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Abstract

Despite the impressive progress of recent pretraining methods on multimodal tasks,
existing methods are inherently biased towards either spatial modeling (e.g., CLIP)
or temporal modeling (e.g., V-JEPA), limiting their joint capture of spatial details
and temporal dynamics. To this end, we propose UniViT, a cluster-driven uni-
fied self-supervised learning framework that effectively captures the structured
semantics of both image spatial content and video temporal dynamics through
event-level and object-level clustering and discrimination. Specifically, we leverage
offline clustering to generate semantic clusters across both modalities. For videos,
multi-granularity event-level clustering progressively expands from single-event to
structured multi-event segments, capturing coarse-to-fine temporal semantics; for
images, object-level clustering captures fine-grained spatial semantics. However,
while global clustering provides semantically consistent clusters, it lacks model-
ing of structured semantic relations (e.g., temporal event structures). To address
this, we introduce a contrastive objective that leverages these semantic clusters
as pseudo-label supervision to explicitly enforce structural constraints, including
temporal event relations and spatial object co-occurrences, capturing structured
semantics beyond categories. Meanwhile, UniViT jointly embeds structured object-
level and event-level semantics into a unified representation space. Furthermore,
UniViT introduces two key components: (i) Unified Rotary Position Embedding
integrates relative positional embedding with frequency-aware dimension alloca-
tion to support position-invariant semantic learning and enhance the stability of
structured semantics in the discrimination stage; and (ii) Variable Spatiotemporal
Streams adapt to inputs of varying frame lengths, addressing the rigidity of conven-
tional fixed-input approaches. Extensive experiments across varying model scales
demonstrate that UniViT achieves state-of-the-art performance on linear probing,
attentive probing, question answering, and spatial understanding tasks.

1 Introduction

Visual representations are fundamental to the success of various downstream tasks. Contrastive [48,
71] and self-supervised [6, 10, 44] frameworks have strong spatial semantic modeling and cross-
modal alignment. However, existing methods exhibit inherent biases toward specific modalities,
limiting their joint capture of spatial details and temporal dynamics: Image-centric models (e.g.,
CLIP [48]) capture static semantics but inadequately model temporal dynamics, while video-centric
models (e.g., V-JEPA [10]) incorporate temporal cues but exhibit deficiencies in fine-grained spatial
modeling.
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(a) Image Discrimination (b) Video Discrimination (c) UniViT Discrimination

Figure 1: Comparisons of cluster discrimination in image, video, and unified representation. (a)
Image multi-label cluster discrimination improves semantic cohesion by assigning multiple samples
to cluster centers, capturing various granularities of visual signals at the object level, but is limited to
image representations. (b) Video cluster discrimination assigns discrete event-level labels to video
segments, modeling dynamic semantics but lacking fine-grained spatial structures. (c) The proposed
UniViT adopts unified multi-label discrimination at event and object levels with shared clusters and
encoders, bridging spatial semantics and temporal structures within a unified representation.

The key to unified visual pretraining lies in jointly modeling static and dynamic semantics through
structured, semantically coherent representations. Recent approaches such as UNICOM [2],
MLCD [4] and RICE [64] enhance perception of structured semantics in images by introducing
clustering mechanisms. MLCD further advances this approach by employing multi-label clustering
to capture multiple semantic components in images, as depicted in Fig. 1 (a). Furthermore, Chat-
Univi [34] introduces video event clustering for semantic modeling; however, it remains primarily
focused on static objects and isolated events, lacking semantic modeling at the structured event
level, thus failing to capture structured temporal dynamics. For instance, although actions such as
“grabbing a cup” and “grabbing a phone” differ in their visual manifestation, a model with event-level
abstraction can generalize them into a unified “grabbing” event category and capture the semantic
relationship between the action and the target object. Moreover, such a model can infer the structural
role of an action within an event sequence, such as recognizing that “grabbing a bowl” often precedes
the event of “serving food.” This capability signifies a transition from isolated event recognition to
structured event understanding. Therefore, we argue that transitioning from instance semantic recog-
nition to cross-modal structured modeling is essential for constructing a unified visual pretraining
framework.

