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ABSTRACT

Longitudinal single-cell data has spurred the development of computational
trajectory models with the power to make time-resolved, testable predictions
about cell fates. As “real-time” trajectory inference methods proliferate, there is
a growing need for tools that integrate their inherently high-dimensional outputs.
In this work, we propose a novel strategy to facilitate downstream analysis of
single-cell optimal-transport trajectory models, by constructing feature vectors
that contain information about a cell’s state across the entirety of its trajectory.
This approach leverages kernel mean embedding of distributions to create
trajectory features with applications in several domains, including cell clustering
and comparison of perturbation response trajectories. We demonstrate how
k-means clustering on trajectory features produces interpretable clusters that
respect the underlying cell trajectories. Furthermore, we develop a divergence
metric between single-cell trajectories based on the maximum mean discrepancy
(MMD). We use this trajectory divergence to show that modeling perturbation
trajectories may help uncover experimentally interesting perturbations at higher
significance levels than by comparing perturbation responses at only a single time
point.

1 BACKGROUND

Single-cell sequencing has opened a window into the heterogeneity and dynamics of biology on a
cellular scale. One prominent application is to study the dynamics of cell differentiation, devel-
opment, and response to stimuli. Discoveries in this area have the potential to fuel advances in
drug development and cell engineering, with impacts on fields such as regenerative medicine and
immuno-oncology.

However, the destructive nature of single-cell sequencing makes it impossible to profile a cell at
more than a single time point. This has led to the development of a variety of trajectory inference
methods to study dynamic cellular processes. Some of the most frequently used tools attempt to
order cells along a pseudotime axis based on the similarity of their gene expression (Haghverdi
et al.). While pseudotime methods have proven extremely useful for discovering transient states
in differentiation (Laddach et al.), they are limited in their ability to make falsifiable predictions
(Weinreb et al.l b). Many methods have sought to increase the resolution of inferred trajectories; for
example, RNA velocity and related methods estimate the rate of change in cell state with respect
to time by solving a system of mass balance equations using spliced versus unspliced transcripts
(La Manno et al.). However, there is some debate about the interpretability of inferred velocities
(Gorin et al.), and it is difficult to find ground truths to assess their accuracy.
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Figure 1: Overview of real-time trajectory featurization method. (a) Visualization of pseudo-
time, RNA velocity, and optimal transport methods on a simulated dataset of cell differention under
diffusion-drift dynamics. (b) Schematic illustrating concept of representing trajectories as a feature
vector. (c) Applications of trajectory featurization, including clustering that respects the underlying
trajectory model, and comparison of trajectories under distinct experimental conditions.

Another option is to incorporate time point information directly into the trajectory model. Such
approaches predict trajectories for each cell by mapping cell distributions from one time point to
another (Lavenant et al.). The mapping function is flexible and can be parameterized over discrete
cell states, (Schiebinger et al.) or over the continuous underlying gene expression space (Tong et al.).
In this work, we focus on discrete maps fit using optimal transport. In addition to predicting cell
fates at single-cell resolution, real-time models are also able to model cell proliferation and death
as functions of time (Schiebinger et al.). Finally, the accuracy of real-time trajectory models can
be evaluated by comparison to ground-truth trajectories, such as experiments incorporating cell-
barcoding technologies for lineage tracing (Weinreb et al.} ja).

Despite the advantages of real-time trajectory inference methods, there are challenges in interpreting
their predictions. Whereas trajectories in pseudotime models are defined by a small number of
parameters (i.e. pseudotime estimate and branch identity), and velocity vectors can be projected onto
a low-dimensional visualization, real-time trajectories are inherently high-dimensional (Fig[Th). The
outputs of real-time models may be visualized as fate probabilities for a group of target populations
(Klein et al.), but this approach may not work if there is substantial heterogeneity in cell states
at the target timepoint. For example, clusters may be highly correlated with time (Kurd et al.)),
rather than with the biological heterogeneity within each time point. Another challenge of real-
time methods is that there is no established way to compare trajectory models fit on disjoint sets
of cells. This problem arises when there are distinct experimental conditions that must be modeled
separately. Previously, metrics like the Wasserstein distance have been used to compare model
predictions to ground truths for each time point (Yeo et al.), however this scales poorly with the
size of the dataset. There exists a need to learn representations of real-time single-cell trajectories
that facilitate downstream tasks, such clustering to identify distinct pathways of differentiation, and
hypothesis testing to identify experimental conditions that significantly affect cell responses in time.

