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ABSTRACT

Oversmoothing is a common phenomenon in a wide range of graph neural networks
(GNNs), where node representation becomes homogeneous and thus model per-
formance worsens as the number of layers increases. Various strategies have been
proposed to combat oversmoothing, but they are based on different heuristics and
lack a unified understanding of their inherent mechanisms. In this paper, we revisit
the concept of signed graphs and show that a wide class of anti-oversmoothing
techniques can be viewed as the propagation on corresponding signed graphs with
both positive and negative edges. Leveraging the classic theory of signed graphs,
we characterize the asymptotic behaviors of existing methods and reveal that they
deviate from the ideal state of structural balance that provably prevents oversmooth-
ing and improves node classification performance. Driven by this unified analysis
and theoretical insights, we propose Structural Balanced Propagation (SBP) where
we explicitly enhance the structural balance of the signed graph with the help of
label and feature information. We theoretically and empirically prove that SBP can
improve the structural balance to alleviate oversmoothing under certain conditions.
Experiments on synthetic and real-world datasets demonstrate the effectiveness of
our methods, highlighting the value of our signed graph framework.

1 INTRODUCTION

Graph neural networks (GNNs) are a powerful framework for processing graph-structured data across
a wide range of fields, such as drug discovery, recommender systems and social networks (Gori et al.,
2005; Scarselli et al., 2009; Bruna et al., 2014; Duvenaud et al., 2015; Defferrard et al., 2016; Battaglia
et al., 2016; Li et al., 2016). Most GNN models follow the message-passing paradigm, where node
features are computed by recursively aggregating information from all neighboring nodes along the
unsigned edges (Kipf & Welling, 2017; Wu et al., 2019; Veličković et al., 2018; Xu et al., 2019).
Despite notable advancements, oversmoothing remains a prevalent issue for GNNs characterized by
the convergence of all node features to a constant when stacking a substantial number of layers (Li
et al., 2018; Oono & Suzuki, 2020; Cai & Wang, 2020; Wu et al., 2023a). Several strategies have been
developed to counteract oversmoothing in GNNs, such as normalization layers (Guo et al., 2023; Zhao
& Akoglu, 2019; Ioffe & Szegedy, 2015), random edge dropping (Rong et al., 2019; Do et al., 2020)
and residual connections (Wang et al., 2021; Gasteiger et al., 2018; Xu et al., 2018). However, there
lacks a unified understanding of these different strategies for dissecting their limitations, as it seems
that these method can only mitigate oversmoothing to certain extent, and the model performance still
degrades significantly after a large number of propagation steps (Li et al., 2018; Wu et al., 2023b).

In this paper, we revisit signed graphs (Derr et al., 2018; Shi et al., 2019) where each edge has a
positive or negative sign and propose that edge signs can serve as a remedy to combat the overmooth-
ing issue. Moreover, we collect eight oversmoothing countermeasures in the existing literature. Our
analysis shows that all these methods can be interpreted as injecting negative edges, with different
designs, into the original unsigned graph and conducting message-passing over the resulting signed
graphs, leading to a clear repulsion among neighboring nodes when oversmoothing was supposed to
occur when edges are unsigned.

This observation not only reveals how these methods work to alleviate oversmoothing, but also
inspires us to further make use of the signed graph to theoretically address the oversmoothing issue.
We explore a fundamental signed graph property, known as structural balance (Cartwright & Harary,
1956). In a structurally balanced signed graph, nodes can be grouped into clusters where only positive
edges exist within each cluster, and only negative edges exist between clusters, as illustrated in
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Figure 1: Left: Example of structurally balance graph. (a) is an unsigned graph, (b) is a signed graph,
and (c) is a signed graph with the structural balance property. Right: Adjacency matrix As of a
structural balance graph composed of a positive adjacency matrix A+ and a negative adjacency matrix
A−. α, and β are the weights representing the strengths of attraction and repulsion, respectively.

Figure 1. We demonstrate that message-passing over a structurally balanced signed graph exhibits
controllable asymptotic behavior: nodes within the same cluster converge to a shared value, while
different clusters repel each other to have distinct values (Theorem 4.3). This scenario theoretically
prevents oversmoothing and enhances the node classification accuracy.

Motivated by our structural balance analysis, we propose the theoretically optimized signed propaga-
tion: Structural Balanced Propagation (SBP) to artificially construct a structurally balanced graph
to conduct message-passing. Specifically, we leverage the ground truth in the training set (label) to
assign positive edges among intra-class nodes and negative edges among inter-class nodes without
any additional learnable parameters, which we denote as Label-SBP. We theoretically demonstrate
that Label-SBP induces a structurally balanced signed graph under certain conditions, successfully
repelling nodes from different label classes (Proposition 4.7). Built upon Label-SBP, we further
design a feature-induced variant to accommodate scenarios without sufficient ground truth informa-
tion, dubbed Feature-SBP. Empirically, we conduct extensive experiments on nine synthetic and
real-world benchmark datasets and SBP consistently outperforms existing oversmoothing counter-
measures across all deep depths and datasets. The main contributions of our work are summarized as
follows:

• We provide a signed graph perspective to unify three major types of anti-oversmoothing tech-
niques and show that all of them amount to certain implicit designs of adding negative edges to
the original graph, highlighting the insight provided by our signed graph perspective.

• We introduce the concept of structural balance from the signed graph theory as an ideal state of
graph propagation. By measuring the degree of structural balance, we find that due to the lack of
class-awareness, existing oversmoothing couteracting techniques fail at improving the structural
balance of the graph, which explains their inefficacy under more propagation steps.

• Driven by the structural balance theory, we propose two parameter-free strategies—Label-
SBP and Feature-SBP by explicitly designing the addition of negative edges to improve the
structural balance of the graph and thus prevent undesirable oversmoothing across different
classes. Experiments on nine synthetic and real-world graphs show that our method attains
superior performance at counteracting oversmoothing in both homophilic and heterophilic
settings.

2 RELATED WORK

Theory of Oversmoothing The concept of oversmoothing was initially introduced by Li et al.
(2018): when the number of layers becomes large, the representations of different nodes tend to
converge to a common value after excessively exchanging messages with neighboring nodes. Oono
& Suzuki (2020); Wu et al. (2023a) rigorously show that the convergence of node representations to a
common value happens at an exponential rate as the number of layers increases to infinity, for GCNs
and attention-based GNNs, respectively. Wu et al. (2023b) theoretically proves that oversmoothing
can start to happen even in shallow depth under certain random graph settings. Zhou et al. (2021)
proposed an appropriate residual connection according to the lower limit of Dirichlet energy and
connected to previous methods qualitatively.

Signed Graph-Based Methods In the heterophilic graphs, various methods are inspired by the
signed graph propagation (Tsitsulin et al., 2023; Song et al., 2023; Yan et al., 2022; Wang et al., 2022;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: The overall correspondences between positive and negative graphs in signed graph propaga-
tion of various anti-oversmoothing methods.

Method Characteristic Positive A+ Negative A−

GCN K-layer graph convolutions Â 0

SGC K-layer linear graph convolutions Â 0

BatchNorm Normalized with column means and variance Â 1n1T
n/nÂ

PairNorm Normalized with the overall means and variance Â 1n1T
n/nÂ

ContraNorm Uniformed norm derived from contrastive loss Â (XXT )Â

DropEdge Randomized graph Â Am

Residual Last layer connection Â I

APPNP Personalized pagerank Σk+1
i=0 α

iÂi αΣk
j=0α

jÂj

JKNET Jumping to the last layer Σk
i=0α

iÂi + Âk+1 Σk
j=0α

iÂk

DAGNN Adaptively incorporating different layer Σk
i=0α

iÂi + Âk+1 Σk
j=0α

iÂk

Feature-SBP (ours) Label-induced negative graph Â −XXT

Label-SBP (ours) Feature-induced negative graph Â Al

Chien et al., 2020). In particular, Yan et al. (2022); Wang et al. (2022) utilize the idea that the negative
edges denote connections between nodes that are "not similar to each other" to create repulsion
between them during message-passing. Chien et al. (2020) extend the coefficients of the output
of different layers in the final aggregation to be learnable and find that the odd layer coefficients
tends to be negative for heterophilic graphs, suggesting that learning naturally finds signed-graph
message-passing. However, Liang et al. (2024b) show that under some specific random graph settings,
the oversmoothing will even happen under signed graph propagation which aligns with the case in
our analysis for Theorem 4.1 when the repulsion among nodes are not sufficient. Nevertheless, we
extend the theory to generic graphs and prove that in the ideal state—structural balance, signed edges
can indeed serve as a remedy to effectively combat oversmoothing.

Structural Balance Structual balance theory has gained significant attention in recent years (Derr
et al., 2018; Yan et al., 2022; Liang et al., 2024a; Wang et al., 2022). Inspired by the structural balance
theory, Derr et al. (2018) characterizes the balanced path intuitively to learn both balanced and
unbalanced representations on each layer. Liang et al. (2024a) predicts the signed adjacency matrix by
an off-the-shelf neural network classifier to generate pseudo labels with the low-rank assumption. Shi
et al. (2019) introduces the definition of the Laplacian for signed graphs and develops a comprehensive
mathematical theory. In this paper, we rigorously show that structural balance is the optimal solution
under the signed graph message-passing and propose practical solutions to oversmoothing based on
the property without any additional learnable parameters.

In addition to the above methods which explicitly make use of the signed graph propagation, in this
paper, we also revisit a wide class of previous anti-oversmoothing methods that do not explicitly
claim to use signed message-passing. We find that all of them can be attributed to some kind of
design of negative edges to the original graph.

3 A SIGNED GRAPH PERSPECTIVE ON EXISTING OVERSMOOTHING
COUNTERMEASURES

In this section, we introduce a signed graph perspective to unify many popular anti-oversmoothing
techniques. Specially, we link eight classic methods to the signed graph propagation and summarize
their positive and negative graphs in Table 1 for clarity.

Notations Consider a graph G = (V,E) with node set V and edge set E. n = |V | is the number
of nodes. The nodes feature matrix is denoted by X = {x1, x2, . . . , xn} ∈ Rn×d, where xi is the
feature for node i and d is the dimension of node features. The set of neighbors of a node i is denoted
by Ni. Let A ∈ Rn×n denote the adjacency matrix where Ai,j = 1 if {i, j} ∈ E, otherwise 0. The
diagonal degree matrix is denoted as D = diag(d1, . . . , dn), where di =

∑
j Ai,j . Then the raw

normalized adjacency matrix is Â = D−1A. 1n is the all-one vector of length n and || · ||F denotes
the Frobenius norm.
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Signed Graphs The signed graph enables A to incorporate both positive and negative values.
In this paper, we define the signed graph adjacency matrix Âs = αÂ+ − βÂ−, where Â+ is
the raw normalized version of the positive adjacency matrix A+ ∈ {0, 1}n×n and Â− is that
of the negative adjacency matrix A− ∈ {0, 1}n×n, α, β > 0 are the weight parameters. For
convenience, following Wu et al. (2019; 2023a), we simplify the k-th (k ∈ [1,K]) layer graph
convolutional operation in a similar way by ignoring the non-linear activation with σ(x) = x and
let W ∗ = W (0)W (1) · · ·W (K−1). The resulting K-layer signed graph propagation (Shi et al., 2019;
Derr et al., 2018) is as follows:

X(k+1) = (1− α+ β)X(k) + αÂ+X(k) − βÂ−X(k), (1)

X(0) = X, H = X(K)W ∗. (2)
Note that when β = 0, α = 1, (1) would correspond to the conventional (unsigned) graph propagation.
In the following sections, we interpret existing oversmoothing couteracting methods from a signed
graph propagation perspective in the form of (1).

