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Abstract

Agent-Based Models (ABMs) are powerful tools for studying emergent properties
in complex systems. In ABMs, agent behaviors are governed by local interactions
and stochastic rules. However, these rules are, in general, non-differentiable,
which limits the use of gradient-based methods for optimization, and thus
integration with real-world data. We propose a novel framework to learn a
differentiable surrogate of any ABM by observing its generated data. Our
method combines diffusion models to capture behavioral stochasticity and graph
neural networks to model agent interactions. Distinct from prior surrogate
approaches, our method introduces a fundamental shift: rather than approximating
system-level outputs, it models individual agent behavior directly, preserving
the decentralized, bottom-up dynamics that define ABMs. We validate our
approach on two ABMs (Schelling’s segregation model and a Predator-Prey
ecosystem) showing that it replicates individual-level patterns and accurately
forecasts emergent dynamics beyond training. Our results demonstrate the potential
of combining diffusion models and graph learning for data-driven ABM simulation.

1 Introduction

Agent-Based Models (ABMs) are computational frameworks in which autonomous “agents” interact
with each other and their environment, leading to emergent collective behavior [43]. ABMs are
typically characterized by: (i) a well-defined network of interactions, where the state of each agent
is influenced by the states of a specific set of other agents, usually from the previous time step;
(ii) stochasticity, meaning that agents’ decisions incorporate a degree of randomness, producing
probability distributions over multiple runs that capture real-world uncertainty and variation. ABMs
have proven to be a powerful tool for developing and refining theoretical understanding, particularly
in identifying minimal sets of micro-level rules that generate realistic macro-level outcomes [34].
In this sense, they have been instrumental in modeling a diverse range of phenomena [6], including
structure formation in biological systems, pedestrian traffic, urban aggregation, and opinion dynamics.
More recently, ABMs have demonstrated their value as forecasting tools [32], such as in predicting
the economic impacts of the COVID-19 pandemic [30].

However, this progress is occurring despite the absence of principled methods to systematically align
ABMs with real-world data. While various approaches have been proposed for calibrating macro-level
parameters of ABMs [31], there are still no established methods for tuning the micro-level behaviors
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Figure 1: Overview of the training and generation pipeline for differentiable surrogates of Agent-
Based Models. The top-left panel illustrates the training process: we run simulations using the
original ABM, and use the resulting trajectories to train the differentiable surrogate. The top-right
panel shows the structure of the ABM-generated data using the Predator-Prey model as an example:
a state at time step t−1 gives rise to multiple possible states at time t, one of which is chosen to
generate further possible states at t+1. Colored cells highlight the behavior of a specific “prey” agent
— green for “move,” red for “die,” and pink for “reproduce.” The bottom panel shows the generation
phase: given a new observed state, the trained surrogate simulates plausible future states.

of individual agents to match observed data. One potential approach is to manually construct a
probabilistic model that replicates the ABM and then use its likelihood function to estimate individual
state variables [25]. However, this method requires the manual development of an ad-hoc probabilistic
framework that reproduces the original ABM. Thus, what is currently missing is a fully automated
method for deriving a learnable, differentiable model directly from an ABM.

In this work, we propose a novel approach to address this challenge: combining a graph neural
network with a diffusion model to learn a differentiable surrogate of an ABM, from ABM-generated
data. We refer to this method as a Graph Diffusion Network (GDN). In this framework, a graph neural
network captures the interactions that govern the evolution of each agent’s state in response to other
agents, while the diffusion model learns the distribution of possible state transitions, conditioned
on these interactions. A central aspect of our approach is its explicit modeling of individual agent
behavior. Rather than treating the system as a whole, we focus on how each agent acts as an
independent entity, while also incorporating the influence of other agents on its decisions. This
approach ensures that the emergent dynamics remain faithful to the decentralized nature of ABMs.
By constraining the surrogate to model only micro-level rules, it cannot rely on shortcuts that predict
only macro-level outcomes, preserving the distributed logic of the original ABM.

Our approach draws inspiration from previous work on using neural network models to emulate
deterministic cellular automata [13]. However, we extend this idea to the broader domain of ABMs by
introducing a crucial component: stochasticity. By incorporating stochasticity, our architecture can
learn directly from ABM-generated data traces, making it adaptable to a wide variety of agent-based
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models across diverse real-world applications. Furthermore, since our method is trained on data traces,
it can seamlessly integrate empirical observations alongside simulated data, thus being potentially
applicable to real-world scenarios. In this sense, our work represents a first step toward developing a
comprehensive methodology for creating easy-to-use, learnable ABMs.

2 Background

From a general perspective, an ABM can be represented as a stochastic process Zt ∼ PΘ(Zt | Zτ<t),
where Zt denotes the state variables at time t, Θ is a set of parameters, and P is a probability distri-
bution implicitly defined by the model structure and parameters. The index t represents discrete time.
Typically, Θ consists of a small number of parameters, remains fixed in dimension, is interpretable by
domain experts, and serves as the model’s primary control mechanism. Conversely, each element in
Zt captures an agent’s state, leading to a high-dimensional state space.

To illustrate this structure, we consider two ABMs used throughout the paper. The first is the well-
known model by Schelling [36], where Zt captures agents’ positions and colors, and Θ indicates
preference for same-color neighbors. Even with some tolerance for neighbors of different colors,
agents often form segregated clusters [41]. This clear mismatch between individual preferences
and aggregate outcomes is a classic example of emergence. The second model is a predator-prey
model [39, 43], describing the ecological dynamics between two interacting species, with one
acting as predator and the other as prey, similarly to the Lotka-Volterra equations. In this ABM,
Zt includes agent position and type (prey-predator), while Θ governs the probability to move,
reproduce, or die. This model replicates the cyclical predator-prey population dynamics, typical
of Lotka-Volterra systems, while also capturing complex spatial patterns reminiscent of spatial
evolutionary games [27]. Both the Schelling and predator-prey models are widely recognized as
canonical ABMs and are frequently used as testbeds for the development of novel calibration and
surrogate techniques [37, 16, 23, 39, 40, 26].

ABMs have traditionally been powerful for theory generation, but in recent years, they have become
increasingly data-driven [29]. To align ABM output with empirical data, most efforts focus on
calibrating parameters Θ so that model-generated summary statistics match observed ones [31, 33].
Less attention, however, has been paid to estimating agent states Zt, which is key for matching time
series further to summary statistics. Some researchers use data assimilation methods like particle
filters [22] or ensemble Kalman filters [28] to infer Zt. A more principled alternative is to make
ABMs differentiable, enabling the maximization of a likelihood function via gradient descent and
automatic differentiation [24, 25]. While differentiability is straightforward for simple stochastic
behaviors, such as those governed by Bernoulli trials [3], it becomes far more challenging for complex
behaviors like those observed in the Schelling and predator-prey models.

To address this and other challenges in ABMs, researchers have increasingly turned to more tractable
surrogates, also known as meta-models or emulators [17, 9, 11]. Surrogate models typically learn
directly the mapping from parameters Θ to static summary statistics, disregarding individual behavior
and model dynamics. For instance, a surrogate in Lamperti et al. [20] maps Θ to the mean growth
rate of the economy. More recent research has also explored the emulation of model dynamics.
Grattarola et al. [13] use Graph Neural Networks to approximate cellular automata, which can be
seen as a special case of ABMs with deterministic interaction rules. Dyer et al. [8] propose Ordinary
Differential Equation emulators to construct interventionally consistent surrogates, ensuring that
micro-state interventions produce results aligned with macro-state interventions. Casert et al. [5]
employ Transformers to model the transition of physical systems from one configuration to another,
in terms of their transition rates rather than reproducing individual agent behavior. Their method is
tailored to physical systems in continuous time, making it inapplicable for interacting agents in the
general case, since it requires explicitly enumerating allowed transitions between configurations.

In contrast to these approaches, our work is the first to jointly emulate individual and stochastic
interacting agents. This is particularly important, since ABMs are inherently stochastic and rely on
individual-level interactions to produce emergent aggregate outcomes. Moreover, since our surrogate
is differentiable by design, it paves the way for methods that estimate both individual-level parameters
and state variables.

To achieve this goal, our framework relies on a novel combination of graph neural networks and
diffusion models. Diffusion models [14] were first introduced in the context of image generation,
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where they demonstrated impressive generation capabilities [7], and were then applied to other
domains [18]. A number of works addressed graph data [21], for example in molecule modeling [15]
and protein structure generation [2]. However, these works focus on the generation of graphs, while
our architecture learns to generate random samples that are conditioned on information found on a
graph. To the best of our knowledge, our work is the first application of this generative framework to
individual behavior modeling in simulation systems, such as ABMs.

3 Methods

Denoting the set of agents by A, let each agent i ∈ A at discrete time t be described by a state vector
Z

(i)
t , which may include both continuous and categorical features. Given the ABM parameters Θ, the

update rule of Z(i)
t follows a stochastic transition process PΘ given by

Z
(i)
t+1 ∼ PΘ(Z

(i)
t+1|Z

(i)
t , {Z(j)

t }j∈N
(i)
t
), (1)

where N (i)
t is the set of agents interacting with agent i at time t, inducing a (time-varying) interaction

graph Gt = (A,Et) that we assume to be known. This formulation focuses on individual agents,
capturing not the dynamics of the entire system, but the evolution of each agent over time. In this way,
it makes the two core ingredients of ABMs explicit: (i) relational structure via local neighborhoods
N

(i)
t ; (ii) stochasticity in the choice of next states.

To effectively model these components in the same individual-level view, we leverage respectively
(i) message-passing GNNs [10], which model the relationship between the evolution of an agent’s
state and the state of its neighbors on the graph; (ii) conditional diffusion models [44], generative
architectures well-suited to learning complex, multimodal distributions, allowing us to capture the
intrinsic stochasticity of agent behavior.

Our proposed method, dubbed Graph Diffusion Network (GDN), combines these two components
into a single architecture. Together, these components let us learn both how any agent state is affected
by its neighbors on the graph, and the inherent randomness driving agent dynamics, yielding a
surrogate that can both emulate the original ABM and be differentiated.

Overview. To learn the distribution PΘ, the training phase requires observations of different outcomes
given the same starting conditions. To do so, in our framework, we use the original ABM to generate
a data set as a ramification of possible states, namely

(
Z

(i)
t , {Z(j)

t }j∈N
(i)
t

)
−→ Z

(i)
t+1 (see Figure 1).