We propose a method that represents the state of a cell across the entirety of its trajectory as a
single feature vector. This allows us to compare trajectories of cells that were observed at different
time points, as well as to compare trajectories between different models, or disjoint experimental
conditions. Our method works by first predicting a cell’s ancestor and descendant distributions
at each time point, and then embedding these distributions into a vector in a reproducing kernel
Hilbert space (RKHS). We show that this information-rich featurization is useful for clustering cell
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fates, especially on highly heterogeneous datasets. Furthermore, we demonstrate how an intentional
choice of kernel induces sensible distance metrics between trajectories, and explore its utility for
quantifying time-dependent experimental perturbations. The proposed method is implemented for
trajectory inference models utilizing optimal transport, however it has the potential to be adapted for
any trajectory model which utilizes mappings between cell distributions at discrete time points.

2 METHODS

2.1 TRANSPORT MAPS

We consider datasets of cells X = {xs(a) € RY }111\[;0 consisting of N, cells with g features sampled
at time point s € {ti}iTzo. Datasets from multiple timepoints are compiled into a combined dataset

X = {Xti}iTZO' Here, we are working with models that fit mappings of the form 7. ; : X, — X
between cell sets at time points r and s. Since we are dealing with discrete cell sets, we represent
the mapping as a matrix, where the element T ;(a, b) contains the amount of mass transported from
cell state x,-(a) to state x4(b).

We obtain the stochastic matrix P, |, by column-normalizing T s:

B T, s(a,b)
Pr|s(a7b) - Za/ Tr,s(a/7b) (1)

Here, P, | ;(a,b) represents the probability that a cell at state x4 (b) at time s originated from state
@, (a) at time r.

2.2 TRAJECTORY FEATURIZATION

Given a vector-valued function f,. : &, — R< defined at time point r, we can now define its
pushforward under 7 4 as:

(Pr | s il .fr) (ws(b)) = ZPT | s(a7 b).fr(wr(a» = ET7-,S [fr | ms(b)] 2

This pushforward represents the expected value of f, for a cell at state x(b).

Next, we use the pushforward operator to define features for cell state (b) across all time points
in the trajectory model. We concatenate these together to form the trajectory featurization vector
T: X, — R

T

7(@o(0) = [(Pu 52 £) (@0)] ®

When t; = s, we define P |, = I, and the pushforward reduces to evaluating f; (x(b)).

This approach creates a feature vector for each cell that allows its trajectory to be compared to all
cells in the dataset, even if they were sampled at different timepoints. Use of an informative fea-
turization function f allows this vector to contain cell state information at each time point of the
trajectory, using a relatively low number of features. For example, principal component decompo-
sition is commonly used in single-cell biology, generally with feature dimension 10 < d < 50.

Compare this to a naive featurization approach utilizing the one-hot encoding fr:R9 — RN

fr(@r(@)) (@) = 0lwe(a) = 2o (@] =\ o ") ()

!"This assumes that 7 < s. We also use the same convention when > s, in which case p (mr(a) | ms(b))
represents the probability of observing a cell at state «,-(a) at time by randomly sampling descendants of a
cell originating at state &, () at time s.

. {1 z,(a') = z,(a)




Published as a workshop paper at MLGenX 2025

Applying our approach to £, will yield a trajectory with ZiTzl Ny, features. In single-cell datasets,

we generally have N,. = O(10%) cells per time point, making f,. inefficient compared to a function
with fewer features. Another advantage of using our approach with an informative featurization
function is that it allows us to compare trajectories defined on different cell sets X1 and X2, as long
as they share time points and embedding spaces.

2.3 KERNEL MEAN EMBEDDING

We now discuss a specific choice of featurization function with desirable properties. We showed in
() that the normalized pushforward induced by 7). ; computes the expected value E7,  [f, | 2(b)].
While useful, this also disregards higher-order distributional information about the trajectory. This
may not be ideal, for example in differentiation paths with complicated bifurcations.

To address this shortcoming, we turn to kernel-based approaches. Kernel methods have found
widespread use in machine learning and have proven useful for applications in single-cell biology
(Baskaran et al.). A positive-definite kernel function K : R9 x RY — R can be used to evaluate
the similarity between data points, and induces a reproducing kernel Hilbert space (RKHS) with the
property (K (x,-), f(:)) = f(x). If we use a characteristic kernel, we can uniquely embed any
probability distribution into the RKHS.

