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ABSTRACT

Kolmogorov–Arnold Networks (KANs) offer strong theoretical representational
power but, like MLPs and CNNs, remain vulnerable to adversarial attacks. Bench-
marks on Fashion MNIST and CIFAR10 confirm this susceptibility. We introduce
GloroKAN, leveraging KANs’ B-spline structure to approximate local Lipschitz
constants directly in the forward pass, boosting robustness without gradient-based
adversarial training and approaching adversarially trained performance. Addi-
tionally, we propose a verification method using algebraic geometry to exploit
KANs’ piecewise polynomial nature. While these findings highlight KANs’ po-
tential for robust, interpretable models, further research is needed to realize their
full promise.

1 INTRODUCTION

Deep neural networks have shown remarkable performance in various domains, from computer vi-
sion to natural language processing. Despite their impressive capabilities, these models often lack
robustness against adversarial perturbations (Carlini et al., 2019; Croce & Hein, 2020). Small, care-
fully constructed changes to inputs can drastically alter a model’s output, posing significant safety
and reliability concerns in real-world applications such as autonomous driving, medical diagnosis,
and cybersecurity.

Kolmogorov–Arnold Networks (KANs) constitute a distinct architectural family arising from the
classical Kolmogorov–Arnold superposition theorem, which guarantees that any multivariate con-
tinuous function can be decomposed into compositions of univariate functions (Lin & Unbehauen,
1993; Köppen, 2002; Montanelli & Yang, 2020). Recently, these networks have gained renewed
attention as potentially more interpretable or structured architectures, featuring explicit forms of
learnable activation functions realized via B-splines (Liu et al., 2024). Despite promising theoretical
guarantees in terms of representational power, the robustness of KANs has not been deeply stud-
ied, and existing research indicates they can exhibit similar vulnerabilities to adversarial attacks as
conventional deep networks (Alter et al., 2024; Zeng et al., 2024; Shen et al., 2024).

In this work, we take a systematic look at adversarial robustness in KANs. We first benchmark Kol-
mogorov–Arnold Networks against standard multi-layer perceptrons (MLPs) and convolutional neu-
ral networks (CNNs) on two canonical datasets, Fashion MNIST and CIFAR10. Through extensive
experiments under various attack methods (Auto Attack (Croce & Hein, 2020) and spatial transfor-
mations (Engstrom et al., 2019)), we show how KANs compare in terms of adversarial accuracy and
clean accuracy. Beyond empirical findings, we also propose a novel training approach that leverages
the structural properties of B-splines in KANs to approximate local Lipschitz constants directly in
the forward pass of the network. This strategy yields a new model variant, GloroKAN, that can be
seen as arbitrarily close to a globally robust classifier for appropriately small neighborhoods around
input data—without requiring computationally expensive backward passes for gradient-based adver-
sarial training methods. Furthermore, we propose a new robustness verification method for KANs
based on the work of Newton (2023) for neural networks. This approach is based on some theory
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from algebraic geometry. Since KAN activations are piecewise polynomials and algebraic geometry
deals with sets defined by relations of polynomials, we believe this to be a suitable approach.

Contributions. The key contributions of this paper are:

• Benchmarking KANs for adversarial robustness. We provide a thorough empirical
comparison of KANs, MLPs, and CNNs with and without adversarial training on Fash-
ion MNIST and CIFAR10, evaluating both l∞ robustness and spatial robustness.

• New training method for robustness. We introduce a novel procedure, GloroKAN, that
exploits the B-spline structure of KANs to compute an approximate local Lipschitz constant
in one forward pass. We prove that GloroKAN approaches a model with guaranteed global
robustness in small neighborhoods.

• Verification via semialgebraic sets. We show how the piecewise polynomial nature of
KAN activations can be harnessed for formal robustness verification via semialgebraic set
methods, thus bridging a gap between theoretical guarantees and practical verifiability.

