
SPECTRA: Faster Large Language Model Inference with
Optimized Internal and External Speculation

Anonymous ACL submission

Abstract

Inference with modern Large Language Mod-001
els (LLMs) is both computationally expensive002
and time-consuming. Speculative decoding has003
emerged as a promising solution, but existing004
approaches face key limitations: training-based005
methods require a draft model that is challeng-006
ing to obtain and lacks generalizability, while007
training-free methods offer limited speedup008
gains. In this work, we present SPECTRA, a009
novel framework for accelerating LLM infer-010
ence without the need for additional training011
or modification to the original LLM. SPECTRA012
introduces two new techniques for efficiently013
utilizing internal and external speculation, each014
outperforming corresponding state-of-the-art015
(SOTA) methods independently. When com-016
bined, these techniques achieve up to a 4.08x017
speedup across various benchmarks and LLM018
architectures, significantly surpassing existing019
training-free approaches. The implementation020
of SPECTRA is publicly available.021

1 Introduction022

Generating long sequences with low latency using023

Large Language Models (LLMs) is a critical re-024

quirement. Current LLMs rely on autoregressive025

decoding (Touvron et al., 2023; Bai et al., 2023;026

Jiang et al., 2023; OpenAI et al., 2024), which027

suffers from inefficiency because it generates text028

one token at a time. This results in generation029

time scaling linearly with the sequence length and030

underutilizes the parallel processing capabilities031

of modern GPUs. A widely studied approach to032

mitigate this issue is speculative decoding (Chen033

et al., 2023; Leviathan et al., 2023), which fol-034

lows a guess-and-verify paradigm. In this approach,035

a smaller LLM (draft model) (Chen et al., 2023;036

Leviathan et al., 2023; Miao et al., 2024; Sun et al.,037

2023b; Zhou et al., 2024; Cai et al., 2024) or the038

original LLM trained in a specialized manner (self-039

speculative decoding) (Elhoushi et al., 2024; Liu040

et al., 2024a; Yang et al., 2024; Zhang et al., 2024a; 041

Li et al., 2024b) predicts multiple tokens in ad- 042

vance. The original LLM then verifies these pre- 043

dictions in parallel, improving efficiency. However, 044

these approaches require additional training, which 045

demands substantial computational resources and 046

may degrade the original model’s capabilities. 047

Another line of research focuses on speculat- 048

ing subsequent tokens without requiring additional 049

training. This approach eliminates the need for 050

training new models or modifying the original 051

LLM, making it practical for off-the-shelf deploy- 052

ment. Some methods leverage specialized mecha- 053

nisms to generate speculative tokens directly from 054

the LLM’s predictions (Fu et al., 2024; Ou et al., 055

2024), while others rely on external information 056

sources to derive these tokens (Yang et al., 2023; 057

He et al., 2024; Li et al., 2024a). However, the 058

speedup gain in these approaches remains limited 059

due to the quality of the speculative guesses. 060

We introduce SPECTRA (Figure 1a), a specu- 061

lative decoding method that improves generation 062

speed without requiring any training or modifica- 063

tions to the original LLM. SPECTRA consists of 064

two main components: a core module (SPECTRA- 065

CORE, Figure 1c), which integrates seamlessly into 066

LLMs in a plug-and-play manner, and an optional 067

retrieval module (SPECTRA-RETRIEVAL, Figure 068

1e) that further enhances performance. The core 069

module SPECTRA-CORE improves speculative de- 070

coding by leveraging the token distribution pre- 071

dicted by the LLM to generate high-quality guesses. 072

Specifically, it employs two multi-level N-gram 073

dictionaries that enable bi-directional search for 074

dynamic-length guesses, balancing both quality 075

and quantity. Additionally, SPECTRA optimizes a 076

candidate pool to continuously update the N-gram 077

dictionaries, ensuring broad token coverage. All 078

updates to these resources, along with guess verifi- 079

cation, are performed efficiently in a single forward 080

pass. The retrieval module, SPECTRA-RETRIEVAL, 081

1

SPECTRA-RETRIEVAL

Module

N-gram Store

Input

Lookahead

Candidate

LLM

(b) Lookahead decoding (c) SPECTRA-CORE

Guesses

Input

SPECTRA

Candidate

LLM

Bi-directional

Guesses

Multi-level

N-gram Store

Input Corpus

Guesses

LLM

Trie

Input

Guesses

LLM

Trie

(d) REST

Corpus Re�ned

by Perplexity

(e) SPECTRA-RETRIEVAL

(a) Ours: SPECTRA

SPECTRA-CORE

Module

Input

Guesses
LLM

Figure 1: Overview of Spectra and comparison with other non-training SOTA approaches. (a) Overview of SPECTRA.
(b) Overview of Lookahead Decoding (Fu et al., 2024). (c) Overview of the SPECTRA-CORE module, which utilizes
the knowledge inside LLM for obtaining guesses. (d) Overview of REST (He et al., 2024). (e) Overview of the
SPECTRA-RETRIEVAL module, which is designed to be integrated efficiently with SPECTRA-CORE to boost the
speedup. The results in the bar chart are measured on HumanEval.

can be integrated to further enhance speedup. Ex-082

isting approaches that rely on external sources for083

generating guesses (He et al., 2024) struggle to in-084

tegrate with other speculative decoding methods,085

as the search time outweighs the speedup gains.086

SPECTRA-RETRIEVAL addresses this issue by re-087

ducing the search space, selecting only high-quality088

content from the corpus based on perplexity scores089

computed by the target LLM. This optimization en-090

ables seamless integration with SPECTRA-CORE,091

maximizing efficiency.092

Empirical results on six tasks—including multi-093

turn conversation, code generation, and mathemati-094

cal reasoning—across three LLM families (Llama095

2 (Touvron et al., 2023), Llama 3 (Dubey et al.,096

2024), and CodeLlama (Rozière et al., 2024)) with097

model sizes ranging from 7B to 70B demonstrate098

that SPECTRA outperforms other non-training spec-099

ulative decoding methods, achieving speedups of100

up to 4x. We publicly release the code and data.101

The key contributions of this paper are as follows:102

• We introduce SPECTRA, which improves spec-103

ulative decoding by effectively leveraging the104

LLM’s predicted token distribution. SPEC-105

TRA is a plug-and-play solution that requires106

no modifications to the LLM (Section 3.1).107

• SPECTRA’s retrieval module refines external108

corpora using perplexity scores computed by109

the target LLM, providing a general frame-110

work that enables speculative decoding ap- 111

proaches relying on external information to 112

be seamlessly integrated with other specula- 113

tive decoding techniques (Section 3.2). 114

• Extensive experiments across diverse tasks, 115

LLM architectures, GPU types, and settings 116

demonstrate the efficiency of SPECTRA, out- 117

performing other non-training speculative de- 118

coding approaches (Section 5). SPECTRA 119

also integrates with acceleration tools such as 120

FlashAttention and pipeline parallelism (Sec- 121

tion 5.2). The code and data are available. 122

2 Preliminaries 123

2.1 Autoregressive Decoding in LLMs 124

Given an input sequence x = (x1, x2, . . . , xs) 125

of length s, and a slice of length m as x1:m = 126

(x1, x2, . . . , xm), the output of an LLM represents 127

a probability distribution over the next token. The 128

probability of generating the s-th token, condi- 129

tioned on all preceding tokens, is given by PM (xs | 130

x1:s−1). The next token xs is sampled from this 131

distribution using methods such as greedy, top-k, 132

or top-p sampling (see (Kool et al., 2020; Holtz- 133

man et al., 2020)). For greedy sampling, the next 134

token is selected as xs = argmax PM (xs | x1:s−1). 135

Consequently, the LLM generates an output se- 136

quence (y1, y2, . . . , ym) of length m autoregres- 137

sively, where each token yi is computed as 138

2

yi = argmax PM (yi | y1:i−1,x).139

2.2 Speculative Decoding140

Speculative decoding follows a guess-and-verify141

approach, where multiple candidate future to-142

kens are speculated and subsequently verified143

in a single decoding step. With tree attention144

(Miao et al., 2024), multiple drafts can be ver-145

ified simultaneously. Let G denote the number146

of guesses, and define the set of guesses as Ỹ =147

{ỹ(1), ỹ(2), . . . , ỹ(G)}, where each guess sequence148

has length K. The j-th token of the i-th guess is149

denoted as ỹ(i)j .150

In the case of speculative decoding with greedy151

sampling, given the prompt x, a drafting method152

generates the draft sequences Ỹ . Using these drafts,153

the LLM computes the true tokens (y′1, y
′
2, . . . , y

′
K)154

in parallel. These tokens are then verified, and155

h is defined as the highest number of correctly156

guessed tokens across all guesses. Consequently,157

h + 1 tokens are generated in a single forward158

step. Algorithm 2 outlines speculative decoding159

with greedy sampling, and additional details are160

provided in Appendix A.161

3 SPECTRA DECODING162

SPECTRA consists of two modules (SPECTRA-163

CORE and SPECTRA-RETRIEVAL) that can func-164

tion independently or together. The core module165

(SPECTRA-CORE) improves speedup by leveraging166

the LLM’s predicted token distribution to gener-167

ate high-quality guesses and integrates into LLMs168

in a plug-and-play manner. The retrieval module169

(SPECTRA-RETRIEVAL) derives guesses from a re-170

fined external information source and is designed to171

integrate with SPECTRA-CORE to further enhance172

performance.173

3.1 SPECTRA-CORE174

SPECTRA-CORE maintains an N-gram storage,175

which is used to obtain guesses, and a candidate176

pool, which is used to augment new N-grams in177

storage. The candidate pool C contains W se-178

quences, {c(0), c(1), . . . , c(W−1)}, with each se-179

quence consisting of N tokens. Let c(i)j represent180

the j-th token in the i-th sequence. The N-gram181

storage includes two dictionaries: the forward dic-182

tionary Sfwd and the backward dictionary Sbwd. At183

each time step, guesses G are obtained through a184

bidirectional search using Sfwd and Sbwd. A sin-185

gle inference pass to the LLM retrieves all neces-186

Algorithm 1 SPECTRA-CORE Decoding Process
Require: Sequence x = (x1, x2, . . . , xn), model PM , max

N-gram size N , candidate pool size W , max guesses G,
max number of new tokens m. Refine threshold τ

1: Initialize N-gram Forward-dictionary Sfwd ← ∅
2: Initialize N-gram Backward-dictionary Sbwd ← ∅
3: Random c

(i)
j , ∀j ∈ [0, N − 1], ∀i ∈ [0,W − 1]