Our Graph Diffusion Network then approximates the stochastic kernel PΘ by integrating a Message-
Passing GNN with a Conditional Diffusion Model, of learnable parameters ω and ϕ respectively.
The GNN aggregates each agent’s state Z

(i)
t and its neighbors’ states {Z(j)

t }j∈N
(i)
t

via permutation-

invariant message and readout functions to produce an interaction embedding g
(i)
t . This embedding

acts as a compact representation of the information coming from i’s neighbors at t, affecting the
distribution of possible states of agent i at time t+ 1. As such, it is passed to the diffusion model:
conditioned on Z

(i)
t and g

(i)
t , the diffusion model learns to transform a sample of Gaussian noise

into a possible instance of the next state Z
(i)
t+1 . By minimizing the standard denoising loss over all

observed transitions, this hybrid architecture captures both the graph-structured interactions and the
inherent stochasticity of agent dynamics.The trained model GDNϕ,ω is therefore able to generate,
given a graph Gt of interacting agents and the state of each one Z

(i)
t , a sequence of possible next

states Z
(i)
t+1. The consecutive application of GDNϕ,ω allows for reproducing the behavior of the

original model. We now describe in detail each of these components.

Message-passing GNN. The GNN operates on the provided interaction graph Gt = (A,Et), that we
assume to be known or to be computable from Zt (e.g., in the Schelling model, the position of the
agents determines who interacts with whom). For each agent i, the GNN aggregates its state Z

(i)
t

together with each neighbor’s state Z
(j)
t via a permutation-invariant operator

⊕
, and then feeds the

concatenated result through an MLP fω [10], that is g(i)
t = fω

(
Z

(i)
t ,

⊕
j∈N

(i)
t

(
Z

(i)
t ,Z

(j)
t

))
. The

resulting vector g(i)
t captures how i’s local neighborhood influences its next-state distribution. In
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practice, for the operator
⊕

, we used sum aggregation for Predator-Prey and mean aggregation for
Schelling, since the latter’s dynamics depend on the degree. Minimal experimental evaluation can
guide practitioners toward the most suitable operator.

Conditional diffusion model. The diffusion model then learns the distribution over future states
given this output from the graph and the state of a given agent. Diffusion models do so by reversing a
fixed Gaussian noising process [14]. The obtained denoising process, indexed by τ ∈ {τmax, . . . , 0},
starts from a sample of Gaussian noise xτmax

∼ N (0, I) and in a sequence of denoising diffusion
steps transforms it into a possible next state x0 ≈ Z

(i)
t+1. In this setting, we denote the general latent

xτ as Z̃(i)
t+1(τ). Each step of this process receives as input (i) the agent’s current state Z

(i)
t , (ii) its

interaction embedding g
(i)
t , and (iii) a sinusoidal positional embedding of τ . These inputs are first

transformed by MLPs to form the condition vector c(i)t . Then, a feed-forward network ϕ is trained to
predict the noise residual ϵϕ, i.e., the change to apply to the input Z̃(i)

t+1(τ) to continue the denoising
process.

Ramification data set. Given these two components, our framework uses the original ABM to
produce a ramifications data set (see Figure 1). Such data set follows one main branch that specifies
the evolution of the ABM, and multiple alternative stochastic evolutions of each time step from time
t to time t+ 1. This method makes it possible to expose the model to multiple stochastic successors
from identical conditioning context, while avoiding exponential growth in the number of histories.
Starting from an initial configuration Z0 =

(
Z

(1)
0 , . . . ,Z

(n)
0

)
, we recursively simulate R+ 1 child

configurations at each time step t, yielding {Zt+1[r]}r=0,...,R. We designate the branch r = 0 as the
main branch {Zt[0]}t=0,...,T−1, from which we extract the conditioning tuples

(
Z

(i)
t , {Z(j)

t }j∈N
(i)
t

)
for all agents i. The remaining R sibling branches at each t supply the target next states Z

(i)
t+1,

ensuring that each context yields multiple outcomes.

Algorithm 1: Training Procedure

1: repeat
2: t ∼ Uniform(0, ..., T−1)
3: Z

(i)
t , {Z(j)

t }j∈N
(i)
t
← Zt[0]

4: g
(i)
t = fω(Z

(i)
t ,

⊕
j∈N

(i)
t

(Z
(i)
t ,Z

(j)
t ))

5: τ ∼ Uniform(1, ..., τmax)
6: τemb = SinusoidalPositionEmbedding(τ)
7: c

(i)
t = MLP(Z(i)

t ) + MLP(g(i)
t ) + MLP(τemb)

8: r ∼ Uniform(1, ..., R)

9: Z
(i)
t+1 ← Zt+1[r]

10: ϵ ∼ N (0, I)
11: Optimizers step over all i ∈ A

12: ∇ϕ,ω||ϵ− ϵϕ(Z̃
(i)
t+1(τ), c

(i)
t )||2

13: until convergence

Learning procedure. Our framework uses
these data sets to train the Graph Diffusion
Network. It minimizes the expected de-
noising loss over the outcomes observed
in the ramification data (see Algorithm 1).
At each training iteration, it uniformly sam-
ples a time index t and extracts the condi-
tioning pair (Z(i)

t , {Z(j)
t }) from the main

branch Zt[0]. We compute the interaction
embedding g

(i)
t via Equation (3), then draw

a diffusion step τ to form the condition vec-
tor c(i)t , and uniformly select one of the R
next-state realizations to obtain the target
Z

(i)
t+1. Finally, we minimize the denoising

loss in Equation (5) by backpropagating
through both the diffusion model and the
GNN. More details about the architecture,
and a discussion on computational costs and scalability can be found in Supplementary Section A.

4 Experiments

In this section, we present different experiments to assess and demonstrate our framework’s ability
to learn micro-level agent behaviors and faithfully reproduce emergent system-level dynamics. We
evaluate our Graph Diffusion Network on two canonical agent-based models: the Schelling’s segrega-
tion model and the Predator–Prey ecosystem, presented in Section 2 and detailed in Supplementary
Section B. We test both its micro-level and macro-level fidelity. At the micro level, we measure how
well the surrogate reproduces the conditional next-state distribution of each agent under identical con-
text on an out-of-training ramification data set. At the macro level, we assess whether the surrogate,
once trained on the first Ttrain = 10 timesteps, can accurately reproduce the subsequent Ttest = 25
timesteps of aggregate summary statistics.
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Because no existing method directly accepts graph-structured agent states and outputs per-agent
state distributions, there are no directly applicable baselines for our approach. Existing surrogates
typically operate at the macro level, learning mappings from parameters to aggregate outcomes
rather than reproducing full system dynamics. However, such approaches, including standard time-
series models such as AR(1), fail to capture non-monotonic or cyclic patterns (e.g., predator–prey
oscillations) and do not generalize beyond in-sample dynamics, as we show in Supplementary Section
C.5. Therefore, we evaluate against two ablated variants. The first replaces the GNN embedding
with a flat concatenation of all agent states, removing relational structure. The second keeps the GNN
but removes the diffusion component, predicting deterministic next states instead. Both ablations are
trained on the same ramified datasets and under identical protocols.

In the remainder of this section, we first describe the experimental setup, including dataset generation,
model variants, and evaluation metrics. We then present a qualitative analysis of emergent patterns,
followed by a comprehensive quantitative comparison. All implementation and reproducibility details
are provided in the Supplementary Materials. Full code to reproduce our experiments is available at
http://github.com/fracozzi/ABM-Graph-Diffusion-Network.

4.1 Experimental design

Ablation. Our core hypothesis is that both relational structure and stochastic modeling are crucial
for accurate ABM surrogates. We consider therefore two possible ablations. In the first, we remove
the message-passing GNN and replace the interaction graph with a flat concatenation of all agents’
state vectors—this isolates the impact of neglecting agent interactions. The second drops the diffusion
component entirely, yielding a purely deterministic model similar in spirit to prior GNN-based
approaches for deterministic automata [13]. In this ablated version, we predict the next agent state by
minimizing the mean squared error (MSE) with respect to the true next agent state. Details about
the architecture can be found in Supplementary Section A. These ablations allow us to measure the
improvement achieved by combining relational and stochastic modeling.

Agent-based models. We evaluate our approach on the two ABMs described in Section 2 as case
studies. The first is the Schelling segregation model, in which n agents occupy cells on a two-
dimensional grid. Each agent has a fixed binary “color” and a position on the grid. At each timestep,
an agent is considered happy if the proportion of its (up to eight) immediate neighbors sharing its
color exceeds a tolerance threshold ξ; otherwise, it is unhappy and relocates to a randomly selected
empty cell; thus, the interaction graph Gt links each agent to its neighbors at time t. We adopt the
standard NetLogo implementation of this model [42]. The second is a predator–prey ecosystem
model, where agents belong to one of two species (predator or prey), inhabit grid cells, and cycle
through life phases—Unborn, Alive, Pregnant, and Dead. At each timestep, an Alive agent may
move to a neighboring cell, reproduce (becoming Pregnant), or die, with probabilities specified by a
parameter matrix Ψ and conditioned on the local presence of predators or prey [39, 43]. Pregnant
agents revert to Alive after giving birth; Unborn agents become Alive if their parent is Pregnant;
and Dead agents remain inactive. Here, Gt links Alive neighboring agents, with specific rules for
Pregnant and Unborn agents. See Supplementary Section B for more details. In both ABMs, each
agent’s full state at time t comprises its position, type (color or species), and, for the predator-prey
ABM, its life phase. Together, these two models span both simple relocation dynamics and richer
birth–death interactions, providing diverse testbeds for our surrogate.

Micro evaluation metrics. To quantify how faithfully our surrogate captures individual agent
behavior, we compare its predicted conditional next-state distributions against the ABM’s true
stochastic transitions using the Earth Mover’s Distance (EMD) [35]. We extend the ramification
dataset beyond the training horizon and generate corresponding datasets for both the surrogate and
the ablation models. The EMD is then computed as the mean value across timesteps and individual
agents. In the Schelling ABM, the EMD compares the distribution of agent positions. This directly
measures the surrogate’s ability to relocate unhappy agents correctly, while keeping happy agents
stationary. In the predator-prey model, we treat the agent’s categorical life phase as the random
variable and compute the EMD over its four-state distribution. This metric captures both deterministic
transitions (e.g., Unborn→ Alive, Dead→ Dead) and stochastic, interaction-driven transitions (e.g.,
Alive→ Dead, Alive→ Pregnant).
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ξ1 ξ2 ξ3

Figure 2: Evolution of the position of black and red agents in the Schelling model, for three simulation
runs, one for each of the considered tolerance thresholds ξ1 = 0.625, ξ2 = 0.75, ξ3 = 0.875 (left,
center, and right panel). We compare the ground truth (top row) with our surrogate (middle row) and
with the best-performing ablation (according to sMAPE, bottom row). For each panel and model, we
show three time steps: t = 0 (initial conditions, same for each column but kept for clarity), t = 15,
and t = 30.