The remainder of this paper is structured as follows. In Sec. 2, we summarize related work on
Kolmogorov-Arnold Networks, adversarial robustness, and verification strategies. We then intro-
duce in Sec. 3.2 our new Robustness Training method and prove that it yields a model arbitrarily
close to a globally robust classifier. Sec. 3.3 details a Robustness Verification approach grounded
in algebraic geometry for bounding the network’s output on polytopic input sets. In Sec. 4.1 we
present an empirical Benchmarking of KANs by evaluating various architectures on Fashion MNIST
and CIFAR10 with different attack methods. Sec. 4.2 analyses the empirical results of our new
Robustness Training method. The paper closes with conclusions and an outlook to future work.

2 RELATED WORK

The topic of Kolmogorov-Arnold Networks (KANs) has recently gained increased interest through
Liu et al. (2024). Previous publications on this topic are Sprecher David A (2002); Köppen (2002);
Lin & Unbehauen (1993); Lai & Shen (2024); Fakhoury et al. (2022); Montanelli & Yang (2020);
He (2023). Applications of KANs include time series, e.g., Genet & Inzirillo (2024), the medical
field, e.g., Tang et al. (2024), computer vision, e.g., Mahara et al. (2024), Graph Neural Networks,
e.g., Xu et al. (2024), and Physics Informed Neural Networks, e.g., Abueidda et al. (2025). A recent
survey on KANs can be found in Ji et al. (2025).

One of the first publications to mention the existence of adversarial attacks is Goodfellow et al.
(2015). A good overview of the topic of adversarial robustness can be found in Bai et al. (2021);
Silva & Najafirad (2020). In Carlini et al. (2019) best practices for the evaluation of machine learning
models with regard to adversarial robustness are given.

The adversarial robustness of KANs has not yet been comprehensively investigated. To the best
of the authors’ knowledge, there are only a few publications to refer to that mainly deal with the
adversarial robustness analysis of KANs. Publications that can be mentioned are Shen et al. (2024),
Alter et al. (2024) and Zeng et al. (2024). As is already known for other deep neural networks, KANs
are also susceptible to perturbations Shen et al. (2024). Alter et al. (2024) has already benchmarked
different KAN models.

Robustness verification aims to provide formal guarantees that a model’s predictions remain con-
sistent under bounded adversarial or natural perturbations. Early methods focused on exact, solver-
based approaches. For instance, Reluplex Katz et al. (2017) formulates the problem as an SMT
instance to systematically search for adversarial examples or prove their absence in piecewise linear
networks. MILP-based approaches such as Tjeng et al. (2019) similarly leverage integer program-
ming formulations to offer exact robustness guarantees, though these approaches often face high
computational costs when scaling to large networks. More scalable methods typically rely on ab-
stractions or relaxations that bound the outputs of layers under all possible perturbations. Abstract
interpretation Gehr et al. (2018) is a representative framework in this vein, providing approximate
yet formally sound robustness certificates. Recently, auto LiRPA Xu et al. (2020) has emerged as
a versatile tool that automates linear relaxation–based bounding methods, making it easier to verify
larger and more diverse network architectures.
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3 METHODS

3.1 PREREQUISITES

KANs are neural network architectures based on the Kolmogorov–Arnold superposition theorem.
For a detailed introduction, we refer the reader to (Liu et al., 2024). We will use the following
definition of local robustness of a model f : Rm → Rn with F (x) := argmax f(x). F is the class
prediction of our model f .
Definition 3.1. A model f is locally robust around x with true label y and radius r if

||x− x′|| ≤ r ⇒ y = F (x′) (1)

In order to describe the global behaviour of a model f , we introduce the following naı̈ve score for
global robustness:
Definition 3.2. Let D be a probability distribution on Rm and l : Rm → {1, . . . , n} the function
that assigns the true label to each data point. Then we define

R(f) := Ex∼D
[
1 l(x)=F (x′), ∀x′ with ||x−x′||≤r}

]
. (2)

R(f) is called the global robustness score of model f . For realizations x1, . . . , xl, l ∈ N, from D,

R̃(f) :=

l∑
i=1

[
1 l(xi)=F (x′), ∀x′ with ||xi−x′||≤r}

]
(3)

is called the empirical global robustness score of model f .

Obviously 0 ≤ R(f) ≤ 1 applies. The robustness of model f increases with larger values of R(f).