4: t← n+ 1
5: while t ≤ n+m do
6: {Obtain the guesses}
7: G ← Sfwd[xt−1]
8: u = ∅
9: for j = 0 to N − 1 do

10: for k = N − 1 to 1 do
11: uj ← Sbwd[xt+j−k:t−1 ⊕ u0:j−1]
12: break if found value for uj

13: end for
14: end for
15: G.append(u)
16: G = G ⊕ Gretrieve ▷ Retrieval Integration (Optional)
17: G ← G0:G−1 ▷ Ensure the max guesses is G
18: {Foward in LLM}
19: Obtain necessary distributions of PM in parallel.
20: {Verification}
21: {Greedy verify (Alg. 3) or Sampling verify (Alg. 4)}
22: hits← VerificationFunction(x, PM ,G)
23: x← x⊕ hits
24: t← t+ size(hits)
25: {Predict Candidates}
26: for i = 0 to W − 1 do
27: r ∼ Uniform[0, 1]

28: Pc(c
(i)
N−1)← PM (c

(i)
N−1 | c

(i)
:N−2,x)

29: if r > τ then
30: c

(i)
N−1 ← argmax

c/∈Sfwd

Pc(c
(i)
N−1)

31: else
32: c

(i)
N−1 ← argmax Pc(c

(i)
N−1)

33: end if
34: end for
35: {Update N-gram dictionaries}
36: for i = 0 to W − 1 do
37: for j = 0 to N − 2 do
38: Sfwd[c

(i)
j].append(c(i)j+1:)

39: Sbwd[c
(i)
0:j]← c

(i)
j+1

40: end for
41: end for
42: {Update Candidates}
43: c

(i)
j ← c

(i)
j+1, ∀j ∈ [0, N − 2], ∀i

44: end while
45: Output: xn+1:n+m = (y1, y2, . . . , ym)

sary distributions, which are used to generate new 187

candidate tokens for C and verify the guesses G. 188

The dictionaries Sfwd and Sbwd are updated with N- 189

grams from the candidate pool. The details of the 190

SPECTRA-CORE decoding process are described 191

in Algorithm 1. 192

Bi-directional Search for Guesses. At each step, 193

SPECTRA generates G guess sequences G = 194

{ỹ(0), ỹ(1), . . . , ỹ(G)}. Unlike previous work (Fu 195

et al., 2024), which enforces uniform guess lengths, 196

SPECTRA supports variable-length guesses, im- 197

3

Input

Input

Large Language Model

Token distribution

Obtain new tokens for candidate pool Verify guesses
Key Value

... ...

... ...

... ...

Key Value

From pool

to dictionary

Assign AssignAssign

Update Candidates

From pool

to dictionary

Figure 2: Details of how SPECTRA handles internal knowledge. The dashed arrow indicates interactions between
the tokens, which are realized by the attention mask in the LLM.

proving both flexibility and efficiency. The for-198

ward dictionary Sfwd maps a token to a list of199

sequences, while the backward dictionary Sbwd200

maps a sequence to a single token. At time step201

t, the set of guesses is obtained through a bidi-202

rectional search (Alg. 1, lines 7–17). This search203

operates in two directions: (1) the forward direc-204

tion, which prioritizes the quantity of guesses, and205

(2) the backward direction, which prioritizes the206

quality of guesses. In the forward direction, the207

last generated token xt−1 is used to search Sfwd208

for guess sequences (Alg. 1, line 7). In the back-209

ward direction, a high-quality guess is constructed210

by iteratively predicting one token at a time using211

Sbwd, repeating the process until a desired sequence212

length N is reached (Alg. 1, lines 8–14).213

Verification. The verification step ensures the214

output distribution is preserved by validating the215

guesses (Alg. 1, lines 22–24). For greedy sampling,216

the process is detailed in Appendix H (Alg. 3). In217

general speculative decoding, verification involves218

sending draft tokens to the LLM to obtain outputs219

and progressively checking if the LLM-generated220

token matches the draft token. Following prior221

work (Fu et al., 2024), we verify multiple guesses in222

parallel, accepting the guess with the largest num-223

ber of correctly predicted tokens. For advanced224

sampling methods, we adopt sampling verification225

from (Miao et al., 2024; Fu et al., 2024), whose226

correctness has been proven. Details on sample ver-227

ification are provided in Appendix H (Algorithm 4),228

and its performance and speedups are verified in229

Appendix F.230

Predict & Verify in One Forward Pass. All dis-231

tributions required for predicting candidates and232

verifying guesses are obtained in a single forward233

pass to the LLM, leveraging parallel processing234

(Figure 2). This is achieved using a specially de- 235

signed attention mask that specifies the allowed 236

interactions between tokens. For instance, the to- 237

ken c
(1)
2 attends only to c

(1)
1 , c(1)0 , and the input. 238

Predict Tokens for Candidate Pool. We predict 239

the next candidate tokens c(i)N−1 for the candidate 240

pool using the distribution obtained from the for- 241

ward pass (Alg. 1, lines 26–34). A straightfor- 242

ward approach is to select tokens with the highest 243

probability in the token distribution. However, we 244

observe that when searching for guesses in the for- 245

ward dictionary Sfwd, it is crucial for the search to- 246

ken to exist in the dictionary; otherwise, no guesses 247

can be retrieved. To address this, we introduce a 248

randomness-based mechanism to increase the cov- 249

erage of Sfwd. Specifically, we probabilistically 250

encourage the selection of unseen tokens in Sfwd 251

using a hyperparameter τ ∈ [0, 1]. Let r be a 252

random draw from [0, 1]. If r > τ , we select to- 253

kens with the highest probability that are not in 254

Sfwd; otherwise, we choose tokens with the high- 255

est probability regardless of their presence in Sfwd. 256

Although c
(i)
N−1 does not immediately affect the 257

coverage of Sfwd, it contributes to coverage expan- 258

sion in subsequent time steps through our candidate 259

updating mechanism. At the end of each time step, 260

all candidate sequences are shifted left by one to- 261

ken: c(i)j ← c
(i)
j+1, leaving c

(i)
N−1 empty and ready 262

for prediction in the next time step (Alg. 1, line 43). 263

Update N-gram Dictionaries. At the end of each 264

time step, candidate tokens from the pool C are 265

used to update the N-gram dictionaries Sfwd and 266

Sbwd. While previous work (Fu et al., 2024) only 267

adds the full N-gram (c
(i)
0 , c

(i)
1 , . . . , c

(i)
N), we ob- 268

serve that subsequences within N-grams often ap- 269

pear later in the generation process. By including 270

4

these subsequences in the N-gram storage, we im-271

prove both the quality of guesses and the coverage272

of the dictionaries. Specifically, we add subse-273

quences to Sfwd using the first token as the key,274

and update Sbwd by mapping the preceding part of275

the sequence to the last token (Alg. 1, lines 35–41).276

3.2 SPECTRA-RETRIEVAL277

SPECTRA-RETRIEVAL leverages an external278

knowledge source to generate guesses. This in-279

volves processing a text corpus and indexing it into280

a structure that supports fast prefix search, such as a281

trie. At each time step, the last generated tokens are282

used as input to this structure to retrieve guesses for283

speculative decoding. However, we observe that us-284

ing random texts from the corpus without selection285

can limit the speedup gain. To address this, we pro-286

pose a method to identify and select high-quality,287

relevant texts from the corpus tailored to the spe-288

cific LLM. This improves the speedup gain and289

enables seamless integration with other speculative290

decoding approaches, including SPECTRA-CORE.291

Corpus Refinement by Perplexity. Given a text292

sequence u = (u0, u1, . . . , ut), perplexity quan-293

tifies the average uncertainty of the model when294

predicting the next token, conditioned on the pre-295

ceding tokens. The perplexity is calculated as296

PPL(u) = exp
{
−1

t

∑t
i=1 logPM (ui | u<i)