Macro evaluation metrics. Next, we test whether agent-level predictions translate into faithful
reproduction of emergent, system-level behavior. For each model, we track a summary statistic
over time: the number of happy agents in Schelling, and the number of active (i.e. Alive and
Pregnant) agents in the predator–prey ecosystem. Reusing the same ramification branches as in
training would offer little new information, since different stochastic branches from the same state
tend to produce very similar macroscopic trajectories. Instead, we generate a fresh ensemble of
main-branch simulations (100 independent runs) beyond the training horizon. We then compute the
symmetric mean absolute percentage error (sMAPE) between the mean ground-truth trajectory and
the mean surrogate-predicted trajectory across this ensemble, providing a quantitative measure of the
surrogate’s ability to capture oscillations and steady-state behavior truly out-of-sample.

Experimental set-up. We consider three parameter combinations ξ for the Schelling ABM, each
producing distinct segregation outcomes, and four Ψ combinations for the predator-prey ABM,
reflecting different oscillatory patterns in the population dynamics. For each ABM and parameter
setting, we simulate Ttrain = 10 main-branch steps with R = 500 stochastic branches per step,
yielding the training ramification as in Figure 1. For macro-evaluation, we run 100 independent
main-branch simulations to calculate sMAPE. For micro-evaluation, we generate an out-of-sample
ramification dataset of T = 25 timesteps. We train both surrogate and ablations for 100 epochs using
Adam with learning rate 10−5 for the diffusion model and Adam with learning rate 2 · 10−5 for
the GNN, batch size equal to number of agents, and diffusion hyper-parameters τmax = 100 (more
information in Supplementary Section A).

4.2 Results

To build intuition, we first qualitatively compare the surrogate and its ablated variant on their ability
to reproduce key emergent patterns of agent-based dynamics. We then consolidate these insights with
a comprehensive quantitative evaluation using the macro- and micro-level metrics introduced in the
previous section. We report a selection of results in this Section; more in Supplementary Section C.

Reproducing emergent segregation. Let us first consider the Schelling ABM, under the config-
urations ξ1 = 0.625, ξ2 = 0.75, ξ3 = 0.875. Figure 2 illustrates how the ground-truth ABM (top
row) progresses from a randomized initialization to structured, segregated communities for the first
two configurations ξ1, ξ2, while it remains unsegregated for ξ3. At the first two tolerance levels, in
fact, the agents gradually self-organize into distinct clusters, with segregated communities clearly
emerging around t = 20 (see Supplementary Section C). The middle row represents the evolution
of the system according to our surrogate model: we initialize the system with the same starting
condition, and then we iterate giving the current state Zt to our model, and using one sample of
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Figure 3: Forecasting macro-level summary statistics (here, the number of alive preys and predators
over time), starting from the last condition seen in training, for 100 independent simulation runs,
under configuration Ψ1 (oscillations for both predators and preys, top) and Ψ4 (oscillations only for
predators, bottom). From left to right: original ABM simulations, surrogate, diffusion-only ablation,
GNN-only ablation. The dashed vertical line indicates the end of the training phase for the surrogate
and ablation models.

the generated output as the next state Zt+1. We observe that our surrogate exhibits a qualitatively
similar pattern of cluster formation over time, distinct for each of the three configurations. Instead,
the ablation models fail to meaningfully relocate agents. The best-performing one, according to
sMAPE, the diffusion-only model, largely maintains a random configuration.

Reproducing emergent oscillations in predator-prey dynamics. Next, we consider the Predator-
Prey ecological model. Figure 3 overlays 100 trajectories of prey and predator populations starting
from the same state at the end of training, comparing the stochastic trajectories from the ground-
truth model with those obtained by our surrogate and by the ablation. For both configurations, the
surrogate and the ablation models are trained only with the initial time steps (up to the dashed line
in the plots). Under the parameter set Ψ1, the ground-truth ABM (top-left plot) exhibits classical
Lotka–Volterra oscillations: a rise in prey growth drives a delayed increase in predators, which
then triggers prey decline and a subsequent predator decline. Under Ψ4, instead, only predators
show a rise and decay, while preys only decline (bottom-left plot). We observe that the surrogate
(second column) accurately captures both the phase lag and amplitude of these oscillations, while the
diffusion-only ablation (third column) collapses to near-monotonic trends. The GNN-only ablation
(fourth column), besides following a completely deterministic dynamic, completely diverges from
the ground truth. The number of preys under Ψ1, for instance, quickly reaches a plateau at a
value of 750 (not shown), almost twice the real one. We perform the same analysis for alternative
parameterizations Ψ2, Ψ3 (included in Supplementary Section C) that show different types of
dynamics, as the population of predators and/or preys may exhibit monotonic extinctions. In all cases,
the surrogate faithfully reproduces monotonic declines or single-peak dynamics and both ablations
fail. We also observe (figures in Supplementary Section C) that the surrogate recreates the rich spatial
patterns of predator–prey clusters, also seen in similar settings in evolutionary game theory [27].

Quantitative results. Now we present the results of a quantitative analysis, systematizing the
previous comparisons. Here, each comparison with the ground truth is quantified using one of the
metrics presented in the previous subsection, i.e. Earth Mover’s Distance (EMD) for the micro-
level comparisons, and sMAPE for the macro-level ones. Figure 4 summarizes the results of our
experiments: the left panel shows the microscopic evaluation of both our surrogate model and the
ablated variant, while the right panel presents the macroscopic evaluation results.

For the Schelling model, we observe that, on the micro level, the surrogate’s mean EMD is lower
than the diffusion-only ablation’s mean EMD in all cases. The differences between the surrogate
and the diffusion-only ablation are less pronounced at the thresholds ξ1 and ξ3. At ξ1 (few unhappy
agents) behavior is almost entirely deterministic and agents rarely move, while at ξ3 (almost all
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Schelling

Predator-Prey

 - Low segregationξ1

EMD (Micro)

 - High segregationξ2

 - No segregationξ3

Oscillations Predators 
Oscillations Preys 

sMAPE (Macro)

 - ψ1

Monotone Predators 
Monotone Preys  - ψ2

Monotone Predators 
Oscillations Preys 

 - ψ3

Oscillations Predators 
Monotone Preys  - ψ4

Figure 4: Errors obtained by the proposed approach (Surrogate) and by the naive baselines (Diffusion-
only and GNN-only ablation models) in four different tasks. In the first column, error is measured
as the EMD between the true and predicted distribution of individual (micro-level) behavior, i.e.
predicting the next state of each agent from the previous one. In the second column, error is measured
as the difference (sMAPE) in system-level quantities, i.e. comparing the true values of the number of
agents with a given state with the one predicted by our model when trained on a fraction of the initial
time steps (as in Figure 3). In the first row, we test three configurations of the Schelling model; in the
second row, we compare four configurations of the Predator-Prey model.

agents unhappy) behavior is uniformly random, so even a flat, “always-move” or “never-move” rule
yields near-optimal predictions in these two cases. In contrast, at the intermediate threshold ξ2, where
roughly half the agents are unhappy, the difference between the surrogate’s and the diffusion-only
ablation’s EMD is more pronounced. A similar pattern is observed in the macroscopic evaluation.
The surrogate’s sMAPE remains below 0.2, whereas the diffusion-only ablation fails to distinguish
happy from unhappy cases, resulting in large macro-level errors. In the GNN-only ablated model,
at the micro-level EMD increases proportionally with the level of stochasticity introduced by the
parameters, with EMD values similar to the surrogate for ξ1 (the most deterministic) and much higher
for ξ3 (the most stochastic). At the macro-level, we observe large errors, with sMAPE always higher
than the surrogate. These gaps confirm that only the full model, with explicit graph-based interaction
modeling and stochasticity, can learn the conditional relocation rule critical in balanced regimes.

For the Predator–Prey model, regarding micro-level behavior, our surrogate achieves a low EMD
from the ground truth on average, and it consistently outperforms both ablation models. These results
confirm that our model is able to faithfully reproduce the complex dynamics of this ABM even at
the individual agent-level (thus explaining Figure 3). The most successful case is Ψ2, where our
surrogate exhibits a near-zero difference from the ground truth. In fact, in this configuration, most
agents follow deterministic update rules (e.g., dead→ dead), which are perfectly recovered by our
model, but not by the diffusion-only ablation — which also obtains worse results on stochastic rules,
as shown in Supplementary Section C.4. Instead, the GNN-only ablation performs well only in those
deterministic cases, but fails in all the others. At the macro level as well, the surrogate consistently
outperforms the ablation, generally achieving low error. The best result is obtained with Ψ1, the most
complex dynamics, where the surrogate achieves an average sMAPE of approximately 0.08. This
configuration produces two distinct population peaks, and the surrogate faithfully reproduces both
their timing and amplitude (Figure 3). The worst result is obtained with Ψ2, as this configuration is
almost monotonic and dominated by long, near-zero tails that are noisy at very small scales, making
them difficult for any model to reproduce.
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5 Discussion

We introduced Graph Diffusion Networks, a differentiable surrogate for agent-based models that
combines graph neural networks to model agent-level interactions with diffusion models to capture
stochasticity. Our experiments on the Schelling segregation model and a Predator–Prey ecosystem
show that this approach not only accurately reproduces individual-level transition distributions, but
also faithfully captures emergent, system-level dynamics beyond the training horizon.

Limitations. Our approach is limited by our assumptions about the characteristics of the ABM to
emulate. First, the interaction graph is assumed to be fully known. Future work might remove this
limitation by estimating such a graph directly from available data. However, the estimation of a latent
interaction graph is a follow-up challenge, for which our GNN-based approach represents a necessary
first step. Second, highly sophisticated ABMs may include features not addressed in our framework -
such as all-to-all interactions, multiple rounds of decision-making, or sequential stochastic events
within a single time step. Capturing these dynamics may require extending our architecture to
incorporate sequential or hierarchical components. While our method may not yet fully generalize to
such settings, our findings demonstrate that building surrogates capable of replicating individual-level
behavior is both feasible and effective, laying the groundwork for broader applications.