3.1 NORMALIZATION TECHNIQUES

Normalization is a series of methods to operate the node features after each message-passing step.
A few representative examples include BatchNorm (Ioffe & Szegedy, 2015), PairNorm (Zhao &
Akoglu, 2020), and ContraNorm (Guo et al., 2023), where PairNorm and ContraNorm were proposed
specifically to address the oversmoothing issue in GNNs. Specifically, BatchNorm centers the node
representations X to have zero mean and unit variance across nodes for each feature, which can be
written as BatchNorm(xi) = 1√

σ2+ϵ
(xi− 1

nΣ
n
i=1xi) where ϵ > 0 and σ2 is the variance of the feature

across all nodes. Meanwhile, PairNorm is a normalization technique specifically developed for GNNs
to combat oversmoothing, where its only difference from BatchNorm is that PairNorm scales all the
entries in X using the same number rather than scaling each column by its own variance. It can be
written as PairNorm(xi) = s√

Γ2+ϵ
(xi − 1

nΣ
n
i=1xi) where Γ = ∥(Â− 1n1T

n/n)X∥F /
√
n and s is a

scalar. Apart from these two methods, ContraNorm is inspired by the uniformity loss from contrastive
learning, aiming to alleviate dimensional feature collapse. For simplicity, we consider the spectral
version of ContraNorm that takes the following form: ContraNorm(X) = (1+α)X−α/τ(XXT )X
where α ∈ (0, 1) and τ > 0 are hyperparameters. We discuss further details about these three
normalization methods in Appendix C.

Despite the differences in motivation and implementation, all the three normalization methods can be
seen as a signed graph propagation with different designs of the negative graph:

Theorem 3.1 BatchNorm, PairNorm and ContraNorm can be interpreted as signed graph propa-
gation defined in (1), sharing the same positive adjacency matrix Â+ = Â while having different
negative adjacency matrices transformed from Â+, such as Â− =

1n1T
n

n Â for BatchNorm and
PairNorm, and Â− = (XXT )Â for ContraNorm.

The result shows that PairNorm shares the same fixed positive and negative graphs (up to scale)
as BatchNorm. In contrast, ContraNorm extends the negative graph to an adaptive one based on
similarities in node features.

3.2 AUGMENTATION-BASED METHODS

Node or edge dropping (Rong et al., 2019) is another popular type of empirical method deployed to
combat oversmoothing. Denote Am ∈ {0, 1}n×n as the negative adjacency matrix where (Am)i,j =

(Â)i,j if the edge {i, j} is dropped and otherwise 0. Then the signed propagation after (randomly)
dropping some edges can be formulated as: X̂ = ÂX − AmX . This simplified negative graph
derived from the random generation shows that just the existence of the negative edges raises the
chance of alleviating oversmoothing.

3.3 RESIDUAL CONNECTIONS

Besides normalization layers and edge-dropping, residual connections can also be seen through the
lens of signed graph propagation. Given the variety of methods in this class, we provide analysis for
the following three types of residual connections.
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The standard residual connection (Wang et al., 2021; Chen et al., 2020a) directly combines the
previous and the current layer features together. It can be formulated as: X̂ = (1− α)X + αÂX .
Another residual connection type propagation, inspired by PageRank, is APPNP (Gasteiger et al.,
2018) which can be viewed as a layer-wise graph convolution with a residual connection to the initial
feature matrix X(0), written as: X̂(k+1) = (1−α)X(0)+αÂX(k) . In addition to combining with the
last and initial layer features, the last type of residual connections integrates several intermediate layer
features, which includes representative methods such as JKNET (Xu et al., 2018) and DAGNN (Liu
et al., 2020). JKNET selectively combines aggregations from different layers through operations
such as concatenation or max-pooling at the output, i.e., the representations "jump" to the last layer.
Deep Adaptive Graph Neural Networks (DAGNN) (Liu et al., 2020) tries to adaptively add all the
features from the previous layer to the current layer features with the additional learnable coefficients.
Formally, we establish the following theorem that all these three types of residual connections can be
seen as signed graph propagation. More detailed dicussion can be found in Appendix C.2:

Theorem 3.2 With Â+ = Â and Â− = I , propagation under standard residual connections follows
the signed graph propagation defined in (1). With Â+ = Σk+1

i=0 α
iÂi and Â− = αΣk

j=0α
jÂj ,

propagation under APPNP follows the signed graph propagation in (1). With Â+ = Σk−1
i=0 α

iÂi+ Âk

and Â− = Σk−1
j=0α

jÂk, propagation under JKNET and DAGNN follows the signed graph propagation
in (1).

The above discussion reveals that many existing methods can be unified and interpreted through
the signed graph perspective. Normalization layers create the negative graph through linearly
transforming the adjacency matrix, augmentation methods do so by randomly masking their elements
as 0, and connection methods construct them by combining different orders of the adjacency matrix
linearly. However, while empirically constructing the signed graph propagation may initially provide
some benefits in terms of preventing oversmoothing, there is still a lack of theoretical guidance to
fully understand the complex interplay between the signed graph structure and the resulting node
feature dynamics.

4 STRUCTURAL BALANCED PROPAGATION

In this section, we first uncover the limitation of the general signed graph propagation. Then, we
prove that the optimal theoretical solution of the signed graph propagation is the structural balance
graphs. Inspired by the structural balance theory, we design an efficient and easy-to-implement
method: Structural Balanced Propagation (SBP).

4.1 STRUCTURAL BALANCE THEORY

We first emphasize that insufficient repulsion leads to oversmoothing under the signed graph propaga-
tion, while excessive repulsion can also hinder performance.

Theorem 4.1 Suppose that the positive adjacency matrix A+ represents a connected graph and
xi(t) represents the value of node i after t rounds of the signed propagation in equation 1. Then
along (1) for any 0 < α < 1/maxi∈V d+i , there exists a critical value β∗ ≥ 0 for β such that if
β < β∗, then we have limt→∞ xi(t) =

∑n
j=1 xj(0)/n for all initial values x(0); if β > β∗, then

limt→∞ ∥x(t)∥ = ∞ for almost all initial values w.r.t. Lebesgue measure.

Theorem 4.1 suggests that if the weight β assigned to negative edges is small, especially when
β = 0 which represents the standard unsigned graph propagation, node features will converge to a
common value unavoidably, resulting in oversmoothing. But if the weight β is significantly large, the
node features will diverge rather than converge. The effect of the weight β represents the repulsion
between the nodes, and this repulsive force serves to mitigate the homogenizing trend, preserving the
heterogeneity of node features within the network.

In what follows, we present a theoretically optimal solution for signed graph propagation, known as
the structural balance graph. Formally, following Shi et al. (2019); Cartwright & Harary (1956), we
define structural balance graphs as follows.

5
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Definition 4.2 (Structural Balance) A signed graph G is structurally balanced if there is a partition
of the node set into V = V1 ∪ V2 with V1 and V2 being nonempty and mutually disjoint, where any
edge between the two node subsets V1 and V2 is negative, and any edge within each Vi is positive.

The structural balance property divides the graph into two disjoint groups (V1 and V2) and separate
intra-group and inter-group edges by their signs as illustrated in Figure 1(c). Moreover, Theorem 4.1
shows that although negative edges can mitigate the convergence of node representations, unbounded
divergence would happen when the repulsion is too strong, which would also harm the model’s
performance due to issues such as numerical instability (Wang et al., 2022). Then we prove that under
a bounded function to constrain the node features from diverging, the convergence only occurs within
each node group separately, which is even beneficial for node classification tasks.

Theorem 4.3 Assume that node i is connected to node j and xi(t) represents the value of node i
after t round of propagation in (1). F(z)c is a bounded function satisfying: if z < −c , F(z)c = −c ;
if z > c , F(z)c = c ; if −c < z < c , F(z)c = z . Let θ = α if the edge {i, j} is positive and
θ = −β if the edge {i, j} is negative. Consider the constrained signed propagation update:

xi(t+ 1) = Fc((1− θ)xi(t) + θxj(t)). (3)

Let α ∈ (0, 1/2). Assume that G is a structurally balanced complete graph under the partition
V = V1 ∪ V2. When β is sufficiently large, for almost all initial values x(0) w.r.t. Lebesgue measure,
there exists a binary random variable l(x(0)) taking values in {−c, c} such that

P
(
lim
t→∞

xi(t) = l(x(0)), i ∈ V1; lim
t→∞

xi(t) = −l(x(0)), i ∈ V2

)
= 1. (4)

Theorem 4.3 shows that if the graph is structurally balanced and is constrained with Fc(z), node
features converge to their respective group-specific values asymptotically under the signed graph
propagation defined in (1). We discuss the relationship of Theorem 4.1 and Theorem 4.3 to over-
smoothing in Appendix F. Furthermore, different groups will repel each other to have distinct values
even asymptotically.

Remark 4.4 We can generalize the two distinct groups in the above result to a generic number of
distinct groups by introducing a more general notion, weakly structural balance. See a detailed
discussion in Appendix G.

4.2 MEASURE OF STRUCTURAL BALANCE IN PRACTICE

Despite Theorem 4.3 establishes that the structural balanced graph can provably alleviate oversmooth-
ing, the condition seems hard to satisfy in practice. Thus, measuring the degree of structural balance
of a signed graph in real scenarios is necessary. Borrowing from a classic literature (Harary, 1959),
we define the structural imbalance degree (SID) of a graph by counting the number of edges that
must be changed to achieve the structural balance:

Definition 4.5 (Structural Imbalance Degree) For each node v in a graph G of n nodes, let P(v)
denote the subset of nodes that has the same label as v but connected to v by a non-positive edge; let
N (v) denote the subset of nodes that has a different label from v but connected to v by a non-negative
edge. Then the structural imbalance degree of G is defined as SID(G) = 1

2n

∑
v∈G(|P(v)|+|N (v)|).

Proposition 4.6 For a structural balanced complete graph G, we have SID(G) = 0.

We observe that SID increases as more edge signs deviate from the ideal structural balance complete
graph criterion, indicating a growing structural imbalance. Based on the SID, we can measure the
distance between a real signed graph and the ideal structural balanced signed graph.

4.3 DESIGN SIGNED PROPAGATION FOR GNNS

To reduce SID and achieve a more structurally balanced signed graph, we design two methods label-
enhanced structural balanced propagation (Label-SBP) and feature-enhanced structural balanced
propagation (Feature-SBP) by utilizing the label and feature information to construct the negative
graphs respectively.

6
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Table 2: The SID on CSBM.

Method P↓ N↓ SID↓

DropEdge 92.62 100.00 96.31
Residual 90.87 100.00 95.44

GCN/SGC 89.87 100.00 94.94

APPNP 0.00 100.00 50.00
JKNET 0.00 100.00 50.00
DAGNN 0.00 100.00 50.00

BatchNorm 89.87 4.56 47.22
PairNorm 89.87 4.56 47.22
ContraNorm 89.87 4.56 47.22

Feature-SBP (ours) 89.87 4.56 47.22
Label-SBP (ours) 32.46 36.16 34.31
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(b) SBP, acc=97.50

Figure 2: The t-SNE visualization of the node
features on CSBM and Layer=300.

Label-enhanced Structural Balanced Propagation Inspired by the Theorem 4.3, we first utilize
the label signal as the negative adjacency matrix to mitigate across-label oversmoothing, termed as
Label-enhanced Structural Balanced Propagation (Label-SBP). In particular, we use the label in the
train set to repel nodes from different classes and attract nodes from the same class as follows:

(Al)ij =


1 if yi ̸= yj ,

−1 if yi = yj ,

0 otherwise ,
(5)

where if nodes i, j have different labels, we assign a positive value 1 to repel them. Conversely, if
they have the same label, we assign −1 to attract them. Note that if labels are unknown, we assign
0 to neither repel nor attract them. We employ a row-stochastic adjacency matrix Â as the positive
adjacency matrix, which is a non-negative matrix with row sums equal to one, learning the global
graph structure. Then we give the following result showing that Label-SBP effectively aggregates
classes to separate constants.

Proposition 4.7 Assume that node label classes are balanced |Y1| = |Y2| and denote the ratio
of labeled nodes as p. Then we have that the signed graph adjacency matrix As = A − Al and
SID(G) ≤ (1 − p)n/2, where SID decreases with a larger labelling ratio p. In particular, with
full supervision (p = 1), we have SID(G) = 0, i.e., a perfectly balanced complete signed graph.
Under the constrained signed propagation equation 3, the nodes from different classes will converge
to distinct constants.

Nonetheless, although Label-SBP can induce the ideal structural balance in the train set, it requires
access to labels that might be scarce under a low labeling rate. To deal with this situation, we further
propose a variant of our method that estimates a negative graph based on feature similarities.

Feature-enhanced Structural Balanced Propagation If labels are unavailable, we can utilize
the similarity matrix derived from the node features to create the negative matrix Af , termed as
Feature-enhanced Structural Balanced Propagation (Feature-SBP). Af is defined as follows:

Af = −XXT , (6)

where X ∈ Rn×d is the initial node feature matrix. While the use of the node feature as the repulsion
signal may not be as precise as the Label-SBP, it can make use of all node features and thus be
adjusted to the test set to improve the overall structural balance property of the graph.