}
297

A lower perplexity indicates that the model as-298

signs higher probabilities to the sequence, sug-299

gesting that the sequence is well-aligned with the300

model’s predictions and can produce high-quality301

guesses for speculative decoding. To optimize the302

retrieval process, we select texts with the lowest303

perplexity from the corpus to form a smaller, high-304

quality subset, which is then used to construct the305

Trie structure for generating guesses.306

Integration with SPECTRA-CORE. Our exper-307

iments (Section 5.2, Table 2) demonstrate that308

naively integrating guesses from external sources309

(e.g., REST (He et al., 2024)) into other specula-310

tive methods (e.g., Lookahead (Fu et al., 2024))311

can lead to a noticeable drop in speedup. This oc-312

curs because the forward pass in the LLM can only313

handle a limited number of guesses, and exceeding314

this limit increases memory usage and slows down315

generation. With a limited guess budget, guesses316

from external sources can only account for a frac-317

tion of the total guesses, causing the search time318

in the indexing structure (e.g., a trie) to outweigh319

the speedup gain. To address this, it is crucial320

to limit the size of the external knowledge while 321

maintaining the quality of the guesses. By refining 322

the corpus using perplexity, SPECTRA-RETRIEVAL 323

seamlessly integrates with SPECTRA-CORE, further 324

boosting the speedup gain. Specifically, we inte- 325

grate SPECTRA-RETRIEVAL into SPECTRA-CORE 326

by including its guesses (Gretrieve) in the set of 327

SPECTRA-CORE’s guesses during the guess gener- 328

ation step (Alg. 1, line 16). 329

4 Experiments 330

Models. We evaluate LLaMA-2-Chat 7B, 13B, 331

70B (Touvron et al., 2023), CodeLlama 7B, 13B 332

(Rozière et al., 2024), and LLaMA-3-Instruct 8B, 333

70B (Dubey et al., 2024). 334

Tasks. We conduct comprehensive evaluations 335

on various generation tasks. MT-Bench (Zheng 336

et al., 2023) for multi-turn conversation; GSM8K 337

(Cobbe et al., 2021) for mathematical reasoning; 338

HumanEval (Chen et al., 2021), MBPP (Austin 339

et al., 2021) and ClassEval (Du et al., 2023) for 340

code generation. 341

Metrics. SPECTRA does not modify the original 342

LLM and the acceptance conditions, making it a 343

lossless acceleration method. Therefore, the gener- 344

ation quality remains the same as the original LLM. 345

We only evaluate the acceleration performance us- 346

ing the following metrics. 347

• Speedup Ratio: The speedup ratio relative to 348

autoregressive decoding. 349

• Compression ratio τ : The ratio of the total 350

number of autoregressive steps to the number 351

of Spectra decoding steps needed to produce 352

the same sequence length. 353

Baselines. We use standard autoregressive decod- 354

ing as the baseline (speed-up ratio = 1.00x). We fur- 355

ther compare SPECTRA with leading non-training 356

speculative decoding approaches, namely Adaptive 357

N-gram (Ou et al., 2024), REST (He et al., 2024), 358

and Lookahead (Fu et al., 2024). For details regard- 359

ing implementation settings of both SPECTRA and 360

these baselines, please refer to Appendix B. 361

5 Results 362

5.1 Main Results 363

Overall Performance. The top portion of Ta- 364

ble 1 presents speedup ratios under greedy decod- 365

ing. SPECTRA consistently achieves the highest 366

5

acceleration, with speedups up to 4.08× for Llama-367

3-8B on MBPP. For 7B models, SPECTRA often368

exceeds 3× acceleration, highlighting the effective-369

ness of multi-token compression. For 13B models,370

speedups are slightly lower (1.6×–3×). Overall,371

the model architecture and dataset characteristics372

significantly influence the speedup gains of specula-373

tive decoding methods. While some approaches ex-374

cel in specific scenarios—such as tasks with repeti-375

tive patterns or predictable token distributions (e.g.,376

repeated variable names or class definitions), they377

often struggle in diverse or open-ended contexts. In378

contrast, SPECTRA demonstrates robustness across379

a wide range of models and datasets, consistently380

achieving the highest speedup ratios.381

Compression Ratio. Table 1 also reports each382

method’s compression rate, a measure agnostic383

to specific hardware configurations. Across ev-384

ery dataset and LLM tested, SPECTRA delivers the385

highest average compression ratio. Each of SPEC-386

TRA’s draft-and-verify iterations typically yields387

2.1–4.8 tokens, substantially outpacing alternative388

approaches and nearly doubling the acceptance389

length achieved by REST.390

Acceleration in Sampling Decoding. The lower391

section of Table 1 reports the performance of SPEC-392

TRA under sampling-based decoding with a temper-393

ature of 1.0. The results highlight how SPECTRA394

continues to accelerate generation relative to base-395

lines, offering roughly 1.15–2.77× speedups over396

standard autoregressive decoding. These gains are397

more modest than in greedy decoding, reflecting398

the lower acceptance rate under the sampling-based399

verification phase, which is consistent with earlier400

findings (Fu et al., 2024; Leviathan et al., 2023).401

5.2 Analysis402

Ablation Study. We performed a detailed403

component-wise analysis to evaluate the contribu-404

tion of each module to the overall performance405

(Table 2). On LLaMA2-7B-chat, removing com-406

ponents impacts GSM8K speedups differently. Us-407

ing only SPECTRA-CORE, excluding multi-level408

n-grams reduces the speedup from 2.04× to409

1.95×, omitting backward dictionary guesses low-410

ers it to 1.94×, and removing forward dictionary411

guesses drops it further to 1.50×. For SPECTRA-412

RETRIEVAL, skipping perplexity-based filtering de-413

creases the speedup from 1.18× to 1.16×. The full414

SPECTRA framework achieves a 2.14× speedup415

on GSM8K, underscoring the importance of inte-416

grating all components to maximize acceptance 417

rates and performance. A similar trend holds for 418

the MTBench dataset. Additionally, we compared 419

SPECTRA with a naive combination of Lookahead 420

and REST, where guess sequences from REST are 421

appended to Lookahead. This approach performs 422

significantly worse than SPECTRA, underscoring 423

that a straightforward merger of two techniques is 424

inadequate without our carefully optimized integra- 425

tion strategy and components. 426

0 20 40 60 80 100
Total accept tokens (%)

ClassEval

GSM8K

HumanEval

MBPP

MT-Bench

CORE(fwd) CORE(bwd) RETRIEVAL

Figure 3: Acceptance rates of Llama2-7B-chat for dif-
ferent guess sources (from SPECTRA-CORE forward dic-
tionary, backward dictionary, SPECTRA-RETRIEVAL).
The acceptance rate is the fraction of guessed tokens
that pass verification.

Priority for Source of Guesses. Since verifying 427

too many candidate tokens at once can strain GPU 428

resources and reduce speedups (Fu et al., 2024; Li 429

et al., 2024b), SPECTRA limits the total number 430

of guesses processed in each step (Appendix B). 431

In order to assess the individual contributions of 432

our two modules—SPECTRA-CORE and SPECTRA- 433

RETRIEVAL—we temporarily remove the limit on 434

the number of guess sequences in the verification 435

branch and monitor the acceptance rates (Figure 3). 436

We find that guesses generated by the SPECTRA- 437

CORE module (via both forward and backward 438

dictionaries) are accepted at a higher rate than 439

those obtained from the external knowledge source 440

via the SPECTRA-RETRIEVAL module. As a re- 441

sult, SPECTRA gives priority to internal guesses 442

from SPECTRA-CORE over external guesses from 443

SPECTRA-RETRIEVAL, as in Algorithm 1. 444

FlashAttention. Figure 4 shows that enabling 445

FlashAttention consistently boosts the speedup of 446

all methods, albeit to varying degrees. Notably, 447

we observe an additional 0.24× speedup gain for 448

SPECTRA on both GSM8K and MTBench. This 449

is because FlashAttention better exploits the paral- 450

6

Classeval GSM8K Humaneval MBPP MTBench AVG
Model Method Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup

Greedy (temperature=0)

CL-13B

ANPD 1.94 2.52 2.81 3.72 2.08 2.50 2.71 3.58 2.61 3.41 2.43
Lookahead 2.25 3.61 2.80 4.24 2.30 3.16 2.91 4.44 2.59 4.04 2.57
REST 1.28 2.14 0.93 1.54 1.58 2.31 0.85 1.40 0.94 1.53 1.12
SPECTRA (Ours) 2.38 4.06 2.91 4.65 2.63 3.95 3.29 4.46 2.65 4.40 2.77

CL-7B

ANPD 2.30 2.68 3.21 3.75 2.16 2.47 3.16 3.78 3.35 3.83 2.84
Lookahead 2.59 3.66 2.99 3.83 2.50 3.05 2.90 3.67 3.23 4.27 2.84
REST 1.45 2.22 0.91 1.39 1.70 2.34 0.96 1.45 1.02 1.44 1.21
SPECTRA (Ours) 2.70 4.10 3.33 4.59 2.96 3.90 3.56 4.45 3.70 4.52 3.25

L2-13B

ANPD 1.36 1.78 1.47 1.72 1.34 1.61 1.12 1.32 1.17 1.37 1.29
Lookahead 1.81 2.76 1.46 1.87 1.73 2.32 1.38 1.69 1.51 2.04 1.58
REST 1.22 2.01 0.94 1.46 1.25 1.94 0.95 1.44 1.14 1.90 1.10
SPECTRA (Ours) 2.00 3.24 1.83 2.62 1.96 2.91 1.63 2.24 1.75 2.60 1.83

L2-70B
ANPD 1.82 1.90 1.63 1.61 1.86 1.87 1.17 1.20 1.34 1.30 1.56
Lookahead 2.65 2.87 1.86 2.02 2.57 2.67 1.49 1.54 1.94 2.00 2.10
SPECTRA (Ours) 3.10 3.40 2.52 2.69 3.22 3.37 1.86 1.93 2.43 2.51 2.62

L2-7B

ANPD 1.62 1.95 1.52 1.68 1.54 1.67 1.19 1.33 1.30 1.37 1.43
Lookahead 2.19 2.94 1.66 1.93 2.06 2.42 1.46 1.69 1.73 2.05 1.82
REST 1.36 2.12 1.01 1.47 1.41 2.04 1.01 1.46 1.25 1.90 1.21
SPECTRA (Ours) 2.40 3.43 2.11 2.64 2.40 3.05 1.77 2.16 2.02 2.59 2.14

L3-70B
ANPD 1.54 1.67 1.50 1.47 1.83 1.88 1.46 1.41 1.23 1.23 1.51
Lookahead 2.40 2.62 1.54 1.58 2.56 2.70 1.43 1.45 1.76 1.86 1.94
SPECTRA (Ours) 2.67 2.91 2.10 2.14 2.84 3.02 1.94 1.94 2.06 2.13 2.32

L3-8B
ANPD 2.11 2.49 3.86 4.57 1.83 2.09 3.36 3.58 1.14 1.23 2.46
Lookahead 2.59 3.44 3.71 4.61 2.49 2.89 3.79 4.65 1.53 1.85 2.82
SPECTRA (Ours) 2.83 3.49 3.89 4.77 2.57 3.02 4.08 4.76 1.69 2.10 3.01

Sampling (temperature=1.0)

CL-13B

ANPD 1.15 1.46 1.07 1.31 1.05 1.30 1.00 1.24 2.31 2.89 1.31
Lookahead 1.38 2.00 1.08 1.43 1.29 1.75 1.02 1.34 2.33 3.48 1.42
REST 1.14 1.87 0.82 1.35 1.27 1.96 0.84 1.39 0.93 1.50 1.00
SPECTRA (Ours) 1.68 2.22 1.20 1.75 1.65 2.12 1.15 1.70 2.37 3.80 1.61

CL-7B

ANPD 1.29 1.50 1.16 1.30 1.10 1.32 1.12 1.27 2.77 3.05 1.49
Lookahead 1.54 2.03 1.19 1.41 1.43 1.81 1.19 1.43 2.72 3.50 1.61
REST 1.23 1.86 0.88 1.33 1.33 1.98 0.91 1.40 0.97 1.44 1.06
SPECTRA (Ours) 1.81 2.25 1.35 1.73 1.68 2.12 1.33 1.72 2.78 3.94 1.79

L2-13B

ANPD 1.20 1.52 1.24 1.46 1.17 1.40 1.03 1.22 1.17 1.35 1.16
Lookahead 1.52 2.22 1.32 1.69 1.48 2.00 1.18 1.48 1.49 2.01 1.40
REST 1.18 1.96 0.93 1.45 1.19 1.88 0.92 1.44 1.12 1.88 1.07
SPECTRA (Ours) 1.70 2.75 1.55 2.23 1.69 2.59 1.34 1.89 1.74 2.57 1.60

L2-7B

ANPD 1.31 1.51 1.34 1.48 1.28 1.46 1.10 1.22 1.25 1.36 1.26
Lookahead 1.78 2.30 1.51 1.76 1.72 2.09 1.25 1.49 1.68 2.02 1.59
REST 1.26 2.03 0.99 1.46 1.27 1.93 0.96 1.41 1.21 1.88 1.14
SPECTRA (Ours) 1.97 2.83 1.78 2.28 2.04 2.75 1.47 1.84 1.97 2.54 1.85

