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ABSTRACT

We give online algorithms for k-MEANS (more generally, (k, z)-CLUSTERING)
with nearly optimal consistency (a notion suggested by Lattanzi & Vassilvitskii
(2017)). Our result turns any α-approximate offline algorithm for clustering into
a (1+ ϵ)α2-competitive online algorithm for clustering with O(k poly log n) con-
sistency. This consistency bound is optimal up to poly log(n) factors. Plugging
in the offline algorithm that returns the exact optimal solution, we obtain the first
(1+ ϵ)-competitive online algorithm for clustering that achieves a linear in k con-
sistency. This simultaneously improves several previous results (Lattanzi & Vas-
silvitskii, 2017; Fichtenberger et al., 2021). We validate the performance of our
algorithm on real datasets by plugging in the practically efficient k-MEANS++
algorithm. Our online algorithm makes k-MEANS++ achieve good consistency
with little overhead to the quality of solutions.

1 INTRODUCTION

The well-known k-MEANS clustering algorithm has been employed extensively in machine learning
applictions. The input is a set of points P in Rd and a parameter k ≥ 1. The goal is to find a set
of k centers C ⊂ Rd such that the cost function cost(P,C) :=

∑
x∈P (dist(x,C))2 is minimized,

where dist(x,C) := minc∈C dist(x, c) and dist(x, c) := ∥x − c∥2. k-MEANS is tightly related to
k-MEDIAN, and the only difference is that the cost function of k-MEDIAN takes sum of distances
without squaring.

We focus on online versions of k-MEANS. The online setting captures the practical scenario of
evolving datasets and the requirement of making prompt decisions. In a typical online setting, data
points arrive in an arbitrary order, and the algorithm must decide immediately, without knowing the
entire input, whether and where to define a new center (and the data points are automatically assigned
to the nearest center). As usual, the performance of an online clustering algorithm is measured by
the competitive ratio, which is the ratio between the algorithm’s k-MEANS cost and the optimal
k-MEANS cost (with full information). The central challenge in the setting is that the decision must
be made without knowing the information of the entire dataset, and the competitive ratio exactly
captures this difficulty.

Unfortunately, online clustering is very sensitive to incomplete information, and it has been shown
to admit strong lower bounds (Liberty et al., 2016) so that relaxations must be made to allow any
finite competitive ratio. One natural relaxation is to allow recourse of decisions, and this has been
formulated by Lattanzi & Vassilvitskii (2017). Specifically, let Ci be the center set after the algo-
rithm processes the i-th input point, then the total recourse of the algorithm is

∑
i |Ci \ Ci−1|. This

quantity is called the consistency of the algorithm (Lattanzi & Vassilvitskii, 2017).

As shown by Lattanzi & Vassilvitskii (2017), there exists O(k2 poly(log n))-consistent O(1)-
competitive algorithms for k-MEANS and k-MEDIAN. They also show a lower bound that any
O(1)-competitive algorithm must be Ω(k poly(logn))-consistent. In a recent work by Fichten-
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berger et al. (2021), an O(1)-competitive algorithm with improved consistency O(k poly log(n))
for k-MEDIAN is given. All these results also work for general metric spaces.

Despite the progress, there is still a gap in the consistency vs competitive ratio tradeoff. In particular,
it is unclear if k-MEANS also admits O(1)-competitive ratio with O(k poly log(n))-consistency (as
in k-MEDIAN (Fichtenberger et al., 2021)). Moreover, the lower bound in Lattanzi & Vassilvitskii
(2017) does not rule out (1+ϵ) competitive ratio (although this might require an exponential running
in general). Lastly, existing consistent algorithms are specially designed to optimize the ratio and
might not be as efficient as practical algorithms such as k-MEANS++ (Arthur & Vassilvitskii, 2007),
so it would be useful to turn k-MEANS++, or more generally any offline clustering algorithm, into
an online algorithm with good consistency.

1.1 OUR RESULTS

Our main result, stated in Theorem 1.1, systematically addresses these challenges. Our algorithm
turns any α-approximate offline algorithm (α ≥ 1) into an online algorithm with (1 + ϵ)α2 com-
petitive ratio, with little overhead in time complexity. Moreover, no matter what offline algorithm
is used, it always achieves the nearly-optimal O(k poly log n) consistency. Importantly, this con-
sistency bound is nearly optimal up to poly log n factors, as is complemented by a lower bound
of Lattanzi & Vassilvitskii (2017).

Theorem 1.1 (Informal; see Theorem 3.1). Given an offline α-approximate algorithm for k-MEANS

that runs in T (n) time, there exists an Õϵ(k)-consistent1 (1+ ϵ)α2-competitive algorithm for online
k-MEANS, and the running time is Õϵ(nk + k3 · T (Õϵ(k))).

We notice that the formal statement of this result more generally works for (k, z)-CLUSTERING
(see Definition 2.1, which particularly contains k-MEDIAN), in addition to k-MEANS. Moreover,
although we state our results in Euclidean Rd which is a typical case for clustering, our results also
apply to general metrics. Our bound actually has a dependency on poly(log∆) factor, where ∆ is the
aspect ratio of the dataset. This is necessary (for any constant ratio) as mentioned in Fichtenberger
et al. (2021), and that one can typically assume ∆ = poly(n) so that poly(log∆) translates to
poly(log n).

As an important corollary, if one plugs in the brute-force exact offline algorithm (which may run in
exponential time), Theorem 1.1 leads to a (1+ ϵ)-competitive O(k poly log n)-consistent algorithm
for k-MEANS (and for general (k, z)-CLUSTERING). This is the first (1 + ϵ)-competitive algorithm
for any clustering problem with nontrivial consistency, while simultaneously achieving a nearly
optimal consistency bound, hence fundamentally improves all relevant previous works (Lattanzi &
Vassilvitskii, 2017; Fichtenberger et al., 2021) in ratio and/or consistency. Note that this 1 + ϵ ratio
is nontrivial even allowing infinite computational power.

Experiments. While the mentioned 1 + ϵ bound is powerful, it is mostly of theoretical value
because of the exponential running time. Thanks to the generality of Theorem 1.1, we are able to
plug in a widely-used efficient algorithm, k-MEANS++ (Arthur & Vassilvitskii, 2007), to obtain
an efficient consistent online clustering algorithm. We validate (in Section 5) the performance for
this new consistent k-MEANS++ on 3 real datasets, and compare with the vanilla k-MEANS++ as
well as a previous algorithm (Lattanzi & Vassilvitskii, 2017), as baselines. Our experiments show
that with a cost similar to k-MEANS++ and the algorithm in Lattanzi & Vassilvitskii (2017), our
algorithm achieves much lower consistency.

1.2 TECHNICAL OVERVIEW

At a high level, our algorithm starts with maintaining a consistent ϵ-coreset. Roughly speaking, a
coreset (Har-Peled & Mazumdar, 2004) is a small proxy of the dataset, such that for every center
set, the cost on the coreset is within 1 ± ϵ to that of the original dataset. Our coreset is of size
Õϵ(k), and that the consistency is bounded by Õϵ(k). We build such a coreset by a modified ring
sampling technique (Chen, 2009; Cohen-Addad et al., 2021), and a very similar construction was
also introduced in Woodruff et al. (2023). We remark that similar steps are also employed in various

1Õϵ hides poly(ϵ−1 log(n)) factor.
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previous works (Lattanzi & Vassilvitskii, 2017; Fichtenberger et al., 2021), but they do not give
ϵ-coresets and hence it only leads to O(1)-approximation.

With such a small ϵ-coreset, we are able to reduce the problem to the case with size-bounded input.
In particular, we can work with inputs with length Õϵ(k), and it suffices to have Õϵ(k) total recourse.
This is simpler than the original problem, since it only requires an amortized Õϵ(1) recourse, instead
of o(1).

Our algorithm for this size-bounded input case is based on the framework of Fichtenberger et al.
(2021), but our implementation differs because the original framework only works for k-MEDIAN
and achieves only an O(1) approximation ratio. Roughly speaking, the algorithm processes input
points in batches (which we also call phases in our proof), using the following steps for each batch.
Suppose the algorithm starts with a set of exactly k centers C0 as the current solution. Before
processing any input point in the batch, it deletes the maximum number of centers from C0 such
that the cost of the resultant center set is still good enough; denoting the number of deleted centers
as ℓ and the new center set as C. Then for every input point p, the algorithm directly include p to the
current center set C, provided that |C| is still less than k. When |C| reaches k again, the algorithm
“forgets” C and operates on C0 to conclude the batch and build the initial solution for the next batch.
Specifically, it chooses Õϵ(ℓ) centers in C0, and then swaps them with the same number of centers
in the candidate center set.

Clearly, this procedure has amortized recourse Õϵ(1), so the consistency follows immediately. How-
ever, obtaining the claimed ratio is nontrivial, and it particularly requires very careful choice of
swapping centers. Next, we discuss how the deletion and swap is done in more detail. We focus
on the case where we have the access to the optimal k-MEANS solutions, and the goal is to achieve
(1 + ϵ)-competitive. We discuss at the end how our algorithm works with a general α-approximate
(offline) algorithm.

Procedure for deletion and swap. For the deletion step, the ℓ is defined as the maximum number
of centers that can be removed from C0 such that the resultant center set is (1+O(ϵ))-approximate.
The procedure for swap is more complicated and depends on the structure of “well separated pairs”,
which was also used in Fichtenberger et al. (2021) but only defined for constant approximation.
Given two center sets U and V , we define (u, v) as an ϵ-well separated pair for some u ∈ U and
v ∈ V , if dist(u, v) is ϵ times between the nearest neighbors in their respective center sets, namely,
dist(v, V \ {v}) and dist(u, U \ {u}). In our swapping procedure, we let U := C0 and V be the
optimal solution at the end of the phase (which is the time step when the swapping happens), and
identify the points in C0 that do not belong to a well separated pair.

Now, recall that in our algorithm outline we say the number of swapped points needs to be Õϵ(ℓ)
in order to bound the consistency. To show this, we need our first key lemma (Lemma C.13):
given a point set P and two center sets U and V , suppose U and V form t ϵ-well separated pairs,
then Ω(k − t) centers can be removed from U to form U ′, such that cost(P,U ′) ≤ cost(P,U) +
ϵ(cost(P,U) + cost(P, V )). Applying this key lemma with U := C0 and V being the optimal
solution to the point set at the end of the batch, it implies that ℓ ≥ Ω̃ϵ(k − t) (since we can assume
at any time step the optimal solution is within (1 ± ϵ) factor to each other). Observe that k − t is
precisely the number of swaps, and this is at most Õϵ(ℓ).

We remark that Fichtenberger et al. (2021) proves a weaker version of this lemma whose error
guarantee is only O(cost(P,U) + cost(P, V )), whereas ours is ϵ times of this. This is inherently
caused by the linear programming method used in their proof. In particular, due to the integrality
gap of linear programming which is a constant, this method cannot achieve a 1 + ϵ ratio like ours.
Furthermore, their linear programming analysis seems to only apply to k-MEDIAN, whereas our
general technique is suitable for general (k, z)-CLUSTERING (in particular k-MEANS). Our proof
cannot use linear programming, and it is inspired by the analysis of local search algorithms for the
clustering problem (Cohen-Addad et al., 2016; Friggstad et al., 2019).

Bounding the cost of swaps. We next describe how we bound the cost of the swap step. We use
a similar strategy as in Fichtenberger et al. (2021), where the key idea is to use “robust centers”.
Roughly speaking, a “robust center” is a center such that it is approximately locally optimal – any
other center that is close enough to it cannot significantly improve the approximation ratio. It enables
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our algorithm to build cluster centers that remain effective even as data evolves over time, without
requiring knowledge of future changes. This is useful in the analysis, since in a near-optimal solution
with robust centers, even moving the centers a bit does not improve the cost (significantly), which
may not otherwise hold in an arbitrary approximate solution. Thus, we need to add extra steps of
making centers robust in various places in the algorithm. While the robust centers possess good
properties, making centers robust may introduce additional error. Nonetheless, we manage to bound
the cost of the swap step in our second key lemma (Lemma C.2), based on which we inductively
show if the centers are robust at the start of a batch and that the center is (1 + O(ϵ))-approximate,
then after the batch the (new) centers are still robust and has the same ratio. Again, similar lemmas
and notions of robust centers were first introduced in Fichtenberger et al. (2021), but they only
considered the O(1)-approximation version. Our technical contribution is to modify the definition
of robust centers so that it is (1+ ϵ)-approxiamte, as well as to strengthen the inductive guarantee to
be (1 + ϵ) in our key lemma. The analysis uses several new steps and observations compared with
that in Fichtenberger et al. (2021).