A feature map ¢ : RY — R? is a finite-dimensional approximation of this kernel embedding that
retains the reproducing property. In this application, we choose a feature map induced by the radial
basis function (RBF) as our featurization function f,.. Since the RBF is a characteristic kernel,
operations such as addition of feature maps ) ¢(x) preserve the distributional characteristics of the
trajectory. Specifically, the pushforward measure induces the kernel mean embedding (KME) p of
the probability distribution underlying the trajectory:

w(X, | 2s(b)) = Ex, , (¢ | 2s(b)] = (Pr |5 1 r) (s(a)) 4)

The trajectory featurization then becomes:

z.0)] 5)

i=1

T (@) = [ (X,

Using a characteristic kernel has the property that the distance between two kernel mean embeddings
lep — poll induced by probability distributions P, @ is equal to O if and only if P = . This
induces a divergence called the maximum mean discrepancy (MMD), which may be used to compare
distributions. For example, it is possible to formulate a statistical test for the difference between two
distributions based on their MMD (Gretton et al.)).

The trajectory featurization inherits these properties. Given two trajectory feature vectors, the
squared L2-distance between them is:

T
|7 (@s(b) =7 (@ (V)5 = D MMD? (i (X, | ,(b)) s 1 (X, | 2o (1)) (©)

i=1

We define this as the trajectory divergence. This allows us to compute the distance between two
trajectories, for applications such as performing hypothesis tests for experimental conditions versus
a control, or comparing a computational trajectory against ground-truth data.

2.4 CLUSTER EVALUATION METRICS

Another application of our method is clustering cells with similar trajectories across time points.
Single-cell trajectory feature vectors can be input to any clustering algorithm; in this work, we use
k-means. In order to quantify how well different clusterings represent the underlying trajectories,
we develop two metrics to measure cluster quality with respect to a trajectory model. The first of
these is flow consistency, which we define as the mean probability that a cell is transported to a
target within the same cluster as its source:
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consistency (¢, | ¢5) =N dc = cs(b)] Py 5(a,b) 7
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Here, ¢, (a) denotes the cluster assignment for cell a at target time point r, c4(b) is the cluster

assignment for cell b at source time point s, and § is the Kronecker delta. This metric ranges from 0

to 1, and is higher when cells are most likely to remain in the same cluster over time.

We also define flow entropy, which is agnostic to the source cluster assignment, and is defined as:

N K
entropy (&, | ¢s) = =N Zp (cr =k |xs(b))logp (¢, = k| 2s(D)), ®)
S b=1k=1
N,
p(Cr=k|st(b))= 5[cr(a):k]Pr|8(a’b)

1

e
Il

The flow entropy is susceptible to variation in the number and size of target clusters, so we normalize
it by dividing the entropy under the trajectory model by the overall entropy of clusters at the target
time point. The resulting entropy ratio varies between 0 and 1, with values closer to 0 representing
target clusters that align better with the trajectory model.

3 RESULTS

3.1 TRAJECTORY CLUSTERING DISTINGUISHES DISTINCT LINEAGES IN HSC
DIFFERENTIATION

We sought to test our trajectory featurization approach in a differentiation model with clearly defined
endpoints, in order to compare clustering on trajectory features to ground-truth cell types. We chose
a multi-omic time course dataset of human hematopoietic stem cells (HSCs), which cross sections
their development at days 2, 3, 4, and 7 after induction of differentiation (Daniel Burkhardt et al.).

Data were downloaded through the moscot Python package (Klein et al.), and included labeled cell
types, as well as uniform manifold approximation and projection (UMAP) dimensionality reductions
for both RNA and ATAC modalities. We constructed a shared embedding representation from both
data modalities and fit the trajectory model on these shared coordinates using moscot. We then used
the fitted model to construct single-cell trajectory feature vectors, using either an RBF feature map
(trajectory KME) or PCA decomposition (trajectory PCA) as the featurization function.

We fit k-means clusters on both sets of trajectory features, and compared these against the reference
cell types as well as Leiden clusters fit using only gene expression information. Uniform manifold
approximation and projection in the gene expression space (UMAP) showed that most cells belong
to the HSC reference cell type at day 2, and proceed to differentiate into various lineages from days
3-7 (Fig Zh-b). The Leiden clusters appear to split many of the reference cell types into groups,
especially the undifferentiated HSC cluster (Fig[2k). The trajectory KME clusters similarly partition
the reference cell types (Fig[2d), however they exhibit less sharp boundaries between clusters than
the Leiden clusters. At the termini of the differentiation trajectory, both Leiden and trajectory KME
clusters appear to align strongly with the reference cell types. Indeed, Fig|2h shows that most of the
trajectory KME clusters at day 7 correspond to a single reference cell type.