L3-8B
ANPD 1.25 1.37 1.97 2.18 1.43 1.65 1.89 2.07 1.15 1.21 1.54
Lookahead 1.48 1.78 2.07 2.41 1.79 2.21 1.99 2.40 1.57 1.81 1.78
SPECTRA (Ours) 1.94 2.84 2.27 2.78 1.92 2.51 2.19 2.78 1.70 2.05 2.01

Table 1: Overall performance of speculative decoding methods across multiple tasks. “CL-xB” denotes CodeLlama
with xB parameters, “L2-xB” denotes LLaMA-2-Chat of size xB, and “L3-xB” denotes LLaMA-3-Instruct of size
xB. We report the speedup ratio (vs. autoregressive) and the compression ratio τ .

lel structure of speculative decoding by reducing451

attention overheads, especially when verifying mul-452

tiple guessed tokens in parallel. Although smaller453

gains are also seen for other methods, SPECTRA454

benefits the most, as it presents the longest verifica-455

tion branches and thus stands to profit significantly 456

from more efficient attention implementations. 457

Other Analysis. Detailed throughputs from Ta- 458

ble 1 are provided in Appendix D. Evaluations of 459

7

GSM8K MTBench
Method Speedup τ Speedup τ

REST 1.01 1.47 1.25 1.90

Lookahead 1.66 1.93 1.73 2.05

Lookahead + REST 1.08 1.47 1.27 1.90

SPECTRA’s ablation

CORE Module 2.04 2.50 1.92 2.35
- w/o Forward Dict 1.50 1.68 1.20 1.37
- w/o Backward Dict 1.94 2.21 1.74 2.12
- w/o Sub-Ngram 1.95 2.34 1.75 2.18

RETRIEVAL Module 1.18 1.31 1.24 1.50
- w/o PPL refine 1.16 1.29 1.20 1.45

SPECTRA (ours) 2.14 2.64 2.02 2.59

Table 2: Ablation study of SPECTRA’s components
(greedy decoding, LLaMA2-7B-Chat).

0

1

2

Sp
ee

du
p

1.00x

1.68x 1.55x
1.03x

2.08x

1.07x

1.86x 1.70x

1.09x

2.32x
GSM8K

W/o flash
With flash

Autoreg. Lookahead ANPD REST Spectra
0

1

2

Sp
ee

du
p

1.00x

1.75x
1.31x 1.24x

2.01x

1.10x

1.96x
1.42x 1.38x

2.25x

MTBench
W/o flash
With flash

Figure 4: Effect of FlashAttention on speculative de-
coding speed: Measured speedups on GSM8K and
MTBench (LLama2-7B-Chat, greedy decoding). “No
Flash” uses standard attention; “With Flash” uses
FlashAttention for faster parallel verification.

SPECTRA on different GPU types and quantiza-460

tion settings are described in Appendix C, while its461

performance in distributed settings with multiple462

GPUs is discussed in Appendix E.463

6 Related Works464

Large language models (LLMs) are increasingly465

deployed in a range of applications, motivating on-466

going research into more efficient inference (Liu467

et al., 2025). Common strategies include quan-468

tizing model weights into lower-precision formats469

(Liu et al., 2024b; Lin et al., 2024; Zhao et al., 2024;470

Park et al., 2024), pruning redundant parameters471

(Ma et al., 2023; Xia et al., 2023; Sun et al., 2023a;472

Le et al., 2025), and employing knowledge distilla-473

tion (Gu et al., 2024; Friha et al., 2024; Zhang et al.,474

2024b). These techniques help reduce the compu-475

tational load per forward pass, thereby lowering 476

generation latency. However, they often introduce 477

some degradation in model performance, forcing 478

practitioners to balance quality with efficiency. 479

A growing line of work explores speculative de- 480

coding as a strategy for accelerating generation 481

while maintaining the output distribution (Chen 482

et al., 2023; Leviathan et al., 2023). Some spec- 483

ulative decoding approaches train a smaller LLM 484

(draft model) (Chen et al., 2023; Leviathan et al., 485

2023; Miao et al., 2024; Sun et al., 2023b; Zhou 486

et al., 2024; Cai et al., 2024), or train the original 487

LLM itself in a special manner (self-speculative) 488

(Elhoushi et al., 2024; Liu et al., 2024a; Yang et al., 489

2024; Zhang et al., 2024a; Li et al., 2024b) to guess 490

several subsequent tokens and then verify them par- 491

allelly using the original LLM. As these approaches 492

require training, they pose limitations, such as re- 493

quiring heavy computational resources and losing 494

the original model capabilities. 495

To avoid additional training, alternative specula- 496

tive decoding methods leverage external resources 497

or structural properties of language generation. 498

Retrieval-based methods sidestep draft model train- 499

ing by using a datastore indexed with observed 500

prefixes to retrieve guess sequences (Yang et al., 501

2023; He et al., 2024; Li et al., 2024a). Other 502

approaches, such as Jacobi-like parallel decoding 503

(Santilli et al., 2023) and lookahead decoding (Fu 504

et al., 2024), mitigate left-to-right dependencies by 505

generating and validating multiple candidate tokens 506

in parallel. These training-free techniques achieve 507

comparable speedups to learned methods without 508

requiring model optimization, making them ideal 509

for scenarios with computational constraints. 510

7 Conclusions 511

In this work, we have introduced SPECTRA, a new, 512

training-free framework for accelerating large lan- 513

guage model inference by harnessing both internal 514

and external speculation. By integrating our plug- 515

and-play SPECTRA-CORE module—which lever- 516

ages multi-level N-gram storage and bidirectional 517

search—with the refined SPECTRA-RETRIEVAL 518

module that selects high-quality external cues via 519

perplexity-based filtering, our approach achieves 520

substantial speedups (up to 4.08×) across diverse 521

tasks and model architectures while preserving the 522

original model’s output quality. By offering a loss- 523

less speedup, SPECTRA provides a practical, high- 524

impact solution for accelerating inference in LLMs. 525

8

8 Limitations526

(1) Cost of Building External Datastores.527

While SPECTRA-CORE—our internal-knowledge528

module—relies solely on sequences observed dur-529

ing generation and thus requires no extra external530

data, SPECTRA-RETRIEVAL depends on construct-531

ing and indexing a sizeable external datastore from532

potentially large corpora. This process can be time-533

consuming and memory-intensive, particularly in534

domains where data updates frequently or storage535

is constrained. Although this additional investment536

can yield substantial speedups by boosting token537

acceptance rates, it may not be universally feasible538

or cost-effective.539

(2) Limited Evaluation Scope. Our experiments540

center primarily on English-language benchmarks541

in conversational and coding tasks using LLaMA-542

based models. Although SPECTRA can, in princi-543

ple, be applied to other models or languages, addi-544

tional factors such as domain-specific tokenization545

or specialized textual structures may affect the ac-546

ceptance rate and overall speedup. Future work is547

needed to assess the generality of SPECTRA across548

diverse linguistic settings (e.g., low-resource lan-549

guages or specialized technical documents) and for550

a wider range of model families (beyond LLaMA-551

based architectures) to confirm and refine its appli-552

cability.553

References554

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten555
Bosma, Henryk Michalewski, David Dohan, Ellen556
Jiang, Carrie Cai, Michael Terry, Quoc Le, and others.557
2021. Program synthesis with large language models.558
arXiv preprint arXiv:2108.07732.559

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,560
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei561
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,562
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,563
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,564
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong565
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-566
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,567
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,568
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-569
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang570
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang571
Zhu. 2023. Qwen Technical Report.572

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu573
Peng, Jason D. Lee, Deming Chen, and Tri Dao.574
2024. MEDUSA: Simple LLM inference acceler-575
ation framework with multiple decoding heads. In576
Proceedings of the 41st International Conference on577

Machine Learning, ICML’24. JMLR.org. Place: Vi- 578
enna, Austria. 579

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 580
Jean-Baptiste Lespiau, Laurent Sifre, and John 581
Jumper. 2023. Accelerating Large Language Model 582
Decoding with Speculative Sampling. 583

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 584
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 585
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 586
Brockman, and others. 2021. Evaluating large 587
language models trained on code. arXiv preprint 588
arXiv:2107.03374. 589

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 590
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 591
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 592
Nakano, and others. 2021. Training verifiers 593
to solve math word problems. arXiv preprint 594
arXiv:2110.14168. 595

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, 596
Shengding Hu, Zhiyuan Liu, Maosong Sun, and 597
Bowen Zhou. 2023. Enhancing Chat Language Mod- 598
els by Scaling High-quality Instructional Conversa- 599
tions. In Proceedings of the 2023 Conference on 600
Empirical Methods in Natural Language Processing, 601
pages 3029–3051, Singapore. Association for Com- 602
putational Linguistics. 603

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 604
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 605
Sha, Xin Peng, and Yiling Lou. 2023. Classe- 606
val: A manually-crafted benchmark for evaluating 607
llms on class-level code generation. arXiv preprint 608
arXiv:2308.01861. 609

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 610
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 611
Akhil Mathur, Alan Schelten, Amy Yang, Angela 612
Fan, et al. 2024. The llama 3 herd of models. arXiv 613
preprint arXiv:2407.21783. 614

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 615
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 616
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 617
Roman, Ahmed Aly, Beidi Chen, and Carole-Jean 618
Wu. 2024. LayerSkip: Enabling Early Exit Infer- 619
ence and Self-Speculative Decoding. In Proceedings 620
of the 62nd Annual Meeting of the Association for 621
Computational Linguistics (Volume 1: Long Papers), 622
pages 12622–12642, Bangkok, Thailand. Association 623
for Computational Linguistics. 624

Othmane Friha, Mohamed Amine Ferrag, Burak 625
Kantarci, Burak Cakmak, Arda Ozgun, and Nassira 626
Ghoualmi-Zine. 2024. Llm-based edge intelligence: 627
A comprehensive survey on architectures, applica- 628
tions, security and trustworthiness. IEEE Open Jour- 629
nal of the Communications Society. 630

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 631
2024. Break the sequential dependency of LLM 632
inference using LOOKAHEAD DECODING. In 633
Proceedings of the 41st International Conference on 634

9

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681

Machine Learning, ICML’24. JMLR.org. Place: Vi-635
enna, Austria.636

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.637
Minillm: Knowledge distillation of large language638
models. In The Twelfth International Conference on639
Learning Representations.640