General α-approximation. Now we show how the above generalizes to work with any given α-
approximate offline algorithm. Recall that C0 is the center set at the beginning of a batch. In the
deletion step, instead of removing maximal number of centers such that the resultant center is still
a (1 + O(ϵ))-approximate solution, the algorithm calls the α-approximate offline algorithm with
candidate center set as C0 and k = ℓ′ for every 1 ≤ ℓ′ < k. Then it picks the maximum ℓ′ such
that the cost is less than (1 + O(ϵ))α cost(P0, C0), where P0 is the point set at the beginning of a
batch. Similarly, in the swap step, we replace the optimal solution V for the point set at the end of
the batch with an α-approximate one, and then perform the swaps as before (i.e., swapping out from
C0 points that do not belong to a well separated pair between C0 and V ). We also adopted the two
key lemmas to work with these new steps.

1.3 RELATED WORK

Data points in the online setting that we consider is insertion-only. Recent works also study the more
general dynamic setting for consistent online clustering, such that data points can also be deleted.
Cohen-Addad et al. (2019) gives O(1)-competitive n poly log(n)-consistent algorithm for dynamic
facility location with uniform opening cost in general metrics, and Bhattacharya et al. (2022) gives a
similar bound for the more general case of non-uniform opening cost. Lacki et al. (2024) provides an
O(n)-consistent algorithm that achieves O(1) ratio for dynamic k-CENTER in general metrics, and
they also show an Ω(n) consistency lower bound (for any finite ratio). Recently, Bhattacharya et al.
(2024) provided a uniform framework for consistent (k, z)-CLUSTERING, achieving an O(1/ϵ) ratio
Õ(nkϵ) consistency.

While much research focuses on optimizing resource efficiency, there are other studies aiming to
minimize the number of centers in online (k, z)-CLUSTERING without recourse while retaining
a constant approximation ratio. For example, studies have explored scenarios such as (i) using
an estimate of the optimal clustering cost as an input parameter, (ii) knowing the total number of
points n in advance, or (iii) processing points in random order Moshkovitz (2021); Bhaskara &
Ruwanpathirana (2020); Bhattacharjee & Moshkovitz (2021); Hess et al. (2021). These studies,
along with many online clustering algorithms, do not allow for recourse and require opening more
than Ω(k log(n)) centers, leading to a bi-criteria approximation.

2 PRELIMINARIES

Although we focus on Rd, we assume the dataset is a subset of [∆]d for some integer ∆, which is
supposed to be the aspect ratio. This is without loss of generality since one can always rescale the
dataset provided the knowledge of ∆. Let C ⊆ Rd be the candidate center set. Given a point q ∈ Rd

and a radius r ∈ R+, a ball is defined as ball(q, r) = {p ∈ Rd | dist(p, q) ≤ r}. Moreover, a ball
with respect to a point set P is defined as ballP (q, r) := ball(q, r) ∩ P .
Definition 2.1 ((k, z)-CLUSTERING). Given P ⊆ Rd, for any center set C ⊆ C with |C| ≤ k,
define the cost for (k, z)-CLUSTERING as

costz(P,C) :=
∑
x∈P

(dist(x,C))z.
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We define OPT(P ) as the optimal cost of (k, z)-CLUSTERING. Specifically,

OPTz(P ) = min
C⊆C,|C|≤k

costz(P,C).

Definition 2.2 (Online (k, z)-CLUSTERING). In online (k, z)-CLUSTERING, the input dataset P
is presented as a sequence (p1, . . . , pn), and upon the arrival of pi (for every i ∈ [n]), the online
algorithm must output a center set Ci ⊆ C such that |Ci| ≤ k. We say an online algorithm is
ρ-competitive if costz(P,Ci) ≤ ρ ·OPTz(Pi) for every i, where Pi is the first i points in P .
Definition 2.3 (Consistency). We say a sequence of center sets C1, . . . , Cn Γ-consistent, if∑

t∈[n] |Ct \ Ct−1| ≤ Γ (C0 := ∅). An online algorithm is Γ-consistent if its output center sets
C1, . . . , Cn is Γ-consistent.

Weighted point set. A weighted point set is an (ordinary) point set equipped with a positive weight
function. Specifically, we identify a weighted point by a vector P⃗ ∈ R[∆]d with support P . Then
for P⃗ , the weight of a point p ∈ P is denoted as P⃗ (p), and for a subset S ⊆ P , we define P⃗ (S) :=∑

p∈S P⃗ (p). We also use |P⃗ | to represent P⃗ (P ) as the total weight of the point set. We treat
unweighted point sets as weighted point sets with unit weight.

The relation P⃗1 ⊆ P⃗2 is defined as P⃗1 ≤ P⃗2 with respect to coordinate-wise comparison.
The operation P⃗1 ∪ P⃗2 is the coordinate-wise maximum of the two vectors, and P⃗1 ∩ P⃗2 is the
coordinate-wise minimum. The set subtraction P⃗1 \ P⃗2 sets every negative value in P⃗1 − P⃗2

to zero. The cost function for (k, z)-CLUSTERING on weighted point set is generalized as
costz(P⃗ , C) :=

∑
p∈P P⃗ (p)(dist(p, C))z . The ball with respect to a weighted point set is gen-

eralized as ballP⃗ (q, r) := {p⃗ ∈ P⃗ | dist(p, q) ≤ r}.

Definition 2.4. For 0 < ϵ < 1 and weighted set P⃗ , a weighted set S⃗ such that S ⊆ P is an ϵ-coreset
for (k, z)-CLUSTERING if

∀C ⊆ C, |C| ≤ k, (1− ϵ) costz(P⃗ , C) ≤ costz(S⃗, C) ≤ (1 + ϵ) costz(P⃗ , C).

Definition 2.5 (Cluster of a point). Let P⃗ be a weighted point set, C ⊆ C be a center set and c ∈ C

be a center. The cluster of c with respect to P⃗ is defined as (where ties are broken arbitrarily and
consistently)

P⃗ [C, c] := {p⃗ ∈ P⃗ | dist(p, C) = dist(p, c)}.
Lemma 2.6 (Cohen-Addad et al. (2021)). Let a, b, c be any points in [∆]d, z be any positive con-
stant. Then for any ϵ > 0,

dist(a, b)z ≤ (1 + ϵ)z−1 dist(a, c)z +

(
1 + ϵ

ϵ

)z−1

dist(b, c)z,

|dist(a, c)z − dist(b, c)z| ≤ ϵ · dist(a, c)z +
(
2z + ϵ

ϵ

)z−1

dist(a, b)z.

3 FRAMEWORK AND PROOF OF MAIN THEOREM

In this section, we present the high-level framework and explain how it proves Theorem 3.1 which is
our main theorem. All results stated in this section are without the actual dependence in z, since the
most interesting case is z ∈ {1, 2} anyway. However, we do try to figure out the detailed dependence
in the proof (Section 4).
Theorem 3.1. Suppose for some α ≥ 1 there is an α-approximate (randomized) offline algorithm
for (k, z)-CLUSTERING that runs in T (n) time. Then there exists an algorithm for online (k, z)-
CLUSTERING such that for every n-point dataset in [∆]d (∆ ≥ 1 is integer), 0 < ϵ < 1 and integers
k, z ≥ 1, it is (1 + ϵ)α2-competitive and O(αdk poly(ϵ−z log(n∆)))-consistent2 with probability
1 − 1

poly(n) , provided that all invocations of the offline algorithm succeed. The algorithm runs in

O(kn log(n∆) + 2poly(ϵ
−1)dk3 poly(ϵ−1 log(n∆))T (dk poly(ϵ−1 log(n∆)))) time.

2Notice that the factor d may be turned into O(logn) by using a dimension reduction (Makarychev et al.,
2019).
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Our proof idea consists of two steps. First, we reduce the number of points to be considered by
leveraging a coreset structure, which contains significantly fewer points than the original set, with
each point assigned a positive weight. This coreset structure satisfies two key properties: it is always
a coreset for any prefix of the stream, and points sampled into the data structure are never deleted
from the incremental coreset. We note that with slight modifications, the so-called “online coreset”
proposed in Woodruff et al. (2023) meets our requirements. Although their definition of an online
coreset seems to require the algorithm to access the entire dataset, their main procedure can indeed
be executed in an online/incremental manner. We summarize our coreset guarantee in the following
lemma.
Lemma 3.2 (Consistent coreset (Woodruff et al., 2023)). There exists an algorithm that given as
input 0 < ϵ < 1 integers k, z ≥ 1 and an online point sequence (p1, . . . , pn) in [∆]d, outputs a
weighted point set sequence D⃗1, . . . , D⃗t such that

1. There is m := O(log(n∆)) numbers e1 := 1 ≤ . . . ≤ em := n + 1 such that for every
1 ≤ i ≤ m−1, OPTz(D⃗ei+1−1) ≤ 2OPTz(D⃗ei) and for every ei ≤ j ≤ ei+1−1, D⃗j ⊆ D⃗j+1.

2. With probability 1 − 1
poly(n) , for all 1 ≤ i ≤ n, D⃗i is an ϵ-coreset for Pi := {p1, . . . , pi} and

|D⃗i| = O(dk poly(ϵ−1 log(n∆))).

The algorithm runs in O(kn log(n∆)) time.

In the second step, we solve the consistent (k, z)-CLUSTERING with weighted points as the input.
Specifically, our algorithm (in Lemma 3.3) achieves Õ(1) amortized consistency. The proof of this
lemma is our main technical contribution and is postponed to Section 4.
Lemma 3.3 (Algorithm for bounded input). Suppose for some α ≥ 1 there is an α-
approximate (randomized) offline algorithm for (k, z)-CLUSTERING that runs in T (n) time.
Then there exists an algorithm for online (k, z)-CLUSTERING such that for every weighted
point set P⃗0 and weighted m-point sequence (p⃗1, . . . , p⃗m) in [∆]d, provided that OPTz(P⃗0 ∪
{p⃗1, . . . , p⃗m}) ≤ 2OPTz(P⃗0), and all invocations of the offline algorithm succeed, it is (1 + ϵ)α2-
competitive and O(αmpoly(ϵ−1 log(∆)))-consistent. The algorithm runs in O(mk2T (m) +

dkm22poly(ϵ
−1) log(∆)) time.

Finally, we combine these two steps to form Algorithm 1. The bound on cost and consistency
follows from the composition of Lemma 3.2 and Lemma 3.3. The formal proof of Theorem 3.1 is
presented in Section A.

Algorithm 1: Consistent online algorithm for (k, z)-CLUSTERING

1 denote the algorithms in Lemma 3.2 and Lemma 3.3 as Acoreset,Abound
α , respectively

2 for i = 1, . . . , n, suppose xi is inserted do
3 feed xi to Acoreset and let Di be the coreset returned by Acoreset

4 if i ≤ k then
5 Ci ← Ci−1 ∪ {xi} /* let C0 ← ∅ */

6 else
7 if D⃗i−1 ⊆ D⃗i then
8 feed D⃗i \ D⃗i−1 to Abound

α

9 else
10 start Abound

α over and feed it D⃗i

11 let Ci be the output of Abound
α

12 return C1, . . . , Cn

4 ALGORITHMS FOR BOUNDED INPUT: PROOF OF LEMMA 3.3

In this section, we give the algorithm for inputs of bounded length, denoting the length as m. Our
algorithm is (1 + ϵ)α2-competitive with consistency proportional to m, which proves Lemma 3.3.
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We start with several definitions used in our algorithm in Section 4.1. This includes a key notion
called “robust sequence” in Section 4.1, where a similar version has been proposed in Fichtenberger
et al. (2021). Moreover, a procedure for identifying a robust sequence (in Algorithm 3) is crucially
used in our algorithm. We state our main algorithm in Section 4.2. The analysis of the algorithm
can be found in Section C, and combining these immediately conclude Lemma 3.3.

4.1 ROBUST (CENTER) SEQUENCES

In this section (and in Section B), we give the definition of robust sequence in Definition 4.1 along
with many other related properties and definitions. All these essentially follow similar ones in Ficht-
enberger et al. (2021), whereas the key difference is that ours works for (1 + ϵ)-approximation and
general (k, z)-CLUSTERING. Because of this, we need to re-prove all properties so that they comply
with our stronger definition.

Definition 4.1 (Robust (center) sequence). Let t ≥ 1 and P⃗ be a weighted point set. A robust center
sequence (c0, c1 . . . , ct) can be constructed by the following procedure. Start with any center ct.
For i from t to 1, we pick ci−1 as follows.

1. ci−1 ← ci, when at least one of the following holds:
(i) avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), ci) ≥ ϵ2z

9zzz (1 + ϵ)i; or,
(ii) avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), ci) ≤ (1 + ϵ)minc′∈C avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), c′).

2. Otherwise, ci−1 is any center c ∈ C such that:
avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), c) ≤ (1 + ϵ)minc′∈C avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), c′)

Given a sequence (c0, c1, c2, . . . , ct) and 1 ≤ t0 ≤ t, the t0-prefix of the sequence is defined as the
prefix (c0, c1, . . . , ct0). Given a center sequence with length t + 1, it is called t0-prefix robust if
t0 ≤ t and its t0-prefix is robust. It is immediate that (i) any prefix of a robust center sequence is
automatically robust and (ii) given a number t0 and a sequence (c0, c1, . . . , ct), the sequence is not
t0-prefix robust if either t0 > t or the prefix (c0, c1, . . . , ct0) is not robust.

