64 ± 0.06 - - - - - 0.62 ± 0.08 0.83 ± 0.02 - - 0.84 ± 0.02
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C.5 Performance by MSA Depth

Table A18: Performance grouped by different levels of MSA depth as defined in ProteinGym.
Depth Model 0 4 8 16 32 64 128

High GP 0.51 0.3 ± 0.03 0.38 ± 0.04 0.44 ± 0.03 0.49 ± 0.01 0.54 ± 0.01 0.59 ± 0.01
Ridge 0.51 0.3 ± 0.02 0.38 ± 0.04 0.45 ± 0.02 0.52 ± 0.02 0.59 ± 0.01 0.65 ± 0.01
RF - 0.26 ± 0.03 0.36 ± 0.03 0.43 ± 0.02 0.48 ± 0.01 0.55 ± 0.01 0.62 ± 0.01
PRIMO (ICL) 0.6 ± 0.03 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0 0.64 ± 0.0
PRIMO (TTT) 0.6 ± 0.01 0.57 ± 0.02 0.59 ± 0.02 0.62 ± 0.01 0.65 ± 0.01 0.68 ± 0.01 0.71 ± 0.01

Medium GP 0.37 0.26 ± 0.03 0.34 ± 0.03 0.41 ± 0.03 0.48 ± 0.02 0.56 ± 0.01 0.62 ± 0.01
Ridge 0.37 0.27 ± 0.04 0.34 ± 0.03 0.43 ± 0.02 0.51 ± 0.02 0.61 ± 0.01 0.69 ± 0.01
RF - 0.24 ± 0.02 0.33 ± 0.03 0.41 ± 0.01 0.48 ± 0.02 0.56 ± 0.01 0.63 ± 0.0
PRIMO (ICL) 0.52 ± 0.01 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0
PRIMO (TTT) 0.51 ± 0.01 0.48 ± 0.02 0.5 ± 0.03 0.54 ± 0.02 0.6 ± 0.03 0.65 ± 0.01 0.71 ± 0.0

Low GP 0.26 0.09 ± 0.05 0.11 ± 0.05 0.18 ± 0.0 0.22 ± 0.01 0.24 ± 0.01 0.29 ± 0.01
Ridge 0.26 0.12 ± 0.01 0.14 ± 0.04 0.2 ± 0.03 0.26 ± 0.03 0.31 ± 0.01 0.37 ± 0.01
RF - 0.12 ± 0.04 0.16 ± 0.03 0.21 ± 0.02 0.28 ± 0.03 0.32 ± 0.01 0.39 ± 0.0
PRIMO (ICL) 0.24 ± 0.0 0.23 ± 0.0 0.23 ± 0.0 0.23 ± 0.0 0.23 ± 0.0 0.23 ± 0.0 0.23 ± 0.0
PRIMO (TTT) 0.25 ± 0.01 0.26 ± 0.03 0.23 ± 0.03 0.28 ± 0.03 0.33 ± 0.03 0.39 ± 0.01 0.45 ± 0.01

Software and Data

Code is available at https://anonymous.4open.science/r/PRIMO-D3F9/README.md
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