In this work, we propose UniViT, a cluster-driven unified self-supervised learning framework that
effectively captures the structured semantics of both image spatial content and video temporal
dynamics through event-level and object-level clustering and discrimination, as depicted in Fig. 1(c).
Specifically, we design a two-stage cluster-discrimination training paradigm. In the clustering stage,
we employ offline clustering to generate semantic for both modalities. For videos, we perform
multi-granularity event-level clustering by densely sampling frames at multiple temporal scales,
progressively organizing individual events into structured segments of multiple events, thus capturing
coarse-to-fine temporal semantics. For static images and individual video frames, we employ object-
level clustering extracts fine-grained spatial semantics. Subsequently, in the discrimination stage,
we introduce a contrastive objective that utilizes these semantics as pseudo-label supervision to
explicitly enforce structural constraints, including temporal relations among adjacent events and
spatial co-occurrences among objects. This approach captures structured semantics beyond isolated
categories, aligning dynamic and static semantic content within a unified representation space.

The core of this method is to jointly model structured semantics across image and video modalities
within a unified representation space, effectively bridging static spatial details and dynamic temporal
relations. Therefore, UniViT introduces two critical components: (i) Unified Rotary Position Embed-
ding (U-RoPE), decomposing positional embeddings into distinct spatial and temporal components
through frequency-aware allocation, thereby facilitating position-invariant representation learning
and enhancing stability of structured semantic representations during the discrimination stage; and
(ii) Variable Spatiotemporal Streams (VS2), adapting to varying frame lengths, enabling the model
to flexibly capture fine-grained spatial details and diverse temporal scales simultaneously. Notably,
UniViT retains the original vision encoder without incurring extra inference costs.
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Figure 2: Overview of the UniViT framework for unified representation learning. Image and video
inputs are processed by 2D/3D convolutions, with video features segmented into events. The resulting
tokens are fed into a shared UniViT backbone with U-RoPE, followed by Attentive Pooling to produce
a class-level representation for contrastive learning against memory bank class centers.

Extensive experiments across varying model scales demonstrate that UniViT achieves state-of-the-art
performance on multiple downstream tasks, including linear probing, attentive probing, image and
video question answering, and spatial understanding. The contributions are summarized as follows:
(i): We propose UniViT, a cluster-driven unified self-supervised learning framework that effectively
captures the structured semantics of both image spatial content and video temporal dynamics through
event-level and object-level clustering and discrimination. (ii): We introduce U-RoPE and VS2

strategies to explicitly disentangle spatial-temporal positional embeddings and adaptively handle
varying frame lengths, facilitating position-invariant and structured spatiotemporal representations.
(iii): Extensive experiments across diverse model scales and tasks demonstrate that UniViT achieves
state-of-the-art performance on multiple downstream tasks.

2 Methodology

Our goal is to achieve unified representation learning across image and video modalities (Fig. 2).

Variable Spatiotemporal Streams (VS2). Given visual samples X = {xi}Ni=1, each sample xi

is uniformly divided into non-overlapping patches, accommodating both images and videos in a
unified manner. Specifically, each image sample xi ∈ RH×W×3 is partitioned into spatial patches
of size P × P , while each video sample xi ∈ RT×H×W×3 is partitioned into variable-length frame
sequences {Fi,s}Si

s=1, with each sequence Fi,s ∈ RTi,s×H×W×3 covering consecutive RGB frames
(e.g., 1, 2, 4, 8, or 16 frames) over the same spatial regions, where Si denotes the number of
sequences within the i-th video. Subsequently, each sequence Fi,s is independently encoded via a
shared Transformer-based encoder ϕ(·) into spatiotemporal embedding tokens Zi:

Zi = [ϕ(Fi,1); ϕ(Fi,2); . . . ; ϕ(Fi,Si
) ] ∈ RM×C , with M =

Si∑
s=1

Ms. (1)

where Ms and C denote the number of embedding tokens and the embedding dimension for the
s-th sequence, respectively. The resulting tokens are projected into D-dimensional vectors, forming
token embeddings Ei = {ei,j}Mj=1 ∈ RM×D that encode local visual features [21]. Subsequently,
positional encodings are dynamically assigned using the VS2 strategy. Therefore, this design enhances
flexibility and spatiotemporal representational capacity.