Implementation Details of SBP As shown in Theorem 4.1 and Theorem 4.3, without a bound
function the features will diverge to infinity due to strong repulsion, so we implement the constrained
function Fc by using LayerNorm (Ba et al., 2016). To avoid numerical instability for repeated
message-passing, we ensure that the sum of the coefficients combining the node representations X(k)

and the node representations updates by our SBP remains 1. Additionally, we apply the softmax
function to the negative matrix, resulting in Â− = softmax(A−). As a result, SBP can be written as:

(SBP) X(k+1) = (1− λ)X(k) + λ(αÂ− β softmax(Âl or Âf ))X
(k) . (7)

Scalability of SBP It is noted that the direct application of SBP to large-scale graphs can destroy
the sparsity of the original adjacency matrix because we try to assign either a plus or minus sign

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Node classification accuracy (%) on 8 datasets and H(G) refers to the edge homophily
level.The best results are marked in blue and the second best results are marked in gray on every
layer. Overall SBP performs best in both homophilic and heterophilic datasets.

H(G) 0.81 0.74 0.80 0.22 0.38 0.21 0.11 0.30
Dataset Cora Citeseer PubMed Squirrel Amazon-ratings Texas Wisconsin Cornell

MLP 48.82 ± 0.98 47.89 ± 1.21 69.20 ± 0.83 32.58 ± 0.19 38.14 ± 0.03 73.51 ± 2.36 70.98 ± 1.18 68.11 ± 2.65
SGC 80.21 ± 0.07 71.88 ± 0.27 76.99 ± 0.38 43.30 ± 0.30 42.83 ± 0.04 45.95 ± 0.00 47.06 ± 0.00 48.11 ± 3.15
GCNII 78.58 ± 0.00 61.66 ± 0.67 75.41 ± 0.00 31.22 ± 0.00 40.10 ± 0.28 63.24 ± 1.34 60.78 ± 0.00 38.38 ± 1.08
wGCN 80.97 ± 0.28 66.21 ± 0.63 76.35± 0.38 43.78± 0.23 42.65± 0.20 49.73± 2.16 58.82± 0.00 43.24± 0.00

BatchNorm 77.90 ± 0.00 60.85 ± 0.09 77.15 ± 0.09 44.22 ± 0.11 39.68 ± 0.01 39.73 ± 1.24 52.94 ± 0.00 46.49 ± 1.08
PairNorm 80.30 ± 0.05 70.83 ± 0.06 77.69 ± 0.26 46.21 ± 0.09 42.30 ± 0.05 51.35 ± 0.00 58.82 ± 0.00 51.35 ± 0.00
ContraNorm 81.60 ± 0.00 72.25 ± 0.08 79.30 ± 0.10 48.63 ± 0.16 42.98 ± 0.04 48.38 ± 4.43 49.61 ± 1.53 48.63 ± 0.16

DropEdge 73.58 ± 2.76 65.63 ± 1.76 74.64 ± 1.37 42.30 ± 0.62 42.30 ± 0.09 59.46 ± 8.11 52.55 ± 4.45 45.95 ± 7.05

Residual 77.81 ± 0.03 71.61 ± 0.17 77.40 ± 0.06 43.63 ± 0.34 42.69 ± 0.03 65.95 ± 1.32 63.73 ± 0.98 61.89 ± 3.91
APPNP 77.78 ± 0.93 67.42 ± 1.31 74.52 ± 0.49 42.15 ± 0.17 42.47 ± 0.03 68.38 ± 4.37 65.10 ± 1.71 64.59 ± 3.30
JKNET 78.20 ± 0.20 66.80 ± 0.33 75.62 ± 0.37 48.16 ± 0.25 42.21 ± 0.05 60.00 ± 2.36 42.55 ± 2.92 39.73 ± 2.72
DAGNN 65.98 ± 1.49 60.04 ± 1.98 72.39 ± 0.90 33.39 ± 0.19 40.61 ± 0.03 61.35 ± 1.73 57.45 ± 1.97 44.87 ± 3.24

Feature-SBP 82.46 ± 0.07 70.63 ± 0.52 77.41 ± 0.21 49.16 ± 0.19 42.31 ± 0.03 78.38 ± 0.00 80.39 ± 0.00 72.97 ± 0.00
Label-SBP 82.90 ± 0.00 73.04 ± 0.10 80.32 ± 0.04 45.60 ± 0.11 42.41 ± 0.02 78.38 ± 0.00 80.39 ± 0.00 70.27 ± 0.00

between each pair of nodes. So we propose a modified version on the SBP. For Label-SBP, we only
remove the edge when the pair of nodes are from different classes, which would even increase the
sparsity of the graph while maintaining the structural balance property. For Feature-SBP, we reorder
the matrix multiplication from HHT ∈ Rn×n to HTH ∈ Rd×d to preserve the distinctiveness of
node representations across the feature dimension, rather than across the node dimension as through
the original node-level repulsion. More implementation and time complexity analysis are provided in
the Appendix K.

Simulation Results To verify our theory, we conduct simulation experiments on the Contextual
Stochastic Block Model (CSBM). We set the two class means u1 = −1 and u2 = 1 respectively,
the number of nodes N = 100, intra-class edge probability p = 2 log 100/100 and inter-class edge
probability q = log 100/100. Table 2 shows the simulation results for binary-class cases with 50
nodes for each class from CSBM. We measure the SID of previous anti-oversmoothing methods
which show that previous methods either remain a high SID or an imbalance P and N , but our
methods can effectively decrease the SID to achieve a more structural balance graph, or at least
be on par with previous methods. Figure 2 presents the visualization of node features using SBP,
showing that our methods effectively repel nodes from different classes, achieving a high accuracy of
97.5% even with 300 layers. We discuss more observations of SID in Appendix H.4.

5 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of SBP on various benchmark datasets,
including both homophilic and heterophilic graphs. We aim to answer three key research questions:
(RQ1) How does SBP perform in node classification tasks? (RQ2) How effectively does SBP
mitigate oversmoothing? (RQ3) How sensitive, robust, and scalable is SBP? More comprehensive
experiments are provided in Appendix L.

Dataset We use eight widely-used node classification benchmark datasets (Table 8), where four
of them are heterophilic (Texas, Wisconsin, Cornell, Squirrel, and Amazon-rating (Platonov et al.,
2023)), and the remaining four are homophilic (Cora (McCallum et al., 2000), Citeseer (Giles et al.,
1998), and Pubmed (Canese & Weis, 2013)) including one large graph dataset (Ogbn-Arxiv). In
line with prior research, we employ the default training/validation/test splits provided by Pytorch
Geometric (PyG).

Baselines We compare the performance of SBP against the following ten baseline models. 1)
Classic models: MLP, SGC (Wu et al., 2019) and GCN (Kipf & Welling, 2017). 2) GNNs with
normalization: BatchNorm (Ioffe & Szegedy, 2015), PairNorm (Zhao & Akoglu, 2019) and Contra-
Norm (Guo et al., 2023). 3) Augmenation-based GNNs: DropEdge (Rong et al., 2019). 4) GNNs
with residual connections: Residual, APPNP (Gasteiger et al., 2018), JKNET (Xu et al., 2018) and
DAGNN (Liu et al., 2020). We implement all of the methods on the SGC backbone and choose the
best of scale controller α in range of {0.1, 0.5, 0.9} for ContraNorm, DropEdge, and GNNs with
residual connections. For both Label-SBP and Feature-SBP, we choose the best of λ in the range of
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Figure 3: Left is the performance comparison of SBP against Normalization GNNs under various
model depths where the X-axis has the number of layers, and the Y-axis has node classification
accuracy. Right is the ablation study on Label-SBP where the X-axis indicates the ratio of the training
node numbers.

{0.1, 0.5, 0.9}. Although both positive and negative graphs have weights, we do not carefully adjust
them. Instead, we fix α = 1 and only select the best value for β.

5.1 RQ1: NODE CLASSIFICATION PERFORMANCE RESULTS

In Table 3, we provide the mean of the node classification accuracy along with their corresponding
standard deviations across 10 random seeds following Wang et al. (2021). We keep β = 1, run
all methods on 2 layers, and imply SBP on SGC. In summary, SBP achieves the best performance
across eight datasets under 14 methods based on the results in Table 8 where our Label/Feature-SBP
performs best on 7 out of the 8 datasets. In particular, we make the following three observations:
First, SBP outperforms all normalization methods. Since our theoretical findings suggest that these
normalization methods are essentially implicit signed graph propagation, the theoretical properties of
structural balance (Section 4.1) contribute to the enhanced classification accuracy of SBP. Second,
SBP outperforms random argumentation based GNNs. Since DropEdge randomly drops edges, it isn’t
easy to characterize their exact behaviors, but we highlight that it works when it happens to remove
edges between different classes of nodes thanks to our structurally balanced theory, as DropEdge still
follows the unified signed graph analysis in its message-passing scheme. Lastly, SBP outperforms
residual connection based GNNs, including the last layer connection: residual and multilayer feature
connection: APPNP, JKNET, and DAGNN. In our analysis, GNNs with residual connections can
be seen as a special case of signed graph propagation, where their positive and negative adjacency
matrices are the linear combination of adjacency matrices of different orders, yet they are not the
theoretically best solution to alleviate oversmoothing. This validates the effectiveness of our novel
insight from a signed graph perspective.

5.2 RQ2: ANTI-OVERSMOOTHING ANALYSIS

We further evaluate the robustness of SBP by assessing its performance at deeper model depths:
K ∈ {2, 10, 50, 100, 300} for homophilic datasets and K ∈ {2, 5, 10, 20, 50} for heterophilic
datasets. To provide a comparative analysis against other GNNs, we also evaluate two best performed
normalization-based GNNs: BatchNorm and ContraNorm. We evaluate the performances of these
methods on one heterophilic graph and two homophilic graphs. Figure 3a shows that the performance
of Feature/Label-SBP remains relatively stable with varying numbers of layers, achieving its best
performance when deeper layers (K = 50) are employed. In contrast, the normalization methods
utilized in the experiment exhibit a substantial decrease in performance as the number of layers
increases, indicating their empirical susceptibility to the oversmoothing problem. This further
confirms the effectiveness of SBP at counteracting oversmoothing.

5.3 RQ3: ABLATION STUDY

Training ratio sensitivity analysis. Since Label-SBP leverages the ground truth label information
to construct the negative graph, we conduct an ablation study examining the impact of different
training data ratios. As shown in Figure 3b, Label-SBP’s performance on the CSBM and Cora
datasets improves as the training ratio increases. Even with a modest training ratio of 20%, the worst-
performing models still achieve an impressive 80% accuracy, while the best models approach 100%
accuracy when the training ratio is increased to 80%. This is in line with our theoretical insights that
increasing training ratio leads to more structural balance resulting from our method SBP. Moreover,
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Figure 4: Figure (a)-(d) shows the effect of negative graph weight β by SBP on CSBM. In all cases,
λ = 0.5 and α = 1. The X-axis is the β and the Y-axis is the test accuracy. ϕ is the hyperparameter
to control the level of homophily and H(G) measure the homophily level. SBP1 indicates Label-SBP
and SBP2 indicates Feature-SBP.

Table 4: Node classification accuracy (%) on the
large-scale dataset ogbn-arxiv.

Model #L=2 #L=4 #L=8 #L=16

GCN 67.32 ± 0.28 67.79 ± 0.25 65.54 ± 0.31 59.13 ± 0.95
BatchNorm 70.14 ± 0.28 70.93 ± 0.15 70.14 ± 0.43 63.24 ± 1.40
PairNorm 70.48 ± 0.20 71.59 ± 0.17 71.24 ± 0.07 68.92 ± 0.43
ContraNorm OOM OOM OOM OOM
DropEdge 64.07 ± 0.32 63.92 ± 0.27 60.74 ± 0.45 52.52 ± 0.34
Residual 66.90 ± 0.14 66.67 ± 0.25 61.76 ± 0.62 53.25 ± 0.75
Feature-SBP 67.89 ± 0.10 68.47 ± 0.26 65.09 ± 0.30 60.34 ± 0.94
Label-SBP 70.55 ± 0.22 71.54 ± 0.18 71.07 ± 0.28 69.33 ± 0.59
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Figure 5: Significance of negative graph weight β
on Cora and Texas datasets where we fix the positive
graph weight α = 1.

our main experiments detailed in Table 3 demonstrate that Label-SBP outperforms other methods,
even when adopting the default training set ratios in those datasets, indicating its effectiveness in
real-world graph settings.