Future work. Building on this foundation, the differentiability of our surrogate opens up a range
of powerful applications. It enables the use of gradient-based methods for any optimization task,
such as policy optimization [1]. It allows for efficient calibration of macro parameters by treating
key parameters as additional inputs to the neural network. Most importantly, our approach naturally
allows for the estimation of micro (i.e., agent) level variables — a challenge for ABMs, that often
requires the ad hoc development of handcrafted probabilistic models [24, 25]. In fact, our model
already contains such parameters expressed as agents’ individual states (Z(i)

t ), something typically not
available in ABM surrogates [11]. Moreover, our method can in principle be applied directly to real-
world datasets whenever sufficient observations of comparable agent–context pairs and transitions are
available. In doing so, our framework helps make ABMs more data-driven and empirically grounded,
with promising applications in several scientific domains, such as economics [29], epidemiology [12],
sustainability [19], urban science [4], and ecology [38].

Acknowledgments

The authors wish to thank Daniele Grattarola and Federico Cinus for insightful early discussions that
supported the initial development of this work. We also thank Alberto Novati for his contribution to
the early draft of the code for the original ABM of the predator-prey system.

References
[1] Akash Agrawal, Joel Dyer, Aldo Glielmo, and Michael J Wooldridge. Robust policy design in

agent-based simulators using adversarial reinforcement learning. In The First MARW: Multi-
Agent AI in the Real World Workshop at AAAI 2025, 2025.

[2] Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant
denoising diffusion probabilistic models. NeurIPS 2022 Workshop on Machine Learning in
Structural Biology, December 2022.

[3] Gaurav Arya, Moritz Schauer, Frank Schäfer, and Christopher Rackauckas. Automatic differ-
entiation of programs with discrete randomness. Advances in Neural Information Processing
Systems, 35:10435–10447, 2022.

[4] Mark Birkin, Patrick Ballantyne, Seth Bullock, Alison Heppenstall, Heeseo Kwon, Nick
Malleson, Jing Yao, and Anna Zanchetta. Digital twins and ai for healthy and sustainable cities.
Computers, Environment and Urban Systems, 120:102305, 2025.

[5] Corneel Casert, Isaac Tamblyn, and Stephen Whitelam. Learning stochastic dynamics and
predicting emergent behavior using transformers. Nature Communications, 15(1):1875, 2024.

[6] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics.
Reviews of modern physics, 81(2):591–646, 2009.

10



[7] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion
Models in Vision: A Survey . IEEE Transactions on Pattern Analysis & Machine Intelligence,
45(09):10850–10869, September 2023.

[8] Joel Dyer, Nicholas Bishop, Yorgos Felekis, Fabio Massimo Zennaro, Anisoara Calinescu,
Theodoros Damoulas, and Michael Wooldridge. Interventionally consistent surrogates for
complex simulation models. Advances in Neural Information Processing Systems, 37, 2024.

[9] Marian Farah, Paul Birrell, Stefano Conti, and Daniela De Angelis. Bayesian emulation
and calibration of a dynamic epidemic model for a/h1n1 influenza. Journal of the American
Statistical Association, 109(508):1398–1411, 2014.

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 1263–1272. PMLR, 2017.

[11] Aldo Glielmo, Marco Favorito, Debmallya Chanda, and Domenico Delli Gatti. Reinforcement
learning for combining search methods in the calibration of economic abms. In Proceedings of
the Fourth ACM International Conference on AI in Finance, pages 305–313, 2023.

[12] Nicolò Gozzi, Matteo Chinazzi, Jessica T Davis, Corrado Gioannini, Luca Rossi, Marco Ajelli,
Nicola Perra, and Alessandro Vespignani. Epydemix: An open-source python package for
epidemic modeling with integrated approximate bayesian calibration. medRxiv, 2025.

[13] Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning graph cellular automata. Ad-
vances in Neural Information Processing Systems, 34:20983–20994, 2021.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[15] Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. In Proceedings of the 39th International Conference
on Machine Learning, volume 162, pages 8867–8887. PMLR, 2022.

[16] Ruhollah Jamali, Wannes Vermeiren, and Sanja Lazarova-Molnar. Data-driven agent-based
modeling: Experimenting with the schelling’s model. In Procedia Computer Science, volume
238, pages 298–305, 2024.

[17] Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

[18] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: modelling
tabular data with diffusion models. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

[19] Francesco Lamperti, Giovanni Dosi, and Andrea Roventini. A complex system perspective on
the economics of climate change, boundless risk, and rapid decarbonization. Technical report,
LEM Working Paper Series, 2025.

[20] Francesco Lamperti, Andrea Roventini, and Amir Sani. Agent-based model calibration using
machine learning surrogates. Journal of Economic Dynamics and Control, 90:366–389, 2018.

[21] Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing
Li. Generative diffusion models on graphs: Methods and applications. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, page 6702, 2023.

[22] Thomas Lux. Estimation of agent-based models using sequential monte carlo methods. Journal
of Economic Dynamics and Control, 91:391–408, 2018.

[23] A. J. McLane, C. Semeniuk, G. J. McDermid, and D. J. Marceau. The role of agent-based
models in wildlife ecology and management. Ecological Modelling, 222(8):1544, 2011.

[24] Corrado Monti, Gianmarco De Francisci Morales, and Francesco Bonchi. Learning Opinion
Dynamics from Social Traces. In ACM, KDD, pages 764–773, 2020.

11



[25] Corrado Monti, Marco Pangallo, Gianmarco De Francisci Morales, and Francesco Bonchi. On
learning agent-based models from data. Scientific Reports, 13(1):9268, 2023.

[26] Kilian J. Murphy, Simone Ciuti, and Adam Kane. An introduction to agent-based models as an
accessible surrogate to field-based research and teaching. Ecology and Evolution, 10(22):12482–
12498, 2020.

[27] Martin A Nowak and Robert M May. Evolutionary games and spatial chaos. Nature,
359(6398):826–829, 1992.

[28] Yannick Oswald, Keiran Suchak, and Nick Malleson. Agent-based models of the united states
wealth distribution with ensemble kalman filter. Journal of Economic Behavior & Organization,
229:106820, 2025.

[29] Marco Pangallo and R Maria del Rio-Chanona. Data-driven economic agent-based models. In
The economy as an evolving complex system IV. SFI Press, Santa Fe, N.M., 2025.

[30] Anton Pichler, Marco Pangallo, R Maria del Rio-Chanona, François Lafond, and J Doyne
Farmer. Forecasting the propagation of pandemic shocks with a dynamic input-output model.
Journal of Economic Dynamics and Control, 144:104527, 2022.

[31] Donovan Platt. A comparison of economic agent-based model calibration methods. Journal of
Economic Dynamics and Control, 113:103859, 2020.

[32] Sebastian Poledna, Michael Gregor Miess, Cars Hommes, and Katrin Rabitsch. Economic
forecasting with an agent-based model. European Economic Review, 151:104306, 2023.

[33] A. Quera-Bofarull, G. Dyer, A. Calinescu, J. D. Farmer, and M. Wooldridge. Blackbirds:
Black-box inference for differentiable simulators. Journal of Open Source Software, 8(89),
2023.

[34] Steven F Railsback and Volker Grimm. Agent-based and individual-based modeling: a practical
introduction. Princeton University Press, 2019.

[35] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[36] Thomas C Schelling. Dynamic models of segregation. Journal of mathematical sociology,
1(2):143–186, 1971.

[37] F. Squazzoni. The impact of agent-based models in the social sciences after 15 years of incursion.
History of Economic Ideas, XVIII(2):1000–1037, 2010.

[38] Michiel Stock, Olivier Pieters, Tom De Swaef, and Francis Wyffels. Plant science in the age of
simulation intelligence. Frontiers in Plant Science, 14:1299208, 2024.

[39] Daniel Tang and Nick Malleson. Data assimilation with agent-based models using markov
chain sampling. arXiv preprint arXiv:2205.01616, 2022.

[40] Guus Ten Broeke, George A.K. Van Voorn, and Arie Ligtenberg. The use of surrogate models to
analyse agent-based models. Journal of Artificial Societies and Social Simulation, 24(2), 2021.
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Learning Individual Behavior in Agent-Based
Models with Graph Diffusion Networks
Supplementary Material
A Neural models and training details

In this section, we provide a detailed overview of the core components of the Graph Diffusion
Network (GDN) and its methodology. We begin by introducing the diffusion process (A.1), which
defines the diffusion process to be reversed to generate future agent states starting from a sample of
Gaussian noise. Next, we detail the Graph Diffusion Network architecture (A.2) and its components.
We then discuss the loss and optimization strategy (A.3), covering the training objectives and gradient
flow between the diffusion model and graph components. Following this, we outline the generation
algorithm (A.4), where the iterative denoising process generates future agent states. Finally, we
provide a discussion on the computational costs and scalability of our methodology (A.5).

A.1 Diffusion process

Our diffusion model is designed to generate future agent states Z(i)
t+1 by reversing a known Gaus-

sian noising process (i.e. the forward process) through a set of latents Z̃
(i)
t+1(τ) indexed by

τ ∈ {τmax, ..., 0}. The forward process is a fixed Markov chain that gradually adds Gaussian
noise to the input Z(i)

t+1 according to a previously defined variance schedule βτ . Each latent is given
by:

Z̃
(i)
t+1(τ) =

√
ᾱτZ

(i)
t+1 +

√
1− ᾱτ ϵ, ϵ ∼ N (0, I) (2)

where ατ := 1− βτ and ᾱτ :=
∏τ

s=1 αs. For our model, we selected a cosine variance schedule:

βτ = βstart +
1

2
(βend − βstart)(1− cos(

τ

τmax
π)) (3)

with βstart = 10−4 and βend = 0.02. This choice ensures that βτ increases more gradually at the
beginning of the forward process, retaining more of the original input information, and at the end of
the forward process. We note that, in preliminary trials, it showed to be more stable in our scope with
small input dimensions compared to the cosine variance schedule proposed by [48] in the context of
image generation.

A.2 Graph Diffusion Network architecture

The primary input of the conditional diffusion model inside the Graph Diffusion Network is the latent
Z̃

(i)
t+1(τ), a noised version of Z(i)

t+1 given by equation (2). In general, not all variables contained in
Z

(i)
t+1 are time-dependent, and some remain stationary through time (e.g. color in Schelling and kind in

Predator-Prey, see Supplementary subsections B.1, B.2). We only include the time-dependent features
(or dynamical features) in the input of the diffusion model, as they are the ones that evolve over time
and need to be predicted. The output of the diffusion model is the denoising step ϵϕ(Z̃

(i)
t+1(τ), c

(i)
t )

introduced in Section 3, which has the same size as the input. Thus, the neural network follows a
symmetrical structure with hidden layers of increasing width in the first half, and decreasing width
in the second. The condition vector c(i)t is applied to the hidden layers of the neural network by
applying an activation function, performing a linear operation to match the width of the layer and
summing element-wise with the hidden layer. To increase stability, hidden layers are first normalized
and there is a residual connection after conditioning has been applied. All details of the architecture
of the conditional diffusion model are reported in Table 1.
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The Message Passing GNN takes in input the entire agent state Z
(i)
t as node features. The messages

correspond to the node features and are aggregated by an aggregation function such as sum or mean
value. The choice of the aggregation function depends on the ABM to be reproduced. In general, sum
is a suitable choice, as the MLP fω will capture the behavior rules of the agents. However, for ABMs
where the behavior of agents is influenced by the node degree, as in the case of Schelling, mean is a
more appropriate choice. All details of the architecture of the Message Passing GNN are reported in
Table 1.