Event-level and Object-level Clustering. Iterative clustering-discrimination approaches commonly
suffer from substantial computational overhead [14]. To address this issue, we adopt a single-step
offline clustering to efficiently capture both object-level semantics from images and event-level
semantics from videos. Specifically, image embeddings are obtained by pooling the features extracted
from local object patches, eobji = ei ∈ RD, while video embeddings which are derived from a
fixed-length 16-frame input are obtained by concatenating frame-level features within each segment,
yielding eevti,s = [ei,1; . . . ; ei,s] ∈ Rs×D from variable-length sub-clips of s ∈ {1; 2; . . . ; Si}. We

define a set of shared semantic centroids C = {cobjk }Kobj

k=1 ∪{cevtk }Kevt

k=1 ⊆ RD,where K = Kobj+Kevt

represents the total number of clusters across both modalities. The clustering objective is then
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formulated separately for object and event embeddings:

Cuni = arg min
{cobj

k ,cevtk }

N∑
i=1

(
min

k∈[1,Kobj]
∥eobji − cobjk ∥22 +

Si∑
s=1

min
k∈[1,Kevt]

∥eevti,s − cevtk ∥22

)
, (2)

where N is the number of samples. Cuni integrates object-level and event-level semantics for
consistent representation learning.

Unified Rotary Position Embedding (U-RoPE). Unlike traditional absolute position encoding
defined as p = (t, x, y), U-RoPE adopts a relative scheme [53] ∆p = (t1 − t2, x1 −x2, y1 − y2) that
supports position-invariant semantic learning, enabling better modeling of multi-event structures in
videos. Specifically, the rotary position embedding is applied directly to the query-key dot-product
attention matrix, i.e., Ai,j = (qiRi)(kjRj)

⊤. For image inputs, the temporal position t is fixed across
the spatial grid (x, y). For video inputs, temporal positions vary across frames while spatial positions
are computed the same way as for images. Existing methods, such as M-RoPE [60], typically allocate
temporal position encodings with high-frequency components, determined by the rotary frequency
θn = β− 2n

C . This allocation causes periodic oscillations, leading to unstable frame representations
that conflict with dense label discrimination. Therefore, we propose a unified frequency allocation
strategy that assigns global event-related temporal structures to smoother low-frequency components,
while retaining high-frequency components for local spatial details:

ΦS = {β− 2(2j+k)
C | j ∈ [0,

3

4
L), k ∈ {0, 1}}, ΦT = {β− 2j

C | j ∈ [
3

4
L,L)}, (3)

where ΦS and ΦT respectively denote the rotation frequencies used for spatial and temporal rotary
applying to the 2L-dimensional embedding space, with L = C

2 , and β represents the base frequency.

Joint Training Objective. Visual samples commonly exhibit multiple semantic components, includ-
ing object-level semantics from images and event-level semantics from videos, rendering single-label
assignments inadequate for unified multimodal representation learning. To capture both object-level
and event-level semantic structures, we introduce a contrastive objective that leverages these semantic
clusters as pseudo-label supervision to explicitly enforce structural constraints. Specifically, for
each visual embedding ei ∈ RD, we identify multiple positive semantic labels from the unified
semantic centroid set Cuni ∈ R(|Cobj |+|Cevt|)×D, consisting of both object-level Cobj and event-level
Cevt centroids. The remaining centroids in this unified set are treated as negative labels. Subsequently,
the joint multi-label semantic discrimination objective is formulated as:

LJoint =
∑

m∈{obj,evt}

log(1 + ∑
j∈Ωm

n

exp(σm
j )) + log(1 +

∑
i∈Ωm

p

exp(−σm
i ))

 , (4)

where m ∈ {obj, evt} denotes the semantic granularity level, corresponding respectively to object-
level (images or single frames) and event-level (video segments). Ωm

p and Ωm
n represent the sets of

positive and negative semantic labels for granularity level m, while σm
i and σm

j indicate embedding
similarity scores to positive and negative semantic centroids, respectively. The embedding similarity
score σm

u,k is computed as σm
u,k = e⊤u c

m
k , where u and k index visual embeddings and semantic

centroids within the corresponding positive or negative sets, respectively. This unified formulation
leverages semantic clustering to capture spatiotemporal structures for discriminative embeddings.

Unified Image and Video Understanding. As shown in Fig.3a, the frame-to-frame similarity under
the multi-event setting is significantly lower than that of the single-event counterpart, indicating finer-
grained temporal discrimination and better action segmentation. The lower training loss in Fig. 3b
indicates that fine-grained temporal modeling in the multi-event setting benefits video understanding.
In Fig. 3c, U-RoPE demonstrates faster convergence and improved stability over absolute position
encoding and M-RoPE. By decoupling spatial and temporal dimensions and avoiding high-frequency
temporal encoding, U-RoPE enables robust position-invariant learning across both images and videos.
Fig. 3d illustrates the distribution of cosine similarity between image and video feature embeddings,
indicating that video and image representations are related yet significantly different.