We next evaluated the performance of the clustering methods in capturing trajectory information
using the flow consistency and flow entropy scores. We see that both trajectory clusters
exhibit high consistency and low entropy compared to the Leiden clusters and reference cell types
(Fig [Ze-f), suggesting that both featurization strategies are successfully encoding information about
cellular trajectories. The trajectory KME clusters slightly outperform the trajectory PCA clusters for
both metrics, which hints at their greater ability to represent higher-order distributional information.
Nonetheless, the trajectory PCA clusters perform quite well, perhaps due to the simplicity of the
bifurcations in this dataset. In contrast, the reference clusters show the highest flow entropy of



Published as a workshop paper at MLGenX 2025

a experimental day b reference cell type o gp g
° 2 EryP 0.15
e HSC
e 3 >
4 e MasP 8 010 = reference cell type
7 e MkP g . - trajectory_kme
e MoP = trajectory_pca
=
NeuP < 0.05

C leiden cluster d trajectory KME cluster

o
1=}
o

e
0.9
5 2
% 0.8 @
2., =
g 2
S 06 5

o
3

trajectory KME clusters
adA} ||9o aoualayal Ul uonoRly

Figure 2: Clustering on trajectory features accurately partitions cell types in HSCs and streamlines
cluster flows. (a-d) UMAP dimensionality reductions showing (a) experimental day, (b) reference
cell type labels, (c) Leiden clusters, and (d) k-means clusters fit on trajectory KME features. (e-
f) Boxplots evaluating how well clusters represent the underlying trajectory model, using (e) flow
consistency score and (f) entropy ratio score. The best performing clusters for each metric are an-
notated using a red star. (g) Line plot showing adjusted mutual information (AMI) between clusters
and experimental day, versus the input number of clusters for different clustering methods. The AMI
between the reference cell types and experimental day is displayed by a dotted red line. (h) Heatmap
colored by the fraction of each trajectory cluster (rows) overlapping with a given reference cell type
(columns) at day 7.

any clustering (Fig[2f), likely driven by the ability of the multipotent HSC cell type to give rise to
different populations.

Interestingly, the Leiden clusters showed exceptionally low flow consistency (Fig [2k). We hypothe-
sized that this could be because the Leiden clusters are separating by experimental day more than the
other clusters. This would cause the trajectories to switch clusters more often between time points,
resulting in a lower consistency score. We tested this by measuring the adjusted mutual information
(AMI) between each set of clusters and experimental day. We see that the Leiden clusters have
higher AMI with experimental day than any of the other clusters (Fig[2lg). Furthermore, increasing
the number of clusters caused the Leiden clusters to correlate more strongly with time point, but
did not affect the trajectory clusters. Trajectory featurization may therefore be a useful strategy for
removing confounding effects due to time during single-cell phenotyping.

3.2 CHARACTERIZING PERTURBATION RESPONSES USING TRAJECTORY DIVERGENCE

One of the advantages of using trajectory mean embeddings during data analysis is that they naturally
induce the maximum mean discrepancy (MMD) metric on probability distributions. Here, we show
how this can be used to analyze combined perturbation and time course single-cell data, to recover
perturbations with substantial time-dependent effects on cell state. We performed reanalysis on the
dataset from |Ishikawa et al., which features differentiation induced pluripotent stem cells (iPSCs)
under the influence of CRISPRi guide RNAs targeting 25 transcription factors (TFs). iPSCs were
profiled using scRNA-seq on each day from days 2-5 following induction (Fig[3a). Thus, this dataset
presents a unique opportunity to show how using trajectory analysis can increase power to detect
perturbation responses.
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Figure 3: Comparison of iPSC responses to CRISPRi perturbation using trajectory divergence
demonstrates enhanced ability to identify significant responses compared to using a single time
point. (a) The dataset follows differentiation iPSCs in response to a panel of 50 CRISPRi guide
RNAs targeting 25 transcription factors at days 2-5 following induction. (b) UMAP displaying
the days at which each cell was collected. (c) UMAPs displaying normalized gene expression of
pluripotent (UTF 1), definitive endoderm (CST1), axial mesoderm (7BXT), and neural (SIX6) lineage
markers. (d) UMAPs showing distributions of cells expressing a single gRNA, colored by sampling
time. Cells without the gRNA are grayed-out. (¢) Heatmap of MMD between trajectory kernel mean
embeddings for each pair of perturbations. (f) Trajectory MMD between each perturbation and the
control condition. Perturbations with MMDs greater those targeting the non-coding AAVS1 locus
(red dotted line) are shown in the green box. (g) MMD between each perturbation and the control
condition, computed using cells and features from day 5 only. Perturbations with MMDs greater
those targeting the non-coding AAVS1 locus (red dotted line) are shown in the green box.