3.2 ROBUSTNESS TRAINING

The main idea of this section is to use an idea of a training method taken from Leino et al. (2021)
and change the computation of Lipschitz constants by taking benefit out of the special structure of
KANs. We prove analytically that our new model gets arbitrarily close to a model with guaranteed
global robustness without the need to compute gradients with respect to the inputs in a backward
pass. More precisely, KANs use a weighted sum of B-splines plus a basis function as learnable
activation functions Liu et al. (2024). For t0, . . . , tm, m ∈ N a B-spline is defined by

Bi,0(x) :=

{
1, if ti ≤ x ≤ ti+1

0 otherwise
.

and

Bi,k(x) :=
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x) .

for 0 ≤ i < m and k ≥ 0, see also de Boor (2002). (Bi,k)0≤i<m is called a B-Spline of order k.
For a B-spline of order k, the derivative is given by

dBi,k(x)

dx
= k

(
Bi,k−1(x)

ti+k − ti
− Bi+1,k−1(x)

ti+k+1 − ti+1

)
. (4)

Due to the recursive definition of the B-splines, the derivative of the B-splines with respect to x can
be calculated directly in the forward pass of the KAN model.

To apply the method proposed in Leino et al. (2021), one has to compute the Lipschitz constant for
every fi, 1 ≤ i ≤ n, where fi is the i-th element of f and thus

f = (f1, . . . , fn) . (5)

We propose to focus on local Lipschitz constants instead of a global Lipschitz constant. Computing
the exact local Lipschitz constant is NP-hard Katz et al. (2017), so it is necessary to think of approx-
imations to the local Lipschitz constant if one wants to reduce the complexity of the computation.
We introduce the definition of a local Lipschitz constant:
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Definition 3.3. Let h : Rm → R be a differentiable function. For each x ∈ Rm and r > 0, we
define

Lx,r := inf{L | |h(y)− h(z)| ≤ L∥y − z∥, ∀y, z ∈ U(x, r)} .
U(x, r) is the sphere around x with radius r, i.e., U(x, r) := {y | ∥y − x∥ ≤ r}. In the following,
Lx,r is referred to as the (smallest) local Lipschitz constant for h at the point x with radius r.

The following statement also applies to the smallest local Lipschitz constant. Proofs of the state-
ments can be found in the appendix.
Remark 3.4. If h : Rm → R is differentiable and Lipschitz-continuous with constant L, then

max
1≤i≤m

∣∣∣∣ ddxh(x)
∣∣∣∣ = max

1≤i≤m

(∣∣∣∣ ∂

∂x1
h(x)

∣∣∣∣ , . . . , ∣∣∣∣ ∂

∂xm
h(x)

∣∣∣∣) ≤ L .

The maximum over all partial derivatives in absolute value is smaller than the Lipschitz constant L.
If we consider the local Lipschitz constant instead, the limit value is even equal, as the following
lemma shows.
Lemma 3.5. Let h : Rm → R be continuously differentiable. Then holds

max
1≤i≤m

∣∣∣∣ ddxh(x)
∣∣∣∣ = max

1≤i≤m

(∣∣∣∣ ∂

∂x1
h(x)

∣∣∣∣ , . . . , ∣∣∣∣ ∂

∂xm
h(x)

∣∣∣∣) = lim
r→0

Lx,r . (6)

Lemma 3.5 implies that in small neighborhoods around a point x, the maximum magnitude of the
partial derivatives provides a suitable approximation for the local Lipschitz constant. In our method
for training KANs, we will use the left-hand side of (6) as an approximation for the local Lipschitz
constant. We will now briefly introduce the idea from Leino et al. (2021), for more details we refer
to this source. Let f be as in (5) and and (Ki)1≤i≤n ∈ Rn. Let

f̃(x, (Ki)1≤i≤n) :=

{
fi(x), 1 ≤ i ≤ n

maxi ̸=j{yi + (Ki +Kj)Hr̃}, y = f(x), j = F (x), i = n+ 1
(7)

for every r̃ > 0 and H > 0. f̃ obviously depends on r̃, for better readability we do not include the
index r̃ in our definition. H is a hyperparameter. dim(f̃) is one dimension larger than the number
of available labels. If F = n + 1 at a data point, then the model cannot output a robust prediction
at this data point, see Leino et al. (2021). Let Li be the Lipschitz constant of fi. We define a model
g(x) := f̃(x, (Li)1≤i≤n). We change Theorem 1 from Leino et al. (2021) towards the following
statement.
Theorem 3.6. If G(x) := argmax g(x) ̸= n+1, then G(x) = F (x) and F is locally robust around
x for all radii r with r ≤ Hr̃.