The concept of a robust center sequence is pivotal in ensuring stability and adaptability in clustering,
particularly when dealing with dynamic or evolving data. Intuitively, this sequence starts from some
arbitrary center ct, then it identifies for every distance scale (up to some threshold) a good center to
replace c. From this point, the definition can be viewed as a backward induction algorithm with input
t and an initial center ct. The output is the sequence (c0, c1, . . . , ct) computed by the definition.

From a high-level point, a robust center sequence embodies local optimality across multiple scales,
ensuring each center is resilient to minor cluster perturbations. This backward construction ensures
that c0 is robust at the finest scale, having been refined through progressively larger neighborhoods.
This definition enforces that each center is either inherently stable or replaced by a locally near-
optimal alternative, balancing current performance with adaptability to future changes. By iterating
over exponentially growing radii, the sequence accounts for uncertainty in cluster scales, as clusters
may develop, merge, or split over time.

A similar version of the following definition is also originally proposed in Fichtenberger et al.
(2021), and we generalize it to achieve (1 + ϵ)-approximation as well as to handle general (k, z)-
CLUSTERING.

Definition 4.2 (Bounded robust). A witness of a center c ∈ C is defined as a finite sequence of
points in C that starts at c. Let C ⊆ C be a center set. A witness mapping witC maps each c ∈ C

to a witness witC(c). Given a weighted point set P⃗ , (C,witC) is called bounded robust w.r.t. P⃗ if
for every c ∈ C, witC(c) is tC(c)-prefix robust with respect to P⃗ , where tC(c) denotes the smallest
integer t′ such that (1 + ϵ)

t′
z ≥ dist(c, C \ {c})/10. If C \ {c} = ∅, we define dist(c, ∅) =

√
d∆

(which is the largest possible distance of the data).

We define an algorithm MAKEROBUST (Algorithm 3) to make a center set with a witness mapping
bounded robust, by iteratively calling a subroutine in Algorithm 2. In Algorithm 2, if witC(c) is
not tC(c)-prefix robust, then ROBUSTIFY(P⃗ , C, c) generates a new center point equipped with a
witness that is tC(c)-prefix robust. Again, these two procedures are also based on similar ones
in Fichtenberger et al. (2021) but our version is generalized to work for (1 + ϵ)-approximation.
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Algorithm 2: Robustify, on weighted point set P⃗ , center set C and a center point c ∈ C

1 let t be the smallest integer such that (1 + ϵ)
t
z ≥ dist(c, C \ {c})/5

2 compute a robust sequence (c0, c1, . . . , ct) such that ct = c by Definition 4.1
3 v ← (c0, c1, . . . , ct)
4 return (c0, v)

Algorithm 3: MakeRobust, on weighted point set P⃗ and center set C with witness mapping
witC

1 while There is a center c ∈ C such that witC(c) is not tC(c)-prefix robust with respect to P⃗ do
2 Arbitrarily pick a center c such that the while condition holds
3 (c0, v)← ROBUSTIFY(P⃗ , C, c)
4 C ← C \ {c} ∪ {c0}, witC(c0)← v

5 return (C,witC)

4.2 CONSISTENT CLUSTERING ALGORITHM

Now we are ready to introduce the consistent algorithm. The algorithm runs in phases. The input
of each phase is a weighted point set P⃗0 and a center set with witness mapping (U0,witU0

). The
algorithm guarantees that (U0,witU0

) is bounded robust (see Definition 4.2) with respect to P⃗0 and
U0 is a (1 + 17ϵ)α-approximate solution for P⃗0. Our analysis mostly focuses on an (arbitrarily)
fixed phase. Let P⃗i be the point set after the i-th insertion of the phase. The algorithm executes the
following steps in each phase.

1. Deleting centers. The algorithm enumerates ℓ ∈ [k] and runs the α-approximate algorithm for
(k − ℓ)-clustering with point set P⃗0 and candidate center set U0. Then it picks the maximum ℓ0
such that the cost output by the α-approximate algorithm is less than (1 + 12ϵ)α costz(P⃗0, U0).
Let Ū be the center set with k − ℓ0 centers that the α-approximate algorithm outputs.

2. Handling insertions. As long as the center set Ū consists of less than k points, if a point is
inserted at a position with no center (in Ū ), the algorithm includes the new point in Ū . Otherwise,
it does nothing. The center set Ū is the reported center set of the online algorithm.

3. Swapping centers. Suppose after some ℓ ≥ ℓ0 insertions from the start of the phase, the size of
the center set Ū achieves k. Now, for the next input point (which is the ℓ+1-th insertion from the
start), the algorithm starts with changing O( 2

O(z log(z))ℓ
ϵ8z−3 ) centers in U0 to produce a (1 + 5ϵ)α-

approximate solution W for P⃗ℓ+1, whose detail is given immediately after the description of the
algorithm. Let witW (c) = (c, c) for every c ∈W \U0. (This W is not the output of the ℓ+ 1-th
round yet.)

4. Robustifying centers. Let (Uℓ+1,witUℓ+1
) := MAKEROBUST(P⃗ℓ+1, (W,witW )) (defined in

Algorithm 3) and it is both the output of the ℓ + 1-th insertion and the input for the next phase.
Define the length of the phase as ℓ+ 1.

The detailed implementation of step 3 requires the following notion of ϵ-well separated pairs, which
identifies close center pairs from two different center sets. In general, this is a standard notion in
geometric approximation algorithms (see Har-Peled (2011)), and similar notions have been used in
local search algorithms for clustering Friggstad et al. (2019). Fichtenberger et al. (2021) also em-
ploys this notion, but only for O(1)-approximation whereas ours can work for (1+ϵ)-approximation.

Definition 4.3 (Well separated pairs). Suppose U and V are two points sets, a pair (u, v) ∈ U × V
is a ϵ-well separated pair if both of the following hold:

dist(u, v) ≤ ϵdist(U \ {u}, u), dist(u, v) ≤ ϵdist(V \ {v}, v) (1)

Implementation details of step 3. We formalize the step 3 as follows. At the (ℓ + 1)-st input
point from the start of the phase, the algorithm runs the offline α-approximate algorithm for the
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Figure 1: The consistency curve over the insertions of points, for all datasets and k = 10.
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Figure 2: The cost curve over the insertions of points, for all datasets and k = 10. We plot the curve
after applying a moving average with a window size equal to 1% of the dataset size.

current point set, denote the approximate solution as V . Let s be some integer such that for every
i ∈ [s], (ui, vi) forms a ϵ4

200z -well separated pair, and P⃗ℓ+1[V, vi] ⊆ P⃗0. Then the algorithm swaps
centers vs+1, . . . , vk into U0, forming a new center set W := {u0, . . . , us, vs+1, . . . , vk}. Let
witW (c) = (c) for every c ∈ W \ U0 and witW (c) = witU0

(c) for others. We would relate this s
with ℓ in Lemma C.8, and it would be useful for bounding the consistency.

This finishes the description of our main algorithm. To finish the proof of Lemma 3.3, it remains
to show that the algorithm has the claimed time complexity, competitive ratio and consistency. We
prove these in Lemmas C.1, C.3 and C.6, to be presented in Section C.

5 EXPERIMENTS

In this section, we present experimental results evaluating the performance of our algorithms. We
provide two implementations: one that faithfully implements Algorithm 1 and a heuristic variant
(implementation details of which are described shortly). We evaluate both the computational cost
and consistency of our two implementations against two baseline approaches using three real-world
datasets.

Datasets. Our experiment is conducted on the SKIN (Bhatt & Dhall, 2009), SHUTTLE (Catlett),
and COVERTYPE (Blackard, 1998) datasets from the publicly available UCI repository, which were
also used in the experiments of previous works such as (Lattanzi & Vassilvitskii, 2017). The SKIN
dataset consists of 245,057 points with 3 features, where each point represents an RGB pixel. The
SHUTTLE dataset contains 58,000 points with 7 features. The COVERTYPE dataset consists of
581,012 points with 54 features.

Implementation details Now we detail our two implementations of the algorithm, both of which
share a common online coreset construction phase followed by different downstream clustering
approaches.

• Common Component: Online Coreset Construction. Both implementations begin with the con-
struction of an online coreset. For this step, rather than using the worst-case coreset size bound
specified in Lemma 3.2, we directly set a target size. Our experiments employ coreset sizes rang-
ing from 1000 to 2000 elements, calibrated according to the dataset size. As our subsequent
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experimental results demonstrate, these sizes provide sufficient accuracy while maintaining com-
putational efficiency.

• Implementation 1: Consistent k-MEANS++. Our first implementation faithfully executes the
downstream component of Algorithm 1. This algorithm incorporates a subroutine that imple-
ments a consistent clustering approach for bounded input, which requires an offline clustering
algorithm. In our experiments, we integrate k-MEANS++ (Arthur & Vassilvitskii, 2007) into this
framework. This implementation performs the complete “robustify-delete-swap” process as spec-
ified in the theoretical algorithm. We refer to this implementation as “ours-faithful” throughout
our experimental evaluation.

• Implementation 2: Heuristic Single-Swap Approach. Our second implementation employs a sim-
plified heuristic for the downstream component while using the same coreset construction algo-
rithm as Implementation 1. This heuristic employs a simple single-swap algorithm that operates
as follows: whenever a new point is added to the coreset, the algorithm evaluates whether re-
placing any current center point with this new point would reduce the clustering cost. If such
cost-reducing swaps exist, the algorithm executes only the single swap that yields the greatest im-
provement. The primary advantage of the single swap approach is its small consistency and fast
running time. Specifically, given a sequence (x1, . . . , xm) as the bounded-size input, the single
swap algorithm has consistency at most m and achieves O(km) running time. We refer to this
heuristic implementation as “ours-heuristic” in our experiments.

Baselines. We compare our two implementations with two baseline algorithms. Note that both
of our two implementations are combining the consistent coreset (Lemma 3.2) and a downstream
consistent algorithm for bounded input (Lemma 3.3 and single swap algorithm). Hence, a natural
naive baseline is directly running k-MEANS++ on the consistent coreset instead of running any ad-
ditional algorithm. Specifically, whenever the consistent coreset updates, the algorithm computes a
new center set, and we note that this algorithm is Õ(k2)-consistant in the worst case. Another base-
line algorithm is the consistent k-MEANS algorithm proposed in Lattanzi & Vassilvitskii (2017)3,
which is the state-of-the-art for consistent k-MEANS before our work. This algorithm is constant
competitive and O(k2 log(n∆))-consistent. These two baselines are called “naive” and “LV17”,
respectively.

Experiment results. We depict the consistency and cost curves in Figures 1 and 2 for k = 10,
comparing the performance of the algorithms “naive”, “LV17”, “ours-faithful”, and “ours-heuristic”,
as described earlier. Interestingly, the heuristic algorithm “ours-heuristic” outperforms all other al-
gorithms in both cost and consistency, particularly hundreds times better in consistency. The strong
performance of our heuristic may be attributed to the characteristic of the datasets used in our eval-
uation. However, it is important to note that our heuristic approach lacks worst-case approximation
guarantees, so it may perform poorly on more complex datasets, for example, datasets with over-
lapping groups, significant outliers, or highly imbalanced cluster sizes—would likely challenge our
heuristic approach more severely.

For algorithm “ours-faithful”, from Figure 1, it achieves much better consistency compared to base-
lines, with 3 - 5 times better to naive and roughly 2 times better than Lattanzi & Vassilvitskii (2017).
Moreover, achieving such a better consistency bound does not incur must overhead to the cost, as
can be seen from Figure 2.

Finally, we observe that the cost has some sudden fluctuations in Figure 2. This is mainly caused
by the consistent coreset, on which all baselines and our algorithm are based, since the coreset
needs to recompute from scratch for O(poly(log n)) times, and each recomputation introduces a big
difference in cost. In addition, algorithm “ours-faithful” further uses the subroutine in Lemma 3.3,
which introduces another source of re-computation during phase transition (and hence one can see
an even bigger “spike” in this algorithm). Luckily, these fluctuations are not significant and are
averaged out over the entire run.

3The algorithm in Lattanzi & Vassilvitskii (2017) is also a generic one like ours, and we plug in k-
MEANS++ as we do for our algorithm.
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Appendices
A PROOF OF THEOREM 3.1

Theorem 3.1. Suppose for some α ≥ 1 there is an α-approximate (randomized) offline algorithm
for (k, z)-CLUSTERING that runs in T (n) time. Then there exists an algorithm for online (k, z)-
CLUSTERING such that for every n-point dataset in [∆]d (∆ ≥ 1 is integer), 0 < ϵ < 1 and integers
k, z ≥ 1, it is (1 + ϵ)α2-competitive and O(αdk poly(ϵ−z log(n∆)))-consistent4 with probability
1 − 1

poly(n) , provided that all invocations of the offline algorithm succeed. The algorithm runs in

O(kn log(n∆) + 2poly(ϵ
−1)dk3 poly(ϵ−1 log(n∆))T (dk poly(ϵ−1 log(n∆)))) time.