To make the network more stable, all features are scaled. In particular, agent states Z(i)
t can contain

both numerical and categorical features. Numerical features are scaled to the interval [−1, 1]. In
our experiments, we scaled numerical features with a standard scaler. After generation, they are
scaled back to their original domain and, for integer numerical features, a binning function is applied
afterwards. Categorical features are one-hot encoded.

Table 1: Architecture and training details of the Graph Diffusion Network
Component Details

Conditional diffusion model
Input dimension dynamical_features_dim
Hidden layers [128, 256, 1024, 1024, 256, 128]
Output dimension dynamical_features_dim
Activation function LeakyReLU (slope = 0.1)
MLP time embedding Linear(256)→ Act→ Linear(256)
MLP current state Linear(256)→ Act→ Linear(256)→ Act→ Linear(256)
MLP graph embedding Linear(256)→ Act→ Linear(256)→ Act→ Linear(256)
Condition block in hidden layers LayerNorm → Linear(dim_out) →

Sum(Lin(Act(condition)))→ Linear(dim_out)→ Residual
connection

Weights initialization Xavier uniform
Optimizer Adam
Learning rate 10−5

Message Passing GNN
Input dimension 2 × agent_state_dim
Hidden layers [32, 64, 128]
Output dimension 256
Aggregation function sum or mean
Activation function LeakyReLU (slope = 0.1)
Message passing Message(xj) = xj

Weights initialization Kaiming uniform
Optimizer Adam
Learning rate 2 × learning_rate_diffusion

Other details
τmax 100
Batch size Number of agents in the system
Number of epochs 100

GNN-only ablated model The only architectural change of the GNN-only ablated model is in
the MLP following the aggregation pass of the GNN: its output dimension is set to the agent-state
dimension rather than the embedding dimension. While the original GNN uses hidden layers of size
[32, 64, 128], the ablated model adopts a symmetrical structure: [32, 64, 128, 128, 64, 32]. We
trained for 100 epochs with the Adam optimizer (learning rate 2× 10−5) and a mini-batch size of 16.
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A.3 Loss and optimization

The learning objectives of the Graph Diffusion Network are the noise residuals ϵϕ(Z̃
(i)
t+1(τ), c

(i)
t ) of

the denoising diffusion process in τ = τmax, ..., 0 used to generate Z
(i)
t+1, given (Z

(i)
t , {Z(j)

t }j∈N
(i)
t
).

The generative process is conditioned by the condition vector c(i)t , which is learned by the network ϕ
and is given by:

c
(i)
t = MLP (Z

(i)
t ) +MLP (g

(i)
t ) +MLP (τemb) (4)

where τemb is the sinusoidal positional embedding of τ and g
(i)
t is the embedding produced by the

Message Passing GNN of parameters ω. More details on the three MLPs that form c
(i)
t are given

in Table 1. The loss function for the denoising diffusion steps ϵϕ(Z̃
(i)

t+1(τ), c
(i)
t ) is calculated as the

expected value over all agents in the system i ∈ A, all ABM timesteps t, all τ and ϵ ∼ N (0, I):

L(ϕ, ω) = Ei,t,τ,ϵ

[
||ϵ− ϵϕ(Z̃

(i)

t+1(τ), c
(i)
t )||2

]
(5)

The parameters to optimize are the parameters of the diffusion model ϕ and the parameters of the
GNN ω. At each training step, the loss in equation (5) is calculated over the batch made of all agents
i ∈ A and gradients are backward propagated. First, the optimizer for ϕ is applied, and then the
optimizer for ω. Thus, the GNN is trained by inheriting the gradients from the loss of the conditional
diffusion model, through the learned condition representation c

(i)
t .

A.4 Generation

The generation of Z(i)
t+1 starts from the last latent of the denoising diffusion process, which is a sample

of Gaussian noise Z̃(i)
t+1(τmax) ∼ N (0, I). The Message Passing GNN takes in input the current state

Z
(i)
t and the states of its neighbors {Z(j)

t }j∈N
(i)
t

and forms the embedding g
(i)
t . Then, iteratively over

τ = τmax, ..., 1, the conditional diffusion model takes in input the sinusoidal positional embedding
τemb, the current agent state Z

(i)
t and the embedding vector g(i)

t , and forms the condition vector c(i)t .

Lastly, the previous latent Z̃
(i)

t+1(τ − 1) is calculated given Z̃
(i)

t+1(τ) and the output of the Graph

Diffusion Network ϵϕ(Z̃
(i)

t+1(τ), c
(i)
t ) as in lines 7-8 in Algorithm 1.

Algorithm 1 Generation

1: Z
(i)
t , {Z(j)

t }j∈N
(i)
t
← Data

2: gt
(i) = fω(Z

(i)
t ,

⊕
j∈N

(i)
t
(Z

(i)
t ,Z

(j)
t ))

3: Z̃
(i)
t+1(τmax) ∼ N (0, I)

4: for τ = τmax, ..., 1 do
5: τemb = SinusoidalPositionEmbedding(τ)
6: c

(i)
t = MLP(Z(i)

t ) + MLP(g(i)
t ) + MLP(τemb)

7: z ∼ N (0, I), if t > 1 else z = 0

8: Z̃
(i)
t+1(τ − 1) = 1√

ατ
(Z̃

(i)
t+1(τ)− 1−ατ√

1−ᾱτ
ϵϕ(Z̃

(i)
t+1(τ), c

(i)
t )) + στz

9: end for
10: return Z̃

(i)
t+1(0) ≈ Z

(i)
t+1

We set στ =
√

1−ᾱτ−1

1−ᾱτ
βτ . This choice of στ is optimal for deterministically set points [14], which

is the case for some update rules in ABMs (e.g. happy agents in Schelling and dead agents in
Predator-Prey). Alternatively, one can also choose στ =

√
βτ , which is more optimal for normally

distributed points.

A.5 Computational costs and scalability.

In the following subsection, we provide additional details and discussion on the computational costs
and scalability of our proposed methodology. In particular, details on the hardware employed to run
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our experiments, performance details with respect to the number of ramifications provided during
training, as well as a discussion over the scalability of Graph Diffusion Networks to larger systems of
agents, and on the interplay between the number of agents and the number of ramifications.

Runtime characteristics. All experiments were run in a cloud-based server with 15 vCores, 180
GB of RAM, and an NVIDIA A100 80GB PCIe GPU. Execution times depend on the size of the
datasets and GPU occupancy by other processes. In our experiments, where the training datasets
were made of R = 500 ramifications over T = 10 timesteps with 2048 agents in the system for
Predator-Prey and 1950 agents for Schelling, the training time over 100 epochs typically lasted around
1 hour (around 37 seconds per epoch). Generating a simulation of 25 timesteps for the entire system
of agents takes roughly 7.5 seconds for both Predator-Prey and Schelling, around 0.3 seconds per
timestep.

Scalability with respect to number of ramifications. During training, each training step processes
the entire system of agents for one timestep and one ramification. Therefore, the runtime grows
linearly with respect to the number of ramifications or timesteps. We present results from 10
experiment runs trained on one of the Predator-Prey datasets of parameter Ψ1, to compare training
time, micro-level metric (EMD), and macro-level metric (sMAPE) as the number of ramifications
provided during training increases in Figure 5 and Table 2. As expected, training time increases
linearly with the number of ramifications included in the dataset used to train the model. Furthermore,
micro-level metrics decrease as the number of ramifications increases, showcasing the benefit of
providing a higher number of stochastic outcomes to the model during training to better fit the
stochastic rules that govern the original ABM. Macro-level metrics are subject to higher variance and
do not show a trend as clear as with the micro-level metrics, still the best results are reached with the
highest number of ramifications.

Scalability with respect to number of agents. The experiments covered in Section 4.2 are per-
formed on mid-sized ABMs, with the total agent count ranging in the thousands (for Schelling there
are 1950 agents in total and 2048 for Predator-Prey). Increasing the number of agents in the system
(for example by increasing the grid size and keeping the density of agents constant) increases the
training time sub-linearly. In fact, with mid-sized systems, we can train the network with batches that
correspond to the whole set of agents. Thus, the number of training iterations per epoch does not
change, but rather the size of the batch in input to the network. It should be noted that increasing
the number of agents also increases the inference time (time required by the trained surrogate to
produce a simulation for the whole system). We present results from 5 experiment runs trained
on one of the Predator-Prey datasets of parameter Ψ1, to compare training time, inference time,
micro-level metric (EMD) and macro-level metric (sMAPE) as the total number of agents in the
system increases by increasing grid size and keeping agent density constant in Figure 6 and Table 3.
From our results, it can be noted that micro-level metrics slightly decrease as agent count increases,
as well as macro-level metrics reach lower values in some of the experiments with higher agent count.
We argue that increasing the number of agents in the system naturally increases the number of agent
transitions available in the dataset, expanding the statistical coverage provided to the model to learn,
and yielding slightly better results.

Scalability interplay between number of agents and ramifications. Generating hundreds of
futures per state can be costly for many-agent or long-horizon systems, but larger systems naturally
provide more independent samples of similar conditions; thus, fewer ramifications can suffice for
comparable statistical coverage. To evaluate the trade-off between data generation cost and predictive
quality, we performed 5 experiment runs and trained our model on one Predator–Prey dataset
(parameter set Ψ1) with increasing agent counts and decreasing ramifications, keeping the training
time per epoch approximately constant, and the total number of agent transitions roughly similar.
All other hyperparameters match the main experiments. We observe from Table 4 that the errors
(both sMAPE and EMD) remain close to the original results even when the number of agents grows
substantially, keeping training time low thanks to a lower number of ramifications needed.
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Table 2: Effect of ramifications R on training time and performance.
Ramifications Time/epoch sMAPE EMD

50 3.71± 0.02 s 0.076± 0.019 0.0161± 0.0003
100 7.44± 0.02 s 0.071± 0.015 0.0156± 0.0004
250 18.61± 0.06 s 0.083± 0.039 0.0115± 0.011
500 37.17± 0.12 s 0.062± 0.030 0.0088± 0.0007

Table 3: Scaling with grid size, number of agents with fixed number of ramifications (R = 500).
*: Mean time to produce a simulation of the whole system for t = 25 timesteps.