Theorem 3.6 remains true if we replace Li for 1 ≤ i ≤ n by the local Lipschitz constant Li,x,r

for every fi. Remark 3.4 and Lemma 3.5 apply to fi. We therefore define a new model hr :=
f̃(x, (Li,x,r)1≤i≤n), r ≤ Hr̃, for which Theorem 3.6 is still valid.
Theorem 3.7. Set

happrox(x) := f̃
(
x,

(
max

1≤j≤m

∣∣∣ d
dx

fi(x)
∣∣∣)

1≤i≤n

)
. (8)

Then it follows that

hr
r→0→ happrox .

When f is a KAN, then happrox is referred to as GloroKAN, based on the name used in Leino et al.
(2021).

This follows directly from Lemma 3.5. Due to the form in which the derivative of B-splines is
expressed, see (4), and the definition of GloroKAN, it is possible to calculate GloroKAN together
with one forward pass of the model f with the same complexity in terms of the required arithmetic
operations. More precisely, if one forward pass of the model f requires N arithmetic operations,
then the number of required arithmetic operations of GloroKAN is in O(N). For a small radius r,
we know that GloroKAN≈ hr, for which Theorem 3.7 holds, meaning that GloroKAN is arbitrarily
close to a guaranteed robust classifier with radius r. The following algorithm outlines the calculation
of GloroKAN when the model f is a KAN. f l denotes the l-th layer of the model f , where f has a
total of L layers. d

dxf
l(output) gets calculated according to (4) during the calculation of f l(output).
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Algorithm 1: Calculation of GloroKAN
Input: x
Output: happrox(x)
output← x; diff← In ;
for l← 1 to L do

output, diff layer← f l(output), d
dxf

l(output) ;
diff ← diff ∗ diff layer

diffi ← max |diff:,i|, ∀1 ≤ i ≤ n ;
j ← argmax output ;
return (output,maxi ̸=j{outputi + (diffi + diffj)Hr̃})

3.3 ROBUSTNESS VERIFICATION

In this section we focus on finding a good overapproximation for the image of a rectangular input
set under a KAN. Since KAN activations are piecewise polynomials, we make use of tools from
algebraic geometry dealing with sets defined by relations of polynomials. The techniques used are
based on Newton (2023) and adapted to KANs. Let xk, k = 1, . . . , N , be the activations at the
KAN nodes, where x0 is the input layer, xN the output layer and xk = (xk

j )j=1,...,Mk
denotes the

single activations of each layer.

We consider the input constraints

x0 − x0 ≥ 0 , (9)

x0 − x0 ≥ 0 . (10)

The bounds x0 and x0 specify the desired size of the input set. As overapproximation sets of the
output, we consider polytopes. Consequently, the output constraints have the form

cTr x
N + dr ≥ 0 , (11)

where the cr and dr, r = 1, . . . , R, specify the shape and size of the polytope.

We consider the problem of finding the smallest polytope containing the output. This can be de-
scribed as finding

d∗ = inf{d : cTxN + d ≥ 0} . (12)
Our approach is to formulate the KAN in a way such that Equation 12 becomes

d∗ = inf{f(x) : x ∈ K} (13)

for a suitable polynomial f and semialgebraic set

K = {x ∈ Rn : gj(x) ≥ 0, hl(x) = 1, j = 1, . . . u, l = 1, . . . , v} ,

gj and hl being suitable polynomials. To achieve this, we formulate the KAN in the following way.
As above, denote the grid t0, . . . , tm. Let Bk,j,v,i be the KAN activation from node xk

l to xk+1
v

between node ti and ti+1. The variable I will be defined such that it represents an indicator function
specific to the grid interval, and two connected nodes. Consider the following constraints. All xk

j
and Ik,j,i are considered formal variables of polynomials and ε is a small real number.