3 Experiments
3.1 Implementation Details.

Pretraining Setup. Our models are pre-trained on the LAION400M[50], COYO700M[13], and
InternVid[61]. We use 80 H800 GPUs for the training process. During training, we maintained a 1:1

4



(a) Mean frame similarity. (b) Loss cruve.

GAP

(c) U-RoPE (d) Image Video Similarity

Figure 3: Analysis of multi-event approach. (a) Multi-event frames demonstrate significantly lower
frame similarity (0.65 vs 0.75, indicating greater inter-frame distinctiveness that improves feature
discrimination. (b) Multi-event processing substantially accelerates convergence speed, with higher
frame counts (8-16) showing faster loss reduction compared to single or fewer frames. (c) U-RoPE
enables better local semantic learning, resulting in lower loss compared to other methods. (d)
Distribution of cosine similarity between image and video feature embeddings.
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Methods pretrained on Images

Siglipv2 [58]
ViT-B/16 256 86M 10B ✓ 90.5 95.2 94.7 93.1 90.9 95.4 83.2 81.2 58.2 71.3 70.9 59.0 66.3 92.2 31.3 16.3
ViT-L/16 256 303M 10B ✓ 92.6 96.5 97.2 94.5 94.3 96.0 84.1 85.3 63.9 77.3 77.5 66.5 71.7 95.0 39.8 19.4
ViT-SO400M 224 428M 10B ✓ 93.4 97.1 97.8 95.0 95.8 96.1 85.5 86.4 66.4 78.7 79.1 68.8 76.3 95.0 46.1 20.9

DINOv2 [44]
ViT-S/14 224 22M 145M ✗ 85.9 89.3 90.2 92.4 85.6 91.0 82.3 70.3 49.2 60.3 60.2 49.8 56.5 87.2 16.4 14.3
ViT-B/14 224 87M 145M ✗ 89.3 95.1 94.7 92.1 90.4 93.5 83.1 76.4 56.7 66.9 66.9 54.3 63.8 91.6 38.8 14.5
ViT-L/14 224 311M 145M ✗ 91.4 95.2 96.4 94.3 91.2 95.4 84.7 82.4 56.5 67.5 67.5 54.2 64.3 91.8 35.6 14.6

CLIP [48] ViT-B/16 224 86M 400M ✓ 89.0 93.0 92.4 92.4 90.8 95.6 81.4 77.1 56.5 67.4 67.1 54.2 66.9 88.1 37.5 14.0
ViT-L/14 224 304M 400M ✓ 91.6 95.7 94.2 94.5 93.4 95.7 83.2 84.7 63.7 74.8 74.2 63.2 71.3 92.6 53.1 16.8

I-JEPA [7] ViT-H/14 224 631M 22K ✗ 83.0 76.3 94.7 89.7 79.5 92.3 80.1 68.4 40.6 48.6 46.6 34.1 56.3 83.9 2.0 12.4
ViT-g/16 224 1011M 22K ✗ 85.0 78.9 95.1 90.4 83.7 93.7 83.3 70.2 41.5 48.9 47.2 35.3 58.2 83.1 3.9 13.8

MLCD [4] ViT-L/14 336 304M 1.1B ✗ 92.9 96.8 97.8 95.0 95.2 95.7 84.3 85.4 66.8 78.8 78.9 68.2 80.4 97.1 46.9 17.4

Methods pretrained on Videos

V-JEPA [10] ViT-L/16 224 312M 2M ✗ - - - - - - - - 57.0 62.3 63.2 49.2 77.7 95.4 6.3 44.9
ViT-H/16 224 649M 2M ✗ - - - - - - - - 56.1 59.3 60.5 46.9 83.0 94.4 4.0 44.8

LanguageBind [73] ViT-L/14 224 407M 3M ✓ - - - - - - - - 60.0 72.1 72.3 60.3 71.9 93.3 33.8 16.4

VideoMAEv2 [59] ViT-g/14 224 1012M 1.35M ✗ - - - - - - - - 35.3 39.8 42.6 29.4 30.6 75.0 1.6 27.9

Methods pretrained on Image and Videos

PE-Core [11]
ViT-B/16 224 93M 5.4B/22M ✓ 89.9 94.0 92.7 92.9 91.2 94.4 84.2 80.1 54.0 66.6 66.2 53.6 65.9 90.3 19.4 15.9
ViT-L/14 336 317M 5.4B/22M ✓ 92.1 96.7 94.5 94.8 93.6 95.3 85.3 84.6 67.6 79.6 79.8 69.4 77.7 96.8 47.5 22.5
ViT-G/14 448 1882M 5.4B/22M ✓ 93.1 96.9 97.7 95.6 93.9 95.7 86.2 85.4 68.4 81.5 81.7 72.1 80.5 97.3 42.2 23.7