The gRNA expression from each cell was log1p-transformed, and then binarized using Otsu thresh-
olding. We selected cells expressing exactly one gRNA, and then preprocessed the RNA data using
a standard analysis pipeline. UMAP dimensionality reduction showed that the cells start in an inter-
mediate state and branch outwards over time (Fig[3p). Each major branch expressed some lineage
marker genes, with the largest branch being defined by the pluripotency marker UTF I, and smaller
branches defined by the markers CST1, SIX6, and TBXT representing lineage commitment (Fig 3k).
A few of the gRNAs are distributed similarly to these lineage markers, suggesting that inhibiting
their target TFs promotes differentiation (Fig [3ld). In addition, the dataset contained two control
2RNAs: the CTRL condition, which corresponded to a non-cutting guide, and AAVS1, which cor-
responds to a non-coding locus in the genome. Both of these show similar trends over time, with a
strong preference for the pluripotent state by day 5.
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We fit trajectory models using moslin to incorporate the gRNAs as prior information, and computed
trajectory featurizations using an RBF kernel approximation. We then calculated the mean embed-
ding of each perturbation’s trajectory features, and used this to calculate the trajectory divergence. A
few perturbations (RUNXI1T1, PRDM14, POU5SF1, SOX2) displayed noticeably higher divergence
from all the others, suggesting that these are some of the most important regulators of iPSC fate
(Fig[Bp). However, we were interested in whether it would be possible using the trajectory diver-
gence to detect some gRNAs with less prominent, but still noticeable effects. We took the divergence
for each perturbation against the non-cutt CTRL gRNA, and found that seven gRNAs scored higher
than the safe-harbor AAVS1 gRNA, which we used as an ad-hoc threshold (Fig [3f). We wanted to
know whether we would have been able to detect these gRNAs without using a trajectory model, so
we selected features and cells from only day 5 and conducted the same test (Fig[3lz). We found that
only five gRNAs had higher discrepancy from CTRL than AAVS1. Notably, one of the gRNAs that
fell below detection was NANOG, which is visually prominent on the UMAP in Fig[3d, and which
is a known regulator of stem cell pluripotency.

4 DISCUSSION

In this work, we introduced a novel strategy for representing real-time single-cell trajectories as
information-rich, low-dimensional feature vectors. Our method takes advantage of probabilistic in-
terpretations of optimal transport theory, along with the theory of reproducing kernel Hilbert spaces,
to distill both trajectory and phenotypic information into a unified representation. This powerful
approach enables us to use optimal transport trajectory modeling as a starting point for various
downstream tasks in single-cell analysis, rather than as an endpoint in and of itself.

We paid particular attention to the applications of cell fate clustering and quantification of experi-
mental perturbations, both of which have been subject of recent interest in the field (Lange et al.j
Peidli et al.). We demonstrated that clustering on the trajectory feature vectors produces cell subsets
that are more consistent over time under the optimal transport maps. Furthermore, we showed that
this may be particularly useful in biological systems with heterogeneous cell states, such as CD4 T-
cell polarization. We also explored the connection between kernel mean embedding of trajectories
and the maximum mean discrepancy, and proposed using the distance between trajectory vectors
as a metric for the divergence between experimental responses. We demonstrated how using this
approach was able to detect true-positive perturbations with higher efficiency than alternatives that
do not take trajectories into account. Given the central role of time across biological processes,
the trajectory featurization approach proposed in this paper has the potential to enable the study of
single-cell responses at unprecedented temporal and cellular resolution.

Future work may seek to extend this approach from the discrete cell sets in optimal transport, to
continuous gene expression space. This would enable integration with generative cell trajectory
models such as TrajectoryNet (Tong et al.) or PRESCIENT (Yeo et al.). Another direction for
further investigation is the extension of the featurization from discrete to continuous time. This
could connect this work to the rich body of work on stochastic process and time-series modeling,
including methods such as Gaussian processes.
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