(ti − xk
j )(ti+1 − xk

j )(1− Ik,j,i)
2 ≥ 0 (14)

I2k,j,i(x
k
j − ti − ε) ≥ 0 (15)

I2k,j,i(ti+1 − ε− xk
j ) ≥ 0 (16)

xk+1
v −

∑
j=0,...,Mk
i=0,...,m

Ik,j,iBk,j,v,i = 0 (17)

Here we have i = 0, . . . ,m, j = 0, . . . ,m, k = 0, . . . , N − 1 and v = 0, . . . ,Mk+1. equa-
tion 14 makes Ik,j,i be equal to 1 inside [ti, ti+1] and does not constrain Ik,j,i outside of [ti, ti+1].
equation 15 makes Ik,j,i be equal to 0 for xk

j < ti + ε, while Equation 16 does the same for
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xk
j > ti+1 − ε. The small number ε has the purpose of avoiding inconsistencies at the interval

bounds ti, ti+1. Finally Equation 17 defines the structure of F . We are now ready to formulate the
robustness verification problem in terms of Equation 13:

d∗r = inf{dr : (9), (10), (11), (14)− (17) are satisfied } .
From this point on, solvers can be used, such as Wang et al. (2021), making use of chordal and other
sparsity patterns, making the problem Equation 13 tractable. Future work will focus on conducting
experiments to validate the proposed method.

4 EXPERIMENTS

4.1 BENCHMARK

We want to analyse the robustness of KANs as given in Liu et al. (2024). For this purpose, different
models are evaluated on the two datasets Fashion MNIST and CIFAR10. Solving condition (1)
is NP-hard even for single-layer neural networks Katz et al. (2017), Weng et al. (2018). Instead
of solving condition (1), one can use adversarial attack methods to solve (1) approximatively by
trying to find the closest element xmin for which F (x) ̸= F (xmin) holds. ||xmin − x|| > r applies
exactly when condition (1) is fullfilled. We then refer to R̃, the empirical global robustness score, as
adversarial accuracy. In order to obtain the best possible approximation to xmin, some best practices
should be followed, see also Carlini et al. (2019): Different attacks should be used, which should be
tested with different hyperparameters. In general, gradient-based attacks are stronger than gradient-
free attacks as long as no gradient masking is used. Since the focus here is on the comparison
of robustness across different architectures and not on the evaluation of a defence method, not all
proposals from Carlini et al. (2019) are applicable. We decided to use the following two attack
methods for evaluating the robustness of the models using the implementations of the Adversarial
Robustness Toolbox Nicolae et al. (2018):

• Auto Attack, see Croce & Hein (2020)
• Spatial Transformations Attack, see Engstrom et al. (2019)

We only use l∞ with l∞(x) := sup1≤i≤m |xi| for x ∈ Rm as Norm in (1), (2) and (3) for our
benchmarking. Auto attack is an ensemble of different attack methods, which has proven to be a
successful evaluation for adversarial robustness Croce & Hein (2020) and does not require extensive
hyperparameter tuning. Therefore, it seems to us to be the most suitable procedure to evaluate the
adversarial accuracy of different models and to draw a meaningful comparison between them. The
Spatial Transformations Attack differs from the attacks in auto attack in that it does not evaluate the
robustness with regard to l∞, but with regard to displacements and rotations Engstrom et al. (2019).
Adversarial training is performed by using the FGSM attack Goodfellow et al. (2015). We performed
each experiment five times and included the standard deviation in our results. We analysed four
different model architectures on Fashion MNIST and CIFAR10: a multi-layer perceptron, short
MLP, a KAN, a CNN, i.e., a model consisting of convolution layers followed by linear layers, and
a model that has convolution layers in the first layers followed by KAN layers. We refer to the last
model as CKAN. All models are evaluated towards four different radii r, where r is as in definition
3.1.

For the adversarial accuracy on Fashion MNIST we get the results as shown in Table 1, 2.