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and641
Di He. 2024. REST: Retrieval-Based Speculative642
Decoding. In Proceedings of the 2024 Conference of643
the North American Chapter of the Association for644
Computational Linguistics: Human Language Tech-645
nologies (Volume 1: Long Papers), pages 1582–1595,646
Mexico City, Mexico. Association for Computational647
Linguistics.648

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and649
Yejin Choi. 2020. The Curious Case of Neural Text650
Degeneration. In International Conference on Learn-651
ing Representations.652

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-653
sch, Chris Bamford, Devendra Singh Chaplot, Diego654
de las Casas, Florian Bressand, Gianna Lengyel, Guil-655
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,656
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,657
Thibaut Lavril, Thomas Wang, Timothée Lacroix,658
and William El Sayed. 2023. Mistral 7B.659

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI,660
Chenghao Mou, Yacine Jernite, Margaret Mitchell,661
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,662
Dzmitry Bahdanau, Leandro Von Werra, and Harm de663
Vries. 2023. The Stack: 3 TB of permissively li-664
censed source code. Transactions on Machine Learn-665
ing Research.666

Wouter Kool, Herke van Hoof, and Max Welling. 2020.667
Ancestral Gumbel-Top-k Sampling for Sampling668
Without Replacement. Journal of Machine Learning669
Research, 21(47):1–36.670

Khang Nguyen Le, Ryo Sato, Dai Nakashima, Takeshi671
Suzuki, and Minh Le Nguyen. 2025. Optiprune: Ef-672
fective pruning approach for every target sparsity. In673
Proceedings of the 31st International Conference on674
Computational Linguistics, pages 3600–3612.675

Yaniv Leviathan, Matan Kalman, and Yossi Matias.676
2023. Fast inference from transformers via spec-677
ulative decoding. In Proceedings of the 40th Interna-678
tional Conference on Machine Learning, ICML’23.679
JMLR.org. Place: Honolulu, Hawaii, USA.680

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen,681
Jimmy Lin, Wen-tau Yih, and Xi Victoria Lin. 2024a.682
Nearest Neighbor Speculative Decoding for LLM683
Generation and Attribution. In The Thirty-eighth An-684
nual Conference on Neural Information Processing685
Systems.686

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang687
Zhang. 2024b. EAGLE-2: Faster Inference of Lan-688
guage Models with Dynamic Draft Trees. In Proceed-689
ings of the 2024 Conference on Empirical Methods690

in Natural Language Processing, pages 7421–7432, 691
Miami, Florida, USA. Association for Computational 692
Linguistics. 693

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 694
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 695
Xingyu Dang, Chuang Gan, and Song Han. 2024. 696
Awq: Activation-aware weight quantization for on- 697
device llm compression and acceleration. Proceed- 698
ings of Machine Learning and Systems, 6:87–100. 699

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng 700
Ni, Duyu Tang, Kai Han, and Yunhe Wang. 2024a. 701
Kangaroo: Lossless Self-Speculative Decoding for 702
Accelerating LLMs via Double Early Exiting. In The 703
Thirty-eighth Annual Conference on Neural Informa- 704
tion Processing Systems. 705

Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan 706
Liu, Jiaming Tian, Yutong Zhang, Jiaqi Wang, Xi- 707
aohui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, 708
Zihao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang, 709
Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, 710
and Bao Ge. 2025. Understanding llms: A compre- 711
hensive overview from training to inference. Neuro- 712
computing, 620:129190. 713

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie 714
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, 715
Raghuraman Krishnamoorthi, and Vikas Chandra. 716
2024b. LLM-QAT: Data-free quantization aware 717
training for large language models. In Findings of 718
the Association for Computational Linguistics: ACL 719
2024, pages 467–484, Bangkok, Thailand. Associa- 720
tion for Computational Linguistics. 721

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 722
Llm-pruner: On the structural pruning of large lan- 723
guage models. Advances in neural information pro- 724
cessing systems, 36:21702–21720. 725

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 726
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee 727
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan 728
Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna Ab- 729
hyankar, and Zhihao Jia. 2024. SpecInfer: Accelerat- 730
ing Large Language Model Serving with Tree-based 731
Speculative Inference and Verification. In Proceed- 732
ings of the 29th ACM International Conference on Ar- 733
chitectural Support for Programming Languages and 734
Operating Systems, Volume 3, ASPLOS ’24, pages 735
932–949, New York, NY, USA. Association for Com- 736
puting Machinery. Event-place: La Jolla, CA, USA. 737

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, 738
Çağlar Gu̇lçehre, and Bing Xiang. 2016. Abstrac- 739
tive text summarization using sequence-to-sequence 740
RNNs and beyond. In Proceedings of the 20th 741
SIGNLL Conference on Computational Natural Lan- 742
guage Learning, pages 280–290, Berlin, Germany. 743
Association for Computational Linguistics. 744

Shashi Narayan, Shay B Cohen, and Mirella Lap- 745
ata. 2018. Don’t give me the details, just the 746

10

https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
http://jmlr.org/papers/v21/19-985.html
http://jmlr.org/papers/v21/19-985.html
http://jmlr.org/papers/v21/19-985.html
https://openreview.net/forum?id=Ni9kebsSTt
https://openreview.net/forum?id=Ni9kebsSTt
https://openreview.net/forum?id=Ni9kebsSTt
https://doi.org/10.18653/v1/2024.emnlp-main.422
https://doi.org/10.18653/v1/2024.emnlp-main.422
https://doi.org/10.18653/v1/2024.emnlp-main.422
https://openreview.net/forum?id=lT3oc04mDp
https://openreview.net/forum?id=lT3oc04mDp
https://openreview.net/forum?id=lT3oc04mDp
https://doi.org/10.1016/j.neucom.2024.129190
https://doi.org/10.1016/j.neucom.2024.129190
https://doi.org/10.1016/j.neucom.2024.129190
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028

summary! topic-aware convolutional neural net-747
works for extreme summarization. arXiv preprint748
arXiv:1808.08745.749

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,750
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-751
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-752
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,753
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-754
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-755
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,756
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,757
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-758
man, Tim Brooks, Miles Brundage, Kevin Button,759
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany760
Carey, Chelsea Carlson, Rory Carmichael, Brooke761
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully762
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben763
Chess, Chester Cho, Casey Chu, Hyung Won Chung,764
Dave Cummings, Jeremiah Currier, Yunxing Dai,765
Cory Decareaux, Thomas Degry, Noah Deutsch,766
Damien Deville, Arka Dhar, David Dohan, Steve767
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,768
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,769
Simón Posada Fishman, Juston Forte, Isabella Ful-770
ford, Leo Gao, Elie Georges, Christian Gibson, Vik771
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-772
Lopes, Jonathan Gordon, Morgan Grafstein, Scott773
Gray, Ryan Greene, Joshua Gross, Shixiang Shane774
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,775
Yuchen He, Mike Heaton, Johannes Heidecke, Chris776
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,777
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin778
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,779
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun780
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-781
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-782
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,783
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,784
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-785
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,786
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-787
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal788
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan789
Leike, Jade Leung, Daniel Levy, Chak Ming Li,790
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz791
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,792
Anna Makanju, Kim Malfacini, Sam Manning, Todor793
Markov, Yaniv Markovski, Bianca Martin, Katie794
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer795
McKinney, Christine McLeavey, Paul McMillan,796
Jake McNeil, David Medina, Aalok Mehta, Jacob797
Menick, Luke Metz, Andrey Mishchenko, Pamela798
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel799
Mossing, Tong Mu, Mira Murati, Oleg Murk, David800
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,801
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,802
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex803
Paino, Joe Palermo, Ashley Pantuliano, Giambat-804
tista Parascandolo, Joel Parish, Emy Parparita, Alex805
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-806
man, Filipe de Avila Belbute Peres, Michael Petrov,807
Henrique Ponde de Oliveira Pinto, Michael, Poko-808
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-809

ell, Alethea Power, Boris Power, Elizabeth Proehl, 810
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 811
Cameron Raymond, Francis Real, Kendra Rimbach, 812
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 813
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 814
Girish Sastry, Heather Schmidt, David Schnurr, John 815
Schulman, Daniel Selsam, Kyla Sheppard, Toki 816
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 817
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 818
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 819
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 820
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 821
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, 822
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, 823
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe- 824
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 825
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, 826
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, 827
C. J. Weinmann, Akila Welihinda, Peter Welin- 828
der, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave 829
Willner, Clemens Winter, Samuel Wolrich, Hannah 830
Wong, Lauren Workman, Sherwin Wu, Jeff Wu, 831
Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin 832
Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, 833
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian- 834
hao Zheng, Juntang Zhuang, William Zhuk, and Bar- 835
ret Zoph. 2024. GPT-4 Technical Report. 836

Jie Ou, Yueming Chen, and Prof. Tian. 2024. Lossless 837
Acceleration of Large Language Model via Adap- 838
tive N-gram Parallel Decoding. In Proceedings of 839
the 2024 Conference of the North American Chap- 840
ter of the Association for Computational Linguistics: 841
Human Language Technologies (Volume 6: Industry 842
Track), pages 10–22, Mexico City, Mexico. Associa- 843
tion for Computational Linguistics. 844

Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun 845
Sim, and Jae W. Lee. 2024. Any-precision llm: Low- 846
cost deployment of multiple, different-sized llms. In 847
Proceedings of the 41st International Conference on 848
Machine Learning. 849

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 850
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 851
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 852
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 853
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 854
Grattafiori, Wenhan Xiong, Alexandre Défossez, 855
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 856
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 857
Synnaeve. 2024. Code Llama: Open Foundation 858
Models for Code. _eprint: 2308.12950. 859

Andrea Santilli, Silvio Severino, Emilian Postolache, 860
Valentino Maiorca, Michele Mancusi, Riccardo 861
Marin, and Emanuele Rodola. 2023. Accelerating 862
transformer inference for translation via parallel de- 863
coding. In Proceedings of the 61st Annual Meeting of 864
the Association for Computational Linguistics (Vol- 865
ume 1: Long Papers), pages 12336–12355, Toronto, 866
Canada. Association for Computational Linguistics. 867

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 868

11

https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.naacl-industry.2
https://doi.org/10.18653/v1/2024.naacl-industry.2
https://doi.org/10.18653/v1/2024.naacl-industry.2
https://doi.org/10.18653/v1/2024.naacl-industry.2
https://doi.org/10.18653/v1/2024.naacl-industry.2
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689
https://doi.org/10.18653/v1/2023.acl-long.689

2023a. A simple and effective pruning approach for869
large language models. ArXiv, abs/2306.11695.870

