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ABSTRACT

Human researchers can perform scientific experimentation loops – planning, ex-
perimenting, observing the results, and generating inferences. Can we build AI
research agents to perform the same? To take a step towards building and evalu-
ating research agents capable of such open-ended decision-making, we focus on
the problem of having agents perform machine learning (ML) tasks given a task
description and dataset. In this paper, we propose MLAgentBench, a suite of ML
tasks for benchmarking AI research agents. Agents can perform actions like file
system operations, executing code, and inspecting outputs. With these actions,
agents could run experiments, analyze the results, and modify the code of entire
machine learning pipelines, such as data processing, architecture, training pro-
cesses, etc. The benchmark then automatically evaluates the agent’s performance
objectively over various metrics related to performance and efficiency. We also
design an LLM-based research agent to automatically perform experimentation
loops in such an environment. Empirically, we find that a GPT-4-based research
agent can feasibly build compelling ML models over many tasks in MLAgent-
Bench, displaying highly interpretable plans and actions. However, the success
rates vary considerably; they span from almost 90% on well-established older
datasets to as low as 10% on recent Kaggle Challenges – unavailable during
the LLM model’s pretraining – and even 0% on newer research challenges like
BabyLM. Finally, we identify several key challenges for LLM-based research
agents such as long-term planning and hallucination. Our code is released at
https://anonymous.4open.science/r/MLAgentBench/.

1 INTRODUCTION

Human researchers have the ability to carry out scientific discoveries that involve open-ended decision-
making at every step, diving deep into the realms of the unknown. Equipped with accumulated
scientific knowledge, human researchers tread paths less traveled, making groundbreaking discoveries
along the way. Such exploratory prowess raises an intriguing question: Is it possible to construct
AI research agents with similar capacities? A competent research agent, armed with extensive prior
knowledge, should have the capability to independently i) hypothesisize new research ideas, and ii)
validate these ideas through well-crafted experimental trials. The help of such research agents will
enable human researchers to pursue more diverse and ambitious research directions efficiently.

However, evaluating the performance of such research agents that can interact with the environment
freely and make open-ended decisions is challenging: the interaction process could be slow, resource-
intensive, and hard to evaluate quantitatively. Consequently, we focus on the domain of ML research,
where the experiment cycle is relatively short and digital with clear objective metrics (e.g. model
accuracy), yet still open-ended and challenging with the execution of arbitrarily complex code and
the interactions with different types of data.

Specifically, we focus on the problem of having research agents develop/edit ML models given a
task description and a dataset. Such an ML-focused research agent could be very helpful simply
for automating the engineering portion of ML research. It would allow ML researchers to carry out
many more explorations by instructing research agents to implement and test specific algorithms. To
accomplish this, we first need a reliable and deterministic benchmarking environment where an agent
can operate, its performance can be measured quantitatively, and be compared with different agents.
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Figure 1: Overview of MLAgentBench. Each task is specified with a task description (i.e. the
goal) and a set of files (which include code and data). Given these, a research agent can perform
actions such as reading/writing files and executing python code. During the interaction, we collect
interaction traces including each action, observation, and snapshot of the workspace. Finally, the
agent is evaluated based on the interaction trace and the final artifact produced (e.g., submission.csv).

In this paper, we propose MLAgentBench, the first benchmark for evaluating AI research agents
capable of open-ended decision-making (Figure 1). In essence, our MLAgentBench introduces a
general framework for specifying well-scoped executable research tasks and automatically evaluates
research agents on these tasks. Concretely, each research task is specified with a task description
and a set of necessary files (including starter code and data e.g. Kaggle data package). Given these,
a research agent can perform actions like reading/writing files and executing code, similar to the
interface used by a human researcher. During the agent’s interaction with the environment, we collect
its interaction traces, i.e. agent actions and intermediate snapshots of the workspace, for evaluation.
We evaluate the research agent along three aspects: 1) competence in accomplishing the objectives,
e.g. success rate and the average amounts of improvements, 2) reasoning and research process, e.g.
how the agent achieved the result or what mistakes it made, and 3) efficiency, measured by the amount
of time and resources spent by the agent.