Table 1: adversarial accuracy Fashion MNIST, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.0663± 0.0026 0.0647± 0.0016 0.0468± 0.0026 0.0644± 0.0026
r = 0.1 0.3805± 0.0057 0.2157± 0.0104 0.0564± 0.0019 0.0796± 0.0036
r = 0.05 0.6763± 0.0035 0.5903± 0.0056 0.0772± 0.0053 0.3050± 0.0350
r = 0.01 0.8862± 0.0021 0.8753± 0.0032 0.8018± 0.0088 0.8101± 0.0112

The results for the adversarial accuracy on CIFAR10 are displayed in Table 3, 4. Further results for
clean accuracy and spatial robustness can be found in appendix A.3.
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Table 2: adversarial accuracy Fashion MNIST, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.1833± 0.0102 0.1101± 0.0172 0.0538± 0.0048 0.0754± 0.0099
r = 0.1 0.7800± 0.0026 0.7833± 0.0042 0.3681± 0.064 0.7389± 0.0428
r = 0.05 0.8379± 0.0036 0.8399± 0.0011 0.8062± 0.0075 0.8183± 0.0073
r = 0.01 0.8850± 0.0028 0.8731± 0.0169 0.8941± 0.0019 0.8785± 0.0052

Table 3: adversarial accuracy CIFAR10, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.1403± 0.0045 0.1561± 0.0011 0.0528± 0.0018 0.0569± 0.0038
r = 0.1 0.2465± 0.0020 0.1978± 0.0042 0.0924± 0.0036 0.0995± 0.0013
r = 0.05 0.3783± 0.0016 0.2746± 0.0029 0.2059± 0.0083 0.2287± 0.0102
r = 0.01 0.5387± 0.0030 0.4788± 0.0025 0.7553± 0.0060 0.7629± 0.0023

Table 4: adversarial accuracy CIFAR10, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.1179± 0.0034 0.2128± 0.0080 0.0569± 0.0032 0.0655± 0.0040
r = 0.1 0.3760± 0.0107 0.3132± 0.0058 0.4835± 0.0063 0.4672± 0.0046
r = 0.05 0.4425± 0.0033 0.3388± 0.0025 0.6653± 0.0032 0.6423± 0.0043
r = 0.01 0.5096± 0.0034 0.4354± 0.0034 0.8362± 0.0012 0.8169± 0.0027

In the benchmark, the adversarial accuracy of the MLP model is predominantly slightly better than
that of the KAN model on both datasets. For the CNN and CKAN without adversarial training, the
CKAN model has a slightly better adversarial accuracy than the CNN on both datasets. On Fashion
MNIST, the adversarial accuracy of the CKAN with adversarial training is better than that of the
CNN with adversarial training on three of the four radii, while on CIFAR10 it is the other way
round. Based on these results, it is therefore not possible to claim that models with KAN layers
are in general more or less robust compared to models with MLP layers. If we want to summarize
the results of the benchmark as briefly as possible, we believe that the statement of comparable
robustness between the two model variants is the most accurate. A comparison of MLP and KAN
with CNN and CKAN is not meaningful due to the different model complexity and architecture. The
complexity of the models we use is in the range between 1.7 million and 9 million trainable model
parameters and is therefore more than a quarter smaller than the small models in Alter et al. (2024).
Different adversarial attacks were also used to evaluate the robustness of the models. A comparison
of the results is therefore difficult and is not carried out here.

4.2 EMPIRICAL RESULTS GLOROKAN

GloroKAN and a KAN model with and without adversarial training are trained on Fashion MNIST
and evaluated for different radii r. Adversarial training was again carried out with FGSM attack
Goodfellow et al. (2015). Two runs are carried out for each radius r. All models are retrained and
evaluated for each run. The results are averaged. We define clean accuracy as the standard accuracy
evaluated on the dataset without any perturbations. For GloroKAN, we set H = 20, r̃ = 0.3.
The larger we choose the hyperparameter H , the more we enforce the adversarial accuracy while
potentially decreasing the clean accuracy. We refer to the additional dimension of GloroKAN as
abstain prediction, because it indicates that the datapoint is not robust, so no prediction should be
done. We measure the robustness score using R̃ from Definition 3.2, where the inner condition
from Definition 3.1 is not solved exactly but estimated with Auto Attack. We therefore refer to R̃
as adversarial accuracy. We refer to “GloroKAN with abstain prediction” when the prediction is
either the correct label or the abstain prediction. Figure 1 shows our results. We can assume that
it is not possible to achieve greater adversarial accuracy than clean accuracy. This means that for
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Figure 1: adversarial accuracy