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-871
mad Beirami, Himanshu Jain, and Felix Yu. 2023b.872
SpecTr: fast speculative decoding via optimal trans-873
port. In Proceedings of the 37th International Con-874
ference on Neural Information Processing Systems,875
NIPS ’23, Red Hook, NY, USA. Curran Associates876
Inc. Event-place: New Orleans, LA, USA.877

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-878
bert, Amjad Almahairi, Yasmine Babaei, Nikolay879
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti880
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton881
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,882
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,883
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-884
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan885
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,886
Isabel Kloumann, Artem Korenev, Punit Singh Koura,887
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-888
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-889
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-890
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-891
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,892
Ruan Silva, Eric Michael Smith, Ranjan Subrama-893
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-894
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,895
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,896
Melanie Kambadur, Sharan Narang, Aurelien Ro-897
driguez, Robert Stojnic, Sergey Edunov, and Thomas898
Scialom. 2023. Llama 2: Open Foundation and Fine-899
Tuned Chat Models.900

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi901
Chen. 2023. Sheared llama: Accelerating language902
model pre-training via structured pruning. ArXiv,903
abs/2310.06694.904

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin905
Jiang, Linjun Yang, Rangan Majumder, and Furu906
Wei. 2023. Inference with Reference: Lossless907
Acceleration of Large Language Models. _eprint:908
2304.04487.909

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris910
Papailiopoulos, and Kangwook Lee. 2024. Predictive911
Pipelined Decoding: A Compute-Latency Trade-off912
for Exact LLM Decoding. Transactions on Machine913
Learning Research.914

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,915
Gang Chen, and Sharad Mehrotra. 2024a. Draft&916
Verify: Lossless Large Language Model Acceleration917
via Self-Speculative Decoding. In Proceedings of the918
62nd Annual Meeting of the Association for Compu-919
tational Linguistics (Volume 1: Long Papers), pages920
11263–11282, Bangkok, Thailand. Association for921
Computational Linguistics.922

Songming Zhang, Xue Zhang, Zengkui Sun, Yufeng923
Chen, and Jinan Xu. 2024b. Dual-space knowledge924
distillation for large language models. In Proceed-925
ings of the 2024 Conference on Empirical Methods in926

Natural Language Processing, pages 18164–18181, 927
Miami, Florida, USA. Association for Computational 928
Linguistics. 929

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn 930
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, 931
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low- 932
bit quantization for efficient and accurate llm serv- 933
ing. Proceedings of Machine Learning and Systems, 934
6:196–209. 935

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 936
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 937
Zhuohan Li, Dacheng Li, Eric Xing, and others. 2023. 938
Judging llm-as-a-judge with mt-bench and chatbot 939
arena. Advances in Neural Information Processing 940
Systems, 36:46595–46623. 941

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, 942
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv 943
Kumar, Jean-François Kagy, and Rishabh Agarwal. 944
2024. DistillSpec: Improving Speculative Decoding 945
via Knowledge Distillation. In The Twelfth Interna- 946
tional Conference on Learning Representations. 947

A More on Speculative Decoding 948

Autoregressive decoding (Touvron et al., 2023; Bai 949

et al., 2023; Jiang et al., 2023; OpenAI et al., 2024), 950

suffers from inefficiency because it generates text 951

one token at a time (Figure 5, Left). Specula- 952

tive decoding (Chen et al., 2023; Leviathan et al., 953

2023) follows a guess-and-verify paradigm (Figure 954

5, Right). In speculative decoding, a smaller LLM 955

(draft model) (Chen et al., 2023; Leviathan et al., 956

2023; Miao et al., 2024; Sun et al., 2023b; Zhou 957

et al., 2024; Cai et al., 2024) or the original LLM 958

trained in a specialized manner (self-speculative 959

decoding) (Elhoushi et al., 2024; Liu et al., 2024a; 960

Yang et al., 2024; Zhang et al., 2024a; Li et al., 961

2024b) predicts multiple tokens in advance. The 962

original LLM then verifies these predictions in par- 963

allel, improving efficiency. 964

A

B

B

C

C

D

D

Autoregressive Decoding

...

Speculate
(make guesses)

Speculative Decoding

A

B

B

C

C

D

T

Target LLM

AAccept Reject

Figure 5: Examples of Autoregressive decoding (Left)
and Speculative Decoding (Right). While autoregres-
sive decoding generates one token per forward step,
speculative decoding generates three tokens with one
forward step.

12

https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:263830786
https://api.semanticscholar.org/CorpusID:263830786
https://api.semanticscholar.org/CorpusID:263830786
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.acl-long.607
https://doi.org/10.18653/v1/2024.emnlp-main.1010
https://doi.org/10.18653/v1/2024.emnlp-main.1010
https://doi.org/10.18653/v1/2024.emnlp-main.1010
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

LLMs process discrete integer sequences as in-965

puts, where each integer represents a token. We de-966

fine the input sequence as x = (x1, x2, . . . , xs) ∈967

Ns of length s, and denote a slice of length m at968

step t as x1:m = (x1, x2, . . . , xm). The output of969

an LLM represents the probability distribution over970

the next token. The probability of generating the971

s-th token, conditioned on all preceding tokens, is972

given by PM (xs | x1:s−1). The next token xs is973

then sampled from this distribution using various974

methods (e.g., greedy, top-k, and top-p sampling;975

see (Kool et al., 2020; Holtzman et al., 2020)). In976

the case of greedy sampling, the next token is se-977

lected as xs = argmaxPM (xs | x1:s−1)978

Let x be the prompt tokens provided by the user.979

The LLM generates an output sequence of length980

m, with each generated token yi computed autore-981

gressively. Assuming greedy sampling, the decod-982

ing process follows:983
y1 = argmaxPM (y1 | x)
y2 = argmaxPM (y2 | y1,x)
...
ym = argmaxPM (ym | y1:m−1,x).

(1)984

A.1 Speculative Decoding985

Speculative decoding follows a Guess-And-Verify986

approach, where multiple candidate future to-987

kens are speculated and subsequently verified988

in a single decoding step. With tree attention989

(Miao et al., 2024), multiple drafts can be ver-990

ified simultaneously. Let G denote the number991

of guesses, and define the set of guesses as Ỹ =992

{ỹ(1), ỹ(2), . . . , ỹ(G)}, where each guess sequence993

has length K. The j-th token of the i-th guess is994

denoted as ỹ(i)j .995

In the case of speculative decoding with greedy996

sampling, given the prompt x, a drafting method997

is used to generate the draft sequences Ỹ . Using998

these drafts, the LLM then computes the true tokens999

(y′1, y
′
2, . . . , y

′
K) in parallel. For instance, for the1000

guess sequence ỹ(1), the true tokens are determined1001

as:1002
y′1 = argmaxPM (y1 | x)
y′2 = argmaxPM (y2 | ỹ(1)1 ,x)
...

y′K = argmaxPM (yK | ỹ(1)1:K−1,x).

