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Abstract

Learning utilities from preference feedback has
become increasingly important, particularly in
fine-tuning language models such as ChatGPT.
Traditional methods often assume equal rational-
ity among labellers, leading to inaccurate utility
estimates. We propose an algorithm that jointly
estimates trainer rationality and item utilities to
enhance utility learning and gain additional in-
sights from feedback. Our approach focuses on
settings where feedback is received from multiple
trainers, using the Boltzmann-rational model to re-
late choices to latent utilities while accounting for
varying levels of rationality. Given shared utili-
ties, our method identifies rationality ratios among
trainers from observed choices without extra cali-
bration data or assumptions. We analyse the the-
oretical impact of assuming equal rationality on
utility accuracy and empirically show superior
performance in an action-advice setting, where
agents construct policies using the learned utili-
ties as rewards. By accurately modelling trainer
rationality, we can enhance high-quality feedback
collection, potentially leading to better-aligned
models and an improved understanding of human
preferences.

1. Introduction
Learning utilities from preference feedback is a common
machine learning problem, recently popularised through its
application to fine-tuning language models such as ChatGPT
(OpenAI, 2022): Given a preference for one alternative (be-
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Figure 1. An illustration of the setting where multiple labellers
provide preference feedback on a set of items. Both trainers share
the same latent utilities, in this case, a higher utility for the ac-
tion of moving down, but differ in their rationality coefficients.
Consequently, they sample choices from different distributions,
potentially leading to different observed choices. By jointly esti-
mating the rationality coefficients and the utilities, we can improve
utility learning and gain insights from the feedback.

haviour) over another, the goal is to learn the utility of each
option, which can then be used as an objective in approaches
like reinforcement learning from human feedback (RLHF)
(Kaufmann et al., 2023b). In practice, utilities are often
learned from multiple trainers, each with varying levels of
expertise, understanding of the task, and attention to detail.
In this paper, we propose an algorithm that estimates the
rationality of human trainers jointly with the utilities of the
items, aiming to improve the accuracy of utility learning
and gain additional insights from feedback.

This setting of receiving feedback from multiple labellers is
common in practice, e.g. in crowdsourcing settings. Prior
works often assume the labellers are equally rational, which
is unrealistic. The goal may then be to learn individualised
preference models or, assuming shared utilities, to leverage
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all feedback to train a single model. In this paper, we focus
on the latter setting.

Learning utilities from observed choices requires a model
of how the choices are made. The model should relate
the choices to utilities, i.e. latent values that represent the
intrinsic desirability of the items, while also accounting
for other influences on the choices, such as the rationality
of the labellers. This is commonly formalised with the
Boltzmann-rational model (e.g, Jeon et al., 2020), which
models the probability of choosing an item ci from a choice
set C = {c1, . . . , cN} as

P (ci) =
exp(βui)∑N
j=1 exp(βuj)

,

where ui is the latent utility of choice ci and β is the labeller-
specific rationality coefficient. Higher rationality leads to a
more deterministic choice, while lower rationality leads to a
more random choice.

The Boltzmann-rational model is insensitive toward (ad-
ditive) shifts in utilities, making it impossible to identify
all parameters, i.e. utilities and rationality, purely from ob-
served choices (Train, 2009). The key insight of this paper
is that, given feedback from multiple labellers with shared
utilities, we can at least identify the ratio of their rationali-
ties: If the utilities are shared, the observed differences in
choices can be attributed to differences in rationality.

Without requiring additional data or assumptions on the
feedback process, this enables us to identify the rationality
of each labeller relative to each other in addition to learning
the utilities. This rationality coefficient can then be used
for downstream tasks, such as identifying labellers giving
low-effort responses (satisficing) (Kaufmann et al., 2023a)
or adaptively choosing a feedback modality (Ghosal et al.,
2023). Through these means, we hope to simplify the pro-
cess of collecting large amounts of high-quality feedback,
leading to an enhanced understanding of human preferences
and enabling us to train models more aligned with them.