Attraction and repulsion hyparameters sensitivity analysis. In order to test the ability of SBP
on graphs with arbitrary levels of homophily and heterophily, we conduct anablation study on the
synthetic CSBM following (Chien et al., 2020). The parameter ϕ in the CSBM controls the relative
importance of node features and graph topology in determining the homophily level. Specifically,
ϕ ranges from -1 to 1, with lower values corresponding to strongly heterophilic graphs and higher
values indicating strongly homophilic graphs. We fix λ = 0.5 and then vary β which indicates the
strength of the repulsive force between the two nodes introduced by the negative edge connecting
them. As shown in Figure 4, Feature/Label-SBP performs best in homophilic graphs when all nodes
are effectively attracted to one another, i.e., β is small. As β increases, the performance of the model
degrades. In contrast, for heterophilic graphs, when the attraction power dominates, SBP achieves
only 50% accuracy. In contrast, as β increases, the negative graph becomes more dominant, and the
model’s performance gets significantly better. Furthermore, we observe similar phenomena in the
real graph datasets shown in Figure 5.

Large-scale dataset Finally, we conduct an evaluation of the SBP approach on the large-scale
ogbn-arxiv dataset, and the results presented in Table 4. To maintain the sparsity of the graph
structure and avoid additional computational overhead, we adopt variants of the SBP approach
mentioned in Section 4.3. Overall, the results demonstrate that Label-SBP achieves comparable or
even superior performance compared to previous normalization methods, particularly in the deep
layer (L = 16) setting. This verifies the empirical superiority and robustness of our proposed signed
graph construction and SBP approach, which effectively leverages the available label information to
alleviate the oversmoothing of the graph, even at scale.

6 CONCLUSION

In this work, we propose a novel unified signed graph perspective by revisiting the concept and theory
of signed graphs to study the oversmoothing issue in GNNs. We find that many previous methods
alleviating oversmoothing can be seen as adopting different negative graphs, and further propose
two novel methods Label-SBP and Feature-SBP inspired by the structural balance theory. Our work
provides new insights from signed graphs on analyzing and addressing the oversmoothing issue,
which helps motivate further research in this direction.
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A MORE DISCUSSION ON GNNS

A.1 MESSAGE-PASSING GRAPH NEURAL NETWORKS (MP-GNNS)

Let G = (A,X) denote a graph with n nodes and m edges, where A ∈ {0, 1}n×n is the adjacency
matrix, and X ∈ Rn×d is the node feature matrix with a node feature dimension of d. Usually, we
will transform the concrete adjacency matrix A to the normalized adjacency matrix Â by the degree
matrix. Define D = diag(d1, d2, . . . , dn) where di is the degree of the node i. Then the normalized
adjacency matrix Â = D− 1

2AD− 1
2 . Moreover, many theoretical works simplified the normalized

adjacency matrix to be D−1A or AD−1 as the raw-normalized or column-normalized stochastic
matrix where the sum of every raw (column) is 1 and every entry is non-negative. In this paper, we
use Â = D− 1

2AD− 1
2 .

Different GNNs typically share a common propagation mechanism, where node features are aggre-
gated and transformed along the network’s topology to a certain depth. The k-th layer propagation
can be formalized as

H(k) = PROPAGATE(X;G; k) =
〈

Trans
(

Agg
{
G;H(k−1)

})〉
k

, (8)

with H(0) = X and H(k) is the output after the k-layer propagation. The notation ⟨⟩k generally varies
from GNN models and denotes the generalized combination operation following k convolutions.
Agg{G;H(k−1)} refers to aggregating the (k − 1)-layer output H(k−1) along graph G. Meanwhile,
Trans(·) is the corresponding layer-wise feature transformation which often includes a non-linear
activation function (e.g., ReLU) and a layer-specific learnable weight matrix W for transformation

A.2 GCN

To deal with non-Euclidean graph data, GCNs are proposed for direct convolution operation over
graph, and have drawn interests from various domains. GCNisfirstly introduced for a spectral
perspective Kipf & Welling (2017), but soon it becomes popular as a general message-passing
algorithm in the spatial domain. In the feature transformation stage, GCN adopts a non-linear
activation function (e.g., ReLU) and a layer-specific learnable weight matrix W for transformation.
The propagation rule of GCN can formulated as follow:

H(k) = ReLU((ÂH(k−1))W(k)) (9)

A.3 SGC

SGC Wu et al. (2019) simplifies and separates the two stages of GCNs: feature propagation and
(non-linear) feature transformation. It finds that utilizing only a simple logistic regression after feature
propagation (removing the non-linearities), which makes it a linear GCN, can obtain comparable
performance to canonical GCNs. The propagation rule of GCN can formulated as follow:

H(k) = ÂH(k−1))W(k) = ÂkH(0))W(k)...W(1) (10)

Moreover, SGC transforms W(k)...W(1) to a general learnable parameter W , so the formula of SGC
can be this:

H(k) = ÂkH(0))W (11)

B MORE BACKGROUND ABOUT SIGNED GRAPH

B.1 SIGNED GRAPH PROPAGATION

Classical GNNs (Kipf & Welling, 2017; Wu et al., 2019; Veličković et al., 2018; Xu et al., 2019)
primarily focused on message-passing on unsigned graphs or graphs composed solely of positive
edges. For example, if there exists a edge {i, j} or the sign of edge {i, j} is positive, the node xi

updates its value by:

x̂i = xi + α(xj − xi) = (1− α)xi + αxj , α ∈ (0, 1). (12)
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Compared to the unsigned graph, a signed graph extends the edges to either positive or negative.
Notably, if the sign of edge {i, j} is negative, the node xi update its value using the following
expression:

x̂i = xi − β(xj − xi) = (1 + β)xi − βxj , β ∈ (0, 1). (13)
In words, the positive interaction equation 12 indicates the attraction while the negative interac-
tion equation 13 indicates that the nodes will repel their neighbors.

More generally, when considering all of the neighbors of node xi, let N+
i denote the positive neighbor

set while N−
i denote the negative neighbor set, where N+

i ∪ N−
i = Ni and N+

i ∩ N−
i = ∅. The

representation of xi is thus updated by:

x̂i = (1− α+ β)xi +
α

|N+
i |

∑
j∈N+

i

xj −
β

|N−
i |

∑
j∈N−

i

xj . (14)

In particular, the two parameters α and β mark the strength of positive and negative edges, respectively.
Furthermore, the signed propagation rule equation 14 from a single node can be generalized over the
whole graph G written in the matrix update form as:

X̂ = (1− α+ β)X + αÂ+X − βÂ−X, (15)

where Â+ is the raw normalized version of the positive adjacency matrix A+ ∈ {0, 1}n×n and Â− is
that of the negative adjacency matrix A− ∈ {0, 1}n×n.

B.2 DEFINITION OF NEGATIVE GRAPH

For further proofs of the theorems and propositions in the paper, we give a more simple and detailed
definition in this section.

Let DG+ = diag(deg+1 , . . . , deg
+
n ) and DG− = diag(deg−1 , . . . , deg

−
n ) be the degree matrices of

the positive subgraph and negative subgraph, respectively. Let AG+ be the adjacency matrix of the
graph G+ with [AG+ ]ij = 1 if {i, j} ∈ E+ and [AG+ ]ij = 0 otherwise. The adjacency matrix AG−

of the negative subgraph G− is defined by [AG− ]ij = −1 for {i, j} ∈ E− and [AG− ]ij = 0 for
{i, j} ̸∈ E−.

The Laplacian plays a central role in the algebraic representation of structural properties of graphs. In
the presence of negative edges, more than one definition of Laplacian is possible; see Shi et al. (2019).
The Laplacian of the positive subgraph G+ is LG+ := DG+ −AG+ , while for the negative subgraph
G− the following two variants can be used: Lo

G− := DG− − AG− and Lr
G− := −DG− − AG− .

Consequently, we have the following definitions.

Definition 1. Given the signed graph G, its opposing Laplacian is defined as

Lo
G := LG+ + Lo

G− = DG+ +DG− −AG+ −AG− , (16)

and its repelling Laplacian is defined as

Lr
G = LG+ + Lr

G− = DG+ −DG− −AG+ −AG− . (17)

B.3 POSITIVE / NEGATIVE INTERACTION

Time is slotted at t = 0, 1, . . .. Each node i holds a state xi(t) ∈ Ω at time t and interacts with its
neighbors at each time to revise its state. The interaction rule is specified by the sign of the links. Let
α, β ≥ 0. We first focus on a particular link {i, j} ∈ E and specify for the moment the dynamics
along this link isolating all other interactions.

The DeGroot Rule:

xs(t+ 1) = xs(t) + α(x−s(t)− xs(t)) = (1− α)xs(t) + αx−s(t), (18)

where −s ∈ {i, j} \ {s} with α ∈ (0, 1)

The Opposing Rule:

xs(t+ 1) = xs(t) + β(−x−s(t)− xs(t)) = (1− β)xs(t)− βx−s(t); (19)

or The Repelling Rule:

xs(t+ 1) = xs(t)− β(x−s(t)− xs(t)) = (1 + β)xs(t)− βx−s(t). (20)
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B.4 DETERMINISTIC NETWORKS

The Repelling Negative Dynamics:

xi(t+ 1) = xi(t) + α
∑

j∈N+
i

(xj(t)− xi(t))− β
∑

j∈N−
i

(xj(t)− xi(t))

= (1− αdeg+i + βdeg−i )xi(t) + α
∑

j∈N+
i

xj(t)− β
∑

j∈N−
i

xj(t).
(21)

Denote x(t) = (x1(t) . . . xn(t))
T . We can now rewrite 21 in the compact form

x(t+ 1) = MGx(t) = (I − αLG+ − βLr
G−

)x(t). (22)

Here,
MG = I − αLG+ − βLr

G− = I − Lrw
G , (23)

with Lrw
G = αLG+ + βLr

G− being the repelling weighted Laplacian of G. From Equation 22,
MG1 = 1 always holds. We present the following result, which by itself is merely a straightforward
look into the spectrum of the repelling Laplacian Lrw

G .

Note that our Equation equation 1 is consistent with Equation equation 21, only need to replace the α
and β with α

deg+
i

and β

deg−
i

respectively.

C ANALYSIS OF PREVIOUS METHODS VIA SIGNED GRAPH

C.1 DISCUSSION OF NORMALIZATION

BatchNorm BatchNorm centers the node representations X to zero mean and unit variance and
can be written as BatchNorm(xi) = 1√

σ2+ϵ
(xi − 1

nΣ
n
i=1xi), where ϵ > 0 and σ2 is the variance of

node features. We rewrite BatchNorm in the signed graph propagation form as follows:

X̂ = ÂXΓ−1
d − 1n1T

n

n
ÂXΓ−1

d = ÂX̃ − 1n1T
n

n
ÂX̃ , (24)

where Γd = diag(σ1, . . . , σd) is a diagonal matrix that represents column-wise variance with
σ2
i = 1

n

∑n
j=1((ÂX)

ji
− 1⊤

n ÂX/n)2, and X̃ = XΓ−1
d is a normalized version of X . We can

correspond to the positive graph A+ to Â and the negative graph A− to 1n1T
n

n Â in Eq. equation 24.

PairNorm We then introduce another method called PairNorm where the only difference between
it and BatchNorm is that PairNorm scales all the entries in X using the same number rather than
scaling each column by its own variance. The formulation of PairNorm can be rewritten as follows:

X̂ =
1

Γ
ÂX − 1

Γ

1n1T
n

n
ÂX =

1

Γ
(ÂX − 1n1T

n

n
ÂX) , (25)

where Γ = ∥(Â − 1n1T
n/n)X∥F /

√
n. We observe that PairNorm shares the same positive and

negative graphs (up to scale) as BatchNorm. Another normalization technique, ContraNorm, turns
out to extend the negative graph to an adaptive one based on node feature similarities.