(2)1003

These generated tokens are then verified. Let h1004

be the highest number of correct guessed tokens1005

across all guesses. Consequently, h+ 1 tokens are 1006

generated in one forward step. Algorithm 2 out- 1007

lines speculative decoding with greedy sampling. 1008

B Implementation Details 1009

B.1 Frameworks and Libraries 1010

We implement SPECTRA in Python using PyTorch 1011

2.1.0 and the Hugging Face transformers library 1012

(version 4.36.2). 1013

B.2 Models and Checkpoints 1014

We run our experiments primarily with: 1015

• LLaMA-2-Chat (Touvron et al., 2023) in 1016

sizes 7B, 13B, 70B. 1017

• CodeLlama (Rozière et al., 2024) in sizes 7B 1018

and 13B. 1019

• LLaMA-3-Instruct (Dubey et al., 2024) in 1020

sizes 8B and 70B. 1021

All checkpoints are sourced from official reposito- 1022

ries or Hugging Face without fine-tuning or modifi- 1023

cation. For the 7B and 13B models, we use 16-bit 1024

(FP16) precision with a pre-allocated key-value 1025

cache. For large-scale models such as LLaMA- 1026

2-70B and LLaMA-3-70B, we quantize them to 1027

8-bit for the primary results presented in Table 1. 1028

Additionally, we evaluate the 70B models in FP16 1029

precision, as reported in Appendix E. We also ver- 1030

ify numerical consistency by comparing the 32-bit 1031

and 16-bit outputs of LLaMA-2-7B, detailed in 1032

Appendix F. 1033

B.3 Hardware 1034

Most experiments are conducted on a single 1035

NVIDIA A100 GPU with 80GB of memory. To 1036

analyze hardware-specific scaling (Appendix C), 1037

we also test on other NVIDIA GPUs, including the 1038

RTX 3090, RTX 8000, A40, and A6000. For the 1039

largest models (70B) that exceed single-GPU mem- 1040

ory constraints under FP16 settings, we distribute 1041

computation across multiple GPUs (2x, 4x, or 8x 1042

H100) using Hugging Face’s pipeline parallelism 1043

(Appendix E). 1044

B.4 Hyperparameters 1045

Lookahead, REST, and ANPD. We replicate 1046

each baseline using their publicly available GitHub 1047

code, keeping to the default settings and hyperpa- 1048

rameters outlined in the original papers. 1049

13

Spectra. By default, we use a 5-gram setup for1050

forward/backward dictionaries. A candidate pool1051

of size W = 15 is maintained per key to generate1052

new n-gram records. After each forward pass, can-1053

didate sequences are shifted by one token and then1054

re-populated. We introduce a threshold τ ∈ [0, 1],1055

set to 0.1 by default, to determine when to force the1056

selection of a token not yet present in the forward1057

dictionary. At each speculative decoding step, up to1058

G = 15 guesses are allowed. Internal guesses re-1059

ceive priority, and if the guess limit is not reached,1060

external guesses are added.1061

For external lookups, we implement a Trie struc-1062

ture for rapid prefix queries, following a design1063

similar to REST (He et al., 2024). For conver-1064

sation tasks (e.g., MT-Bench), we gather approxi-1065

mately 100k examples from the UltraChat dataset1066

(Ding et al., 2023), focusing on those with minimal1067

perplexity under the same LLM we aim to accel-1068

erate. For code tasks (e.g., HumanEval, MBPP),1069

we draw from TheStack (Kocetkov et al., 2023)1070

and again refine it to the 100k snippets with the1071

lowest perplexity for memory efficiency. We mea-1072

sure perplexity by running a single forward pass1073

(in streaming mode) over candidate samples and1074

ranking them.1075

All speedup and throughput metrics are com-1076

puted at a batch size of 1. In code generation tasks,1077

the maximum generation length is typically 5121078

tokens, whereas for conversation tasks (MT-Bench,1079

GSM8K), we allow up to 1024 tokens or stop early1080

if the model outputs an end-of-sequence token. All1081

random seeds are set to 0.1082

C Evaluating SPECTRA in Different GPU1083

Types1084

Table 3 reports speedups on GSM8K and MT-1085

Bench across four GPUs with varying memory1086

throughput and compute capabilities. While ab-1087

solute wall-clock times differ across GPUs, the1088

relative accelerations remain consistent. SPECTRA1089

consistently outperforms other baselines, includ-1090

ing Lookahead, achieving higher speedups in all1091

cases. On older GPUs (e.g., RTX 3090 or RTX1092

8000), the gap between Lookahead and SPECTRA1093

narrows slightly due to less efficient parallelism,1094

but SPECTRA maintains its lead. These results1095

demonstrate that SPECTRA is robust to hardware1096

variations and effective across both data-center and1097

consumer-grade GPUs.1098

GPU Method GSM8K MTBench
Speedup τ Speedup τ

A40
Lookahead 1.49 1.93 1.53 2.07
SPECTRA 1.92 2.46 1.84 2.36

A6000
Lookahead 1.48 1.92 1.52 2.06
SPECTRA 1.92 2.46 1.84 2.36

RTX8000
Lookahead 1.33 1.93 1.34 2.08
SPECTRA 1.70 2.46 1.58 2.35

RTX3090
Lookahead 1.32 1.92 1.30 2.06
SPECTRA 1.84 2.46 1.74 2.36

Table 3: Hardware scalability of SPECTRA decoding on
GSM8K and MTBench for various GPU architectures.

D Details Results with Throughputs 1099

We provide a detailed throughput analysis to com- 1100

plement the speedup ratios reported in the main 1101

text. Our goal is to demonstrate how SPECTRA 1102

scales across various model sizes, datasets, and 1103

GPU architectures. We measure throughput using 1104

two key metrics: 1105

• Macro Throughput (Mac-TP). Calculated 1106

as the average of per-generation token- 1107

processing rates—i.e., for each generation 1108

step i, we compute tokeni/timei and then 1109

average over all steps. 1110

• Micro Throughput (Mic-TP). Calculated as 1111

the total number of generated tokens divided 1112

by the total elapsed time 1113

Table 5 focuses on GSM8K and MTBench per- 1114

formance across four different GPU models, while 1115

Table 4 provides more granular results on ad- 1116

ditional datasets and model configurations. In 1117

all cases, SPECTRA consistently achieves higher 1118

throughput than both non-speculative baselines and 1119

other training-free accelerators, as evidenced by im- 1120

provements in both Mic-TP and Mac-TP. Notably, 1121

this performance advantage remains stable even on 1122

older GPUs (e.g., the RTX 3090 and RTX 8000), 1123

demonstrating SPECTRA’s robustness to varying 1124

hardware capabilities. 1125

E Evaluating SPECTRA in Multi-GPU 1126

Environments 1127

A critical consideration for practical deployment is 1128

how SPECTRA scales when models are distributed 1129

across multiple GPUs—a common requirement for 1130

large LLMs exceeding single-device memory ca- 1131

pacity. To evaluate this, we measure SPECTRA’s 1132

14

Classeval GSM8K Humaneval MBPP MTBench
Model Method Mac-TP Mic-TP Mac-TP Mic-TP Mac-TP Mic-TP Mac-TP Mic-TP Mac-TP Mic-TP

Greedy (temperature=0)

CL-13B

Autoregressive 30.85 30.85 32.03 32.03 32.35 32.35 32.07 32.07 30.69 30.63
ANPD 59.77 58.03 89.99 89.18 67.43 64.65 86.76 86.41 80.10 76.68
Lookahead 69.28 68.62 89.73 89.00 74.33 73.23 93.38 92.80 79.38 78.67
REST 39.53 37.73 29.93 29.47 51.15 47.49 27.41 27.39 28.92 27.18
SPECTRA (Ours) 73.47 72.98 93.36 93.23 84.91 84.41 105.44 105.39 81.32 80.68

CL-7B

Autoregressive 41.17 41.17 41.17 41.17 41.41 41.41 41.60 41.60 38.91 38.93
ANPD 94.76 93.02 132.26 131.30 89.26 87.13 131.35 130.99 130.41 126.64
Lookahead 106.51 105.95 123.04 121.90 103.45 103.51 120.75 120.23 125.58 124.77
REST 59.49 56.61 37.61 37.21 70.38 65.22 40.11 40.09 39.64 36.70
SPECTRA (Ours) 111.09 110.68 137.24 136.86 122.54 122.41 148.32 148.07 143.98 144.32

L2-13B

Autoregressive 31.85 31.56 32.40 32.43 32.27 32.27 32.19 32.19 31.93 31.78
ANPD 43.30 44.44 47.54 45.22 43.24 42.28 36.20 35.84 37.44 34.84
Lookahead 57.49 58.94 47.44 47.62 55.76 55.58 44.41 44.15 48.11 46.62
REST 38.81 37.74 30.36 30.22 40.47 39.70 30.70 30.67 36.39 37.02
SPECTRA (Ours) 63.64 64.31 59.21 58.63 63.39 63.18 52.43 52.19 56.04 53.75

L2-70B

Autoregressive 2.60 2.60 2.61 2.61 2.61 2.61 2.63 2.63 2.60 2.60
ANPD 4.72 4.80 4.25 4.10 4.85 4.76 3.07 3.07 3.47 3.30
Lookahead 6.90 7.16 4.87 5.12 6.71 6.73 3.92 3.93 5.05 5.02
SPECTRA (Ours) 8.07 8.35 6.58 6.75 8.41 8.41 4.88 4.88 6.32 6.22

L2-7B

Autoregressive 40.33 40.32 41.01 41.03 41.14 41.13 41.00 41.04 40.48 40.50
ANPD 65.54 68.10 62.40 59.38 63.27 59.98 48.94 47.67 52.47 50.06
Lookahead 88.41 91.05 68.00 68.20 84.69 83.87 59.79 60.76 70.04 69.07
REST 54.74 53.93 41.43 41.38 57.99 56.41 41.28 40.74 50.58 51.79
SPECTRA (Ours) 96.88 98.75 86.51 85.50 98.77 98.38 72.39 73.22 81.93 79.20

L3-70B

Autoregressive 2.58 2.57 2.58 2.58 2.59 2.59 2.59 2.59 2.55 2.55
ANPD 3.97 4.19 3.86 3.72 4.72 4.75 3.77 3.59 3.14 3.03
Lookahead 6.17 6.47 3.99 3.96 6.63 6.75 3.70 3.66 4.49 4.53
SPECTRA (Ours) 6.87 7.18 5.43 5.34 7.33 7.50 5.01 4.88 5.25 5.16

L3-8B

Autoregressive 36.59 36.58 36.74 36.74 36.20 36.21 35.24 35.20 36.55 36.69
ANPD 77.21 78.76 141.89 141.36 66.31 65.57 118.47 112.95 41.77 40.20
Lookahead 94.92 97.09 136.32 135.92 89.99 90.47 133.67 133.12 56.09 55.49
SPECTRA (Ours) 103.61 105.88 142.89 142.72 92.86 93.16 143.80 142.72 61.69 60.22

Sampling (temperature=1.0)

CL-13B

Autoregressive 30.90 30.64 31.38 31.37 31.24 31.39 31.46 31.45 30.71 30.67
ANPD 35.48 34.86 33.54 32.34 32.64 34.36 31.57 30.95 70.92 65.68
Lookahead 42.54 40.74 33.79 32.49 40.25 42.17 32.02 31.19 71.50 68.46
REST 35.15 33.22 25.67 25.24 39.58 38.49 26.43 25.89 28.41 26.69
SPECTRA (Ours) 51.86 50.04 37.57 35.67 51.60 52.64 36.29 35.27 72.90 69.98

CL-7B

Autoregressive 39.60 39.58 40.85 40.87 40.05 40.10 40.81 40.81 40.49 40.50
ANPD 50.89 51.76 47.44 46.68 44.14 46.34 45.86 45.81 112.29 103.57
Lookahead 60.87 60.29 48.54 47.64 57.12 61.14 48.64 48.27 110.07 105.00
REST 48.64 46.41 35.98 35.46 53.35 52.26 37.04 36.57 39.36 36.51
SPECTRA (Ours) 71.70 71.78 55.24 52.81 67.27 69.20 54.48 52.91 112.43 108.49

L2-13B

Autoregressive 31.23 31.17 31.44 31.47 31.41 31.42 32.02 32.06 31.67 31.59
ANPD 37.53 37.94 39.11 37.99 36.79 36.75 32.97 32.71 36.91 34.34
Lookahead 47.59 47.35 41.60 41.76 46.33 46.51 37.82 37.82 47.35 45.48
REST 36.78 36.17 29.33 29.25 37.46 36.71 29.38 29.28 35.50 36.21
SPECTRA (Ours) 53.13 52.28 48.60 48.11 52.93 53.11 42.95 43.03 54.98 52.42

L2-7B

Autoregressive 39.89 39.88 40.58 40.59 40.09 40.10 40.59 40.66 40.65 40.70
ANPD 52.14 52.78 54.23 52.90 51.40 50.97 44.73 43.77 50.92 48.24
Lookahead 70.82 71.17 61.15 61.34 68.78 69.01 50.84 51.83 68.27 66.77
REST 50.35 49.99 40.19 40.09 50.86 50.06 38.94 38.18 49.12 50.54
SPECTRA (Ours) 78.46 78.74 72.13 71.68 81.71 81.76 59.77 60.09 80.21 77.00

L3-8B

Autoregressive 35.75 35.76 35.16 35.17 36.01 36.02 36.05 36.07 35.39 35.48
ANPD 44.71 43.72 69.12 66.73 51.48 51.57 68.03 64.54 40.84 39.23
Lookahead 53.05 50.57 72.68 69.11 64.59 63.79 71.88 68.90 55.46 53.74
SPECTRA (Ours) 69.50 68.92 79.88 76.53 69.09 68.62 78.99 76.69 60.33 57.69

Table 4: Micro throughput (Mic-TP) and Macro throughput (Mac-TP) across multiple tasks and models.