As an initial curation effort, we include 15 ML engineering tasks from diverse domains ranging in
various difficulties and recency (Table 1), where the experiments are generally fast to perform and
inexpensive. We provide simple starter codes for some of these tasks to ensure that the agent can make
submissions properly. For example, one task is to increase a baseline Convolution Neural Networks
(CNN) model performance on the cifar10 dataset (Krizhevsky, 2009) by more than 10%. Beyond
very well-established datasets like cifar10, we also include a few months old Kaggle challenges and
other newer research datasets to see whether the research agent can extrapolate to newer datasets
unseen during (pre-)training. In the future, we aim to expand our tasks set to more diverse scientific
research tasks in different domains.

In light of the recent development of generative agents based on Large language models (LLMs)
(Yao et al., 2022; Shinn et al., 2023; Wang et al., 2023; aut, 2023; Schick et al., 2023; Park et al.,
2023), we also design a simple LLM-based research agent that can automatically make research plans,
read/edit scripts, perform experiments, interpret results, and continue with next-step experiments
over MLAgentBench environments. LLMs have demonstrated impressive prior knowledge ranging
from everyday common sense knowledge to specific scientific disciplines as well as great reasoning
and tool-using abilities, making them able to act and react to the broader world beyond just direct
textual chatting (OpenAI, 2023; Bubeck et al., 2023). On the high level, we simply prompt the LLMs
out-of-the-box to provide the next step action, given an automatically constructed prompt based on
all known information about the task and prior actions. Many specific components in constructing the
prompt take general inspiration from popular techniques for building other LLM-based generative
agents, including reasoning before action (Yao et al., 2022), reflection (Shinn et al., 2023), step-by-
step planning (aut, 2023), and managing a research log as a memory stream (Park et al., 2023). In
addition, we also use hierarchical action and fact-checking step to further improve the stability and
factualness of the AI research agent. See more details in Section 3.
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Over MLAgentBench, we find that our AI research agent, especially when based on GPT-4, is able to
successfully build a better ML model over many tasks and generate highly interpretable dynamic
research plans along the process, though still with many drawbacks. On well-established tasks like
training a better model over the ogbn-arxiv dataset (Hu et al., 2020), it is able to improve upon
baseline prediction successfully almost 90% of the time , with an average improvement of 48.18%.
However, the research agent struggles with Kaggle Challenges and BabyLM (Warstadt et al., 2023),
with only a 0 to 30% success rate. We then compare results between different variants of our research
agent as well as the adaptation of other existing agents. Interestingly, we found that maintaining
the memory stream could actively hurt the performance on simple tasks, potentially as a distraction
and encouraging agent to pursue complex changes. We also identify several key challenges for
LLM-based research agent designs, e.g. how to effectively plan and replan over long horizons and
hallucination about the current progress, and show how our design handles them qualitatively. Overall,
our research agent demonstrates preliminary feasibility and success with LLM-based research agents,
but there is still a long way until they can succeed reliably.

2 MLAGENTBENCH: BENCHMARKING ML RESEARCH AGENTS

Our MLAgentBench introduces a general framework for specifying well-scoped executable research
tasks and automatically evaluating agents on these tasks. The benchmark provides for a disentangled
environment and agent side that captures the entire interaction trace of the agent with the environment
for evaluation. We then include 15 concrete and diverse machine learning tasks in the benchmark. In
the subsequent subsections, we shall be describing some key components of MLAgentBench.

2.1 TASK SPECIFICATION

Our task specification scheme is designed to be general and similar to the human-facing interface,
making it easy to add new tasks and translate to collaborating with human researchers in the future.
Each research task is specified in two parts:

Task description. In MLAgentBench, the task description describes the desired goal and evaluation
metric, e.g. “Given a training script on a dataset train.py, improve upon the current model accuracy”,
and how the research agent should submit the final answer for evaluation, e.g. “Save per class
probabilities for test set examples to submission.csv”. The description could also include constraints
like limiting the model size and training epochs, or occasionally include specific directions to
approach the problem like “by fine-tuning a pretrained BERT model”.

Files. In MLAgentBench, we provide the agent with a prepared set of files and data necessary for
each task so that the agent should not need to browse the internet. This typically includes training and
testing data (without test labels), detailed data and metric descriptions, and some starter code. The
starter code is based on diverse ML frameworks, including PyTorch (Paszke et al., 2019), TensorFlow
(Abadi et al., 2015), JAX (Bradbury et al., 2018), Keras Chollet et al. (2015), etc. The starter code
mostly implements a simple baseline model that we can compare with during evaluation, but some
tasks do have have any baseline implementation, and the agent is responsible for coding up the model
from scratch from the task description and dataset files.