Our contributions are the following:

1. Propose an algorithm that jointly learns utilities and
rationality coefficients from pairwise preference feed-
back based on the joint likelihood of the utilities and
the rationalities.

2. Theoretically analyse the impact of falsely assuming
equal rationality among multiple labellers.

3. Empirically investigate utility learning and resulting
downstream task performance in an action-advice set-
ting where the agent learns a policy using the learned
utilities as rewards.

Note that although RLHF is an exciting area of application
with high practical relevance for our approach, our evalua-
tions are in simpler ranking and action advice settings for
now, and we leave the application to RLHF for future work.

2. Related Work
Our approach is focused on jointly learning shared utili-
ties and labeler-specific rationality coefficients. Prior work
has studied rationality learning both in isolation as well as
RLHF-specific contexts, which we review in the following.

Learning Rationality There exists a long history in clas-
sical choice modelling literature of estimating rationalities
of different labellers. To that extent Ben-Akiva & Morikawa
(1990) and Swait & Louviere (1993) present algorithms
to identify the ratio of the rationalities of labellers with
equal underlying discrete choice models. These approaches
however are not trivial to apply outside the discrete choice
setting, while our method can readily be employed in the
continuous domain.

The general problem of learning from noisy labels in non-
reinforcement learning settings has, among others, been ad-
dressed by Dawid & Skene (1979) and Raykar et al. (2010)
using the expectation maximisation algorithm (Dempster
et al., 1977). More recently, learning from noisy labels has
also been used in the context of supervised learning with
promising results (Whitehill et al., 2009). Such approaches
are also applicable in the RL setting as demonstrated by
Yamagata et al. (2021), utilising binary feedback from mul-
tiple humans. However, such methods rely on global labels
as feedback and do not naturally extend themselves to the
setting with pairwise comparison data. Furthermore, these
approaches are not easily generalizable beyond the discrete
choice setting as well.

Rationality for RLHF Utilising human feedback has
proven to be an effective strategy in reinforcement learning
(RL) (Griffith et al., 2013; Knox & Stone, 2012). Learn-
ing from preference data has been a particularly successful
paradigm in recent years (OpenAI, 2022; Kaufmann et al.,
2023b). While our evaluations are in an action-advice set-
ting, it is closely connected to these approaches of learning
reward functions from human feedback and is directly ap-
plicable to that setting as well. Daniels-Koch & Freedman
(2022) demonstrate query-based rationality learning using
teacher selection, demonstrating the benefits of a rationality-
adapted approach. Ghosal et al. (2023) have shown that es-
timating rationality coefficients of labellers can favourably
influence reward learning. Their algorithm, however, re-
quires costly (and potentially unobtainable) calibration data.
Metz et al. (2023) shows that an initial calibration phase
might still be insufficient to cope with the various influ-
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ences on a labellers rationality and proposes to use multiple
calibration phases continuously throughout an experiment.
Within this work, we strive to estimate the rationality coeffi-
cients jointly with the utilities, completely eliminating the
need for (ground truth) calibration data.

Freedman et al. (2023) outline an algorithm for active
teacher selection for RLHF, in which they show that when
the ground truth preference probabilities P are known and
each labeller was given the same pair of objects (i, j), the
rationalities can be analytically computed up to a scale fac-
tor a = −∆−1

ij , which is the inverse of the utility difference
between two objects: βm = a · ln

(
1
P − 1

)
. They however

do not address scenarios in which either no ground truth
preference probabilities are known or not every labeller was
presented the same object pair.

3. Method
We consider a scenario in which an RL agent receives pair-
wise preference feedback and learns a policy from it. There
are several ways of incorporating such feedback in an RL
setting. The most popular approach is comparing two trajec-
tories (sequence of state and action pairs), where a trainer
indicates which trajectory he believes to be better. The feed-
back is then used to train a reward model (Christiano et al.,
2017) (or a policy directly (Rafailov et al., 2024)).