Grid size Agents Time/epoch Inference time* sMAPE EMD
64 8192 108.58± 0.30 s 35.32± 2.03 s 0.051± 0.026 0.0082± 0.0003
48 4608 63.78± 0.32 s 16.45± 0.72 s 0.053± 0.026 0.0083± 0.0005
32 2048 37.20± 0.12 s 7.44± 0.01 s 0.065± 0.033 0.0092± 0.0007

Table 4: Scaling with grid size, number of agents, and ramifications while keeping training time and
transitions roughly constant.

Grid size Agents Ramifications Time/epoch sMAPE EMD
64 8192 180 38.88± 0.18 s 0.066± 0.027 0.0095± 0.0005
48 4608 300 38.41± 0.25 s 0.073± 0.024 0.0092± 0.0005
32 2048 500 37.20± 0.12 s 0.065± 0.033 0.0092± 0.0007
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Figure 5: Training time, micro and macro metrics with respect to the number of ramifications provided
during training for 10 experiments on one dataset of Predator-Prey with parameter set Ψ1. Points
indicate the mean value and error bars standard deviation over the 10 experiments.
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Figure 6: Training time, micro and macro metrics with respect to the total number of agents in the
system for 5 experiments on one dataset of Predator-Prey with parameter set Ψ1. Points indicate the
mean value and error bars standard deviation over the 5 experiments.
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Figure 7: Training time, micro and macro metrics with increasing the total number of agents in the
system and decreasing the number of ramifications to yield similar training times. Results are shown
for 5 experiments on one dataset of Predator-Prey with parameter set Ψ1. Points indicate the mean
value and error bars standard deviation over the 5 experiments.

18



B ABM Case Studies

B.1 Schelling model

The Schelling model of segregation is a classic example to showcase the emergence property of
ABMs. Agents i ∈ A are placed in a 2-dimensional grid L× L. Their state is given by their color (a
binary variable such as black and white) and their position on the grid.

Z
(i)
t = (C(i), x

(i)
t , y

(i)
t )

C(i) ∈ {C1, C2}, x
(i)
t , y

(i)
t ∈ [0, L− 1]

Each agent i has a fixed color C(i), which remains constant over time, while their position on the
grid may change. The set of agents that interact with agent i, denoted j ∈ N (i), includes those in the
eight adjacent cells (Moore neighborhood) of (x(i)

t , y
(i)
t ).

The ABM mostly depends on a parameter ξ ∈ [0, 1], representing the intolerance of the agents. If
the fraction of neighbors j ∈ N (i) that share the same color as agent i is greater than or equal to ξ,
agent i is considered happy and remains in its current position:

(x
(i)
t+1, y

(i)
t+1) = (x

(i)
t , y

(i)
t ).

Conversely, if the fraction is less than ξ, agent i is considered unhappy and moves to a randomly
chosen empty cell on the grid. Thus, the update rule is deterministic when agents are happy, and
stochastic when they are unhappy.

Algorithm 2 presents the pseudo-code of the ABM. Of particular interest are lines 15–25, which
describe how agents relocate by searching for an empty cell on the grid. It is clear that this search
process is not a simple draw from a probability distribution, as in the framework by Arya et al. [3],
but a much more complex trial and error process. The pseudocode makes it clear that agents are more
likely to relocate to nearby positions rather than distant ones, due to the way direction and distance
are sampled. This spatial bias will be quantitatively confirmed in Figure 16.

B.2 Predator-Prey model

The Predator-Prey ABM is a simulation model that captures the dynamics of interacting populations
over time. We use a slightly adapted version of the model introduced in Ref. [39] (Algorithm 3
presents the pseudo-code of our ABM). Agents i ∈ A occupy a two-dimensional grid of size L× L.
Each agent’s state at time t is given by its kind (either Prey or Predator), its life phase (Unborn, Alive,
Pregnant, or Dead), and its position on the grid:

Z
(i)
t = (K(i), f

(i)
t , x

(i)
t , y

(i)
t )

K(i) ∈ {Prey,Predator}, f
(i)
t ∈ {Unborn,Alive,Pregnant,Dead}, x

(i)
t , y

(i)
t ∈ [0, L− 1]

The agent’s kind K(i) is fixed over time, while the phase and position can evolve. The set of
interacting agents j ∈ N (i) consists of those located in the four cardinally adjacent cells to (x

(i)
t , y

(i)
t )

(Von Neumann neighborhood).

In addition, each Unborn agent i is assigned a parent agent j of the same kind, provided j is either
Alive or Pregnant. This parent-child relationship governs the birth mechanism.

The dynamics are more complex than in Schelling’s model of segregation. An Alive agent can
transition to one of three states: remain Alive, become Pregnant, or become Dead. These transitions
are stochastically determined. If the agent remains Alive, it moves at random to a cardinally adjacent
cell. If it becomes Pregnant, it remains in place. If it becomes Dead, it loses its position on the grid.
A Dead agent remains dead and off-grid. A Pregnant agent returns to being Alive in the same cell. An
Unborn agent becomes Alive only if its assigned parent is currently Pregnant; otherwise, it remains
Unborn.

This gives rise to a set of deterministic update rules:

Dead→ Dead, Pregnant→ Alive, Unborn→
{

Alive if parent is Pregnant
Unborn otherwise
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Algorithm 2 Schelling Model of Segregation
Require: Agent set A, grid size L, tolerance ξ, max steps T , max distance dmax, max trials K

1: Initialize: For each i ∈ A, sample C(i) ∼ Uniform{C1, C2}, (x
(i)
0 , y

(i)
0 ) ∼ UniformGrid(L), and set

Z
(i)
0 = (C(i), x

(i)
0 , y

(i)
0 ).

2: for t = 0, . . . , T − 1 do
3: unhappy← ∅ ▷ Reset unhappy list
4: for all i ∈ A do
5: N (i)

t ← { j ∈ A : (x
(j)
t , y

(j)
t ) ∈ Moore(x

(i)
t , y

(i)
t )} ▷ Moore neighborhood

6: s← |{ j ∈ N (i)
t : C(j) = C(i)}|, n← |N (i)

t | ▷ Same-color neighbors, all neighbors

7: r ←

{
s/n n > 0

0 n = 0
▷ Similarity ratio

8: if r < ξ then ▷ Agent i is unhappy
9: unhappy← unhappy ∪{i}

10: end if
11: end for
12: if unhappy = ∅ then
13: break ▷ Convergence
14: end if
15: for all i ∈ unhappy do
16: (x

(i)
t+1, y

(i)
t+1)← (x

(i)
t , y

(i)
t )

17: for k = 1, . . . ,K do
18: θ ∼ Uniform(0, 2π), d ∼ Uniform(0, dmax) ▷ Random direction, distance up to dmax

19: ∆x← ⌊d cos θ⌋, ∆y ← ⌊d sin θ⌋ ▷ Convert to grid movement
20: x∗ ← (x

(i)
t +∆x) mod (L), y∗ ← (y

(i)
t +∆y) mod (L) ▷ Wrap around border

21: if ¬∃ j ̸= i : (x
(j)
t , y

(j)
t ) = (x∗, y∗) then ▷ Check if cell is empty

22: (x
(i)
t+1, y

(i)
t+1)← (x∗, y∗) ▷ Move to new location

23: break ▷ Stop searching once valid position is found
24: end if
25: end for
26: end for
27: for all i ∈ A \ unhappy do
28: Z

(i)
t+1 ← Z

(i)
t ▷ Happy agents stay put

29: end for
30: end for

And a set of stochastic update rules:

Alive→


Alive (move)
Pregnant (reproduce)
Dead (die)

All transitions are governed by a matrix Ψ, which specifies deterministic rules as probabilities equal
to 1, and defines stochastic transitions through probabilities that depend on spatial inter-species
interactions. We report the values of the matrix Ψ that define our four experimental settings in
Tables 5-8. For instance, a Prey that interacts with a Predator is more likely to die compared to a
Prey that does not interact with a Predator. Similarly, a Predator that does not interact with a Prey is
more likely to die compared to a Predator that does interact with a Prey, as it is more likely to starve.
These spatial interactions are defined by proximity: an agent interacts with others located in its Von
Neumann neighborhood (i.e., the 4-neighborhood).
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Table 5: Transition matrix Ψ1

Die Move Turn pregnant Turn alive Stay dead Stay unborn

Alive Pred + Prey 0.15 0.45 0.40 0.00 0.00 0.00
Alive Pred + No prey 0.25 0.55 0.20 0.00 0.00 0.00
Alive Prey + Pred 0.30 0.45 0.25 0.00 0.00 0.00
Alive Prey + No pred 0.15 0.40 0.45 0.00 0.00 0.00
Pregnant + Unborn child 0.00 0.00 0.00 1.00 0.00 0.00
Dead 0.00 0.00 0.00 0.00 1.00 0.00
Unborn + Npp∗ 0.00 0.00 0.00 0.00 0.00 1.00

Table 6: Transition matrix Ψ2

Die Move Turn pregnant Turn alive Stay dead Stay unborn

Alive Pred + Prey 0.35 0.45 0.20 0.00 0.00 0.00
Alive Pred + No prey 0.25 0.60 0.15 0.00 0.00 0.00
Alive Prey + Pred 0.45 0.50 0.05 0.00 0.00 0.00
Alive Prey + No pred 0.35 0.35 0.30 0.00 0.00 0.00
Pregnant + Unborn child 0.00 0.00 0.00 1.00 0.00 0.00
Dead 0.00 0.00 0.00 0.00 1.00 0.00
Unborn + Npp∗ 0.00 0.00 0.00 0.00 0.00 1.00

Table 7: Transition matrix Ψ3

Die Move Turn pregnant Turn alive Stay dead Stay unborn

Alive Pred + Prey 0.15 0.30 0.55 0.00 0.00 0.00
Alive Pred + No prey 0.30 0.55 0.15 0.00 0.00 0.00
Alive Prey + Pred 0.70 0.20 0.10 0.00 0.00 0.00
Alive Prey + No pred 0.10 0.40 0.50 0.00 0.00 0.00
Pregnant + Unborn child 0.00 0.00 0.00 1.00 0.00 0.00
Dead 0.00 0.00 0.00 0.00 1.00 0.00
Unborn + Npp∗ 0.00 0.00 0.00 0.00 0.00 1.00