2.2 TASK ENVIRONMENT

With a task specification as described above, each task in MLAgentBench can be seen as an RL
environment where AI research agents can perform actions and receive observations. Some primitive
actions that are available in the benchmark include file system operations (read, write, append, copy,
edit, undo edit), execution of any arbitrary Python script1, and a final answer declaration action.
Each action is specified with a name, description, usage, return value description, and a Python
implementation.

The set of actions that an agent could execute could be augmented with hand-written or generated
high-level actions, which have the same interface as a primitive action but perform a composition

1More broadly this can include more specialized actions like running a biology experiment for a Biology
research agent. This has been restricted to Python code execution for an ML research agent.
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of multiple actions interleaved with other operations like LLM calls. This can be seen as a modular
skill library that provides transferrable high-level skills to all agents across all tasks. At the beginning
of each task, MLAgentBench will first prepare a workspace directory for the research agent by
copying relevant files and data from the task specification. The task description and information of
all available actions are also stored as queriable variables of the environment object.

The research agent can then submit an action name and action arguments as a dictionary to the
environment object, which will return back the proper observation as a string. For example, the
agent could call env.execute(Action("Read File", "train.py")), and obtain the
content of the file train.py in the working directory as the observation. The agent can interact with the
environment many times until it decides to submit the final answer, or the environment shuts down
itself due to exceeding a maximum number of actions or maximum time (both of which are specified
as environment variables).

Finally, all actions and snapshots of the workspace after each action is executed are recorded as an
interaction trace. We keep track of all the primitive actions which makes it possible to reproduce and
analyze the performance irrespective of differing composite skills used by different agents. Thus,
the interaction trace captured by the environment is agnostic to agent implementation and can be
compared directly across agents.

2.3 EVALUATION

Given the interaction traces collected, we can then evaluate the AI research agent from three aspects:

Competence in accomplishing the objectives. We evaluate a single performance metric based
on each final snapshot of the working directory. For most of the tasks, we can simply evaluate the
performance (e.g. accuracy) based on the final "submission.csv". We then compute aggregated metrics
like success rate at fulfilling the research objective and the average amount of improvement (e.g. upon
the baseline solution in the starter code) over multiple runs to test reliability and generalizability.

Reasoning and research process. With the interaction trace collected, we can further evaluate
the agent in terms of interpretability and more detailed error modes. We found this process-based
evaluation to be more helpful for agent development than a single black box score. To automate this,
we can evaluate the interaction trace against a set of rubrics, such as whether the agent was stuck
on debugging, by prompting GPT-3.5. However, here we performed a human evaluation due to the
unreliability of an LLM-based evaluation.

Efficiency. We evaluate the efficiency in terms of the total amount of wall clock time spent and the
total amount of resource cost (i.e. number of tokens for LLM-based agents).

2.4 CONCRETE TASKS

We include 15 tasks from diverse domains including Natural Language Processing, Computer Vision,
Time Series prediction, Graph ML, and Tabular data as shown in Table 1. Our tasks include both
well-studied datasets like cifar10 and open challenges like Parkinson’s disease progression prediction
from Kaggle which were not present in the language model pre-training. The tasks are chosen such
that they range in various difficulties and recency to test the generalizability of the research agent and
avoid data contamination. They are divided to the following categories:

Canonical Tasks. We included cifar10 (image classification) (Krizhevsky, 2009), imdb (sentiment
classification) (Maas et al., 2011), and ogbn-arxiv (paper category classification over citation network)
(Hu et al., 2020) as canonical tasks that are well-studied and easy to iterate on. For cifar10 and
ogbn-arxiv, the task was to improve a baseline model, but for imdb, the agent was expected to write
the model from scratch which involved finetuning a BERT model as mentioned in the task description.

Classic Kaggle. House-price (Anna Montoya, 2016) and spaceship-titanic (Howard et al., 2022)
are two introductory Kaggle challenges for tabular regression and classification. These tasks mainly
involve feature engineering, writing, and training models from scratch (no baselines provided), and
properly following the Kaggle submission format.