In this paper, we focus on the setting of comparing two
actions for a given state. To produce such pairwise action
comparisons, we asked trainers if the agent’s action was cor-
rect and, if not, asked them to suggest a better action. These
responses can then be converted to preference feedback. If
the trainer expressed the agent’s current action was right,
we would generate multiple preferences between the agent’s
action and all the other actions by saying the agent’s action
was preferable. On the other hand, if the trainer suggested
another action, we would generate a single preference pair
between the trainer’s suggested action and the agent’s cur-
rent action. It is worth noting that our method does not
require trainers to give feedback at every time-step. Instead,
they decide themselves when to give their feedback.

Other algorithms exist to elicit the preference feedback.
However, our approach is straightforward yet effective as it
obtains feedback on the agent’s choice of action as right as it
happens. Furthermore, the trainer does not necessarily need
to suggest the best action, but just a better action, which
alleviates the workload.

Human judgment tuples (a1, a2, s, k, w) are recorded in
a database D. Here, a1 and a2 are the pair of actions to
compare, s is the state, k is the trainer’s index, and w is an
encoding of the judgement, w = (w1, w2) = [1, 0] if the
human selects a1 and w = [0, 1] if the human selects a2.

3.1. Joint Learning of Utilities and Relative Rationalities

We use the Boltzmann-rational model to represent human
preference feedback behaviour. The probability that trainer
k indicates action a1 is better than action a2 in state s is
given by

P (a1 ≻k,s a2) =
1

1 + e−β̃(us,a1
−us,a2

) .
(1)

Here, two groups of parameters need to be estimated:

u = {us,a ∈ R}s∈S,a∈A

are utility parameters for each state/action pair (s, a), where
S and A denote the state space and action space, respec-
tively. These parameters indicate how good the action a is
in state s, with higher numbers indicating a higher value.
The second group,

β = {β̃ ∈ R}k=1,...,K ,

consists of rationality parameters for the trainers k ∈
{1, . . . ,K}. These parameters indicate how rational the
different trainers are. Trainers with a higher rationality
parameter are more accurate in their feedback.

We employ the following negative log-likelihood function
as a loss function and apply the stochastic gradient descent
(SGD) algorithm to learn the utility and rationality parame-
ters concurrently:

L(u,β) = −
∑

(a1,a2,s,k,w)∈D

w1 logP (a1 ≻k,s a2)+

w2 logP (a2 ≻k,s a1)

From Eq. 1, it is evident that the probability depends only
on the product of the rationality value and the difference
of the utility values. Thus, the loss function remains un-
changed when adding a constant to all utility values or when
multiplying the rationality values by a constant and dividing
the utilities by the same constant.

In order to stabilise the learning process, we implement
two constraints. First, we fix the rationality for one of
the trainers to one. Here, every trainer may, in principle,
serve as a reference, except one that labels completely at
random (and hence has rationality β = 0). In practice, such
a selection could be facilitated by reviewing a labeller’s
history and ensuring to include at least one labeller whom
we expect to behave reasonably rationally.

Secondly, we introduce a prior for the utilities. A range
of priors have been proposed in the literature (Davidson &
Solomon, 1973; Whelan, 2017). Here, we adopt a logistic
prior, which can be introduced by having two preferences
for each state-action pair against a virtual utility parameter
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of zero value (Newman, 2023). As a result, the following
regularisation term (Lr) is added to the above loss function:

Lr =
∑

s∈S,a∈A
log(1 + e−us,a) + log(1 + eus,a)

3.2. Deriving a Policy from Utilities

To decide which action to take in a given state, we employ
greedy action selection based on the learned utility values,
i.e. select action

a = argmax
a∈A

us,a .

Note that this formulation does not encourage exploration.
We rely on the human trainer’s feedback to guide the agent
toward optimal actions instead. This amounts to learning
the optimal action-value function Q∗ in a reinforcement
learning setting, requiring labellers to be aware of each
action’s future implications. This is in contrast to the RLHF
setting in which we generally attempt to learn the (dynamics-
independent) reward function and rely on a reinforcement
learning algorithm to explore the environment dynamics.
Extending our approach to the RLHF setting, which has
reduced requirements on the human labeller, would be an
exciting area for future work.