a model that is guaranteed to be robust with respect to a radius r according to Definition 3.1, the
adversarial accuracy is equal to the clean accuracy. If we include Figure 2a from the appendix, we
see that GloroKAN converges in adversarial accuracy to the value of clean accuracy. In addition,
the adversarial accuracy of GloroKAN is significantly higher than that of a KAN model for all
radii r considered. Nethertheless, adversarial training is still more effective and achieves a higher
adversarial accuracy than GloroKAN. However, GloroKAN with abstain prediction for r ≤ 0.05
achieves almost as high an adversarial accuracy as a KAN with adversarial training. The clean
accuracy without adversarial perturbations of GloroKAN is below that of a KAN model with and
without adversarial training.

The additional dimension of the GloroKAN model may worsen the clean accuracy, but we also
see that if we still consider the abstain prediction as a good classification, it significantly increases
the robustness not only in terms of adversarial accuracy, but also in terms of spatial robustness,
see Figure 2b from the appendix. Spatial robustness is measured by perturbing the inputs using
the spatial transformation attack Engstrom et al. (2019). This is interesting as it is not the goal of
GloroKAN to increase this robustness. Shifts and rotations of the spatial transformation attack lead
to inputs that are in a non-robust area for GloroKAN, i.e., the abstain prediction.

5 CONCLUSION

Our experiments (Sec. 4.1) confirm that Kolmogorov–Arnold Networks (KANs), despite their
unique B-spline–based structure, are as susceptible to adversarial perturbations as standard MLPs or
CNNs. Both Auto Attack and spatial transformations can reliably degrade performance.

To address these vulnerabilities, we introduced GloroKAN (Sec. 3.2), which leverages the B-spline
stucture within KANs to approximate the local Lipschitz constant efficiently during the forward
pass of the model. By doing so, GloroKAN is arbitrarily close to a globally robust classifier with
a certified and small enough radius. However, standard adversarial training achieves still better
adversarial accuracy than GloroKAN (Sec. 4.2).

Finally, we presented an algebraic geometry–based approach (Sec. 3.3) for verifying robustness in
KANs by recasting network constraints as a basic semialgebraic set. Though promising, its large-
scale feasibility remains to be thoroughly tested. Overall, our findings highlight that KANs are not
inherently robust; nonetheless, by exploiting their piecewise polynomial structure for both training
and verification, we can move closer to reliable, certifiable performance.
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A APPENDIX

A.1 PROOFS

proof of Lemma 3.3. Let y, z ∈ B(x, r). It is

d

dx
h(x) =


∂

∂x1
h(x)
·
·
·

∂
∂xm

h(x)

 .

With

|h(y)− h(z)| = |
∫ 1

0

d

dt
h(y + t(z − y))dt| = |

∫ 1

0

d

dx
h(y + t(z − y))(z − y)dt|

≤
∫ 1

0

max
0≤t≤1

max
1≤i≤m

| d
dx

h(y + t(z − y))| ||z − y||dt

≤ max
z∈B(x,r)

max
1≤i≤m

(| ∂

∂x1
h(z)|, . . . , | ∂

∂xm
h(z)|) ||z − y||

follows

Lx,r ≤ max
z∈B(x,r)

max
1≤i≤m

(| ∂

∂x1
h(z)|, . . . , | ∂

∂xm
h(z)|) .

From

max
z∈B(x,r)

max
1≤i≤m

(| ∂

∂x1
h(z)|, . . . , | ∂

∂xm
h(z)|) r→0→ max

1≤i≤m
(| ∂

∂x1
h(x)|, . . . , | ∂

∂xm
h(x)|)

follows the claim.