Kaggle Challenges. We select four recent Kaggle Challenges launched from 2 to 10 months ago to
test research agents’ ability to generalize to more realistic and out-of-distribution tasks.
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Type Task Modality Dataset Name

Canonical Classification Image cifar10 (Krizhevsky, 2009)
Tasks Classification Text imdb (Maas et al., 2011)

Node Classification Graph ogbn-arxiv (Hu et al., 2020)

Classic Regression Tabular house-price (Anna Montoya, 2016)
Kaggle Classification Tabular spaceship-titanic (Howard et al., 2022)

Regression Time Series parkinsons-disease (Kirsch et al., 2023)
Kaggle Classification Image fathomnet (Woodward et al., 2023)

Challenges Regression Text feedback (Franklin et al., 2022)
Segmentation Images identify-contrails (Sarna et al., 2023)

Current Node Regression Graph CLRS (Veličković et al., 2022)
Research Language Modeling Text BabyLM (Warstadt et al., 2023)

Improve Improve speed Text llama-inference
Code Improve speed Image vectorization

LLM Implement tool n/a literature-review-tool
Tools Implement tool n/a bibtex-generation

Table 1: MLAgentBench tasks.

Current Research. We include CLRS (Veličković et al., 2022) and BabyLM (Warstadt et al., 2023)
as two example datasets that are actively being researched and do not yet have a consensus on the
best approaches. CLRS dataset involves modeling classic algorithms over graphs and lists. BabyLM
requires training a language model over 10M words.

Improve Code. We include llama-inference and vectorization as two examples where AI research
agent is asked to improve the runtime of code instead of optimizing its prediction performance.
llama-inference is about improving the autoregressive generation speed of the Llama 7B model
(Touvron et al., 2023), and vectorization is about speeding up the inference of a convolutional model
with stacks of for loops in the forward pass.

LLM Tools. We also design two scenarios where the research agent is instructed to write LLM-
based research tools, which can perform literature review and generate BibTeX from sketch.

More details on the benchmark setup can be found in Appendix A. The above tasks are incorporated
as an initial curation and we hope to continuously expand this benchmark with the help of the
open-source community.

3 LLM-BASED RESEARCH AGENT

We design a simple LLM-based research agent as shown in Figure 2. On a high level, we prompt the
LLM to provide the next step action and action arguments in a JSON format. The prompt starts with
a description of all the tools available, the task description, research-specific instructions, a template
to instruct LLM to produce text in parsable format, and the historical steps taken (see Appendix D
for a full example of what prompt the agent sees at each interaction step). Given the LLM response,

Research Log

You are a helpful research assistant. You have access to the
following tools:
<Actions Descriptions>

Research Problem: <Research Problem Description>
...

Always respond in this format exactly: ...

Here is a summary of relevant actions and observations
you have done: ...
       
Here are the exact several steps you have done most recently
(up to 3 steps): ...

LLM

  Reflection: ...
  Research Plan and Status: ...
  Fact Check: ...
  Thought: ...
  Action : Execute Script
  Action Input : { "script_name": "train . py"}

  [1 , 100] loss : 2.074
  [1 , 200] loss : 1.728
  [1 , 300] loss : 1.609
  Epoch [1/5] , Train Accuracy : 44.17% ,
Test   Accuracy : 43.71%
  [2 , 100] loss : 1.491
  ...

Action

Observation

Prompt

Figure 2: Overview of our LLM-based research agent.
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we post-process it to action and action arguments for the environment to execute. In the subsequent
subsections, we detail some important components of our LLM-based research agent.

3.1 THINKING BEFORE ACTING

One important component is specifying the response format, so that LLM can first think in specific
ways before proposing action. Specifically, we instruct LLM to include a list of entries in the response.
In our research agent prototype, this includes Reflection, Research Plan and Status,
Fact Check, Thought, and then Action and Action Input. Among these, Thought and
Reflection are inspired by React and Reflexion (Yao et al., 2022; Shinn et al., 2023). Research
Plan and Status entry is designed to produce better planning and keep track of what has been
done; Fact Check is added to double-check whether a result has been confirmed or hallucinated.
We discuss this more in Appendix B.1 and B.2.

3.2 RESEARCH LOG

Since the research agent can perform many actions during the entire interaction, it is often infeasible
to simply put all historical responses in the context length of LLM. Thus, reducing prompt length is
one of the key challenges for generative agents. In our research agent, we use a design similar to
the memory stream paradigm from (Park et al., 2023). Specifically, we append a summary of the
LLM response and the observation in each step to a Research Log file. Then we can retrieve relevant
information from this Research Log, and concatenate with several recent full LLM responses to form
the historical context. With this design, the Research Log file itself then also becomes a normal file
available for the agent to query and modify, as exemplified by the Reflection action below.