4. Information Theoretic Analysis
We conducted information-theoretic analyses based on mu-
tual information to show the benefit of considering the train-
ers’ different rationalities. Mutual information (MI) is a
concept that quantifies the mutual dependencies between
two random variables. It measures how much information
one random variable provides about another.

Let i and j be the indices of two items and k the index of a
trainer. Now consider the MI between a true ranking on a
pair of items (xi,j), i.e., a binary variable indicating whether
or not the utility of item i truly is larger than the utility of
item j, and an observed choice from the trainer (y(k)i,j ). The
true utility values of the two unknown objects, ui and uj

can be seen as equally distributed random variables. The un-
derlying true ranking on a pair (i, j) is, therefore, a derived
random variable taking values 0 and 1 with equal probabil-
ity, as the difference between the two equally distributed
utilities is symmetric around 0. Similarly, the preference
feedback y

(k)
i,j can be seen as such a binary random variable

as well.

We can model the relationship between these random vari-
ables with a binary symmetric channel (BSC) using the
Boltzmann-rational model to compute the transition prob-
abilities. Figure 2 shows the BSC model where P

(k)
i,j de-

note a probability of observing a preference matching the

true ranking of the pair i, j preference from human k

Figure 2. An illustration of the binary symmetric channel (BSC)
model, a common communication channel model. The left-hand
side variable (xi.j) is the source information, and the right-hand
side variable (y(k)

i,j ) is the received information. The received

information is flipped with a probability of 1−P
(k)
i,j , and otherwise

correct.

true ranking (feedback accuracy) for the item i and j from
trainer k. The feedback accuracy can be derived based on
the Boltzmann-rational model with an assumed rationality
parameter β̃ and the utility values as follows:

P
(k)
i,j =

1

1 + e−β̃|uj−ui|
.

Now, we can compute the MI between xi,j and y
(k)
i,j , which

indicates how much information the preference feedback
conveys about the true ranking:

I(xi,j , y
(k)
i,j ;P

(k)
i,j ) = 1 + P

(k)
i,j log2(P

(k)
i,j )

+ (1− P
(k)
i,j ) log2(1− P

(k)
i,j ).

(2)

Note that the MI is parameterized by the feedback accuracy
of the trainer, which determines the conditional probability
P (y

(k)
i,j | xi,j).1

Figure 3 illustrates the relationship between MI and feed-
back accuracy (Pi,j). It is obvious that a trainer with a
higher probability of right feedback provides more informa-
tion regarding the true ranking per feedback.

Next, we consider multiple trainers who may have different
rationality values. As their rationalities are different, their
feedback accuracies (denoted as P (k)

i,j ) will differ even for

1Equation (2) outlines the connection between the mutual infor-
mation of the true ranking xi,j with the observed human preference
y
(k)
i,j and the entropy of the decision process. The derivation shows

that the mutual information is equal to the negative entropy of
P

(k)
i,j up to addition of a constant. As the entropy is a measure

of uncertainty inherit to a random variable’s outcome, this is an
intuitive connection to our understanding of rationality, which can
be seen as a measure of the human’s uncertainty in the choice. In
this case, the mutual information can also be seen as a measure of
“peakedness” of the distribution P

(k)
i,j .
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Figure 3. Mutual information for a binary symmetric channel
(BSC) model with sweeping probabilities of the correct message.

the same pair of items. Hence, they all have different MI
values for their feedback.

Let r be a probability distribution over the trainers, with the
probabilities depending on the fraction of feedback given by
the trainers. Concretely, let r(k) be the fraction of feedback
that trainer k contributed. We can now sample any given
preference in a two-stage manner, by first sampling a trainer
and then a preference given by that trainer. We now consider
two different scenarios: one where we take trainer identi-
ties and the trainer’s individual accuracies into account and
one where we ignore trainer identities and assume average
accuracy.