ContraNorm ContraNorm is inspired by the uniformity loss from contrastive learning, aiming to
alleviate dimensional feature collapse. For simplicity, we consider the spectral version of ContraNorm
that takes the following form:

X̂ = (1 + α)ÂX − α/τ(XXT )ÂX , (26)

where α ∈ (0, 1) and τ > 0 are hyperparameters. We can see that Â is again the positive graph and
(XXT )Â is the negative graph in the corresponding signed graph propagation.
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Proposition C.1 Consider the update:

X̂ = AX − 1n1T
n

n
AX, (27)

where A ∈ {0, 1}n×n is the adjacency matrix. Define the overall signed graph adjacency matrix As

as A − 1n1T
n

n A. Then we have that the signed graph is (weakly) structurally balanced only if the
original graph can be divided into several isolated complete subgraphs.

Proof. Assume that there is no isolated node and no node has edges with all the other nodes.
(As)i,j = (A)i,j − degj

n . If (A)i,j = 1, then we have (As)i,j > 0. If (A)i,j = 0, then we have
(As)i,j < 0.

If the nodes can be divided into several isolated complete subgraphs, then the nodes set V =
V1 ∪ V2 . . . Vm, where |Vi| > 1, m is the number of the isolated complete subgraphs. So only the
nodes within the same set have edges, thus relative entries of As > 0, while nodes from different sets
do not, thus relative entries of As < 0.

On the other hand, if As is (weakly) structurally balanced, then the nodes set can be expressed as
V = V1 ∪V2 . . . Vk, where |Vi| > 1, k is the number of the separated parties in the signed graph. The
entry of As in the same parties is positive, while between different parties is negative. According to
(As)i,j = (A)i,j − degj

n , we know that nodes in the same parties are connected in the original graph
while not connected in the original graph between different parties. So the graph can be divided into
several isolated complete subgraphs.

Overall, the signed graph is (weakly) structurally balanced only if the original graph can be divided
into several isolated complete subgraphs, the proof is over.

The Proposition shows that in order for the structural balance property to hold for the signed graph of
normalization, the graph needs to satisfy an unrealistic condition where the edges strictly cluster the
nodes.

Discussion of ContraNorm Consider the update:

X̂ = AX − XXT

n
AX, (28)

Define the overall signed graph adjacency matrix As = A − XXT

n A where (As)i,j = (A)i,j −
1
nΣ

n
k=1xix

T
k (A)k,j .

Assume that the nodes feature is normalized every update, that is ||xi||2 = 1 for every i.

If (A)i,j = 1, then we have that

(As)i,j = (A)i,j −
1

n
Σn

k=1xix
T
k (A)k,j

= 1− 1

n
Σn

k=1xix
T
k (A)k,j

> 1− 1

n
Σn

k=1(A)k,j

= 1− dj
n

> 0.

(29)

That means if (A)i,j = 1, then (As)i,j > 0. However, if (A)i,j = 0, then we have that

(As)i,j = (A)i,j −
1

n
Σn

k=1xix
T
k (A)k,j

= − 1

n
Σn

k=1xix
T
k (A)k,j

= − 1

n
Σk∈Nj

xix
T
k .

(30)

Intuitively, if xi has similar features to xj’s neighbors, then we have that (As)i,j < 0, which means
trying to repel nodes with similar representations. If xi has different features to xj’s neighbors,
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then we have that (As)i,j > 0, which means trying to aggregate nodes with original different
representations.

If graph G is a completed graph, then all entries of (As) > 0, however, when all of the nodes coverage
to each other, Σn

k=1xix
T
k (A)k,j = Σn

k=1xix
T
k will also become bigger.

C.2 DISCUSSION OF RESIDUAL CONNECTION

The standard residual connection (Wang et al., 2021; Chen et al., 2020a) directly combines the
previous and the current layer features together. It can be formulated as:

X̂ = (1− α)X + αÂX = X + αÂX − αIX . (31)

For residual connections, the positive adjacency matrix is Â and the negative adjacency matrix I in
the corresponding signed graph propagation.

APPNP We reformulate the method APPNP (Gasteiger et al., 2018) as the signed propagation form
of the initial node feature. Another propagation process is APPNP (Gasteiger et al., 2018) which can
be viewed as a layer-wise graph convolution with a residual connection to the initial transformed
feature matrix X(0), expressed as:

X̂(k+1) = (1− α)X(0) + αÂX(k). (32)

Theorem C.2 With Â+ = Σk+1
i=0 α

iÂi and Â− = αΣk
j=0α

jÂj , the propagation process of APPNP
following the signed graph propagation.

Proof. Easily prove with mathematical induction.

In addition to combining with the last and initial layer features, the last type integrates several
intermediate layer features. The established representations are JKNET (Xu et al., 2018) and
DAGNN (Liu et al., 2020).

JKET JKNET is a deep graph neural network which exploits information from neighbor-
hoods of differing locality. JKNET selectively combines aggregations from different layers with
Concatenation/Max-pooling/Attention at the output, i.e., the representations "jump" to the last layer.
Using attention mechanism for combination at the last layer, the k + 1-layer propagation result of
JKNET can be written as:

X(k+1) = α0X
(0) + α1X

(1) + · · ·αkX
(k)

= Σk
i=0αiÂ

iX(0) ,
(33)

where α0, α1, · · · , αk are the learnable fusion weights with Σk
i=0αi = 1.

DAGNN Deep Adaptive Graph Neural Networks (DAGNN) (Liu et al., 2020) tries to adaptively
add all the features from the previous layer to the current layer features with the additional learn-
able coefficients. After decoupling representation transformation and propagation, the propagation
mechanism of DAGNN is similar to that of JKNET.

X(k+1) = Σk
i=0αiÂ

iH(0), H(0) = fθ(X
(0)) (34)

H(0) = fθ(X
(0)) ) is the non-linear feature transformation using an MLP network, which is con-

ducted before the propagation process and α0, α1, · · · , αk are the learnable fusion weights with
Σk

i=0αi = 1.

Theorem C.3 With Â+ = Σk−1
i=0 α

iÂi + Âk and Â− = Σk−1
j=0α

jÂk, the propagation process of
JKNET and DAGNN following the signed graph propagation.

Proof. Easily prove with mathematical induction.

As for more residual inspired methods (Chen et al., 2020b; Eliasof et al., 2022; Luan et al., 2022;
Eliasof et al., 2021), we select GCNII and wGCN to give a detailed discussion as follows.
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• As for GCNII (Chen et al., 2020b), it is an improved version of APPNP with the learnable
coefficients αi and changes the learnable weight W to (1 − βi)I + βiW each layer, so it
shares the same positive and negative graph as APPNP.

• As for the wGCN (Eliasof et al., 2022), it incorporates trainable channel-wise weighting
factors ω to learn and mix multiple smoothing and sharpening propagation operators at each
layer, same as the init residual combines but change parameters α to be learnable with a
more detailed selection strategy.

C.3 DISCUSSION OF DROPMESSAGE

For DropMessage (Fang et al., 2022), it is a unified way of DropNode, DropEdge and Dropout but
with a more flexible mask strategy. We have discussed the DropNode and DropEdge in our paper.
DropMessage can be viewed as randomly dropping some dimension of the aggregated node features
instead of the whole node or the whole edge. We give the unified positive and negative graph of
DropMessage in the term of the signed graph. The propagation of DropMessage can be expressed as
H(k) = AH(k−1) −Mm, where if dropping AH

(k−1)
ij , then Mij = AH

(k−1)
ij else Mij = 0.

D PROOF OF THEOREM 4.1

Now consider the combined theorem.

Theorem D.1 Suppose that the positive edges are connected. Then along Equation 21 for any
0 < α < 1/maxi∈V deg+i , there exists a critical value β∗ ≥ 0 for β such that

(i) if β < β∗, then we have limt→∞ xi(t) =
∑n

j=1 xj(0)/n for all initial values x(0);

(ii) if β > β∗, then limt→∞ ∥x(t)∥ = ∞ for almost all initial values w.r.t. Lebesgue measure.

Proof. we change the signed graph update to the equivalent version of xi(t) read as:

xi(t+ 1) = xi(t) + α
∑

j∈N+
i

(xj(t)− xi(t))− β
∑

j∈N−
i

(xj(t)− xi(t)).

This can be expressed as:

x(t+ 1) = (1− α deg+ +β deg−)xi(t) + α
∑

j∈N+

xj(t)− β
∑

j∈N−

xj(t). (35)

Algorithm 35 can be written as:

x(t+ 1) = MGx(t) = (I − αL+
G − βL−

G)x(t). (36)

Here, MG = I − αL+
G − βL−

G, with L+
G = αL+

C + βL−
C being the repelling weighted Laplacian

of G, defined in Sec.B.2. From Eq.equation 36, MG1 = 1 always holds. We present the following
result, which by itself is merely a straightforward look into the spectrum of the repelling Laplacian
L−
G.

So theorem D.1 can be changed to the following version:

Suppose G+ is connected. Then along Eq.equation 36 for any 0 < α < 1/maxi∈V deg+i , there
exists a critical value β > 0 for β such that:

(i) if β < β∗, then average consensus is reached in the sense that limt→∞ xi(t) =
1
n

∑n
j=1 xj(0) for all initial values x(0);

(ii) if β > β∗, then limt→∞ ∥x(t)∥ = ∞ for almost all initial values w.r.t. Lebesgue measure.

Proof. Define J = 11T /n. Fix α ∈ (0, 1/maxi∈V deg+i ) and consider f(β) = λmax(I − αL+
G −

βL−
G − J), and g(β) = λmin(I − αL+

G − βL−
G − J). The Courant–Fischer Theorem implies that

both f(·) and g(·) are continuous and nondecreasing functions over [0,∞). The matrix J always
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commutes with I−αL+
G−βL−

G, and 1 is the only nonzero eigenvalue of J . Moreover, the eigenvalue
1 of J shares a common eigenvector 1 with the eigenvalue 1 of I − αL+

G − βL−
G.

Since G+ is connected, the second smallest eigenvalue of LG+ is positive. Since 0 < α <
1

maxi∈V deg+
i

, there holds λmin(I − αLG+) ≥ −1, again due to the Gershgorin Circle Theorem.

Therefore, f(0) < 1, g(0) ≥ −1. Noticing f(∞) = ∞ > 1, there exists β∗ > 0 satisfying
f(β∗) = 1. We can then verify the following facts:

• There hold f(β) < 1 and g(β) > −1 if β < β∗. In this case, along Eq.equation 36
limt→∞(I − J)x(t) = 0, which in turn implies that x(t) converges to the eigenspace
corresponding to the eigenvalue 1 of MG. This leads to the average consensus statement in
(i).

• There holds f(β) ≥ 1 if β > β∗. In this case, along Eq.equation 36 x(t) diverges as long
as the initial value x(0) has a nonzero projection onto the eigenspace corresponding to
λmax(MG) of MG. This leads to the almost everywhere divergence statement in (ii).

The proof is now complete.

E PROOF OF THEOREM 4.3

Theorem E.1 let A > 0 be a constant and define F(z)c by F(z)c = −c, z < −c, F(z)c = z, z ∈
[−c, c], and F(z)c = c, z > c. Define the function θ : E → R so that θ({i, j}) = α if {i, j} ∈ E+

and θ({i, j}) = −β if {i, j} ∈ E−. Assume that node i interacts with node j at time t and consider
the following node interaction under the signed propagation rules:

xs(t+ 1) = F(z)c((1− θ)xs(t) + θx−s(t)), s ∈ {i, j}. (37)

let α ∈ (0, 1/2). Assume that G is a structurally balanced complete graph under the partition
V = V1 ∪ V2. When β is sufficiently large, for almost all initial values x(0) w.r.t. Lebesgue measure,
there exists a binary random variable l(x(0)) taking values in {−c, c} such that

P
(
lim
t→∞

xi(t) = l(x(0)), i ∈ V1; lim
t→∞

xi(t) = −l(x(0)), i ∈ V2

)
= 1. (38)

Proof. The proof is based on the following lemmas.

Lemma E.2 Fix α ∈ (0, 1) with α ̸= 1
2 . For the dynamics 37 with the random pair selection process,

there exists β∗(α) > 0 such that

P

(
lim sup
t→∞

max
i,j∈V

|xi(t)− xj(t)| = 2A

)
= 1

for almost all initial beliefs if β > β∗.

Lemma E.3 Fix α ∈ (1/2, 1) and β ≥ 2/(2α − 1). Consider the dynamics 37 with the random
pair selection process. Let G be the complete graph with κ(G+) ≥ 2. Suppose for time t there are
i1, j1 ∈ V with xi1(t) = −c and xj1(t) = c. Then for any ϵ ∈ [0, (2α − 1)c/2α] and any i∗ ∈ V ,
the following statements hold:

(i) There exist an integer Z(ϵ) and a sequence of node pair realizations, Gt+s(ω), for s =
0, 1, . . . , Z − 1, under which xi∗(t+ Z)(ω) ≤ −A+ ϵ.