3.3 HIERARCHICAL ACTIONS

We manually designed a few commonly useful high-level actions that perform several primitive
environment actions and separate modular LLM calls together. The most important ones are:
Understand File. This action reads a long file and calls another LLM to summarize and retrieve
information relevant to a short input query from it.
Reflection. It allows the agent to perfom reflection by reading in the content of the Research Log
file and prompting another LLM to reflect on a short input query.
Edit Script. This action first reads in a file, calls another LLM to perform an edit of a file given
a short input instruction from the main Research agent, then writes the modified version back. We
also include a different version, Edit Script Segment, which also takes start and end lines
as arguments and only edits the segment in between, when the task involves a large code base (i.e.
CLRS and BabyLM).

4 EXPERIMENTS

We evaluate our designed research agent with GPT-4 (OpenAI, 2023) and Claude-1 (Anthropic, 2023)
on MLAgentBench. Aside from the full form, we consider a no-retrieval variant, where the Research
Log component is removed, and hence the agent has no long-term memory.

We also benchmark the direct adaptation of several existing generative agents: 1) AutoGPT, a popular
open-source project for general-purpose autonomous AI agents (aut, 2023), and 2) LangChain,
another popular framework that implements various generative agent. Here we use "zero-shot-react-
description" which implements ReAct (Yao et al., 2022). We use Claude-1 for both agents.

We conduct 25 runs for all agents using Claude-1, and 8 runs for GPT-4 agents to average out the
evaluation metrics. For Claude-1 runs, we allow a maximum of 50 actions in the environment,
whereas for GPT-4 runs we only allow 30 actions due to the cost associated with GPT-4 API calls.

4.1 COMPETENCE IN ACCOMPLISHING THE OBJECTIVES

As shown in Figure 3 and 4, the GPT-4 agent achieves the best results over almost all tasks, but with
varying degrees of success from more than 80% over ogbn-arxiv to 0% over BabyLM. The average
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improvements made are also generally large and positive. Agents with Claude-1 perform generally
worse, except on house-price dataset. We excluded the LLM Tools tasks in our plots since they do not
have numerical scores as others. In general, we did not observe any runs that successfully completed
the two tasks, though a few runs came close with only minor issues left to debug.

Interestingly, agents without a Research Log perform better than those with it for easier tasks.
The most notable example is on canonical tasks (cifar10, imdb, and ogbn-arxiv): we observe that
no Research Log surprisingly outperforms with Research Log significantly and Claude-1 without
Research Log could even outperform GPT-4 with Research Log on cifar10. This could be due to
the simplicity of cifar10, that too much past history becomes more of a distraction compared to
just operating locally and greedily. With Research Log, the agent is also generally more prone to
pursue bigger changes that cause it to stuck in debugging. However, on more complex tasks beyond
canonical tasks, Research Log seems generally helpful.

Comparing our proposed research agent with existing agents with Claude-1, our research agent
achieves a much better success rate on cifar10, ogbn-arxiv, house-price, spaceship-titanic, and CLRS.
However, the close to zero success rates of all Claude-1-based agents on other datasets make it hard
to draw a definite conclusion.

4.2 REASONING AND RESEARCH PROCESS

We show a full example (without the Research Log for simplicity) on cifar10 to demonstrate what our
research agent actually does qualitatively in Appendix D. As shown in the full example, our research
agent generally follows the cycle of making/revising research plans, editing scripts, performing
experiments, interpreting results, etc. To more carefully evaluate the reasoning and research process
of the agent, we analyze the traces of runs for cifar10 and categorize most runs as shown in Figure 5:

1. Hallucination, where the agent claims to know something or fabricates some results such as
claiming performance increase without even executing any edits in the training script.

2. Debugging, where the agent fails to debug its modification to the code. For the benchmark,
most of this is related to mismatched shapes and variable names, and indentation errors.

3. Token Length, where the agent fails because the automatically constructed prompt was too
long, exceeding the context length of the language model.
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Figure 3: Success Rate, i.e. the percentages of runs that achieve more than 10% improvement at the
last step over the average performance of the baseline in starter code.

7



Under review as a conference paper at ICLR 2024

cifa
r10

imdb

ogbn-arxiv

house-price

spaceship-tita
nic

parkinsons-disease

fathomnet
feedback

identify-contrails

llama-inference

vectoriza
tion

CLRS
BabyLM

Task

50

0

50

100

150

Pe
rc

en
ta

ge

GPT-4
GPT-4 (no retrieval)

Claude-1
Claude-1 (no retrieval)

AutoGPT
LangChain (React)

Baseline
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4. Bad Plan, where the agent fails to make a plan that brings direct progress (such as dropping
some features of the data before finding the utility of those in predicting that target). Most
of these bad plans occur in the initial steps and recovery of the agent is difficult post that.