A.2 FIGURES

(a) (b)

Figure 2: clean and spatial accuracy
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A.3 BENCHMARK RESULTS

Table 5: clean accuracy Fashion MNIST, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.8994± 0.0011 0.8915± 0.0009 0.9165± 0.0024 0.8908± 0.0019
r = 0.1 0.8980± 0.0007 0.8895± 0.0010 0.9172± 0.0012 0.8919± 0.0021
r = 0.05 0.8982± 0.0013 0.8905± 0.0016 0.9158± 0.0013 0.8900± 0.0023
r = 0.01 0.9000± 0.0009 0.8909± 0.0009 0.9169± 0.0013 0.8918± 0.0035

Table 6: clean accuracy Fashion MNIST, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.8773± 0.0051 0.8716± 0.0056 0.9161± 0.0047 0.8652± 0.0109
r = 0.1 0.8805± 0.0025 0.8785± 0.0009 0.9134± 0.0027 0.8540± 0.0064
r = 0.05 0.8901± 0.0019 0.8880± 0.0021 0.9171± 0.0014 0.8746± 0.0026
r = 0.01 0.8913± 0.0035 0.8881± 0.0044 0.9202± 0.0014 0.8930± 0.0057

Table 7: spatial robustness accuracy Fashion MNIST, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.2072± 0.0051 0.1816± 0.0038 0.1838± 0.0124 0.2163± 0.0313
r = 0.1 0.2039± 0.0095 0.1759± 0.0054 0.1765± 0.0223 0.2189± 0.0216
r = 0.05 0.2031± 0.0087 0.1821± 0.0089 0.1702± 0.016 0.2270± 0.0315
r = 0.01 0.2025± 0.0034 0.1798± 0.0070 0.1768± 0.0132 0.2250± 0.0088

Table 8: spatial robustness accuracy Fashion MNIST, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.2763± 0.0157 0.1589± 0.0159 0.1883± 0.0338 0.1978± 0.0133
r = 0.1 0.2387± 0.0225 0.1695± 0.0125 0.2018± 0.0155 0.2080± 0.0125
r = 0.05 0.2445± 0.0183 0.1675± 0.0253 0.1931± 0.0130 0.2183± 0.0160
r = 0.01 0.2425± 0.0307 0.1749± 0.0169 0.1804± 0.0256 0.1923± 0.0225

Table 9: clean accuracy CIFAR10, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.5497± 0.0045 0.5068± 0.0022 0.8753± 0.0022 0.8692± 0.0032
r = 0.1 0.5513± 0.0009 0.5090± 0.0012 0.8759± 0.0013 0.8692± 0.0027
r = 0.05 0.5512± 0.0036 0.5124± 0.0036 0.8741± 0.0035 0.8704± 0.0017
r = 0.01 0.5545± 0.0027 0.5108± 0.0039 0.8768± 0.0031 0.8680± 0.0020

Table 10: clean accuracy CIFAR10, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.5410± 0.0061 0.4252± 0.0060 0.8510± 0.0024 0.8312± 0.0059
r = 0.1 0.5487± 0.0049 0.4734± 0.0050 0.8062± 0.0021 0.7862± 0.0037
r = 0.05 0.5515± 0.0060 0.4921± 0.0046 0.8297± 0.0014 0.8141± 0.0015
r = 0.01 0.5261± 0.0040 0.4869± 0.0035 0.8660± 0.0043 0.8500± 0.0026
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Table 11: spatial robustness accuracy CIFAR10, NO adversarial training

MLP KAN CNN CKAN
r = 0.3 0.2499± 0.0066 0.2199± 0.0046 0.3404± 0.0063 0.3347± 0.0066
r = 0.1 0.2518± 0.0040 0.2164± 0.0058 0.3414± 0.0056 0.3351± 0.0083
r = 0.05 0.2492± 0.0034 0.2177± 0.0069 0.3372± 0.0106 0.3376± 0.0040
r = 0.01 0.2502± 0.0050 0.2166± 0.0053 0.3402± 0.0115 0.3311± 0.0022

Table 12: spatial robustness accuracy CIFAR10, with adversarial training

MLP KAN CNN CKAN
r = 0.3 0.2537± 0.0014 0.2315± 0.0084 0.3293± 0.113 0.3196± 0.0088
r = 0.1 0.2606± 0.0174 0.2459± 0.0045 0.3206± 0.0026 0.3118± 0.0058
r = 0.05 0.2439± 0.0058 0.2364± 0.0012 0.3241± 0.0038 0.3141± 0.0082
r= 0.01 0.2312± 0.0084 0.2133± 0.0132 0.3259± 0.0060 0.3225± 0.0097
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