(ii) There exist an integer Z(ϵ) and a sequence of node pair realizations, Gt+s(ω), for s =
0, 1, . . . , Z − 1, under which xi∗(t+ Z)(ω) ≥ A− ϵ.

Proof. From our standing assumption, the negative graph G− contains at least one edge. Let
k∗,m∗ ∈ V share a negative link. We assume the two nodes i1, j1 ∈ V labeled in the lemma are
different from k∗,m∗, for ease of presentation. We can then analyze all possible sign patterns among
the four nodes i1, j1, k∗,m∗. We present here just the analysis for the case with

{i1, k∗} ∈ E+, {i1,m∗} ∈ E+, {j1, k∗} ∈ E+, {j1,m∗} ∈ E+.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The other cases are indeed simpler and can be studied via similar techniques.

Without loss of generality we let xm∗(t) ≥ xk∗(t). First of all we select Gt = {i1, k∗} and
Gt+1 = {j1,m∗}. It is then straightforward to verify that

xm∗(t+ 2) ≥ xk∗(t+ 2) + 2αc.

By selecting Gt+2 = {m∗, k∗} we know from β ≥ 2
(2α−1) >

1
α that

xk∗(t+ 3) = −c, xm∗(t+ 3) = c.

There will be two cases:

(a) Let i∗ ∈ {m∗, k∗}. Noting that κ(G+) ≥ 2, there will be a path connecting to k∗ from i∗
without passing through m∗ in G+. It is then obvious that we can select a finite number Z1 of
links which alternate between {m∗, k∗} and the edges over that path so that xi∗(t+3+Z1) ≥
−c+ ϵ. Here Z1 depends only on α and n.

(b) Let i∗ ∈ {m∗, k∗}. We only need to show that we can select pair realizations so that xm∗

can get close to −c, and xk∗ gets close to c after t+ 3. Since G+ is connected, either m∗ or
k∗ has at least one positive neighbor. For the moment assume m′ is a positive neighbor of
m∗ and k′ is a positive neighbor of k∗ with m′ ̸= k′. Then from part (a) we can select Z2

node pairs so that
xm∗(t+ 3 + Z2) ≤ −c+ ϵ, xk∗(t+ 3 + Z2) ≥ c− ϵ.

Thus, selecting the negative edge {m∗, k∗} for t+5+Z2 implies xm∗(t+6+Z2) = c for β ≥ 2
(2α−1) .

The case with m′ = k′ can be dealt with by a similar treatment, leading to the same conclusion.

This concludes the proof of the lemma.

In view of Lemmas E.2 and E.3, the desired theorem is a consequence of the second Borel–Cantelli
Lemma.

F THE RELATIONSHIP OF OVERSMOOTHING AND THEOREM 4.1 AND
THEOREM 4.3

Discussion with training methods While Peng et al. (2024) questions the existence of oversmooth-
ing in trained GNNs, their observations are primarily based on specific experimental settings that may
not fully capture the oversmoothing challenge present in the literature. Specifically, the empirical
observations in Peng et al. (2024) are based on 10-layer GCNs, which, while useful for their argument,
may not represent the behavior of deeper networks or other GNN architectures. Moreover, Figure
2 in Peng et al. (2024) is based on a normalized metric, which might not be the most appropriate.
To see this point, suppose one wants to classify two points. In one case, we have 0.01 vs -0.01 and
in the other case, we have 100 vs -100. While the normalized distance considered in Peng et al.
(2024) would be the same for these two cases, the latter case has a much larger margin, and it would
be thus much easier to learn a classifier. On the other hand, Cong et al. (2021) suggests that the
trainability of deep GNNs is more of a problem than over-smoothing. However, over-smoothing
naturally presents challenges for training deep GNNs, as when oversmoothing happens, gradients
vanish across different nodes. Besides, Cong et al. (2021)compares 3 models GCN, ResGCN and
GCNII, proving that GCNII is the best backbone. We have adapted our SBP to GCNII in Table 13
and the results showed that our SBP outperforms GCNII on average, especially in the middle layers.

Measure on oversmoothing There exist a variety of different approaches to quantify over-
smoothing in deep GNNs, here we choose the measure based on the Dirichlet energy on graphs (Wu
et al., 2023a; Rusch et al., 2023).

ϵ(X(t)) =
1

v
Σi∈V Σj∈Ni

||xi(t)− xj(t)||22, (39)

where v is the number of the nodes, xi(t) is the node feature of node i at time t. Ni represents the
neighbor set of node i, In the signed graph, it including nodes connected to i by both positive and
negative edges. Oversmoothing means that when the layers are infinity, all of the node features will
converge, that is to say limt→∞ ϵ(X(t)) → 0.

In Theorem 4.1, there are 2 cases:
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(a) structural balance (b) weakly structural balance (c) unbalance

Figure 6: Examples of structural balanced (left), weakly structural balanced (middle), and unbalanced
signed graphs (right). Here red lines represent positive edges; black dashed lines represent negative
edges; gray and blue circles represent nodes from different labels

• ifβ < β∗, then we have limt→∞ xi(t) =
∑n

j=1 xj(0)/n for all initial values x(0)

• ifβ > β∗, then limt→∞ ∥x(t)∥ = ∞ for almost all initial values w.r.t. Lebesgue measure.

In the first case, all the node features will coverage to the mean of them and therefore
limt→∞ ϵ(X(t)) → 0, then oversmoothing happens. In the second case, the node features will
diverge to infinity and thus limt→∞ ϵ(X(t)) → 0 or ∞ which is also not what we want.

Theorem 4.1 demonstrated that both insufficient repulsion and excessive repulsion caused by the
negative graph can hinder performance in signed graph propagation. From this, we conclude
that relying solely on the negative signs is insufficient to alleviate oversmoothing. Therefore, we
propose the provable solution: a structurally balanced graph to efficiently alleviate oversmoothing in
Theorem 4.3. Specifically, we have the following conclusion from the structurally balanced graph in
Theorem 4.3:

P
(
lim
t→∞

xi(t) = l(x(0)), i ∈ V1; lim
t→∞

xi(t) = −l(x(0)), i ∈ V2

)
= 1. (40)

Then we have:

lim
t→∞

ϵ(X(t)) = lim
t→∞

1

v
Σi∈V Σj∈Ni

||xi(t)− xj(t)||22 (41)

= lim
t→∞

1

v
Σi∈V1Σj∈Ni ||xi(t)− xj(t)||22 +

1

v
Σi∈V2Σj∈Ni ||xi(t)− xj(t)||22 (42)

= lim
t→∞

1

v
Σi∈V1Σj∈Ni,yi ̸=yj ||xi(t)− xj(t)||22 +

1

v
Σi∈V2Σj∈Ni,yi ̸=yj ||xi(t)− xj(t)||22

(43)

= lim
t→∞

1

v
Σi∈V1

v

2
× 2c+

1

v
Σi∈V2

v

2
× 2c (44)

= lim
t→∞

1

v
(
v

2
× v

2
× 2c+

v

2
× v

2
× 2c) (45)

= vc ≥ 0 (46)

So Theorem 4.3 proves that under certain conditions, structural balance can alleviate oversmoothing
even when the layers are infinity.

G EXTENSION OF STRUCTURAL BALANCE

To clarify the concept of structural balance, weakly structural balance and unbalance signed graph,
we give the examples as shown in Figure 6. The notion of structural balance can be weakened in the
following definition G.1.
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Definition G.1 A signed graph G is weakly structurally balanced if there is a partition of V into
V = V1 ∪ V2 ∪ . . . ∪ Vm, m ≥ 2 with V1, . . . , Vm being nonempty and mutually disjoint, where any
edge between different Vi’s is negative, and any edge within each Vi is positive.

Then we show that when G is a complete graph, weak structural balance also leads to clustering of
node states.

Theorem G.2 (Shi et al. (2019), Theorem 10) Assume that node i interacts with node j and xi(t)
represents the value of node i at time t. Let θ = α if the edge {i, j} is positive and θ = β if the edge
{i, j} is negative. Consider the constrained signed propagation update:

xi(t+ 1) = Fc((1− θ)xi(t) + θxJ(t)). (47)

Let α ∈ (0, 1/2). Assume that G is a weakly structurally balanced complete graph under the partition
V = V1 ∪ V2 · · · ∪ Vm. When β is sufficiently large, for almost all initial values x(0) w.r.t. Lebesgue
measure, there exists m random variable l1(x(0)), l2(x(0)), . . . , lm(x(0)), each of which taking
values in {−c, c} such that

P
(
lim
t→∞

xi(t) = lj(x(0)), i ∈ Vj , j = 1, . . . ,m
)
= 1. (48)

H DISCUSSION ABOUT SID

We give the details of CSBM and a more clear formula of SID, P and N as suggested in Tabel 2 in
this section.

H.1 DEFINITION OF CSBM

To quantify the structural balance of the mentioned methods, we simplified the graph to 2-
CSBM(N, p, q, µ1, µ2, σ

2) following Wu et al. (2023b). It consists of two classes C1 and C2 of
nodes of equal size, in total with N nodes. For any two nodes in the graph, if they are from the same
class, they are connected by an edge independently with probability p, or if they are from different
classes, the probability is q. For each node v ∈ Ci, i ∈ {1,−1}, the initial feature Xv is sampled
independently from a Gaussian distribution N (µi, σ

2), where µi = Ci, σ = I . In this paper, we
assign N = 100 and the feature dimension is 8.

H.2 MEASURE OF SID

P =
1

|V |
∑
v∈V

Number of nodes who have the same label as v and the non-positive edge. (49)

N =
1

|V |
∑
v∈V

Number of nodes who have the different label from v and the non-negative edge.

(50)

SB =
1

2
(P +N ) (51)

H.3 PROOF OF PROPOSITION 4.6

Proposition H.1 For a structural balanced complete graph G, we have SID(G) = 0.

Proof To better understand, we give an example of the structural balance graph as shown in Figure 7.
we can see that for a node v, P(v) = 0 and N (v) = 0 due to the structural balance complete graph
assumption. So SID(G) = 0.

H.4 MORE OBSERVATIONS OF SID

Apart from Table 2 on CSBM, we further present the Structural Imbalance Degree (SID) for Cora
across different methods in Table 5. As the performance of these methods is similar in shallow layers
(2), we focus on layer 16 to showcase the results.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

structural balance complete graph

Figure 7: Example of structural complete graph. Here red lines represent positive edges; black dashed
lines represent negative edges; gray and blue circles represent nodes from different labels

Table 5: SID on Cora datasets. We implement all of the methods on SGC under 100 epochs and the
accuracy is the result.

label-SBP feature-SBP BatchNorm ContraNorm Residual DropEdge
P 482.1123 482.1123 482.1123 482.1123 482.5137 484.2075
N 0.7408 0.7408 0.7408 0.7408 2221.7305 2221.7305

SID 241.4265 241.4265 241.4265 241.4265 1352.1221 1352.9620
Accuracy 77.43 ± 1.49 77.22 ± 0.55 70.79 ± 0.00 63.35 ± 0.00 40.91 ± 0.00 22.24 ± 3.04

We have two key observations: 1) Methods with higher SID generally lead to worse accuracy, while
those with lower SID tend to produce better accuracy. 2) SID is a coarse-grained metric; different
methods can yield the same SID values while their performance varies. These observations can also
align with the experiments in cSBM in Table 2. The observation may stem from the fact that structural
balance is an inherent property of graph structure, which is challenging to measure precisely using a
numerical metric like SID. Proposition 4.6 in the paper proves that when SID = 0, the graph is
structurally balanced. However, for graphs that are not structurally balanced, the properties remain
unclear. For future work, we aim to develop a more nuanced metric to quantify the structural balance
property of graphs.

I PROOF OF PROPOSITION 4.7

Proposition I.1 Assume that node label classes are balanced |Y1| = |Y2| and denote the ratio
of labelled nodes as p. Then we have that the signed graph adjacency matrix As = A − Al and
SID(G) ≤ (1−p)n2 , where SID decreases with a larger labelling ratio p. In particular, when p = 1
(full supervision), we have SID(G) = 0, i.e., a perfectly balanced graph. Under the constrained
signed propagation equation 3, the nodes from different classes will converge to distinct constants.