5. Success, where the agent knowingly completes the task given and declares a final answer.

Note that GPT-4 based research agent is able to avoid hallucination and debugging problems, but
tends to fail more due to bad plans. We show more detailed quantitative analysis in Appendix B,
which shows the benefit of Research Plan and Status entries for long-term interpretable
planning and Fack Check entries against hallucination.

4.3 EFFICIENCY

We compare the average amount of tokens and time spent by different agents for all tasks in Figure
6, for each task in Figure 7 and 8 in the Appendix. On average, GPT-4 based agents are the most
efficient, spending 119.1% less tokens due to their efficiency in finishing the task and submitting
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early, while having the highest success rate too. Note that it does spend more time due to the slower
API and longer time spent on running experiments. Converting with the current API prices, each run
on each task only costs a few dollars. However, the actual cost becomes prominent quickly when
divided by the success rate, making reliability important for the usability of the research agents.

5 RELATED WORKS

5.1 AI FOR SCIENCE

Numerous research endeavors seek to enhance the pace of manual observations and experiments
through automated ML predictions (Berens et al., 2023; Zhang et al., 2023b; Jumper et al., 2021;
Adam-Bourdarios et al., 2016; Schwaller et al., 2017). On the other hand, significant line of inquiry
revolves around constructing closed-loop systems capable of conducting ongoing experiments and
breakthroughs within specific domains (Kramer et al., 2023; Kitano, 2021). For example, Robot
Scientist “Adam” is developed to autonomously generate functional genomics hypotheses about
the yeast Saccharomyces cerevisiae and experimentally test these hypotheses by using laboratory
automation (King et al., 2009; 2004). Nevertheless, these existing systems are highly tailored to
process specific types of data for designated tasks and domains. Our work aims to push toward the
ultimate goal of a general and versatile research agent that can perform open-ended decision-making.

5.2 GENERATIVE AGENTS

Large language models (LLMs) have demonstrated impressive prior knowledge ranging from everyday
common sense knowledge to specific scientific disciplines like Computer Science and Chemistry
(OpenAI, 2023; Bubeck et al., 2023). Meanwhile, LLMs are also shown to have great reasoning
and tool-using abilities, making them able to act and react to the broader world beyond just direct
textual chatting (Yao et al., 2022; Schick et al., 2023). This combination of strong prior knowledge
and action/reaction abilities of LLMs gives rise to explorations of developing various LLM-based
generative agents, such as generative agents for simulating interactions between humans (Park et al.,
2023), Voyager for playing Minecraft (Wang et al., 2023), Say-Can for physical robotics (Ahn et al.,
2022), as well as open source projects like AutoGPT (aut, 2023) for everything and commercial
product like Adapt.ai for internet interactions. However, it is hard to evaluate the performance and
reliability of these agents, especially over a long horizon of complex interactions. Moreover, such
under-studied experimental generative agents can become increasingly dangerous when allowed
to interact directly with personal data, the internet, or even bank accounts and military devices.
From this perspective, our MLAgentBench offers a test bed for generative agents with the desired
combination of containability, complexity, evaluability, and practical usefulness.

5.3 LLMS FOR AUTOML

Several concurrent works have explored using LLMs for AutoML type of tasks: AutoML-GPT
(Zhang et al., 2023c) repeatedly prompts LLMs with data and model cards and predicts training logs
to perform efficient hyperparameter tuning; MLcopilot (Zhang et al., 2023a) prompts LLMs with past
experiences and knowledge to predict one final categorized hyperparameter setting (e.g. low or high
weight decay). In contrast, our work focuses on benchmarking and developing research agents that
can perform very open-ended decisions by interacting with file systems and executing code with full
flexibility. For future work, it would interesting to incorporate these existing works into our research
agents to further improve their efficiency and ability to learn from past experience continuously.

6 CONCLUSION

In this paper, we propose MLAgentBench for benchmarking AI research agents on performing ML
research tasks end-to-end with access to a compute cluster. We also develop an LLM-based prototype
research agent that can accomplish many tasks in MLAgentBench with varying success rates. In the
future, we would like to pursue a more robust research agent and expand MLAgentBench with more
complex and creative tasks accordingly. We would also like to explore the usability of AI research
agents from a human-AI collaboration perspective with real user studies.
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