UniViT

ViT-S/16 224 26M 1.1B/60M ✗ 85.5 88.9 85.5 92.5 87.4 91.4 81.3 71.5 52.0 65.6 64.9 50.9 59.4 89.6 18.1 15.6
ViT-B/16 224 99M 1.1B/60M ✗ 89.0 91.4 92.6 93.1 90.2 94.2 83.1 78.2 61.9 74.7 74.8 61.5 70.2 94.8 32.0 25.1
ViT-L/14 224 334M 1.1B/60M ✗ 91.8 95.2 95.5 94.7 93.1 95.4 84.2 84.5 68.3 82.9 83.0 72.4 81.4 97.3 33.8 27.3
ViT-L/14 336 334M 1.1B/60M ✗ 92.8 95.1 97.7 95.1 93.7 95.7 85.4 86.5 73.1 84.1 84.2 73.3 83.5 98.2 56.3 32.1

Table 1: Attentive Probe Evaluation under few-shot settings for label efficiency analysis. Bold
indicates the best performance.

ratio between images and video frames, with an image batch size of 16K and a video batch size of
2K (each video containing 16 frames). In total, our model is exposed to approximately 20B image
frames throughout the training. For our standard model, we use 224 resolution images. For the 336
resolution variant, we first train the model at 224 resolution, then increase it to 336 and continue
training for an additional 1B frames. We utilize the AdamW optimizer with a learning rate of 0.001
and weight decay of 0.2. The number of classes (k) is one million, the ratio of sampled negative class
centers (r) is 0.1, and the number of positive labels (l) assigned to each image and video is 8.

Multimodal Setup. For our multimodal large language model evaluations, we adopt the LLaVA-
NeXT [41] framework while maintaining experimental consistency. All training methodologies
precisely follow the original LLaVA-NeXT-Video implementation, utilizing identical pretraining
datasets and instruction-tuning data. We employ Qwen2.5-7B [68] as our language model back-
bone, which effectively mitigates potential hyperparameter biases that might favor OpenAI-CLIP
in the original LLaVA-NeXT-Video configuration. This controlled experimental design ensures fair
comparison when evaluating the performance of our vision encoders within multimodal systems.

3.2 Comparisons with Existing Vision Encoders

Attentive Probing Results. We evaluate the comprehensive ability of UniViT across 14 standard
benchmarks, covering a wide range of semantic and vision-centric tasks, using a 50-shot attentive
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Methods pretrained on Images

Siglipv2 [58]
ViT-B/16 256 86M 10B ✓ 93.7 94.6 96.7 98.3 93.1 98.5 83.5 91.3 56.3 72.4 73.6 60.2 63.7 90.6 12.5 21.1
ViT-L/16 256 303M 10B ✓ 94.3 96.2 97.8 98.2 93.1 98.6 85.2 91.3 59.4 76.5 78.2 66.2 66.8 93.1 12.5 22.7
ViT-SO400M 224 428M 10B ✓ 94.7 96.4 98.2 97.8 94.0 98.6 85.7 92.2 66.5 78.6 79.7 68.8 68.0 94.4 53.1 23.2

DINOv2 [44]
ViT-S/14 224 22M 145M ✗ 90.6 89.1 97.7 98.1 84.4 97.0 81.1 86.9 52.2 62.6 62.9 49.0 53.5 82.9 37.5 17.2
ViT-B/14 224 87M 145M ✗ 92.1 92.8 98.7 98.1 86.1 96.1 84.5 88.1 59.0 68.9 70.6 57.3 61.7 89.9 46.9 18.0
ViT-L/14 224 311M 145M ✗ 93.6 94.3 99.4 98.5 90.1 97.5 86.3 89.0 61.0 73.7 74.1 63.1 64.4 91.8 40.6 19.6

CLIP [48] ViT-B/16 224 86M 400M ✓ 91.8 92.2 95.9 97.8 90.9 96.3 80.2 89.2 58.3 70.3 71.7 57.7 64.4 88.5 37.5 18.0
ViT-L/14 224 304M 400M ✓ 93.8 95.0 98.1 98.6 93.3 97.4 83.9 90.5 64.4 76.4 77.8 65.8 64.8 92.8 53.1 19.8