Proof of Theorem 3.1. Equipped with Lemmas 3.2 and 3.3, our main algorithm is listed in Algo-
rithm 1. By Lemma 3.2,Acoreset partitions the point stream (p1, p2, . . . , pn) into m := O(log(n∆))

parts. We use e1 := 1, e2, . . . , em := n+ 1 to represent the times such that D⃗ei−1 ̸⊆ D⃗ei . Now for
a fixed part (pei , pei+1, . . . , pei+1−1), we have |D⃗ei+1−1 \ D⃗ei | ≤ O(dk poly(ϵ−1 log(n∆))).

Let ℓei := |D⃗ei+1−1\D⃗ei |. Note that for every 1 ≤ i < m we have OPT(D⃗ei+1−1) ≤ 2OPT(D⃗ei).
So feed D⃗ei as P0 and D⃗ei+1−1 \ D⃗ei as the point stream to Abound

α , we get a center set sequence
(C

(ei)
0 , C

(ei)
1 , . . . , C

(ei)
ℓei−1) such that for each 0 ≤ j ≤ ei+1 − 1, C(ei)

j is a (1 + ϵ)α2-approximate

solution for point set D⃗ei+j and thus a (1+3ϵ)α2-approximate solution for Pei+j . Since this is true
for all ei, we finish the proof of the approximation ratio.

For the consistency, we directly compute it as

m∑
i=1

ℓei−1∑
j=1

|C(ei)
j \ C(ei)

j−1|+ |C
(ei)
ℓei−1 \ C

(ei+1)
0 |

 ≤ m∑
i=1

[
O(αℓei poly(ϵ

−1 log(∆))) + k
]

≤ O(α poly(ϵ−1 log(∆))

m∑
i=1

ℓei) + km = O(αdk poly(ϵ−1 log(n∆))).

Finally, provided that all invocations of the offline algorithm succeed, the randomness only comes
from the construction of the coreset. Thus, the failure probability inherits from Lemma 3.2, which
is 1

poly(n) .

For the running time, note that constructing the consistency coreset takes O(kn log(n∆))
time. Also, observing that each time we feed Abound

α at most 2−O(z)k poly(ϵ−z log(n∆))
points, Summing over all restarts of Abound

α , the time complexity is O(kn log(n∆) +

2poly(ϵ
−1)dk3 poly(ϵ−1 log(n∆))T (dk poly(ϵ−1 log(n∆)))). Thus we finish the proof.

B PROPERTIES OF ROBUST (CENTER) SEQUENCES

Fact B.1. If a sequence (c0, c1, . . . , ct) is robust, then it is t0-prefix robust for every 0 ≤ t0 ≤ t.

Fact B.2. Given a point set P⃗ , a robust sequence (c0, . . . , ct) with respect to P⃗ and an integer
1 ≤ i ≤ t, for every j < i, avgcostz(ballP⃗ (cj , (1 + ϵ)

j
z ), cj) ≤ avgcostz(ballP⃗ (cj , (1 + ϵ)

j
z ), ci).

The properties of Definition 4.1 are mostly used in Lemma B.3. In other words, Definition 4.1 is not
directly used in most of other parts of the proof, instead, they use Lemma B.3.
Lemma B.3. If (c0, c1, . . . , ct) is robust, then

• For every 1 ≤ i ≤ t, dist(ci−1, ci) ≤ 2ϵ2

9z (1 + ϵ)
i
z .

• For every 1 ≤ i ≤ t, ballP⃗ (ci−1, (1 + ϵ)
i−1
z ) ⊆ ballP⃗ (ci, (1 + ϵ)

i
z ).

4Notice that the factor d may be turned into O(logn) by using a dimension reduction (Makarychev et al.,
2019).
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• ∀i ∈ [n], dist(c0, ci) ≤ ϵ
3z (1 + ϵ)

i
z .

Proof. For every 2 ≤ i ≤ t, if ci−1 = ci then dist(ci−1, ci) = 0. If ci−1 ̸= ci, then
avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), ci) ≤ ϵ2z

9zzz (1 + ϵ)i. By letting j = i− 1 in Fact B.2, we have

ϵ2z

9zzz
(1 + ϵ)i +

ϵ2z

9zzz
(1 + ϵ)i ≥ avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), ci−1) + avgcostz(ballP⃗ (ci, (1 + ϵ)

i
z ), ci)

=
1

|ballP⃗ (ci, (1 + ϵ)i)|
∑

p⃗∈ballP⃗ (ci,(1+ϵ)
i
z )

(P⃗ (p) distz(p, ci−1) + P⃗ (p) distz(p, ci))

≥ 1

|ballP⃗ (ci, (1 + ϵ)i)|
∑

p⃗∈ballP⃗ (ci,(1+ϵ)
i
z )

(
1

2z−1
P⃗ (p) distz(ci−1, ci)) ≥

distz(ci−1, ci)

2z−1
.

So we have dist(ci−1, ci) ≤ 2ϵ2

9z (1+ϵ)
i
z . For the second part, it suffices to show that dist(ci−1, ci) ≤

(1 + ϵ)
i
z − (1 + ϵ)

i−1
z . And this can be obtained from the first part. For the third part, we have

dist(c0, ci) ≤
∑i

j=1 dist(cj−1, cj) ≤ 2ϵ2

9z
(1+ϵ)

1
z (1+ϵ)

i
z

ϵ ≤ ϵ
3z (1 + ϵ)

i
z .

Lemma B.4. Let (c0, c1, . . . , ct) be a robust sequence with respect to P⃗ , and P⃗0 ⊆ P⃗ be a subset
of P⃗ such that ballP⃗ (ci, (1 + ϵ)

i
z ) = ballP⃗0

(ci, (1 + ϵ)
i
z ) for all i ∈ [t]. Then ∀i ∈ [t]

costz(P⃗0, c0) ≤ (1 + 2ϵ) costz(P⃗0, ci).

Proof. For every 1 ≤ i ≤ t − 1, let D⃗i := ballP⃗0
(ci+1, (1 + ϵ)

i+1
z ) \ ballP⃗0

(ci, (1 + ϵ)
i
z ). Let

D⃗t := P⃗0 \ballP⃗ (ct, (1+ ϵ)
t
z ). By the third property of Lemma B.3, we have ∀1 ≤ i ≤ t, ∀p⃗ ∈ D⃗i,

dist(ci, c0) ≤ ϵ
3z (1 + ϵ)

i
z ≤ ϵ

3z dist(ci, p). So

dist(p, c0)
z ≤ (1+ϵ) distz(p, ci)+(

2z + ϵ

ϵ
)z−1 distz(ci, c0) ≤ (1+ϵ+

ϵ(2z + ϵ)z−1

(3z)z
) distz(p, ci) ≤ (1+2ϵ) distz(p, ci).

By Definition 4.1, in the point set ballP⃗ (ci, (1 + ϵ)
i
z ), we have

costz(ballP⃗0
(ci, (1 + ϵ)

i
z ), ci) ≥ costz(ballP⃗0

(ci, (1 + ϵ)
i
z ), ci−1).

Now we combine the above inequalities to bound the cost of p0 by the following inequalities:

costz(P⃗0, ci) = costz(ballP⃗0
(ci, (1 + ϵ)

i
z ), ci) + costz(∪j≥iD⃗j , ci)

≥ costz(ballP⃗0
(ci, (1 + ϵ)

i
z ), ci−1) +

1

1 + 2ϵ
costz(∪j≥iD⃗j , c0) (by Fact B.2)

= costz(ballP⃗0
(ci−1, (1 + ϵ)

i−1
z ), ci−1) + costz(D⃗i−1, ci−1) +

1

1 + 2ϵ
costz(∪j≥iD⃗j , c0)

≥ costz(ballP⃗0
(ci−1, (1 + ϵ)

i−1
z ), ci−1) +

1

1 + 2ϵ
(costz(D⃗i−1, c0) + costz(∪j≥iD⃗j , c0))

≥ . . .

≥ costz(ballP⃗0
(c1, (1 + ϵ)

1
z ), c0) +

1

1 + 2ϵ
costz(∪j≥1D⃗j , c0)

≥ 1

1 + 2ϵ
costz(P⃗0, c0).

Lemma B.5. Given a weighted point set P⃗ and a center set C with witness mapping witC , during
the whole process of MAKEROBUST(P⃗ , (C,witC)), the size of center set C remains the same as the
input C.

To prove the lemma, we first show the following technical lemma.
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Lemma B.6. Let P⃗ be a weighted point set, (C,witC) be a center set with witness mapping.
Suppose there is c ∈ C such that witC(c) is not tC(c)-prefix robust with respect to P⃗ , and let

c0 := ROBUSTIFY(P⃗ , C, c). Then for every ĉ ∈ C \ {c}, dist(c0, c) ≤ ϵ(1+ϵ)
1
z

15z dist(c, ĉ). Further-

more dist(c0, ĉ) ≤ (1 + ϵ(1+ϵ)
1
z

15z ) dist(c, ĉ).

Proof. Let c′ be the closest point to c in C \ {c}. By line 1 of ROBUSTIFY, witC(c0) is t-prefix
robust such that

5(1 + ϵ)
t−1
z ≤ dist(c, C \ {c}) = dist(c, c′).

By Lemma B.3, we have dist(c0, c) ≤ ϵ
3z (1 + ϵ)

t
z , combining the two inequalities we have for

every ĉ ∈ C \ {c}, dist(c0, c) ≤ ϵ(1+ϵ)
1
z

15z dist(c, c′) ≤ ϵ(1+ϵ)
1
z

15z dist(c, ĉ). By triangular inequality
we have

dist(c0, ĉ) ≤ dist(c0, c) + dist(c, ĉ) ≤ (1 +
ϵ(1 + ϵ)

1
z

15z
) dist(c, ĉ).

Now we are ready to prove Lemma B.5.

Proof of Lemma B.5. We prove this by induction. Let the size of the input center set be n. Our
induction hypothesis is for every round of the while loop, the size of the center set C in line 1 is
n. The base case in the first round is naturally true by definition. For the inductive step, suppose
at the i-th round for i ≥ 2, at the beginning of the loop |C| = n. If ROBUSTIFY(P⃗ , C, c) is called
for a center c ∈ C, let (c0, v) := ROBUSTIFY(P⃗ , C, c). Recall that by Lemma B.6, dist(c0, c) ≤
ϵ(1+ϵ)

1
z

15z dist(c, C \ {c}) , so c0 can not coincide with any center in C \ {c}. Then at the end of the
loop, the size of the center set is still n.

Next we argue that during the execution of MAKEROBUST, once a center is swapped out, it can
never be swapped back again.

Lemma B.7. Suppose MAKEROBUST is run on some point set P⃗ and center set with witness map-
ping (C,witC). During the execution of MAKEROBUST, if (c0, v) = ROBUSTIFY(P⃗ , C, c) for a
center c ∈ C and c is replaced by c0, then MAKEROBUST does not call ROBUSTIFY(P⃗ , C, c0) until
the end of the algorithm.

Proof. To clearly track the changing during the algorithm, we construct k queues (Q1, Q2, . . . , Qk).
The elements in the queues are points from the candidate center set with a witness. At first,
each queue Qi contains one element in C with the witness. During the execution, if (c0, v) =
ROBUSTIFY(c) is called, we find the unique queue Q where c is at the end of the queue. And add
element c0 to that queue with the witness w.

We first point out the above procedure is well-defined. This means that at any time, the end elements
of these queues correspond to the center set. This can be concluded by Lemma B.5 because the size
of the center set does not change and any center point must be at the end of one queue.

By our queue construction, for each round, the union of the end element for all queues is exactly
the center set. Moreover, the elements in a queue totally capture how a center in the original center
set is transferred. Leveraging these queues it suffices to show that none of the k queues has a length
more than 2.

Suppose for contradiction, there exists a queue Q with a length of at least 3 during the execution of
MAKEROBUST. We consider the first queue such that this case happens. Suppose the algorithm runs
s rounds and denote the immediate output set as ((C1 := C,witC1

), (C2,witC2
), . . . , (Cs,witCs

)).
Let j be the minimum number such that at the j + 1-th round, there is a queue with a length 3.

Moreover, let i be the minimum number such that at i+1-th round, c0 is in Q. Then by the property
that each end element of a queue is in the center set for any round, c0 keeps staying in the center set
from i+ 1-th round to j-th round.
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Let c′ be the closest point in Ci \ {c} to c. We note that c′ is also the closest point in Ci+1 \ {c0}.
Recall that from the definition, v(c0) is tCi+1

(c0)-prefix robust with respect to P , where tCi+1
(c0)

is the value defined in line 1 of Algorithn 2. We discuss the following two cases separately.