If we treat the feedback from different trainers separately
and extract information for each trainer individually under
consideration of their accuracy (assuming we know the
rationality), then the expected MI for any given observed
preference is given by Ek∼r[I(xi,j , y

(k)
i,j ;P

(k)
i,j )].

On the other hand, suppose that we aggregate all trainers’
feedback without differentiating them. This is equivalent
to a scenario with just a single trainer who represents the
average opinion of all trainers, i.e. who casts a vote agreeing
with the true ranking with probability P̄i,j = Ek∼r[P

(k)
i,j ].

Hence, the expected MI for the feedback would be given by
I(xi.j , y

(k)
i,j ;Ek∼r[P

(k)
i,j ]).

Now, since Equation (2) is a strictly convex function of P (k)
i,j

(see Cover & Thomas (2012) and Fig. 3), Jensen’s inequality
implies

Ek∼r[I(xi.j , y
(k)
i,j ;P

(k)
i,j )] ≥ I(xi.j , y

(k)
i,j ;Ek∼r[P

(k)
i,j ]) ,

where the exact equality applies if and only if the P
(k)
i,j are

equal for all k (trainers), i.e. all trainers share the same ra-
tionality. This indicates that we always get equal or more
information about the actual ranking by extracting informa-

tion separately for each trainer under consideration of their
individual rationalities.

It should be noted that the above analysis assumes knowl-
edge of the true rationality parameters and does not account
for the cost of estimating them. Despite this limitation, we
observed that our algorithm achieves performance close to
the values suggested by the MI analysis when the number
of choice alternatives is much larger than the number of
trainers. To account for estimation overhead, we plan to
conduct an analysis using Fisher information, which natu-
rally incorporates the interactions between estimation errors
of multiple parameters. We consider this as a direction for
future work.

5. Evaluation
We evaluated two types of tasks to test the benefits of es-
timating the rationality parameter. The first task is a basic
ranking exercise to demonstrate whether estimating rational-
ity can be advantageous in such minimal settings, which are,
for example, crucial to evaluate the performance of labellers
on crowd-sourcing platforms. The second task, set within
a reinforcement learning (RL) environment, investigates
whether the algorithm can provide any benefits over the
standard assumption in Preference-based RL of assuming
equal rationalities for all labellers.

For these evaluations, we simulated the human preference
feedback using the Boltzmann-rational model with the given
utility and rationality parameters. This allows us to control
the reliability of each trainer and establish ground truth
values to evaluate our algorithm and baselines.

5.1. Simple Ranking Task

Setup The first task is a simple ranking task involving
four items. These items are ranked based on preference
feedback from three trainers, each with different rationality
values. We generate the pairwise preference feedback on
randomly selected two items using the Boltzmann-rational
model. The utility values for the four items are set at [1.0,
1.1, 1.2, 0.7], and the rationality values for the three trainers
are [1.0, 0.5, 2.0]. We then evaluate three scenarios: 1.
Estimating the rationality values using our approach. 2.
Assuming all the rationality values to be 1.0 (conventional
approach). 3. Assuming knowledge of all trainers’ true
rationality values (ideal). We run 200 trials and measured
the ranking error rate for these three scenarios with varying
numbers of feedback.

Results Table 1 shows ranking error rates for the simple
ranking task involving four items with three trainers whose
rationality parameters are 1.0, 0.5, and 2.0. The results
show that our approach (estimate β) performs better than
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number β estimated βi = 1.0 β = [1.0, 0.5, 2.0]
of FBs ours fixed ideal

100 0.318 0.330 0.313
200 0.203 0.200 0.165
500 0.085 0.100 0.080

1000 0.020 0.060 0.005

Table 1. Ranking error rates for the simple ranking task involving
four items with three trainers. The best results are highlighted with
boldface, and the second bests are highlighted underlined. The re-
sults show that our approach performs better than the conventional
(fixed) approach in most cases and is close to the ideal scenario.

the conventional approach (assuming all β = 1.0) in most
cases and is close to the ideal scenario (fixing β with the
correct value).

It is to be noted that this must not hold in the asymptotic case
with an unlimited number of samples where we expect the
performance of all approaches to converge. Further details
on the asymptotic behaviour can be found in Appendix A.