Table 8: Transition matrix Ψ4

Die Move Turn pregnant Turn alive Stay dead Stay unborn

Alive Pred + Prey 0.15 0.35 0.50 0.00 0.00 0.00
Alive Pred + No prey 0.25 0.45 0.30 0.00 0.00 0.00
Alive Prey + Pred 0.45 0.40 0.15 0.00 0.00 0.00
Alive Prey + No pred 0.30 0.40 0.30 0.00 0.00 0.00
Pregnant + Unborn child 0.00 0.00 0.00 1.00 0.00 0.00
Dead 0.00 0.00 0.00 0.00 1.00 0.00
Unborn + Npp∗ 0.00 0.00 0.00 0.00 0.00 1.00

∗ Not pregnant parent.
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Algorithm 3 Predator-Prey model

Require: agent set A = {1, 2, . . . , n}, grid size L, transition matrix Ψ, max steps T
1: for all i ∈ A do
2: K(i) ∼ Uniform({Prey ,Predator}) ▷ Assign kind
3: f

(i)
0 ∼ Uniform({Alive,Unborn}) ▷ Initial phase

4: if f (i)
0 = Unborn then

5: parent(i) ∼ Uniform({j ∈ A : j ̸= i ∧K(j) = K(i)}) ▷ Assign parent
6: end if
7: Z

(i)

0 = (K(i), f
(i)
0 , x

(i)
0 , y

(i)
0 ) ▷ Agent state

8: end for
9: for t = 0, . . . , T − 1 do

10: for all i ∈ A do
11: switch f

(i)
t

12: case Alive ▷ Alive agent dynamics
13: N (i)

t ← VonNeumann(x
(i)
t , y

(i)
t ) ▷ Von Neumann neighborhood

14: neighbor ← ∃j ∈ A : (x
(j)
t , y

(j)
t ) ∈ N (i)

t ∧K(j) ̸= K(i) ▷ Find opposite-kind neighbors
15: f

(i)
t+1 ∼ Categorical

(
Ψ(K(i), f

(i)
t ,neighbor)

)
▷ Random life phase update

16: if f (i)
t+1 = Alive then

17: (x
(i)
t+1, y

(i)
t+1) ∼ Uniform(N (i)

t ) ▷ Move randomly
18: else if f (i)

t+1 = Dead then
19: (x

(i)
t+1, y

(i)
t+1)← (∅, ∅) ▷ Agent dies

20: else if f (i)
t+1 = Pregnant then

21: (x
(i)
t+1, y

(i)
t+1)← (x

(i)
t , y

(i)
t ) ▷ Stay in place

22: end if
23: case Pregnant ▷ Birth
24: f

(i)
t+1 ← Alive

25: (x
(i)
t+1, y

(i)
t+1)← (x

(i)
t , y

(i)
t ) ▷ Stay in place

26: case Dead
27: f

(i)
t+1 ← Dead ▷ Remain dead

28: (x
(i)
t+1, y

(i)
t+1)← (∅, ∅)

29: case Unborn
30: j ← parent(i) ▷ Get parent
31: if f (j)

t = Pregnant then
32: f

(i)
t+1 ← Alive ▷ Born if parent is pregnant

33: N (j)
t ← VonNeumann(x

(j)
t , y

(j)
t )

34: (x
(i)
t+1, y

(i)
t+1) ∼ Uniform(N (j)

t ) ▷ Place near parent
35: else
36: f

(i)
t+1 ← Unborn ▷ Remain unborn

37: (x
(i)
t+1, y

(i)
t+1)← (∅, ∅)

38: end if
39: end for
40: if ∀a ∈ A, f

(a)
t ∈ {Dead ,Unborn} then

41: break ▷ Simulation ends
42: end if
43: end for
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C Further experimental details and results

In this section, we provide additional details on the experiments and present further results. In the
subsection on experimental design (C.1), we describe the micro and macro metrics used, including
the number of points over which these metrics are computed. We then present additional qualitative
results on reproducing emergent segregation in the Schelling model (C.2) and emergent oscillations
in predator-prey dynamics (C.3). Then, we provide further quantitative results for both models (C.4).
Finally, we provide a discussion on a macro-level baseline (C.5), specifically an autoregressive model
of order one, or AR(1), a standard time-series model.

C.1 Experimental design

Experiment details In our experiments, we considered three combinations of the parameter ξ for
the Schelling ABM and four combinations of the matrix Ψ for the Predator-Prey ABM. For each
parameter setting, we generated 8 training datasets obtained with different initial seeds and trained a
surrogate model and two ablated models for each. In total, we trained 168 models, 96 (8× 4× 3) for
Predator-Prey, and 72 (8× 3× 3) for Schelling. All our evaluations are done across these 8 models
per parameter configuration.

We fixed some of the ABM parameters across experiments, which are reported in Table 9. For
Predator-Prey, density refers to the density of agents that are initialized as Alive, whereas the number
of agents refers to the total number of agents in the system (Alive, Dead, Pregnant, and Unborn
agents). Color Ratio indicates the ratio between the number of black and white agents; Kind Ratio
indicates the ratio between the number of predators and the number of preys.

Table 9: ABM parameters in our experiments
Component Schelling Predator-Prey
Grid size 51× 51 32× 32
Density 0.75 0.3
Agents 1950 2048
Color/Kind Ratio 1:1 1:1

Micro evaluation. We evaluate how well the surrogate captures individual behavior of agents on a
future ramification dataset of T = 25 timesteps. We generate this out-of-training dataset by giving as
initial condition the last system configuration ZT−1[r = 0] from the training ramification dataset.
Thus, for each agent i ∈ A we have 24 initial conditions (Z

(i)
t , {Z(j)

t }j∈N
(i)
t
) and 500 outcomes

Z
(i)
t+1 to build 24 ground truth probability distributions, such as equation (1). Then, we use our

surrogate model to generate 500 outcomes Z(i)
t+1 given as condition (Z

(i)
t , {Z(j)

t }j∈N
(i)
t
), producing

24 probability distributions such as (1) for each agent i ∈ A, which we compare to the probability
distributions from the ground truth. For Schelling, we measure the EMD on the marginals of the
coordinates x and y. For Predator-Prey, we measure the EMD on the distributions of the phases f (i)

t ,
and fix the distance between the different phases to 1, since they represent a categorical variable.
For each of the 8 experiments, we calculate the mean EMD over all agents and all timesteps. For
Schelling, we evaluate the EMD on 1950 distributions (one per agent) for the x coordinate and 1950
distributions for the y coordinate, over 24 timesteps, yielding 93600 EMD entries. For Predator-Prey,
we evaluate the EMD on 2048 distributions (one per agent) over 24 timesteps, yielding 49152 EMD
entries. The box plots in Figure 4 have as entries the 8 mean EMD values for the surrogate, 8 mean
EMD values for the diffusion-only ablated model, and 8 mean EMD values for the GNN-only ablated
model.

Macro evaluation. We evaluate how well the surrogate model reproduces system-level behavior by
tracking summary statistics over time. We generate 100 independent simulations of 25 timesteps
beyond the training horizon for each model, and compute the symmetric mean absolute error (sMAPE)
between the mean ground-truth trajectory and the mean surrogate-generated trajectory across these
100 independent simulations. In the case of Schelling, where we only track the number of happy
agents, the sMAPE definition is straightforward. Let At and Ft be the mean number of happy agents
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across the 100 independent simulations from the ground-truth and the surrogate model respectively.
Then, the sMAPE is computed as:

sMAPEschelling =
2

T

T∑
t=1

|At − Ft|
|At|+ |Ft|

(6)

For Predator-Prey, we track the number of predators and preys on the grid, which follow two
distinct trajectories. Thus, for each kind we apply Formula 6 separately and get sMAPEpreys and
sMAPEpredators. Then, to work with a single value, we calculate the mean value:

sMAPEpredprey =
1

2
(sMAPEpreys + sMAPEpredators) (7)

For each of the 8 experiments, we calculate the sMAPE over 25 timesteps and then compute its mean.
The box plots in Figure 4 have as entries the 8 mean sMAPE values for the surrogate, 8 mean sMAPE
values for the diffusion-only ablated model, and 8 mean sMAPE values for the GNN-only ablated
model.

C.2 Reproducing emergent segregation

Figure 2 in the main text illustrated how, for three selected time steps (t = 0, t = 15, and t = 30)
and three different values of the intolerance threshold ξ, our surrogate model successfully reproduced
the qualitative dynamics of the original ABM. In contrast, the ablated models failed to capture these
dynamics.

Figures 8, 9, and 10 provide a more detailed view of the system’s evolution for the values ξ1, ξ2, and
ξ3, respectively. In addition to the previously shown snapshots, these supplementary figures include
intermediate time steps (t = 5, t = 10, t = 20, and t = 25), offering a more complete picture of the
dynamics.

Figure 8: Evolution of the position of black and red agents in the Schelling model, for tolerance
thresholds ξ = ξ1 = 0.625. We compare the ground truth (top row) with our surrogate (second row)
and the ablations (third and fourth row).

Figure 8 illustrates that the original ABM rapidly evolves toward a segregated configuration, which
becomes visible as early as t = 5. However, the resulting clusters remain relatively small, indicating
that a low intolerance threshold allows for a moderate level of social mixing. This motivates the label
“Low Segregation” for the ξ1 parameter setting in Figure 4. The surrogate model accurately reproduces
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these qualitative patterns, albeit with slightly larger clusters. In contrast, the diffusion-only ablation
fails to capture the emergent spatial structure, remaining close to the initial random configuration
across time steps. Instead, the GNN-only ablation ends up overlapping most agents on the same
coordinates.

Figure 9: Evolution of the position of black and red agents in the Schelling model, for tolerance
thresholds ξ = ξ2 = 0.75. We compare the ground truth (top row) with our surrogate (second row)
and the ablations (third and fourth row).

Figure 9 shows that, for ξ = ξ2, the original ABM also converges toward a segregated state, but
the convergence occurs more slowly than in the ξ1 case. The resulting clusters are larger and more
distinct, reflecting a “High Segregation” scenario. The surrogate model again successfully replicates
these dynamics, while the ablation models continue to exhibit no structured behavior.

Figure 10: Evolution of the position of black and red agents in the Schelling model, for tolerance
thresholds ξ = ξ3 = 0.875. We compare the ground truth (top row) with our surrogate (second row)
and the ablations (third and fourth row).
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Finally, Figure 10 demonstrates that, for ξ = ξ3, the original ABM does not converge to a stable
configuration. Instead, the high intolerance threshold causes agents to continuously relocate, pre-
venting the emergence of segregated clusters. In this degenerate case, both the surrogate and the
diffusion-only ablation model correctly reproduce the persistent disorder of the original dynamics,
while the GNN-only ablation still fails.