1. c′ is in the center set Cj+1. By Lemma B.6, we have

dist(c0, c
′) ≤ dist(c0, c) + dist(c, c′) ≤ (1 +

ϵ(1 + ϵ)
1
z

15z
) dist(c, c′).

By the definition of tCi+1
(c0) again we have

(1 + ϵ)tCi+1
(c0) ≥ dist(c, c′)

5
≥ dist(c0, c

′)

5(1 + ϵ(1+ϵ)
1
z

15z )
≥ dist(c0, c

′)

10
≥ dist(c0, Cj+1 \ {c0}

10
.

Recall that tCj+1
(c0) is the smallest integer t such that (1 + ϵ)

t
z ≥ dist(c0, Cj+1 \ {c0})/10.

Then we have tCi+1
(c0) ≥ tCj+1

(c0) thus w(c0) is still tCj+1
(c0)-prefix robust. This contradicts

our assumption that v(c0) is not tCj+1
(c0)-robust.

2. Otherwise, c′ is not in Cj+1. Let Q′ be the queue such that when calling ROBUSTIFY(P⃗ , Ci, c),
c′ is at the end of Q′. If c′ is not in Cj+1, we know that there must be a center with witness
(c′0, v

′
0) being added to Q′ before ĉ0 being in Q. On the other hand, as c′ is at the end of Q′ at the

i + 1-th round, so c′0 has to be in Q′ after the i + 1-th round. Suppose for a number i < r < j,
r + 1 is the minimum round such that c′0 is in Q′. Recall that c0 is at the end of Q from the
i+ 1-th round to the r-th round, so c0 must be at the end of Q at the r-th round thus c0 is in the
center set Cr.
As at the r-th round, ROBUSTIFY(c′) is called, so by Lemma B.6 dist(c′, c′0) ≤
ϵ(1+ϵ)

1
z

15z dist(c0, c
′) ≤ [( ϵ(1+ϵ)

1
z

15z ) + ( ϵ(1+ϵ)
1
z

15z )2] dist(c, c′). Thus we have

dist(c0, c
′
0) ≤ dist(c0, c

′) + dist(c′, c′0) ≤ (1 +
ϵ(1 + ϵ)

1
z

15z
)2 dist(c, c′).

Recall that by our selection, Q is the first queue with 3 elements. So at the j+1-th round, Q′ has
to have only 2 elements: c′ and c′0. So c′0 is in the center set Cj+1. As c0 is t(c0)-robust, we have

(1 + ϵ)tCi+1
(c0) ≥ dist(c, c′)

5
≥ dist(c0, c

′
0)

5(1 + ϵ(1+ϵ)
1
z

15z )2
≥ dist(c0, c

′
0)

10
≥ dist(c0, Cj+1 \ {c0})

10
.

This also contradicts our assumption that v(c0) is not tCj+1(c0)-prefix robust.

Lemma B.8. Let P⃗ and P⃗ ′ be two weighted point sets, (c0, c1 . . . , ct) be a robust sequence with
respect to points set P⃗ . If ballP⃗ (c0, (1 + ϵ

3z )(1 + ϵ)
t
z ) = ballP⃗ ′(c0, (1 + ϵ

3z )(1 + ϵ)
t
z ), then

(c0, c1 . . . , ct) is also robust with respect to point set P⃗ ′.

Proof. By Lemma B.3, for every 0 ≤ i ≤ t− 1, ballP⃗ (ci, (1 + ϵ)
i
z ) ⊆ ballP⃗ (ci+1, (1 + ϵ)

i+1
z ). So

if ballP⃗ (ct, (1 + ϵ)
t
z ) = ballP⃗ ′(ct, (1 + ϵ)

t
z ), then (c0, . . . , ct) is a t-robust sequence with respect

to points set P⃗ ′. For every point p⃗ ∈ ballP⃗ (ct, (1 + ϵ)t), by Lemma B.3 we have

dist(c0, p) ≤ dist(c0, ct) + dist(ct, p) ≤ (1 +
ϵ

3z
)(1 + ϵ)

t
z .

So ballP⃗ (ct, (1 + ϵ)
t
z ) ⊆ ballP⃗ (c0, (1 +

ϵ
3z )(1 + ϵ)

t
z ). And this suffices to prove the lemma.

C ANALYSIS OF MAIN ALGORITHM IN SECTION 4.2

Below we first define some notations used in the proof for the convenience of presentation. For each
phase e, suppose the length of the phase is ℓe + 1, we write P⃗

(e)
0 , and P⃗

(e)
end as the points set at the

beginning and the end of the phase, and (U
(e)
0 , U

(e)
1 , . . . , U

(e)
ℓe

, U
(e)
end := U

(e)
ℓe+1) as the intermediate

center set during phase e. The intermediate center after swapping is denoted as W (e).
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C.1 TIME COMPLEXITY

The running time of the algorithm is summarized in the following lemma.

Lemma C.1. The consistent (k, z)-CLUSTERING algorithm for bounded input runs in
O(k2mT (m) + dkm22poly(ϵ

−1) log(∆)) time.

Proof. We first analyze the time complexity for a fixed phase. Recall that each phase consists of
four steps and we give the time complexity for each step.

Deleting centers. In this step, the algorithm enumerate all possible number 0 ≤ ℓ < k, and then
call the α-approximate algorithm on the candidate center set U0 with center set size less than k − ℓ.
The time complexity is kT (m).

Handling insertions. The time complexity is O(ℓkd), wince we need to check if the current center
belongs to the current center set which has at most k points.

Swapping centers. In this step, following the proof of Lemma C.2, it suffices to consider the
time to compute an α-approximate solution and then find all valid well separated pairs. The time
complexity is O(k2 + T (m)) where the term k2 comes from computing the pair-wise distance
between two center sets.

Robustifying centers. In this step, the algorithm runs subroutine MAKEROBUST(Algorithm 3),
which runs subroutine ROBUSTIFY(Algorithm 2) if a center is not bounded robust. Since checking if
a center with witness is bounded robust takes the same order of time as computing a robust sequence,
it suffices to analyze the running time of ROBUSTIFY.

When computing the robust sequence in line 2 of ROBUSTIFY, the algorithm needs to compute
a near-optimal center for ballP⃗ (ci, (1 + ϵ)

i
z ) for some i in Definition 4.1, which can be done

in O(dm2poly(ϵ
−1)) time by Chen (2009). As the length of a robust sequence can be at most

O(log(∆)/ϵ) and ROBUSTIFY is called at most k times by Lemma B.7, the running time for k

calls of ROBUSTIFY is O(km2poly(ϵ
−1) log(∆)).

Finally, since the number of phases is upper bounded by the total number of inputs which we de-
noted as m, the time complexity is O(k2mT (m) + dkm22poly(ϵ

−1) log(∆)) in total for all phases
combined.

C.2 COST ANALYSIS

We analyze the competitive ratio in this section. Recall that the algorithm runs in phases, and in each
phase e, the algorithm starts from some center set U (e)

0 . Hence, our plan is to inductively show that
U

(e)
0 is (1+O(ϵ))α-approximate. Notice that this alone is not enough, since for all but the last input

point during a phase, the output center set is derived from U
(e)
0 (by first deleting some centers from

it and then adding some input points), so we also need to analyze the ratio for these intermediate
steps, and we show it is (1 + O(ϵ))α2-approximate. We also notice that U (e)

0 is changed only in
the last step of a phase which particularly has a swapping procedure (and hence the induction is to
analyze this last step only).

Now, observe that to show U
(e)
0 is (1 +O(ϵ))α-approximate, it suffices to bound the approximation

ratio after swapping centers, since if we can show the center set W (e) resulted from the swap is
(1+O(ϵ))α-approximate, then by Lemma B.4, the center set U (e)

end is still a (1+O(ϵ))α-approximate
solution. To this end, recall that in the algorithm in Section 4.2, W (e) is obtained by swapping out
centers in U

(e)
0 that either do not form a ϵ4

200z -well separated pair with a α-approximate solution for
P⃗ℓ+1, or serve points in P⃗

(e)
end \ P⃗

(e)
0 . In the following technical lemma, we show that this swapping

rule indeed guarantees a (1 + 5ϵ)α-approximate ratio.
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Lemma C.2. Let U and V be two center sets, and P⃗ , P⃗ ′ be two weighted point sets such that
P⃗ ⊆ P⃗ ′. Suppose U is equipped with witness mapping witU and (U,witU ) is bounded robust with
respect to P⃗ . Given ϵ ∈ (0, 1), let s ≥ 1 be any integer such that the following hold:

1. (u1, v1), (u2, v2) . . . (us, vs) are ϵ4

400z -well separated pairs.
2. P⃗ ′[V, vi] ⊆ P⃗ for i ∈ [s].

Let C := {u1, u2, . . . , us, vs+1, . . . , vk}, then

costz(P⃗
′, C) ≤ (1 + 5ϵ) costz(P⃗

′, V ).

Assume this lemma is true (and the proof appears after this part of argument), we can conclude the
competitive ratio analysis as follows.

Lemma C.3. The consistent algorithm for bounded input is (1 + 233ϵ)α2-competitive.

Proof. We first prove for every phase e, (U (e)
0 ,wit

U
(e)
0

) is bounded robust with respect to P⃗
(e)
0

and U
(e)
0 is a (1 + 17ϵ)α-approximate solution for P⃗ (e)

0 . This is done by induction on the phase,
the base case is the first phase, where the algorithm runs the α-approxiamte algorithm and then
calls MAKEROBUST for the output to obtain U0. By Lemma B.4, U0 is a (1 + 2ϵ)α-approximate
solution. The bounded robust property naturally holds since U0 is the output of MAKEROBUST. For
the inductive step, suppose for phase e, the induction hypothesis is true. Let V be an α-approximate
solution for P⃗ (e)

end. By letting P⃗
(e)
0 and P⃗

(e)
end be the corresponding P⃗ and P⃗ ′, U (e)

0 , V and W (e) be
the corresponding U , V and C in Lemma C.2, we know W (e) is a (1 + 5ϵ)α-approximate solution
for P (e)

end. By Lemma B.4, calling MAKEROBUST(P⃗
(e)
end, (W

(e),witW (e))) increases the cost by a
factor of 1+2ϵ, so U

(e)
end is a (1+17ϵ)α-approximate solution. Moreover, U (e)

end is naturally bounded
robust because it is the output of MAKEROBUST. Thus we finish the induction.

Now we prove the competitive ratio for the algorithm. For every phase e, we know U
(e)
0 is a (1 +

17ϵ)α-approximate solution. Suppose phase e consists ℓe insertions for some ℓ ≥ 1. For all 1 ≤ i ≤
ℓe, we have

costz(P⃗
(e)
i , U

(e)
i ) ≤ (1 + 12ϵ)α costz(P⃗

(e)
0 , U

(e)
0 )

≤ (1 + 17ϵ)(1 + 12ϵ)α2 OPT(P⃗
(e)
0 )

≤ (1 + 17ϵ)(1 + 12ϵ)α2 OPT(P⃗
(e)
i ) ≤ (1 + 233ϵ)α2 OPT(P⃗

(e)
i ),

where the first inequality comes from the fact that costz(P⃗
(e)
i \ P⃗ (e)

0 , U
(e)
i ) = 0 and the definition

of the algorithm. The second inequality follows from U
(e)
0 is a (1+ 17ϵ)α-approximate solution for

P⃗
(e)
0 .

Now we give the proof of our key lemma Lemma C.2.

Proof of Lemma C.2. As the second condition P⃗ ′[V, vi] ⊆ P⃗ is equivalent to P⃗ ′[V, vi] = P⃗ [V, vi],
we write

costz(P⃗
′, C) =

∑
i≤s

costz(P⃗
′[C, ui], ui) +

∑
i≥s+1

costz(P⃗
′[C, vi], vi)

≤
∑
i≤s

costz(P⃗
′[V, vi], ui) +

∑
i≥s+1

costz(P⃗
′[V, vi], vi)

The inequality holds because it’s optimal to assign every point in P⃗ ′ to the closest center in C.

We will show that for a well separated pair (ui, vi), i ≤ s, costz(P⃗
′[V, vi], ui) ≤ (1 +

2ϵ) costz(P⃗
′[V, vi], vi) and this suffices.
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Suppose (u, v) is a well separated pair, witU (u) = (u, c1, c2, . . . , ct(u)), then we have

dist(u, v) ≤ ϵ4

400z
dist(u, U \ {u}) ≤ ϵ4

40z
(1 + ϵ)

t(u)
z

which follows by the Definition 4.3 and Definition 4.2.

So there exists a t∗ ≤ t(u) such that ϵ4

40z (1 + ϵ)
t∗−1

z ≤ dist(u, v) ≤ ϵ4

40z (1 + ϵ)
t∗
z .

Claim C.4. ballP⃗ (u, (1 +
ϵ
3z )(1 + ϵ)

t∗
z ) ⊆ P⃗ [V, v].