15

GPU Method GSM8K MTBench
Mac-TP Mic-TP Mac-TP Mic-TP

A40
Autoregressive 32.66 32.66 32.14 31.66
Lookahead 48.59 48.73 49.13 47.96
SPECTRA 62.56 61.52 59.00 56.80

A6000
Autoregressive 39.15 39.17 38.78 38.24
Lookahead 58.13 58.30 58.84 57.40
SPECTRA 75.20 74.16 71.3 69.28

RTX8000
Autoregressive 34.03 34.27 34.21 34.02
Lookahead 45.25 45.42 45.73 44.16
SPECTRA 57.95 57.09 54.16 52.32

RTX3090
Autoregressive 40.67 40.76 41.17 41.22
Lookahead 53.69 53.75 53.51 52.09
SPECTRA 74.87 73.88 71.58 69.79

Table 5: Throughput results for different GPU types on GSM8K and MTBench.

performance under three distributed configurations1133

of LLaMA-2-70B: (1) 2xH100 with full precision,1134

(2) 4xH100 with full precision, and (3) 8xH1001135

with full precision. We also include a baseline1136

of 1xH100 with 8-bit quantization for memory-1137

constrained single-GPU inference. Table 6 reports1138

throughput and speedup metrics.1139

SPECTRA achieves consistent speedups of 2.00—1140

2.03× across all multi-GPU configurations while1141

maintaining a stable compression ratio (τ) of 2.52.1142

This demonstrates robust scalability—partitioning1143

model weights introduces minimal overhead, and1144

the speculative verification process remains effi-1145

cient despite inter-GPU communication. Notably,1146

even in the quantized single-GPU setting, SPEC-1147

TRA provides a 2.43× speedup, outperforming1148

standard autoregressive decoding. These results1149

validate SPECTRA’s practicality for large-scale de-1150

ployments where memory constraints necessitate1151

distributed inference.1152

F Verifying Generation Quality with1153

SPECTRA Decoding1154

Greedy Decoding Performance. To assess the1155

quality of greedy decoding, we compare the in-1156

ference results of the LLaMA-2-7B Chat model1157

using SPECTRA Decoding against Hugging Face’s1158

standard greedy search. Our baseline consists of1159

single-precision (FP32) inference on 160 conver-1160

sational turns from the MT-Bench dataset. Under1161

FP32, SPECTRA Decoding produces identical out-1162

puts to the baseline.1163

However, when transitioning to half-precision1164

(FP16), even Hugging Face’s native greedy search 1165

generates 25 discrepancies (out of 160) compared 1166

to the FP32 baseline. SPECTRA Decoding exhibits 1167

a similar discrepancy rate (26), confirming that it 1168

maintains the output distribution within the numer- 1169

ical error margins typically observed in standard 1170

half-precision inference libraries. 1171

Sampling Decoding Performance. We also as- 1172

sess generation quality under a stochastic sam- 1173

pling setting (temperature = 1.0). As detailed in 1174

Table 7, SPECTRA Decoding produces ROUGE- 1175

1, ROUGE-2, and ROUGE-L scores on both the 1176

CNN/DailyMail (Nallapati et al., 2016) and XSum 1177

(Narayan et al., 2018) summarization datasets 1178

that are nearly identical to those of standard 1179

autoregressive sampling. At the same time, 1180

SPECTRA achieves notable speedups (1.60× on 1181

CNN/DailyMail and 1.69× on XSum) with com- 1182

pression ratios of 2.05 and 2.08, respectively. 1183

These results confirm that SPECTRA Decoding 1184

accelerates inference while preserving generation 1185

quality across diverse tasks. 1186

These findings reaffirm that SPECTRA Decoding, 1187

does not degrade generation quality compared to 1188

conventional greedy or sampling-based methods. 1189

G Token Acceptance Rate Analysis 1190

Figure 6 plots the cumulative number of accepted 1191

tokens versus decoding steps for each dataset 1192

(MT-Bench, HumanEval, MBPP, and GSM8K) us- 1193

ing LLama2-7B-chat with greedy decoding. The 1194

steeper ascent of the SPECTRA curve indicates that 1195

our method requires substantially fewer decoding 1196

16

GPU & Model Setting Method MTBench
Mac-TP Mic-TP Speedup τ

1xH100 - Quantized Int8
Autoregressive 2.60 2.60 1.00 1.00
SPECTRA 6.32 6.22 2.43 2.51

2xH100 - FP16
Autoregressive 14.81 14.70 1.00 1.00
SPECTRA 29.62 28.91 2.00 2.52

4xH100 - FP16
Autoregressive 14.60 14.48 1.00 1.00
SPECTRA 29.67 28.89 2.03 2.52

8xH100 - FP16
Autoregressive 14.39 14.28 1.00 1.00
SPECTRA 29.27 28.55 2.03 2.52

Table 6: Results in multi-GPU Enviroments on GSM8K and MTBench using LLama-2-chat-70B.

Dataset Method ROUGE-1 ROUGE-2 ROUGE-L Speedup τ

CNN
Autoregressive 9.77 0.39 7.20 1.00 1.00
SPECTRA 9.74 0.41 7.18 1.60 2.05

XSUM
Autoregressive 18.12 4.36 12.43 1.00 1.00
SPECTRA 18.13 4.40 12.49 1.69 2.08

Table 7: Evaluation of SPECTRA Decoding on CNN/DailyMail and XSum using a temperature of 1.0. ROUGE
scores, speedups over autoregressive decoding, and compression ratio (τ) are reported for LLaMA-2-7B-Chat.

steps compared to alternatives, for example, almost1197

two times shorter than ANPD. This improvement is1198

attributed to a higher token acceptance rate, which1199

in turn reduces the overall number of decoding iter-1200

ations and enhances the efficiency of the generation1201

process.1202

0 250 500 750
0

10

20

30

40
MT-Bench

0 200 400
0

10

20

30

40

HumanEval

0 50 100 150
0

5

10

15

MBPP

0 100 200
0

10
20
30
40
50
60

GSM8K

#A
cc

ep
te

d
to

ke
ns

 (i
n

th
ou

sa
nd

s)

Lookahead REST ANPD Spectra (Ours)

Figure 6: Total number of accepted tokens across all
samples at each decoding step.

H Algorithms 1203

17

Algorithm 2 Speculative Decoding (Multiple guesses and Greedy Sampling)

Given guess size K, number of guesses G, and target length T .
Given initial prompt sequence x.
while n < T do

Obtain multiple drafts Ỹ = {ỹ(1), ỹ(2), . . . , ỹ(G)}.
In parallel, compute K + 1 verification tokens y′:
for i = 1 : K do

y
′(g)
i = argmaxPM (yi | ỹ(g)i−1,x), ∀g ∈ {1, . . . , G}

end for
Identify the sequence ỹ(g

∗) with the highest token matches and the corresponding y′(g).
for t = 1 : K do

if y′(g)t = ỹ
(g∗)
t then

Set yn+t ← ỹ
(g∗)
t and n← n+ 1.

else
yn+t ← y

′(g)
t and exit for loop.

end if
end for

end while

18

Algorithm 3 Greedy Verification with SPECTRA DECODING

Require: sequence x, model PM , guesses G = {gi} with i ∈ [0, G− 1]
Ensure: o {accepted tokens of length 1 to N}

1: function GREEDYVERIFICATION(x, PM ,G)
2: D ← ∅ ▷ Store the distributions
3: V ← G ▷ Store the current guesses
4: for i = 0 to G− 1 do
5: D.append(PM (g′(i), xnext|g(i), x)) ▷ Last token of x and g(i) outputs – total N distributions
6: end for
7: for i = 1 to N − 1 do
8: j ← 1
9: is_accept← 0

10: P ← D[1]i
11: while j ≤ size(V) do
12: sj ← V [j]i
13: if sj = argmaxP then ▷ accepted, update all potential speculations and probabilities
14: o.append(sj)
15: is_accept← 1
16: Vnew, Dnew ← ∅, ∅
17: for k = j to size(V) do
18: if sj = V [k]i then
19: Vnew.append(V [k])
20: Dnew.append(D[k])
21: end if
22: end for
23: V,D ← Vnew, Dnew
24: break
25: else ▷ rejected, go to next speculation
26: j ← j + 1
27: end if
28: end while
29: if is_accept then
30: continue
31: else ▷ guarantee one step movement
32: o.append(argmaxP)
33: break
34: end if
35: end for
36: if is_accept then
37: o.append(argmaxD[1]N)
38: end if
39: return o
40: end function

19

Algorithm 4 Sample Verification with SPECTRA DECODING

Require: sequence x, model PM , guesses gi with i ∈ [0, G− 1]
Ensure: o {accepted tokens of length 1 to N}

1: function SAMPLEVERIFICATION(x, PM , g)
2: D ← ∅ ▷ Store the distributions
3: V ← G ▷ Store the current guesses
4: for i = 0 to G− 1 do
5: D.append(PM (g′(i), xnext|g(i), x)) ▷ Last token of x and g(i) outputs – total N distributions
6: end for
7: for i = 1 to N − 1 do
8: j ← 1
9: is_accept← 0

10: Pj ← D[j]i
11: while j ≤ size(V) do
12: sj ← V [j]i
13: sample r ∼ U(0, 1)
14: if r ≤ Pj(sj) then ▷ accepted, update all potential speculations and probabilities
15: o.append(sj)
16: is_accept← 1
17: Vnew, Dnew ← ∅, ∅
18: for k = j to size(V) do
19: if sj = V [k]i then
20: Vnew.append(V [k])
21: Dnew.append(D[k])
22: end if
23: end for
24: V,D ← Vnew, Dnew
25: break
26: else ▷ rejected, go to next speculation
27: Pj(sj)← 0
28: Pj+1 = norm(Pj)
29: j ← j + 1
30: end if
31: end while
32: if is_accept then
33: continue
34: else ▷ guarantee one step movement
35: sample xnext ∼ Pj
36: o.append(xnext)
37: break
38: end if
39: end for
40: if is_accept then
41: o.append(sample xnext ∼ D[1]N)
42: end if
43: return o
44: end function

20

	Introduction
	Preliminaries
	Autoregressive Decoding in LLMs
	Speculative Decoding

	Spectra Decoding
	Spectra-core
	Spectra-retrieval

	Experiments
	Results
	Main Results
	Analysis

	Related Works
	Conclusions
	Limitations
	More on Speculative Decoding
	Speculative Decoding

	Implementation Details
	Frameworks and Libraries
	Models and Checkpoints
	Hardware
	Hyperparameters

	Evaluating Spectra in Different GPU Types
	Details Results with Throughputs
	Evaluating Spectra in Multi-GPU Environments
	Verifying Generation Quality with Spectra Decoding
	Token Acceptance Rate Analysis
	Algorithms