C.3 Reproducing emergent oscillations in predator-prey dynamics

Figure 3 in the main text compares population trajectories from the ground-truth Predator-Prey
ABM, our surrogate model, and the ablated model. For both parameter sets shown (Ψ1 and Ψ4),
the surrogate accurately reproduces the stochastic dynamics beyond the training window, while the
ablation fails to capture the key oscillation patterns.

Figure 11 extends the previous analysis to parameter sets Ψ2 and Ψ3, which produce, respectively, a
monotonic decline in prey and predator populations, and oscillatory dynamics for preys but not for
predators. The case of Ψ2 is particularly illustrative: despite its apparent simplicity, the ablated models
fail to reproduce the monotonic trends, showing an unrealistic spike in both populations immediately
after the training window in the diffusion-only ablated model, and a roughly constant number of
preys and predators in the GNN-only ablated model. In contrast, the surrogate model accurately
captures the expected decay. Under Ψ3, the surrogate successfully replicates the oscillations in the
prey population and the stable predator trend, while the diffusion-only ablation once again outputs
generic dynamics, largely insensitive to the underlying regime, and the GNN-only generates an
oscillating dynamic for both. This highlights the ablation models’ inability to distinguish between
qualitatively different behaviors.

Beyond aggregate population counts, it is instructive to examine the spatial distribution of predators
and preys over time. Prior studies [45, 46] have shown that similar predator-prey models give rise to
rich spatial dynamics, characterized by the spontaneous emergence of structured patterns (see, e.g.,
Figure 1.3 in [47]). Starting from initially random configurations, the interactions between agents
give rise to both short- and long-range spatial correlations, with predators and preys organizing into
dynamic clusters and propagating waves. These patterns are reminiscent of those observed in spatially
extended reaction-diffusion systems and bear a strong resemblance to spatial chaos phenomena in
evolutionary game theory [27].

We observe similar spatial patterns in our predator-prey ABM. Figures 12, 13, 14, and 15 show the
evolution of the positions of predators and preys on the grid.

Figure 12 illustrates the spatial dynamics under parameter set Ψ = Ψ1, which is characterized by
oscillations in predator and prey populations. The ground-truth model displays a rise in population
densities mid-simulation, followed by a near-extinction phase toward the end, in line with the
temporal trends shown in Figure 3. Notably, the ground-truth also exhibits distinct spatial patterns,
with predators and preys forming dynamic clusters. The surrogate model successfully reproduces
both the population dynamics and the emergent spatial structures, whereas the ablated models fail to
capture any meaningful spatial organization.

Similar results are observed in Figures 13, 14, and 15, which capture different dynamic regimes for
predators and preys. In all cases, the surrogate model accurately reproduces both spatial and temporal
patterns, while the ablated models consistently fail to capture the underlying dynamics or spatial
structure.

26



Ψ2: Monotone predators and preys

0 10 20 30
Time

0

50

100

150

200

Nu
m

be
r o

f a
ge

nt
s Ground truth

0 10 20 30
Time

Surrogate model (Ours)

0 10 20 30
Time

Diffusion-only

0 10 20 30
Time

GNN-only
Preys
Predators
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Figure 11: Forecasting macro-level summary statistics (here, the number of alive preys and predators
over time), starting from the last condition seen in training, for 100 independent simulation runs,
under configuration Ψ2 (monotonic dynamics for both predators and preys, top) and Ψ3 (oscillations
only for predators, bottom). First colummn: original ABM simulations. Second column: surrogate.
Third and fourth column: ablations. The dashed vertical line indicates the end of the training phase
for the surrogate and ablation models.

Figure 12: Evolution of the position of preys (black) and predators (red) in the predator-prey ABM,
for parameters Ψ = Ψ1. We compare the ground truth (top row) with our surrogate (second row) and
the ablations (third and fourth row).
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Figure 13: Evolution of the position of preys (black) and predators (red) in the predator-prey ABM,
for parameters Ψ = Ψ2. We compare the ground truth (top row) with our surrogate (second row) and
the ablations (third and fourth row).

Figure 14: Evolution of the position of preys (black) and predators (red) in the predator-prey ABM,
for parameters Ψ = Ψ3. We compare the ground truth (top row) with our surrogate (second row) and
the ablations (third and fourth row).
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Figure 15: Evolution of the position of preys (black) and predators (red) in the predator-prey ABM,
for parameters Ψ = Ψ4. We compare the ground truth (top row) with our surrogate (second row) and
the ablations (third and fourth row).

29



C.4 Quantitative results

In this section, we present additional details regarding the quantitative evaluation discussed in
Section 4.2 (page 8). In particular here we detail further the micro-level evaluation; that is, how
much our surrogate model can reproduce the distribution of possible states of an agent at t (that is,
Z

(i)

t ) given its past state Z
(i)

t−1. To better understand how this comparison works, Figure 16 (left side)
shows the distribution for a single agent of the position x

(i)
t , one of the components of the state Z

(i)

t ,
for each of the two possible past conditions in the Schelling model, happy and unhappy. We see
that when the agent is happy, its position remains fixed, while in the case the agent is unhappy, it
moves randomly with a certain distribution peaked around the starting point (implicitly defined by the
ABM, see Algorithm 2). Our surrogate model aims at reproducing this distribution, without knowing
the original ABM and without access to the latent variable happy/unhappy, but only observing the
sequence of states and the graph of interactions. The distributions obtained by our surrogate in the
same starting conditions are shown on the right side of the figure. To evaluate the quality of this
reconstruction, we quantify it as the Earth Mover’s Distance between the distributions, for each agent
in each timestep, and then aggregate these measures.

The result of this comparison is shown in Figure 4 of the main text. Here, we present additional
experiments showing how these results change across different conditions.

Schelling model. Figure 17 shows the distribution of the EMD scores obtained by our surrogate
model and by the ablation model only for the stochastic rules of the Schelling model. In this ABM,
the stochasticity lies in the random movement of the unhappy agents (Algorithm 2, lines 16-25). We
see that our surrogate can capture these distributions well (EMD averages below 5, considering that
the scale is given by the length of the grid, L = 50) and better than the surrogate model.

Predator-prey model. Figure 18 instead shows the distribution of the EMD scores only for the
stochastic rules of the Predator-Prey model. Here, the stochasticity lies in the Alive phase, where
the agent might transition to another phase depending on its interaction with its neighbors. We see
that also in this model our surrogate is able to capture the stochasticity well, with EMD averaging
below 0.1 for each of the four configurations Ψ1−4. By contrast, the diffusion-only ablation model’s
EMD for these same stochastic rules averages above 0.12, up to values around 0.2. Here, the scale
is in [0, 1] since this error is measured on the life phase binary vector. We further investigate these
results in Figure 19 by dividing them by agent state in each configuration. Here, the stochastic
transitions happen only in the first column (Alive). This figure confirms that the EMD values are quite
low, and lower than those obtained by the ablation model. Moreover, here we observe that also the
deterministic transitions are recovered with precision (error is always below 10−3)) by our surrogate
model.
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Figure 16: Example distributions of the position of a single agent in the Schelling model, in two
different conditions: (a) happy agent; (b) unhappy agent. Histograms on the left represent the original
ground-truth ABM, those on the right the ones obtained by our surrogate model. The dashed red
vertical line indicates the initial position of the agent. Note that the coordinates have been rescaled to
[-25, 25], compared to the [0, 50] interval used for ease of exposition in Algorithm 2.
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Figure 17: Distribution of errors (EMD) obtained by our surrogate model (top row) and by the
diffusion-only ablation model (bottom row) only for the stochastic rules of the Schelling ABM for
each considered configuration of the parameter ξ of the ABM. Different colors indicate independent
experiments that only differ by the random seed used to generate the ground truth data.
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Figure 18: Distribution of errors (EMD) obtained by our surrogate model (top row) and by the
diffusion-only ablation model (bottom row) only for the stochastic rules of the Predator-Prey ABM
for each considered configuration of the parameter matrix Ψ of the ABM. Different shades indicate
independent experiments that only differ by the random seed used to generate the ground truth data.
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Figure 19: Mean error (EMD) obtained by our surrogate (on the left) and by the diffusion-only
ablation model (on the right) for each configuration of the Predator-Prey ABM (on the rows, Ψ1−4)
and for each initial state of an agent (on the columns).

C.5 Macro baseline (AR1)

In this subsection, we show that a simple yet commonly used time-series baseline — the autoregressive
model of order one (AR(1)) — completely fails to reproduce the macro-level dynamics of our system.
We focus on the predator–prey model, although qualitatively similar results hold for the Schelling
model and for higher-order time-series models (e.g., AR(2)).

The AR(1) model assumes that the value of a time series at step t depends linearly on its previous
value:

xt = ϕxt−1 + ϵt,

where ϕ is the autoregressive coefficient and ϵt ∼ N (0, σ2) is Gaussian noise. We fit the model
separately to each macro variable using least squares estimation on the training portion of the
simulated data. The fitted coefficients ϕ̂ and σ̂ are then used to generate out-of-sample forecasts,
producing trajectories that can be directly compared with those generated by our surrogate model.

As shown in Figure 20, the AR(1) baseline simply extrapolates the last observed trend in the training
data, completely failing to reproduce the non-monotonic, oscillatory patterns characteristic of the
underlying dynamics — and even performing poorly in capturing monotonic trends. This limitation
arises because the system’s behavior is defined at the micro level, while macro-level variables are
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only aggregate summaries of those micro interactions. Consequently, a surrogate model that learns
from micro-level states, as ours does, is inherently better positioned to capture both the micro and the
emergent macro dynamics.
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Figure 20: Comparison of Ψ1–Ψ4 under the surrogate GDN model and an AR(1) baseline.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. We provide the methodology and framework in §3 and
empirical results in §4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the Discussion §5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the architecture clearly and fully in §3, and the steps to
reproduce the results are described in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data is available in the Supplementary Material, and instructions to
reproduce the results are given.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are described in a higher level of detail in §4.1 and
in full detail in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The box plots of Figure 4 include the statistics of all quantitative results
presented in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: §4.1 provides the computational resources needed to reproduce the experi-
ments. Additional details about the time needed to run experiments are included in the
Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed. As discussed in §2, ABMs
have traditionally been powerful for theory generation, and recently, they have become
increasingly data-driven, but our work focuses solely on the methodological advance of
learning differentiable ABM surrogates.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for editing/formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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