Proof. Let q ∈ ballP⃗ (u, (1 + 3ϵ)(1 + ϵ)
t∗
z ), then we have

dist(q, v) ≤ dist(q, pt∗)+dist(ct∗ , u)+dist(u, v) ≤ (1+
ϵ

3z
)(1+ϵ)

t∗
z +

ϵ

3z
(1+ϵ)

t∗
z +

ϵ4

40z
(1+ϵ)

t∗
z ≤ (1+ϵ)(1+ϵ)

t∗
z

where the second term of the second inequality follows by Lemma B.3. On the other hand, for any
v′ ⊆ V such that v′ ̸= v, we have

dist(q, v′) ≥ dist(v′, v)− dist(v, q) ≥ 400z dist(u, v)

ϵ4
− dist(q, v) ≥ dist(q, v),

where the final inequality follows by ϵ4

40z (1+ϵ)
t∗−1

z ≤ dist(u, v) and dist(q, v) ≤ (1+ϵ)(1+ϵ)
t∗
z .

So v is the nearest center to q in V . This finishes the proof of Claim C.4.

As (u, v) is close enough, for the points outside the ball ballP⃗ (u, (1+
ϵ
3z )(1+ϵ)

t∗
z ), the cost induced

by u is naturally a good approximation for the optimal cost. As long as the average cost in the small
ball ballP⃗ (u, (1+

ϵ
3z )(1+ϵ)

t∗
z ) around v is large enough, then costz(ballP⃗ (u, (1+

ϵ
3z )(1+ϵ)

t∗
z ), u)

is a good approximation for costz(ballP⃗ (u, (1+
ϵ
3z )(1+ ϵ)

t∗
z ), v). Summing the two parts together

achieves our goal.

To formalize the above discussion, we handle two situations ct∗ = ct∗−1 and ct∗ ̸= ct∗−1 separately.

If ct∗ = ct∗−1, this means avgcost(ballP⃗0
(ct∗ , (1 + ϵ)

t∗
z ), ct∗) ≥ 2z−1 ϵ2z

(9z)z (1 + ϵ)
t∗
z . We first

show that the average cost of u in ballP⃗0
(u, (1 + ϵ)

t∗+1
z ) can not be too small.

Claim C.5. avgcostz(ballP⃗ (u, (1 +
ϵ
3z )(1 + ϵ)

t∗
z ), u) ≥ ϵ2z+1

2·(18z)z (1 + ϵ)t
∗
.

Proof. If u = ct∗ then we naturally have

avgcostz(ballP⃗ (u, (1+
ϵ

3z
)(1+ϵ)

t∗
z ), u) = avgcostz(ballP⃗ (ct∗ , (1+ϵ)

t∗
z ), ct∗) ≥

ϵ2z

(9z)z
(1+ϵ)t

∗
.

So from now on we assume u ̸= ct∗ . Suppose ct∗ = ct∗−1 = . . . = ct′ ̸= ct′−1 for some t′ > 0.
Then by definition we have

avgcostz(ballP⃗ (ct∗ , (1 + ϵ)
t′
z ), ct∗) ≤

ϵ2z

(9z)z
(1 + ϵ)t

′
.

Let S⃗1 be the points set ballP⃗ (ct∗ , (1 + ϵ)
t∗
z ) \ ballP⃗ (ct∗ , (1 + ϵ)

t′
z ), S⃗2 be the points set

ballP⃗ (ct∗ , (1 + ϵ)
t′
z ) and Q⃗ be the points set ballP⃗ (u, (1 + ϵ

3z )(1 + ϵ)
t∗
z )) \ (S1 ∪ S2). Then

we have

w(S⃗1) avgcostz(S⃗1, pt∗) + w(S⃗2) avgcostz(S⃗2, pt∗)

w(S⃗1) + w(S⃗2)
= avgcostz(ballP⃗ (ct∗ , (1+ϵ)t

∗
), ct∗) ≥

ϵ2z

(9z)z
(1+ϵ)t

∗
.
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Thus

w(S⃗1) costz(S⃗1, ct∗)

w(S⃗1) + w(S⃗2)
≥ ϵ2z

(9z)z
(1+ϵ)t

∗
−avgcostz(S⃗2, ct∗) ≥

ϵ2z

(9z)z
((1+ϵ)t

∗
−(1+ϵ)t

′
) ≥ ϵ2z+1(1 + ϵ)t

∗

(9z)z(1 + ϵ)
.

On the other hand, for every point p⃗ in S⃗1, we have

distz(p, ct∗) = distz(p, ct′) ≤ 2z−1 distz(p, u) + 2z−1 distz(ct′ , u) ≤ 2z−1(1 +
ϵz

(3z)z
) distz(p, u) ≤ 2z distz(p, u).

(2)

Finally we have

avgcost(ballP⃗ (u, 1 +
ϵ

3z
)

1
z (1 + ϵ)

t∗
z , u)

=
w(S⃗1) avgcost(S⃗1, u) + w(S⃗2) avgcost(S⃗2, u) + w(Q⃗) avgcost(Q⃗, u)

w(S⃗1) + w(S⃗2) + w(Q⃗)

≥ w(S⃗1) avgcost(S⃗1, u) + w(Q⃗) avgcost(Q⃗, u)

w(S⃗1) + w(S⃗2) + w(Q⃗)

≥ w(S⃗1) avgcost(S⃗1, u)

w(S⃗1) + w(S⃗2)

≥ w(S⃗1) avgcost(S⃗1, ct∗)

2z(w(S⃗1) + w(S⃗2))

≥ ϵ2z+1

(18z)z(1 + ϵ)
(1 + ϵ)t

∗

≥ ϵ2z+1

2 · (18z)z
(1 + ϵ)t

∗
,

where the second inequality follows by avgcost(Q, u) ≥ avgcost(S1, u), the third inequality fol-
lows by Equation (2). This finished the proof of Claim C.5.

Now we divide costz(P⃗ [V, v], v) into two parts: the small ball ballP⃗ (u, (1 +
ϵ
3z )(1 + ϵ)

t∗
z ) and the

points outside the ball. Namely,

costz(P⃗ [V, v], v) = costz(ballP⃗ (u, (1+
ϵ

3z
)(1+ϵ)

t∗
z ), v)+costz(P⃗ [V, v]\ballP⃗ (u, (1+

ϵ

3z
)(1+ϵ)

t∗
z ), v)

We bound the two terms separately, for the first part.

costz(ballP⃗ (u, (1 +
ϵ

3z
)(1 + ϵ)

t∗
z ), v)

=
∑

p⃗∈ballP⃗ (u,(1+ ϵ
3z )(1+ϵ)

t∗
z )

[P⃗ (p) distz(p, v)] ≥
∑

p⃗∈ballP⃗ (u,(1+ ϵ
3z )(1+ϵ)

t∗
z )

[
P⃗ (p) distz(p, u)

2z−1
− P⃗ (p) distz(u, v)]

= |ballP⃗0
(u, (1 +

ϵ

3z
)(1 + ϵ)

t∗
z )|(

avgcost(ballP⃗ (u, (1 +
ϵ
3z )(1 + ϵ)

t∗
z ), u)

2z−1
− distz(u, v))

≥ |ballP⃗0
(u, (1 +

ϵ

3z
)(1 + ϵ)

t∗
z )|((1− ϵ) avgcost(ballP⃗ (u, (1 +

ϵ

3z
)(1 + ϵ)

t∗
z ), u))

= (1− ϵ) costz(ballP⃗ (u, (1 +
ϵ

3z
)(1 + ϵ)

t∗
z ), u).

where the second inequality follows by Claim C.5 and dist(u, v) ≤ ϵ4

40z (1 + ϵ)
t∗
z .

Next we deal with the other part. For any p ∈ P⃗ [V, v] \ ballP⃗ (u, (1 +
ϵ
3z )

1
z (1 + ϵ)

t∗
z ), we have

distz(p, v) ≥ distz(p, u)

2z−1
− distz(u, v) ≥ (1− ϵ) distz(p, u),
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thus

costz(P⃗ [V, v]\ballP⃗ (u, (1+
ϵ

3z
)

1
z (1+ϵ)

t∗
z ), v) ≥ (1−ϵ) costz(P⃗ [V, v]\(1+ ϵ

3z
)

1
z (1+ϵ)

t∗
z ), u).

Now we add the two parts:

costz(P⃗ [V, v], v) ≥ (1− ϵ) costz(P⃗ [V, v], u)

So in this case ct∗ = ct∗−1, we have

costz(P⃗ [V, v], u) ≤ 1

1− ϵ
costz(P⃗ [V, v], v) ≤ (1 + 2ϵ) costz(P⃗ [V, v], v).

If ct∗ ̸= ct∗−1, this means ct∗−1 is a near-optimal center for ballP⃗ (ct∗ , (1 + ϵ)
t∗
z ), thus we have

costz(P⃗ [V, v], u) = costz(ballP⃗ (ct∗−1, (1 + ϵ)
t∗
z ), u) + costz(P⃗ [V, v] \ ballP⃗0

(ct∗−1, (1 + ϵ)
t∗
z ), u)

≤ (1 + 2ϵ) costz(ballP⃗ (ct∗−1, (1 + ϵ)
t∗
z ), ct∗−1) + (1 + ϵ) costz(P⃗ [V, v] \ ballP⃗0

(ct∗−1, (1 + ϵ)
t∗
z ), v)

≤ (1 + 2ϵ)(1 + ϵ) costz(ballP⃗ (ct∗−1, (1 + ϵ)
t∗
z ), v) + (1 + ϵ) costz(P⃗ [V, v] \ ballP⃗0

(ct∗−1, (1 + ϵ)
t∗
z ), v)

≤ (1 + 5ϵ) costz(P⃗ [V, v], v)

where the first term of the first inequality follows by Lemma B.4, and the second term follows by
distz(p, v) ≥ (1 − ϵ) distz(p, u) for p⃗ ∈ P⃗ [V, v] \ ballP⃗ (ct∗−1, (1 + ϵ)

t∗
z ). The second inequality

follows by ct∗−1 is a (1 + ϵ)-approximation of the optimal (1, z)-clustering problem for the ball.
This finishes the proof of Lemma C.2.

C.3 CONSISTENCY ANALYSIS

In this section we prove the consistency of our algorithm, summarized as the following lemma.
Lemma C.6. Given an input stream of m weighted points, the total consistency of the algorithm is
O(α2

O(z log(z))m log2(∆)
ϵ8z−2 ).

By the definition of the algorithm, the consistency is upper bounded by
∑

e

∑
1≤i≤ℓe

(|U (e)
i \

U
(e)
i−1|) + |U

(e)
end \ U

(e)
ℓe
|, which accounts for the changes of the center set both within phases and

across phases. We first deal with the easy part: the consistency contributed by
∑

1≤i≤ℓe
|U (e)

i \U
(e)
i−1|,

which is the consistency within phases. In this part, it is straightforward that the consistency is ℓe.
Note that a phase contains ℓe + 1 insertions, so the amortized consistency during a phase is O(1).
Summing up all phases, the total consistency contributed by this part is O(m).

Next we bound the consistency contributed by |U (e)
end \U

(e)
ℓe
|, which is the consistency across phases.

First we have |U (e)
end \ U

(e)
ℓe
| ≤ |U (e)

end \ U
(e)
0 |+ ℓe. So it suffices to consider the term |U (e)

end \ U
(e)
0 |.

Based on this observation, We partition U
(e)
end into two parts.

1. Updated centers. We define the updated center set as UP(e) which consist of (1) centers in
U

(e)
end∩ (W (e)∩U (e)

0 ) and (2) obtained by calling ROBUSTIFY(P⃗
(e)
end,W

(e), c) where c ∈W (e)∩
U

(e)
0 . Centers in UP(e) are called updated centers.

2. Fresh centers. We define the fresh center set as F (e), which consists of the remaining centers,
specifically, (1) the centers in U

(e)
end ∩ (W (e) \ U (e)

0 ) and (2) centers that are obtained by calling
ROBUSTIFY to centers in W (e) \ U (e)

0 . Centers in F (e) are called fresh centers.

Based on the partition strategy, U (e)
end \ U

(e)
0 ⊆ F (e) ∪ (UP(e) \U0) so |U (e)

end \ U
(e)
0 | ≤ |F (e)| +

|UP(e) \U0|. So we can split the consistency across the whole phases
∑

e |U
(e)
end \ U

(e)
0 | into two

parts: ∑
e

|U (e)
end \ U

(e)
0 | ≤

∑
e

[
|F (e)|+ |UP(e) \U (e)

0 |
]
. (3)
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So it suffices to bound the two terms on the right hand side. For the fresh centers, the following
lemma provides the bound.

Lemma C.7.
∑

e |F (e)| ≤ O(α2
O(z log(z))m
ϵ8z−3 ).