Proof. Without loss of generality, assume that the node feature has been normalized which means
that ||xi||2 = 1 for every i. If xi and xj has the same label, then we have that, (As)i,j = (A)i,j+1 >
1. If xi and xj has different labels, then we have that (As)i,j = (A)i,j − 1 ≤ 0.

We first prove that SID(G, p) ≤ (1− p)n2 where n is the nodes number and p is the label ratio. We
have that

P(v) +N (v) ≤ (1− p)n , (52)
because for a single node v only the remaining (1− p)n nodes’ labels are unknown and therefore
their edges may need to change so that

SID(G) = 1

2n

∑
v∈G

(|P(v)|+ |N (v)|)

≤ 1

2n

∑
v∈G

(1− p)n

= (1− p)
n

2
.

(53)
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We know that when SID(G) = 0, then we have that the nodes V set can be divided into V1∪V1 · · ·∪
VL where L is the number of the node classes. There are only positive edges with the node subset
and only negative edges between the node subset.

Since C = 2, the node set can be divided into V1 and V2, the signed graph is structurally balanced.
According to Theorem 4.3, we have that the nodes in V1 will converge to the c where ||c||2 = 1 and
the nodes in V2 will converge to −c. Thus under Label-SBP propagation, the oversmoothing will
only happen within the same label and repel different labels to the boundary.

J MORE DISCUSSION ON STRUCTURAL BALANCED PROPAGATION

The overall update of Structural Balanced Propagation is as following:
X(k) = Layernorm{(1− λ)X(k−1) + λ(αA+X(k−1) − βA−X(k−1))}, (54)

Our methods adopt the normalized adjacency matrix as the positive graph A+ = Â, while use
different negative graphs. Although both the positive and negative graphs have hyperparameters, we
do not carefully adjust the hyperparameters. Instead, we fix α = 1 and only select the best value for
β. You can also change α and β together to achieve the best performance.

Label-Induced Negative Graph The negative graph for Label-SBP is:

A−
ij =


1 if i,j has the different labels,
−1 if i,j has the same labels,
0 if i,j has the unknown labels.

(55)

For practice, we apply softmax to it:
Ã− = softmax(A−). (56)

Applying softmax makes the negative graph the row-stochastic which is a non-negative matrix with
row sum equal to one. We also tried the normalization method, which is not as good as the softmax.
This may be because the softmax method is more aligned with the row-stochastic adjacency, where
every element is non-negative.

Similarity-Induced Negative Graph The negative graph for Feature-SBP is:
A− = −X(0)X(0)T (57)

We also attempted using the last layer node features for the negative graph, but they are not as
effective as the initial layer node features. This may be due to oversmoothing as the layers go deeper.
For practice, we apply softmax as the Label-SBP to it:

Ã− = softmax(−XXT ) (58)

K TIME COMPLEXITY ANALYSIS AND THE MODIFIED SBP

Label-SBP As shown in equation 7, we maintain the positive adjacency matrix A+ = Â and
construct the negative adjacency matrix Al by assigning 1 when nodes i, j have different labels, -1
when they share the same label, and 0 when either label is unknown. We then apply softmax to
Al to normalize the negative adjacency matrix. The overall signed adjacency matrix is Asign =
αA+ − βsoftmax(Al), where α and β are hyperparameters. Given nt training nodes and d edges
in the graph, our Label-SBP increases the edge count from O(d) to O(n2

t ), thereby increasing the
computational complexity to O(n2

td).

Feature-SBP When labels are unavailable, we propose Feature-SBP, which uses the similarity
matrix of node features to create the negative adjacency matrix. As depicted in equation 7, we design
the negative adjacency matrix as Af = −X0X

T
0 . We then apply softmax to Af to normalize it.

The overall matrix follows the same format as Label-SBP: Asign = αA+ − βsoftmax(Af ), where
α and β are hyperparameters. The additional computational complexity primarily stems from the
negative graph propagation, which involves X0X

T
0 ∈ Rn×n, increasing the overall complexity to

O(n2d).

We show the computation time of different methods in the Table 6. On average, we improve
performance on 8 out of 9 datasets (as shown in Table 3) with less than 0.05s overhead—even faster
than three other baselines. We believe this time overhead is acceptable given the benefits it provides.
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Table 6: Estimated training time of SBP on Cora dataset. All experiments are run under 2 layers. s is
the abbreviation for second. Precompute time is the aggregation time across layers, train time is the
update time of the SGC weight W , total time is the sum of them.

Label-SBP Feature-SBP BatchNorm ContraNorm Residual JKNET DAGNN SGC
Precompute time 0.1809s 0.1520s 0.1860s 0.1888s 0.0604s 0.0577s 0.1438s 0.1307s

Train time 0.1071s 0.1060s 0.1076s 0.1038s 0.1368s 0.1446s 0.1348s 0.1034s
Total time 0.2879s 0.2580s 0.2935s 0.2926s 0.1972s 0.2023s 0.2786s 0.2341s

Rank 6 4 8 7 1 2 5 3

Scalability of SBP on large-scale graph For large-scale graphs, we introduce a modified version
by only removing edges when pairs of nodes belong to different classes. This approach allows
our modified Label-SBP to eliminate the computational overhead of the negative graph, further
enhancing the sparsity of large-scale graphs. For Feature-SBP, as the number of nodes n increases,
the complexity of this matrix operation grows quadratically, i.e., o(n2d). To address this, we
reorder the matrix multiplication from −X0X

T
0 ∈ Rn×n to −XT

0 X0 ∈ Rd×d. This preserves the
distinctiveness of node representations across the feature dimension, rather than across the node
dimension as in the original node-level repulsion. The modified version of Feature-SBP can be
expressed as:

(Feature-SBP-v2) Xk = (1− λ)X(k−1) + λ(αÂX(K) − βX(K)softmax(−XT
0 X0)) (59)

This transposed alternative has a linear complexity in the number of samples, i.e., O(nd2). In cases
where n ≫ d, this modified version significantly reduces the computational burden.

We compare the compute time SBP with other baselines on ogbn-arxiv dataset over 100 epochs for
a fair comparison. Among all the training times of the baselines, our Label-SBP-v2 achieves the
3rd fastest time while Feature-SBP-v2 ranks 5th. Therefore, we recommend using Label-SBP-v2
for large-scale graphs since they typically have a sufficient number of node labels. We believe that
although there is a slight time increase, it is acceptable given the benefits.

Table 7: Estimated training time of SBP on ogbn-arixv dataset. All experiments are run under 2
layers and 100 epochs. s is the abbreviation for second.

Label-SBP Feature-SBP BatchNorm ContraNorm DropEdge SGC
Train time (s) 5.5850 6.1333 5.3872 5.8375 9.5727 5.3097

Rank 3 5 2 4 6 1

L DETAILS OF EXPERIMENTS

The code for the experiments will be available when our paper is acceptable. We will replace
this anonymous link with a non-anonymous GitHub link after the acceptance. We implement all
experiments in Python 3.9 with PyTorch Geometric on one NVIDIA Tesla V100 GPU.

L.1 DETAILS OF THE DATASET

Table 8: Summary of datasets. H(G) refers to the edge homophily level: the higher, the more
homophilic the dataset is.

Dataset H(G) Classes Nodes Edges

Cora 0.81 7 2,708 5,429
Citeseer 0.74 6 3,327 4,732
PubMed 0.80 3 19,717 44,338

Texas 0.21 5 183 295
Cornell 0.30 5 183 280
Amazon-ratings 0.38 5 24,492 93,050
Wisconsin 0.11 5 251 466
Squirrel 0.22 4 198,493 2,089

Ogbn-Arxiv 0.65 40 16,9343 1,166,243
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We consider two types of datasets: Homophilic and Heterophilic. They are differentiated by the
homophily level of a graph.

H =
1

|V |
∑
v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

.

The low homophily level means that the dataset is more heterophilic when most of the neighbors are
not in the same class, and the high homophily level indicates that the dataset is close to homophilic
when similar nodes tend to be connected. In the experiments, we use four homophilic datasets,
including Cora, CiteSeer, PubMed, and Ogbn-Arxiv, and four heterophilic datasets, including Texas,
Wisconsin, Cornell, Squirrel, and Amazon-rating (Platonov et al., 2023)). The datasets we used
covers various homophily levels.

L.2 EXPERIMENTS SETUP

For the SGC backbone, we follow the Wang et al. (2021) setting where we run 10 runs for the fixed
seed 42 and calculate the mean and the standard deviation. Furthermore, we fix the learning rate and
weight decay in the same dataset and run 100 epochs for every dataset. For the GCN backbone, we
follow the Guo et al. (2023) settings where we run 5 runs from the seed {0, 1, 2, 3, 4} and calculate
the mean and the standard deviation. We fix the hidden dimension to 32 and dropout rate to 0.6.
Furthermore, we fix the learning rate to be 0.005 and weight decay to be 5e− 4 and run 200 epochs
for every dataset. We use the default splits in torch_geometric. We use Tesla-V100-SXM2-32GB in
all experiments.

L.3 RESULTS ANALYSIS

L.3.1 CSBM RESULTS

The comparative results of Label-SBP and Feature-SBP against SGC are presented in Table 9.
As the number of layers increases, SGC’s node features suffer from oversmoothing, causing the
two classes to converge and accuracy to drop by nearly 30 points from its peak at 2 layers, down
to 45%. Conversely, after 300 layers, SBP maintains strong performance, with node features of
different classes repelling each other. This effect limits oversmoothing to within-class interactions,
and improves performance from 85 to 91 in Label-SBP and from 48 to 82 in Feature-SBP, further
substantiating our approach to mitigating oversmoothing.

We visualize the node features learned by Label-SBP in Figure 9. We can see that from layer 0 to
layer 200, the node features from different labels repel each other and aggregate the node features
from the same labels. And we also visualize the adjacency matrix of Label-SBP and Feature-SBP in
Figure 10 and Figure 11 respectively, further verifying the effectiveness of our theorem and insights.
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(a) SGC, acc= 47.50
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(b) Feature-SBP, acc= 80.00
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(c) Label-SBP, acc= 97.50

Figure 8: The t-SNE visualization of the node features and the classification accuracy from 2-CSBM
and Layer= 300. Left is the result of the vallina SGC, and the middle and right are the results of
SBP.

L.3.2 GCN RESULTS

The results for GCN are detailed in Table 10, respectively. Overall, SBP consistently outperforms all
previous methods, especially in deeper layers. Beyond 16 layers in GCN, SBP maintains superior
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L=0 L=1 L=10

L=50 L=100 L=200

Figure 9: CSBM node features visualization. We update the features by Label-SBP. L is the
propagation layer number. 0,1 represent different classes.

(a) positive graph (b) negative graph (c) overall signed graph

Figure 10: The visualization of the adjacency matrix of Label-SBP. Here left is the positive graph;
middle is the negative graph; right is the overall signed graph.

performance, affirming the effectiveness of our approach. Notably, SBP exceeds the best results of
prior methods by at least 10% and up to 30% points in GCN’s deepest layers, marking significant
improvements. Moreover, unlike previous methods that perform best in shallow layers, SBP excels in
moderately deep layers, as observed in GCN across all datasets. This further confirms the effectiveness
of SBP.

L.3.3 REPULSION ABLATION ON HETEROPHILIC DATASETS

Our method SBP can outperform other baselines under β = 1 across different layers, so we do not
tune our hyper-parameters carefully. However, since β is the weight of the negative adjacency matrix
(equation 7) representing the repulsion between different nodes, as seen in Figure 4 and 5, the best
performance of SBP appears when β is larger in the heterophilic graphs, so the result in Figure 3a(a)
is not the best performance of our SBP. To further show the effectiveness of our SBP, we conduct
experiments on Cornell with different β in Table 11, the best β is 20 where the performance increases
25 points in deep layer 50.
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(a) positive graph (b) negative graph (c) overall signed graph

Figure 11: The visualization of the adjacency matrix of Feature-SBP. Here left is the positive graph;
middle is the negative graph; right is the overall signed graph.

Table 9: CSBM test accuracy (%) comparison results. The best results are marked in blue on each
layer. The second best results are marked in gray on each layer. We run 10 runs for the seed from
0− 9 and demonstrate the mean ± std in the table.