5.2. RL Task

Setup We assess the performance of our approach in an
RL setting. In this setting, an agent interacts with a target
environment and obtains preference feedback from trainers
in order to learn the most suitable action for the current
state. Unlike traditional settings, the agent does not receive
rewards from the environment; instead, it relies on the feed-
back from the trainers to determine the best course of action.

We trained the agent repeatedly one hundred times over one
thousand episodes and measured the total reward obtained
from the environment for each episode. This shows how
quickly the agent learns the right course of action from
the feedback. Like in the previous task, we evaluate three
scenarios: 1. Estimating the rationality values using our
approach. 2. Assuming all the rationality values to be 1.0
(conventional approach). 3. Assuming knowledge of all
trainers’ true rationality values (ideal).

Environment We used a 5x5 grid world PacMan to evalu-
ate our approach. The goal is to eat all the food pellets with-
out being caught by the ghosts. Once the game is cleared
(e.g. finished successfully), a +500 reward is given, while a
-500 reward is given if PacMan is caught by ghosts. Also,
each pellet awards +10 points, and each time-step costs 1
point (rewarded -1 point.) The state representation includes
PacMan’s position, the position and orientation of the ghost,
and each food pellet’s presence. Figure 1 shows the image
of the grid world PacMan.
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[1.0, 10.0, 0.1] (ideal)

Figure 4. Evaluation results for RL task that learns a policy with
preference feedback from three trainers. Red: estimating the
rationality parameters (ours). Orange: assuming all trainers have
the same rationality (conventional). Green: fixing the rationality
to the true value (ideal). The results suggest a clear benefit of our
approach over the conventional approach.

Preference Feedback Generation We use an Oracle to
simulate human feedback. This allows us to sweep different
parameters of feedback likelihood (L) that specify the ratio-
nality values and feedback frequency (how often feedback
is provided by a trainer). The Oracle was created using
Q-learning (Watkins, 1989) on the environment prior to the
experiments. We scaled the learned Q function by a factor
of 0.01, and used it as the utility value of each action in
the given state. Then, we employ the Boltzmann-rational
model to generate the preference feedback with the utility
and rationality values.

In this experiment, we set the rationality parameters of the
three trainers at 1.0, 10.0, 0.1, and the feedback likelihood
at L = 0.2. This means a trainer provides feedback, on
average, once every five time-steps.

Results Figure 4 shows the total reward vs number of
training episodes. Each dot represents the average total
reward across one hundred learning trials, and the lines
come from applying a moving average to the dots over
fifty time-steps. The results show that our approach (red)
achieves high rewards faster than the conventional approach
(which assumes all trainers have the same rationality values).
Although it is still slower than the ideal case, representing
the upper bound of the achievable performance.

These results show that our method of estimating the ra-
tionality parameters can enhance feedback efficiency and
achieve better performance compared to the conventional
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approaches (not estimating the rationalities) with the same
amount of feedback.

6. Limitations
Though we have shown the advantages of estimating the ra-
tionality parameters, our approach is not without limitations,
some of which can be alleviated in future work.

• We assume shared utilities among the trainers. This
assumption may not hold in practice.

• We assume a Boltzmann-rational model, which at-
tributes choices entirely to utilities and rationality.
However, other factors, such as noise, biases, or con-
text, may influence the choices.

• Our approach assumes that the trainers’ rationality pa-
rameters are constant over time. However, the trainers’
rationality may change over time due to various factors,
such as fatigue, learning, or mood.

• Our mutual information based analysis assumes the
knowledge of the true rationality parameters and does
not account for the cost of estimating them. We need an
analysis method that takes into account the rationality
parameter estimation (e.g. Fishier information).