Proof. Fix a phase e, note that the number of fresh centers in e is upper bounded by the num-
ber of centers in W (e) \ U (e)

0 . This is because for every c ∈ W (e) \ U (e)
0 , either c ∈ U

(e)
end or

ROBUSTIFY(P⃗
(e)
end,W

(e), c) ∈ U
(e)
end.

Let V be an α-approximate solution for P⃗ (e)
end. s be the number such that for every i ∈ [s], (ui, vi)

forms a ϵ4

400z -well separated pair and P⃗
(e)
end[vi] ⊆ P⃗0. Recall that the consistency algorithm for

bounded size in Section 4.2 swap vs+1, . . . , vk into U0 to produce W . So |W (e) \ U (e)
0 | = k − s.

On the other hand, suppose the number of ϵ4

400z -well-separated pairs between U0 and V is t, then
s is larger than t − ℓe − 1 because at most ℓe + 1 centers serve the ℓe + 1 new points. Thus
|W (e) \ U (e)

0 | ≤ k − t+ ℓe + 1.

The following technical lemma gives the lower bound for t, whose proof is provided in the next
subsetion.

Lemma C.8. U0 and V have at least k −O(α2O(z log(z))ℓ/ϵ8z−3) ϵ4

400z -well separated pairs.

Proof. The proof can be found in Section C.3.1.

By Lemma C.8, |W (e) \ U
(e)
0 | ≤ O(α2O(z log(z))ℓ/ϵ8z−3). So we also have |F (e)| ≤

O(α2
O(z log(z))ℓe
ϵ8z−3 ). Now summing over all phases, we get the number of new centers is at most

the total number of O(α2
O(z log(z))m
ϵ8z−3 ). This finishes the proof of Lemma C.7.

Next we consider the number of updated centers. Recall that we are in fact considering points in the
difference of sets: UP(e) \U (e)

0 for each phase e. We should point out that for a center u, there can
be several phases e such that u ∈ UP(e) \U (e)

0 . In this case, it means that u is moved out from the
center set and swapped back several times, and every time u is counted independently.

Now we fix a phase e. Let u be a center point in UP(e) (which is also in U
(e)
0 ) with witness v(u) such

that ROBUSTIFY of u is called during the execution of MAKEROBUST(P⃗end, (W,witW )). Suppose
v(u) = (u, p1, p2, . . . , pt(u)) is the witness for some t(u) ∈ N.

Note that duing the process of MAKEROBUST, the center keeps changing. Let Ĉ be the center set
immediately before calling ROBUSTIFY for u. Then v(u) is not tĈ(u)-prefix robust with respect to
P⃗

(e)
end. By Definition 4.1, there are two cases:

1. t(u) < tĈ(u) regardless of whether v(u) is robust or not. In this case, we say u is violated by
centers update.

2. t(u) ≥ tĈ(u), but v(u) is not tĈ-prefix robust with respect to P⃗
(e)
end. In this case, we say u is

violated by points insertion.

For the second case, as u ∈ U
(e)
0 and U

(e)
0 is bounded robust, we know that v(u) is t(u)-robust with

respect to points set P⃗ (e)
0 . By the contradictory proposition of Lemma B.8, there must be a point

p⃗ ∈ P⃗
(e)
end \ P⃗

(e)
0 , such that

dist(p, u) ≤ (1 +
ϵ

3z
)(1 + ϵ)

t
Ĉ

(u)

z ≤ (1 +
ϵ

3z
)(1 + ϵ)

t(u)
z . (4)

Given a center point u ∈ UP(e) and a point p⃗ ∈ P⃗
(e)
end \ P⃗

(e)
0 , if dist(u, p) ≤ (1 + ϵ

3z )(1 + ϵ)
t(u)
z ,

then we say p⃗ violates u. Note that if a center u is violated by points insertion then there must be
at least one point that violates u. However, if a point violates u, u may not be violated by points
insertion.

We have the following bound for the two cases.
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Lemma C.9. For every e, every point p ∈ P⃗
(e)
end \ P⃗

(e)
0 violates at most O(log(∆)) centers in UP(e).

Proof. Suppose p⃗ ∈ P⃗
(e)
end \ P⃗

(e)
0 for a phase e. Let s be the number of centers in UP(e) that

are violated by p⃗ during the phase e, and denote those centers as {u1, u2, . . . .us}. For each 1 ≤
i ≤ s, let ei be the minimum phase such that ui ∈ U

(e′)
end for every ei ≤ e′ ≤ e. We define

the arrival order as follows. For any ui and uj , if ei < ej , we say ui arrives earlier than ej . If
ei = ej , let ((C1 := W (ei),witC1), (C2,witC2) . . . , (Cs−1,witCs−1), (Cs := U

(ei)
end ,witCs)) be the

intermediate center set sequence during the execution of MAKEROBUST(P⃗ (ei), (W (ei),witW (ei)))

(which is also MAKEROBUST(P⃗ (ej), (W (ei),wit
W (ej)))). Let ci = min{t : ui ∈ Ct} and cj =

min{t : uj ∈ Ct}. By the algorithm MAKEROBUST, ci ̸= cj . If ci < cj we say ui arrives earlier
than uj . Without loss of generality we write the centers as (u1, u2, . . . , us) such that ui arrives
earlier than uj for any i ≤ j.

For each 1 ≤ i ≤ s, suppose (ui, v(ui)) is the output of ROBUSTIFY for a center u′
i ∈ U

(ei)
0 . Let

C be the center set immediately before calling ROBUSTIFY to u′
i. Let t(ui) be the smallest positive

integer such that (1 + ϵ)
t(ui)

z ≥ dist(u′
i, C \ {u′

i})/5. Then by line 1 of Algorithm 2 v(ui) is t(ui)-
prefix robust with respect to P⃗

(ei)
end . Moreover, by the order of the sequence, ui+1 must also be in C.

Because of the minimum property of t(ui) we have dist(u′
i, ui+1) ≥ 5(1 + ϵ)

t(ui)−1

z . On the other
hand, by Lemma B.3 we have dist(u′

i, ui) ≤ ϵ
3z (1 + ϵ)

t(ui)

z .

Combining these together,

dist(ui, ui+1) ≥ dist(u′
i, ui+1)−dist(u′

i, ui) ≥
5

(1 + ϵ)
1
z

(1+ϵ)
t(ui)

z − ϵ

3z
(1+ϵ)

t(ui)

z ≥ 5− ϵ

(1 + ϵ)
1
z

(1+ϵ)
t(ui)

z .

As p⃗ violates ui for every 1 ≤ i ≤ s, we have

dist(p, ui) ≤ (1 +
ϵ

3z
)(1 + ϵ)

t(ui)

z ,∀1 ≤ i ≤ s.

So it follows that for all 0 ≤ i ≤ s− 1,

(1+ϵ)
t(ui+1)

z ≥ dist(p, ui+1)

1 + ϵ
3z

≥ dist(ui, ui+1)− dist(p, ui)

1 + ϵ
3z

≥
( 5−ϵ

(1+ϵ)
1
z
)− ( 1

1+ ϵ
3z
)

1 + ϵ
3z

(1+ϵ)
t(ui)

z ≥ 2(1+ϵ)
t(ui)

z .

So the sequence ((1 + ϵ)
t(ui)

z )1≤i≤s grows exponentially. Thus s can only be at most O(log(∆)).
This finishes the proof of Lemma C.9.

Since there are at most m insertions we immediately have the following corollary.

Corollary C.10. There are at most O(m log(∆)) centers that are violated by points insertion.

Now we deal with the second case: centers that are violated by centers update.

Lemma C.11. There are at most O(α2
O(z log(z))m log2(∆)

ϵ8z−2 ) centers that are violated by centers up-
date.

Proof. We construct a collection of queues and a mapping ϕ from the center points to those queues
to prove the lemma. The elements of every queue in the collection belong to the candidate center
set. And the collection is constructed as follows. Recall that a center is in F (e) if it is either in
U

(e)
end ∩ (W (e) \ U (e)

0 ) or is obtained by calling ROBUSTIFY to centers in W (e) \ U (e)
0 . For every

fresh center c ∈ F (e), we construct a new queue instance Q := (c) with a single element c, labeling
the element “fresh center”. Moreover, we assign the center c to the queue: ϕ(c) := Q. Given a
phase e, if a center c ∈ U

(e)
0 is replaced by a center c′ by calling ROBUSTIFY(c) and c, suppose

ϕ(c) = Q, we add an element c′ in Q. Then we let ϕ(c′) = Q and label the element c by either
”violated by points insertion” or ”violated by centers update” based on which case c belongs to.
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We first show that this procedure is well-defined. Specifically, we show that for every phase e, each
center in U

(e)
0 is assigned to a unique queue. This is done by induction on the phase e. At the

beginning, all vertices are considered as the fresh centers. So each center is assigned to a unique
queue. For a phase e, suppose every center point c ∈ U

(e)
0 is assigned to a unique queue. Consider

the next phase e+ 1 and centers in U
(e+1)
0 . If, c ∈ F (e). Then the center will be assigned to a new

queue thus it is unique. Otherwise, if c ∈ UP(e), either c ∈ U
(e)
0 or c ∈ U

(e+1)
0 \ U (e)

0 . For the first
case such that c ∈ U

(e)
0 , it is assigned to a unique queue by the induction hypothesis. For the second

case, there must be a center c′ ∈ U
(e)
0 such that c = ROBUSTIFY(P⃗ (e),W (e), c′). In this case, by

the induction hypothesis, c′ is assigned to a unique queue.

Based on the construction, for each queue in this collection, the first element is labeled by “fresh
center” and the labels of other elements are consecutive ”violated by centers update” and ”violated
by points insertion” alternatively. We claim that for any queue in the collection, there is no sub-
queue with a length more than O( z log(∆)

ϵ ) such that every element is labeled by “violated by centers
update”. This is because every time a center is violated by centers update, by the definition, it means
the witness sequence is too short. And the length of the witness after calling ROBUSTIFY increases
by at least 1. This implies (1+ϵ)

t
z increases exponentially where t denotes the length of the witness.

Secondly, Lemma C.7 implies that there are at most O(α2
O(z log(z))m
ϵ8z−3 ) elements labeled by “fresh

centers” and Lemma C.9 implies that there are at most O(mlog(∆)) elements labeled by ”vio-
lated by points insertion” among all queues in the collection. So in the collection, there are most
O(α2

O(z log(z))m
ϵ8z−3 +mlog(∆)) ·O( z log(∆)

ϵ ) = O(α2
O(z log(z))m log2(∆)

ϵ8z−2 ) elements labeled by “violated
by centers update”. Thus we finish the proof of Lemma C.11.

Finally we combine everything to conclude the proof of Lemma C.6.

Proof of Lemma C.6. Combining Lemma C.7, Lemma C.9 and Lemma C.11 shows that

∑
e

 ∑
1<i≤ℓe

|U (e)
i \ U (e)

i−1|+ |U
(e)
end \ U

(e)
ℓe
|

 ≤∑
e

[
ℓe + |U (e)

end \ U
(e)
0 |+ ℓe

]
≤ O(m) +

∑
e

[
|F (e)|+ |UP(e) \U (e)

0 |
]

≤ O(m) +O(
α2O(z log(z))m

ϵ8z−3
) +O(m log(∆)) +O(

α2O(z log(z))m log2(∆)

ϵ8z−2
)

(by Lemma C.7, Corollary C.10 and Lemma C.11)

= O(
α2O(z log(z))m log2(∆)

ϵ8z−2
).

C.3.1 THE NUMBER OF WELL SEPARATED PAIRS IS LOWER BOUNDED: PROOF OF
LEMMA C.8

In this section we prove that the number of well separated pairs between the center set maintained by
the algorithm at step 2 and an α-approximate solution at the end of the phase is k−Ω(ℓ0), where ℓ0
is the number of centers the algorithm deletes. Our key lemma Lemma C.13 shows that given a point
set P and two center sets U and V , suppose U and V form t ϵ-well separated pairs, then Ω(k − t)
centers can be removed from U to form U ′, such that cost(P,U ′) ≤ cost(P,U)+O(ϵ)(cost(P,U)+
cost(P, V )). This is an improvement compared with Fichtenberger et al. (2021) where they only
provide an upperbound cost(P,U ′) ≤ cost(P,U) + O(1)(cost(P,U) + cost(P, V )). We first
provide the cost increase bound for re-assigning points to other centers in Lemma C.12. Base on
that, we show how to pick a subset with size large enough to delete while the cost is upper bounded
in Lemma C.13. Combining the algorithm and Lemma C.13 we conclude our goal in Lemma C.8.
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Lemma C.12. Suppose U and V are two center sets, |U | = |V | = k, and P⃗ is a point set. Also
suppose t is some integer such that U and V form t ϵ-well separated pairs. Then there exists a subset
D ⊆ U with |D| ≥ (k − t)/2 and a mapping ϕ : D → U , such that

1. ∀u ∈ D,ϕ(u) ̸= u
2. ∀p ∈ P , suppose u is the nearest neighbor of p in U and v is the nearest neighbor of p in V , then

distz(p, ϕ(u))− distz(p, u) ≤ 4 · (10z)z−1

ϵ2z−1
(distz(p, u) + distz(p, v)).