Model #L=2 #L=5 #L=10 #L=20 #L=50 #L=100 #L=200

SGC 73.25 ± 6.90 44.50 ± 9.34 45.75 ± 9.36 45.75 ± 9.36 45.75 ± 9.36 45.75 ± 9.36 45.75 ± 9.36
Feature-SBP 48.75 ± 5.62 53.75 ± 6.45 63.75 ± 6.25 77.00 ± 5.45 82.00 ± 4.58 82.50 ± 5.12 82.00 ± 5.45
Label-SBP 85.75 ± 4.04 93.50 ± 4.06 93.50 ± 3.57 93.50 ± 3.57 92.25 ± 3.44 93.25 ± 3.72 91.25 ± 6.05

L.3.4 PERFORMANCE OF SBP ON MORE BENCHMARKS

We further compare our SBP with SGC on six additional datasets (Platonov et al., 2023) in Table 12.
Our SBP outperforms SGC on five out of these six datasets. We believe that these six datasets,
combined with the nine datasets presented in Table 3 of our paper, provide sufficient evidence to
demonstrate the effectiveness of our approach.

L.3.5 COMBINE SBP TO OTHER METHODS

In this paper, we focus on introducing a novel theoretic signed graph perspective for oversmoothing
analysis, so we do not take many tricks into account or carefully fine-tune our hyperparameters.
Thus, our results in the paper are not as comparable to previous baselines (Chen et al., 2020b; Luan
et al., 2022; Eliasof et al., 2021). However, existing oversmoothing researches are indeed hard to
compare, because they are often composed of multiple techniques — such as residual, BatchNorm,
data augmentation — and the parameters are often heavily (over-)tuned on small-scale datasets. And
it becomes clear that to attain SOTA performance, one needs to essentially compose multiple such
techniques without fully understanding their individual roles. For example, GCNII uses both initial
residual connection and identity map, futher combined with dropout.

Our goal is to provide a new unified understanding of these techniques, so we justified it by showing
that SBP as a single simple technique can attain good performance. And we believe that it would
work complementarily with other techniques in the field, because oversmoothing is still challenging
to solve with a very larger depth.

To further verify the effectiveness, we combine our SBP to one of the SOTA settings GCNII (Chen
et al., 2020b) and the results are as seen in Table 13. The results indicate that after combining our
method, GCNII demonstrates greater robustness as the layers go deeper, particularly in the middle
layers (layer=8), highlighting the efficacy of our signed graph insight.

L.3.6 PERFORMANCE OF SBP ON LARGE-SCALE GRAPHS

We conducted experiments with a larger graph ogbn-products than ogbn-arxiv under 100 epochs and
2 layers in Table 14. The results indicate that our SBP outperforms the initial GCN baselines. Given
the results presented for ogbn-arxiv in Table 5 of our paper, we believe these findings adequately
demonstrate the performance of our SBP on large-scale graphs.
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Table 10: GCN test accuracy (%) comparison results. The best results are marked in blue and the
second best results are marked in gray on every layer. We run 5 runs for the seed from 0 − 4 and
demonstrate the mean ± std in the table.

Model #L=2 #L=4 #L=8 #L=16 #L=32 #L=64

Cora (McCallum et al., 2000)

GCN (Kipf & Welling, 2017) 80.68 ±0.09 79.69 ±0.00 74.32 ±0.00 30.95 ±0.00 30.95 ±0.00 24.85 ±7.46
GAT (Veličković et al., 2018) 81.48 ± 0.48 80.69 ± 0.93 58.59 ± 1.95 25.17 ± 5.67 31.93 ± 0.21 28.38 ± 0.00
wGCN (Eliasof et al., 2022) 80.97 ± 0.28 80.51 ± 0.00 80.46 ± 1.77 70.53 ± 22.09 80.02 ± 0.12 27.90 ± 6.09
BatchNorm (Ioffe & Szegedy, 2015) 78.09 ±0.00 77.87 ±0.02 73.62 ±0.57 70.79 ±0.00 53.90 ±2.19 35.32 ±3.41
PairNorm (Zhao & Akoglu, 2019) 79.01 ±0.00 78.26 ±0.50 73.21 ±0.00 62.96 ±0.00 48.13 ±0.91 44.01 ±3.46
ContraNorm (Guo et al., 2023) 81.55 ±0.21 79.61 ±0.75 77.71 ±0.00 63.35 ±0.00 44.56 ±4.83 38.97 ±0.00
DropEdge (Rong et al., 2019) 78.38 ±0.00 74.47 ±0.00 26.91 ±0.83 22.24 ±3.04 27.18 ±0.00 25.98 ±6.00
Residual 80.68 ±0.09 78.77 ±0.00 79.26 ±0.21 40.91 ±0.00 30.95 ±0.00 27.90 ±6.09

Feature-SBP 80.44 ±0.83 79.26 ±1.18 78.56 ±0.59 77.22 ±0.55 73.65 ±0.48 61.62 ±5.24
Label-SBP 80.31 ±0.70 79.16 ±1.30 79.50 ±0.00 77.43 ±1.49 74.52 ±0.36 65.02 ±2.97

CiteSeer (Giles et al., 1998)

GCN (Kipf & Welling, 2017) 67.45 ±0.54 65.62 ±0.25 37.22 ±2.46 22.03 ±4.76 19.65 ±0.00 19.65 ±0.00
GAT Veličković et al. (2018) 69.91 ± 0.86 67.47 ± 0.22 44.71 ± 3.07 23.48 ± 1.36 24.40 ± 0.40 25.95 ± 2.17
wGCN (Eliasof et al., 2022) 66.21 ± 0.63 66.49 ± 0.69 66.79 ± 0.00 57.54 ± 18.94 19.65 ± 0.00 19.65 ± 0.00
BatchNorm (Ioffe & Szegedy, 2015) 63.44 ±0.94 62.34 ±0.25 61.36 ±0.00 50.58 ±1.24 41.41 ±0.00 35.00 ±1.09
PairNorm (Zhao & Akoglu, 2019) 63.58 ±0.63 64.32 ±0.95 61.95 ±1.24 50.06 ±0.00 37.21 ±1.87 36.09 ±0.07
ContraNorm (Guo et al., 2023) 66.83 ±0.49 64.78 ±0.92 60.70 ±0.60 44.79 ±1.65 37.36 ±0.25 30.85 ±0.81
DropEdge (Rong et al., 2019) 63.86 ±0.03 62.24 ±0.90 24.73 ±5.72 20.65 ±0.00 20.04 ±0.19 19.95 ±0.09
Residual 67.45 ±0.54 66.21 ±0.16 67.34 ±0.00 33.21 ±0.00 19.65 ±0.00 19.65 ±0.00

Feature-SBP 67.38 ±0.66 66.94 ±0.00 66.29 ±0.02 65.35 ±1.99 61.43 ±0.00 42.09 ±1.65
Label-SBP 67.23 ±0.64 66.72 ±0.00 66.29 ±0.89 65.50 ±2.13 59.93 ±0.85 44.41 ±1.57

PubMed (Canese & Weis, 2013)

GCN (Kipf & Welling, 2017) 76.44 ±0.34 76.52 ±0.32 69.58 ±5.89 39.92 ±0.00 39.92 ±0.00 39.92 ±0.00
+BatchNorm (Ioffe & Szegedy, 2015) 75.52 ±0.12 77.15 ±0.00 77.10 ±0.00 76.92 ±0.00 75.43 ±0.00 69.33 ±1.01
+PairNorm (Zhao & Akoglu, 2019) 75.66 ±0.11 76.71 ±0.00 77.99 ±0.00 77.22 ±0.39 75.52 ±2.02 71.22 ±3.68
+ContraNorm (Guo et al., 2023) 76.05 ±0.33 78.42 ±0.00 OOM OOM OOM OOM
+DropEdge (Rong et al., 2019) 73.41 ±0.03 73.96 ±0.79 52.51 ±10.91 40.27 ±0.00 39.90 ±0.59 40.08 ±0.39
+Residual 76.44 ±0.34 77.28 ±0.00 77.38 ±0.00 63.14 ±3.05 39.92 ±0.00 39.92 ±0.00

Feature-SBP 75.72 ±0.06 76.84 ±0.00 78.39 ±0.00 79.71 ±0.00 77.59 ±0.23 78.06 ±0.13
Label-SBP 76.33 ±0.25 76.91 ±0.00 77.60 ±0.49 76.31 ±0.00 77.17 ±0.67 78.01 ±0.16

Table 11: Ablation study of negative weight β on Cornell dataset.

Layer 2 5 10 20 50
β = 0.1 72.97 ± 0.00 67.57 ± 0.00 51.53 ± 0.00 35.14 ± 0.00 29.73 ± 0.00

β = 1 (default) 72.97 ± 0.00 67.57 ± 0.00 51.53 ± 0.00 45.95 ± 0.00 35.14 ± 0.00
β = 10 70.27 ± 0.00 67.57 ± 0.00 58.11 ± 1.35 51.53 ± 0.00 51.53 ± 0.00

β = 20 (best) 70.27 ± 0.00 70.27 ± 0.00 67.57 ± 0.00 59.46 ± 0.00 59.46 ± 0.00
β = 50 64.60 ± 0.00 40.54 ± 0.00 40.54 ± 0.00 40.54 ± 0.00 40.54 ± 0.00

L.3.7 FURTHER OPTIMIZATION BASED ON SBP

Based on the experiment results, we want to propose 2 strategies for further optimization.

1) hyper-parameter tuning on the negative weight β. As seen in Figures 4 and 5, we found that β
influences the performance a lot, our default β = 1 for Table 3 and 4 is certainly not optimal for the
above 4 homophilic datasets. We suggest tuning higher β for the heterophilic graphs since they need
more repulsion and smaller for the homophilic datasets. As the layer deepens, maybe greater weight
should be placed on the negative adjacency graphs to alleviate oversmoothing.

2) adapt our SBP to more effective GNNs. Our method is simple, architecture-free, without ad-
ditional learnable parameters, and thus can be flexibly applied in various architectures. As seen
in Appendix L.3.5, we adapt our SBP to the GCNII models, and the results increase more than

Table 12: Performance Comparison on more datasets

actor penny94 roman-empire Tolokers Questions Minesweeper
SGC 29.18 ± 0.10 72.56 ± 0.05 40.83 ± 0.03 78.18 ± 0.02 97.09 ± 0.00 80.43 ± 0.00

Feature-SBP 34.93 ± 0.02 75.68 ± 0.01 66.48 ± 0.02 78.24 ± 0.04 97.14 ± 0.02 80.00 ± 0.00
Label-SBP 34.94 ± 0.00 75.74 ± 0.01 66.32 ± 0.01 78.46 ± 0.08 97.15 ± 0.02 80.00 ± 0.00
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Table 13: Performance Comparison between SBP and GCNII under the GCNII settings on Cora and
Citesser datasets

2 4 8 16 32 64

Cora
GCNII 78.58 ± 0.00 77.76 ± 0.24 73.47 ± 3.82 78.12 ± 1.32 82.54 ± 0.00 81.34 ± 0.53

Label-SBP 78.74 ± 1.54 78.87 ± 0.00 79.14 ± 0.35 79.17 ± 0.41 80.86 ± 0.32 81.38 ± 0.30
Feature-SBP 77.95 ± 0.91 78.82 ± 0.00 78.11 ± 1.62 78.82 ± 0.29 81.82 ± 0.47 81.65 ± 0.40

Citesser
GCNII 61.66 ± 0.67 63.23 ± 2.31 64.58 ± 2.66 66.21 ± 0.64 69.38 ± 0.83 69.73 ± 0.26

Label-SBP 65.31 ± 0.63 63.93 ± 3.66 68.33 ± 0.99 66.46 ± 0.00 70.00 ± 0.81 69.47 ± 0.25
Feature-SBP 65.63 ± 0.87 64.43 ± 3.55 68.44 ± 1.19 66.94 ± 0.00 69.98 ± 0.93 69.66 ± 0.28

Table 14: Performance of different models on ogbn-products dataset. Time means the runtime, the
format is (hour: minutes: seconds).

Method Accuracy Time
GCN 73.96 00:06:33
BatchNorm 74.93 00:06:18
Feature-SBP 74.90 00:06:43
Label-SBP 76.62 00:06:39

adaptation in vanilla GNN as shown in Table 3 and 4. Besides, compared to the GCNII, our SBP is
more robust and stable to the layers as seen in Table 13.
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