7. Conclusion
We present a pairwise preference learning approach that
jointly learns the trainer’s shared utilities and each trainer’s
individual rationality level. Our empirical evaluation is
promising, indicating that we can match or improve util-
ity learning performance while simultaneously learning the
relative rationalities of the labellers without any extra cali-
bration data. This has many potential downstream use-cases
in settings such as crowdsourcing. We moreover provide
an initial theoretical analysis of our approach, indicating
benefits of our method with respect to preference learning
efficiency. Our early results are not yet conclusive, but are a
promising indicator for the success of our approach. Future
work may alleviate limitations (Section 6) and further ex-
plore empirical and theoretical benefits while also applying
our approach to more settings.
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A. Asymptotic behaviour of maximum likelihood estimation under wrong rationality assumptions
Here, we further want to investigate how assuming wrong rationalities impacts the maximum likelihood estimation of the
utility differences in the asymptotic case. We assume the Bradley-Terry model, linking (latent) utilities θ1, θ2 to observed
preferences

P (a1 ≻ a2) =
θ1

θ1 + θ2
, (3)

which we can connect to the Boltzmann-rational model with fixed rationality β̃ using θ1 = eβ̃u1 and θ2 = eβ̃u2 . Then, the
likelihood of θ = (θ1, θ2) given the data can be computed as

L(θ) =
(

θ1
θ1 + θ2

)n1

·
(

θ2
θ1 + θ2

)n2

,

with n1 and n2 being the number of times choice alternative one or two were preferred, respectively. The maximum
likelihood estimate of Equation (3) is found at the extreme of the PDF, e.g. where the first derivative of the log-likelihood
function

ln(L(θ)) = n1 · ln
θ1

θ1 + θ2
+ n2 · ln

θ2
θ1 + θ2

(4)

equals 0, i.e.
d

dθ1
ln(L(θ)) = 0 ⇐⇒ n1 · θ2

θ1 · (θ1 + θ2)
− n2

θ1 + θ2
= 0 ⇐⇒ θ1

θ2
=

n1

n2
. (5)

We can assume without loss of generality that θ2 = 1− θ1, since in that case θ1+ θ2 = 1 and P (a1 ≻ a2) = θ1. Combining
this with Equation (5) yields the maximum likelihood estimate

θ̂1

1− θ̂1
=

n1

n2
⇐⇒ θ̂1 =

n1

n2 + n1
. (6)

Relating this back to utilities and rationalities with θ̂i = eβ̃ûi results in

û1 =
lnn1 − ln (n2 + n1)

β̃
and û2 =

lnn2 − ln (n2 + n1)

β̃
. (7)

As n = n1 + n2 goes to infinity, the sample mean approaches the true Bernoulli parameter and it follows that n1 =
P (a1 ≻ a2) · n. Due to our assumption on θ2 = (1− θ1), it further follows that n1 = θ1 · n = eβ·u1 · n and analogously
n2 = eβ·u2 · n. Thus

û1 =
lnn1 − ln (n2 + n1)

β̃
=

ln(eβ·u1 · n)− ln (n2 + n1)

β̃
=

β · u1 + lnn− lnn

β̃
=

β

β̃
u1 (8)

and analogously û2 = (β/β̃)u2.

We see that the learned utilities are scaled by the true rationality over the assumed rationality β/β̃, i.e. compared to the
case where the true rationalities are known (resulting in ûi = ui), the estimated utilities in the asymptotic case will only
be rescaled by a constant factor. As a consequence, irrespective of the distribution over the possible outcomes, the policy
maximizing expected utility remains unchanged. Therefore, assuming the wrong rationality should not change the optimal
policy, at least in the asymptotic setting.

This can be related to the setting of multiple trainers by aggregating them to a hypothetical ‘merged’ trainer with an
intermediate rationality. Then, the same reasoning applies, resulting in no difference in the optimal policy in the asymptotic
setting.

Note that while this study may initially suggest that estimating rationalities offers no benefits for utility estimation for the
purposes of policy learning, it does not allow us to reach any immediate conclusions regarding the case of limited data
and imperfect learning algorithms. The empirical results in the main body of the paper (Section 5) seem to suggest the
potential for improvement in this setting. However, a more thorough evaluation is necessary to further understand the effect
of learning rationalities.
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