Proof. Construction of D and ϕ: For a center u ∈ U that is not in a well separated pair, we consider
the following case:

Let v be the point in V that is the closest point to u.

1. If the cloesest point to v from U is not u, we denote it as u′. Then we include u ∈ D and let
ϕ(u) := u′.

2. Otherwise, the cloesest point to v from U is u. Let u′ be the second closest point to v in U . And
if it satisfies dist(u, v) ≥ ϵdist(u, u′), then include u ∈ D and let ϕ(u) := u′.

3. If the above does not hold, then the closest point to v from U is u and dist(u, v) ≤ ϵdist(u, u′).
Let v′ be the closest point to v from V . Then dist(u, v) ≥ ϵdist(v, v′). If there is a u′′ ∈ U such
that dist(u′′, v′) ≤ 2

ϵ dist(u, v), then include u ∈ D and let ϕ(u) := u′′.

Next, we show that |D| ≥ (k − t)/2. We construct a bipartite graph H , whose vertices consist of
points in U ∪ V . For all points u ∈ U , let v be the point in V that is closest to u. And we put an
edge pointing to v from u. A similar edges construction is done for v ∈ V .

Let Û be the center set containing centers that do not form a well separated pair with any center in
V . We first prove for each u in Û \ D, the in-degree is at least 2 and the out-degree is 1. For any
u ∈ Û \ D, suppose u points to v, and v′ ∈ V is the closest point to v. By our selection of u, we
have that v points to u and for all u′ ∈ U \ {u}, dist(u′, v′) ≥ 2

ϵ dist(u, v). On the other hand,
dist(v′, v) ≤ 1

ϵ dist(u, v). So dist(u′, v) ≥ dist(u′, v′) − dist(v′, v) ≥ 1
ϵ dist(u, v) ≥ dist(u, v).

So v′ also points to u. Suppose |Û \D| = n. Let Q be the subset of V such that each of its vertex
points to some u ∈ Û \D. Then we have |Q| ≥ 2n.

Consider the points set D. The out-degree of the set is k − t− n. We claim that there are at least n
points in D such that one of the following is true:

1. u points to some v in Q.
2. u points to some v in V \Q. And v does not point to this u.

Suppose in D, there are m points pointing to some v in Q. If m ≥ n then we are done. So we
assume m < n. Then the number of points in D that do not point to some v in Q is k− t− n−m.
However, V̂ \Q has only at most k− t− 2n points. There are at most k− t− 2n points u pointing
to v ∈ V̂ \Q and v pointing to u , so there will be at least (k− t−n−m)− (k− t− 2n) = n−m
points in D satisfying the second condition. Those u’s satisfy the first condition of points in D.
So we have found at least n points in D. This shows k − t = |D| + |Û \ D| ≤ 2|D| therefore
|D| ≥ (k − t)/2.

Finally, we prove that the cost increase is bounded. For any u ∈ D, consider the following case:

26



Published as a conference paper at ICLR 2025

1. If this u satisfies the first condition. Then ∀p ∈ P⃗ [U, u], let v0 ∈ V that p is assigned to. We have

distz(p, ϕ(u))− distz(p, u) ≤ ϵ distz(p, u) + (
ϵ+ 2z

ϵ
)z−1 distz(u, ϕ(u))

≤ ϵdistz(p, u) + (
2(ϵ+ 2z)

ϵ
)z−1[distz(u, v) + distz(v, ϕ(u))]

≤ ϵdistz(p, u) + 2(
2(ϵ+ 2z)

ϵ
)z−1 distz(u, v)

≤ ϵdistz(p, u) + 2(
2(ϵ+ 2z)

ϵ
)z−1 distz(u, v0)

≤ ϵdistz(p, u) + 2(
4(ϵ+ 2z)

ϵ
)z−1[distz(p, u) + distz(p, v0)]

≤ 3(
10z

ϵ
)z−1[distz(p, u) + distz(p, v0)].

2. If this u satisfies the second condition. Then ∀p ∈ P⃗ [U, u], let v0 ∈ V that p is assigned to. We
have

distz(p, ϕ(u))− distz(p, u) ≤ ϵdistz(p, u) + (
ϵ+ 2z

ϵ
)z−1 distz(u, ϕ(u))

≤ ϵ distz(p, u) + (
ϵ+ 2z

ϵ
)z−1 1

ϵz
distz(u, v)

≤ ϵ distz(p, u) + (
ϵ+ 2z

ϵ
)z−1 1

ϵz
distz(u, v0)

≤ ϵ distz(p, u) + (
2(ϵ+ 2z)

ϵ
)z−1 1

ϵz
(distz(p, u) + distz(p, v0))

≤ 2 · (5z)z−1

ϵ2z−1
[distz(p, u) + distz(p, v0)]

3. If this u satisfies the third condition. Then ∀p ∈ P⃗ [U, u], let v0 ∈ V that p is assigned to. We
have

distz(p, ϕ(u))− distz(p, u) ≤ ϵ distz(p, u) + (
ϵ+ 2z

ϵ
)z−1 distz(u, ϕ(u))

≤ ϵdistz(p, u) + (
(ϵ+ 2z)

ϵ
)z−1[4z−1 distz(u, v) + 4z−1 distz(v, v′) + 2z−1 distz(v′, ϕ(u))]

≤ ϵdistz(p, u) + (
4(ϵ+ 2z)

ϵ
)z−1(1 +

2

ϵz
) distz(u, v)

≤ ϵdistz(p, u) + (
4(ϵ+ 2z)

ϵ
)z−1(1 +

2

ϵz
) distz(u, v0)

≤ 4 · (10z)z−1

ϵ2z−1
[distz(p, u) + distz(p, v0)].

Lemma C.13. Let P⃗ be a weighted point set, ϵ ∈ (0, 1) and U and V be two center sets. Let t be
some integer such that U and V have t ϵ-well separated pairs. Then for any α < (10z)z−1

ϵ2z−1 , there

exists a subset S ⊆ U with size at least αϵ2z−1(k−t)
6(10z)z−1 such that

costz(P⃗ , U \ S) ≤ costz(P⃗ , U) + 4α(costz(P⃗ , U) + costz(P⃗ , V )). (5)

Proof. First we apply Lemma C.12. It says that we can find a set D ⊆ U with size k−t
2

containing only those points that do not form a ϵ-well separated pair. There exists a mapping
ϕ : D → U such that reassigning the cluster in D to ϕ(D) will lead to the cost increment less
than 4·(10z)z−1

ϵ2z−1 (costz(P⃗ , U) + costz(P⃗ , V )).

Consider the abstract graph H where the nodes are the elements of U and there is a directed arc
from D to ϕ(D). More formally, H = (U, {(u, ϕ(u)) | u ∈ D}). Notice that every node of H has
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outdegree at most 1. Thus, there exists a coloring of the nodes of H with three colors, such that all
arcs are dichromatic. Let Ŝ denote the color set with the largest number of nodes of D. We have
that Ŝ contains at least |D|/3 nodes of D.

By α < (10z)z−1

ϵ2z−1 , we can arbitrarily partition Ŝ into (10z)z−1

αϵ2z−1 parts, each of cardinality at least
αϵ2z−1|D|
3(10z)z−1 . Given a vertex u with outdegree 1, we define the reassignment operation as follows.

For all p⃗ ∈ P⃗U [u], let ϕ(u) be the center serving it. Note that deleting Ŝ increases cost at most
4·(10z)z−1

ϵ2z−1 (costz(P, U⃗) + costz(P, V⃗ )). By an averaging argument, there exists a set such that
reassigning each cluster in this set increases the cost by at most 4α(costz(P⃗ , U) + costz(P⃗ , V )).
Denote this set as S and it is what we want to obtain. Thus deleting the centers in S will increase
the cost by at most 4α(costz(P⃗ , U) + costz(P⃗ , V )). Since the arcs of H are dichromatic, if u ∈ S
then ϕ(u) ̸∈ S. So the reassignment is well-defined.

Now we fix a phase e in our algorithm. Let V be an α-approximate solution at the end of the phase
e. We show that if one can delete at most ℓ centers from U

(e)
0 such that the cost increases by a factor

of (1 + 12ϵ)α, then the number of well separated pairs between sets U (e)
0 and V is lower bounded.

Proof of Lemma C.8. Let t be the number of ϵ4

200z -well separated pairs between U0 and V . By

letting α = ϵ
α in Lemma C.13, we know that there is a set S with |S| ≥ ℓ̄ := Ω( ϵ8z−3(k−t)

α2O(z log(z)) ), and
costz(P⃗0, U0 \S) ≤ costz(P⃗0, U0) +

4ϵ
α (costz(P⃗0, U0) + costz(P⃗0, V )). This is upper bounded by

costz(P⃗0, U0) + 12ϵ costz(P⃗0, U0), because costz(P⃗0, V ) ≤ costz(P⃗ℓ+1, V ) ≤ αOPTz(P⃗ℓ+1) ≤
2α costz(P⃗0, U0). Furthermore, there exists a set S′ with |S′| ≥ |S|/2 = ℓ̄/2 such that the cost
after deleting S′ from U0 is upper bounded by costz(P⃗0, U0) + 6ϵ costz(P⃗0, U0). Therefore, if the
minimal cost after deleting ℓ center for some ℓ < k is larger than costz(P⃗0, U0) + 6ϵ costz(P⃗0, U0),
we must have ℓ ≥ ℓ̄/2.

For our algorithm, if ℓ = 0 then it does not delete any center. In this case we must have ℓ̄ ≤ 1. So
t ≥ k − Ω(1). From now on we assume ℓ > 0. For every i < k, suppose the algorithm outputs the
center set Di ⊆ U0 with |Di| = k − i. If there is some i < k such that

α(1 + 6ϵ) costz(P⃗0, U0) ≤ costz(P⃗0, U0 \Di) ≤ α(1 + 12ϵ) costz(P⃗0, U).

Denote OPT(i) as the minimal cost by deleting i centers from U0. Then we know OPT(i) ≥
(1 + 6ϵ) costz(P⃗0, U0) so we have i ≥ ℓ̄/2.

Otherwise, if for any i < k, either costz(P⃗0, U0 \ Di) ≤ α(1 + 6ϵ) costz(P⃗0, U0), or α(1 +

12ϵ) costz(P⃗0, U) ≤ costz(P⃗0, U0 \Di). In this case, the algorithm picks the largest i such that the
first inequality holds. And this is exactly ℓ̄.

Based on the above discussion, we always have ℓ ≥ ℓ̄/2 ≥ Ω( ϵ8z−3(k−t)
α2O(z log(z)) ). Thus t ≥ k −

O(α2O(z log(z))ℓ/ϵ8z−3). This finishes the proof of Lemma C.8.

D EXPERIMENT FOR k = 5 AND k = 20

In this section we give the cost and consistency curves in Figures 3 and 5 for k = 5 and k = 20.
Both “ours-faithful” and “ours-heuristic” have significant lower consistency compared with the base-
lines, especially for larger k and larger dataset. We also list the accumulative running time for the
algorithms. “ours-heuristic” outperforms all other algorithms. As can be seen from the figure,
“ours-faithful” has a comparable running time (within 150%) to all baselines, except for the case of
COVERTYPE (k = 20) where our algorithm may perform no more than 4 times worse; Nonetheless,
even for this relatively bad case of COVERTYPE with k = 20, “ours-faithful” still runs in about
0.02 seconds per insertion on average, which is fast in an absolute sense. This is a reasonable per-
formance given that our algorithm uses much more involved steps to maintain consistency. Indeed,
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Figure 3: The cost curve over the insertions of points, for all datasets and different choices of k. We
plot the curve after applying a moving average with a window size equal to 1% of the dataset size.
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Figure 4: The consistency curve over the insertions of points, for all datasets and different choices
of k.

the mentioned behavior of the running time also matches our (theoretical) running time bound. To
see this, since we plug in k-MEANS++, our total running time is Õ(nk+k5). However, the “LV17”
baseline runs in roughly Õ(nk+k3) time. When k = 20, the k5 term starts to dominate our running
time, and hence our running time curve starts to deviate from that of “LV17”.
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Figure 5: The cumulative running time over the insertions of points, for all datasets and different
choices of k. x-axis corresponds to the number of insertions and y-axis corresponds to the cumulated
running.

30


	Introduction
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	Framework and Proof of Main Theorem
	Algorithms for Bounded Input: Proof of lemma:consist
	Robust (Center) Sequences
	Consistent Clustering Algorithm

	Experiments
	Proof of thm:main-thm
	Properties of Robust (Center) Sequences
	Analysis of Main Algorithm in sec:Algorithm
	Time Complexity
	Cost Analysis
	Consistency Analysis
	The number of well separated pairs is lower bounded: Proof of lemma:wsp-lowerbound


	Experiment for k=5 and k=20