I-JEPA [7] ViT-H/14 224 631M 22K ✗ 86.1 74.1 98.3 98.6 78.6 95.6 79.3 78.0 41.8 49.4 50.2 37.5 46.9 74.1 18.8 15.5
ViT-g/16 224 1011M 22K ✗ 87.9 77.7 98.2 98.7 82.5 95.8 82.1 80.6 42.0 49.6 50.4 37.7 47.7 74.7 18.8 15.1

MLCD [4]

ViT-S/16 224 22M 1.1B ✗ 88.7 84.0 94.2 98.5 87.9 92.9 79.1 84.6 38.9 48.1 49.6 38.3 36.7 61.4 25.0 13.0
ViT-B/16 224 86M 1.1B ✗ 91.7 89.8 97.6 98.7 90.8 95.8 82.3 86.9 48.3 58.9 60.7 48.4 46.5 79.9 28.1 15.6
ViT-L/14 224 304M 1.1B ✗ 91.4 87.2 97.2 98.8 89.3 95.6 85.4 86.0 58.1 71.4 72.8 60.0 60.2 88.3 37.5 16.7
ViT-L/14 336 304M 1.1B ✗ 94.9 96.2 99.4 99.1 94.5 97.9 86.3 91.0 62.2 76.0 76.2 64.1 62.5 92.2 46.9 17.5

Methods pretrained on Videos
LanguageBind [73] ViT-L/14 224 407M 3M ✓ - - - - - - - - 63.6 74.4 75.1 62.5 71.1 92.9 46.9 22.1

Methods pretrained on Image and Videos

PE-Core [11]
ViT-B/16 224 93M 5.4B/22M ✓ 93.4 93.2 98.1 98.8 92.9 97.2 83.4 90.5 58.1 69.5 71.2 56.8 66.0 88.7 37.5 16.9
ViT-L/14 336 317M 5.4B/22M ✓ 95.0 96.2 99.4 98.8 93.6 98.0 86.7 92.0 63.7 74.5 75.4 62.2 69.1 92.4 53.1 19.0
ViT-G/14 448 1882M 5.4B/22M ✓ 95.2 96.3 99.3 98.1 93.5 97.9 89.5 92.1 68.6 80.8 81.1 70.4 73.4 94.7 56.3 23.2

UniViT

ViT-S/16 224 26M 1.1B/60M ✗ 91.0 87.7 95.8 98.8 90.5 96.4 80.4 87.3 56.0 67.6 68.8 54.0 56.6 87.6 40.6 16.8
ViT-B/16 224 99M 1.1B/60M ✗ 92.2 90.1 97.1 98.9 92.2 96.3 83.1 87.5 60.8 75.7 77.3 63.2 66.0 93.1 28.1 22.3
ViT-L/14 224 334M 1.1B/60M ✗ 94.3 94.8 98.8 99.0 93.8 98.1 85.6 90.2 67.1 84.3 85.3 74.5 64.1 92.2 43.8 25.5
ViT-L/14 336 334M 1.1B/60M ✗ 94.9 96.6 98.9 99.0 94.9 98.4 86.5 90.2 72.0 85.3 85.4 74.9 78.1 96.6 56.3 27.4

Table 2: Linear Probe Evaluation. Bold indicates the best performance.
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Figure 4: Comparisons of UniViT and existing vision encoders across diverse multimodal image and
video benchmarks, highlighting UniViT’s superior unified representation capabilities.

probing setup, which allows us to measure feature quality without extensive task-specific finetun-
ing. As shown in Table 1, our model achieves state-of-the-art performance on multiple standard
benchmarks, including object classification, scene recognition, and fine-grained categorization.

Linear Probing Results. As shown in Table 2, we report performance on the same set of benchmarks
as in attentive probe, this time using a standard linear probing setup instead. The trend aligns closely
with the attentive probe results; our UniViT achieves state-of-the-art performance on both semantic
and non-semantic tasks, further validating the quality and generality of the learned representations.

All experimental settings for the compared models strictly follow their original implementations to
ensure fair comparison. Under this consistent protocol, despite being pretrained without pixel-level
or feature-level supervision (e.g., MAE, JEPA), our UniViT still achieves strong visual understanding
across a wide range of vision-centric tasks. Notably, previous video encoders cannot handle static
images, while image encoders struggle with temporally dependent tasks (e.g., SSV2). In contrast,
UniViT leverages a unified representation space that captures both spatial and temporal patterns,
enabling strong performance across image and video domains. This demonstrates the generalization
capability of our architecture, which is designed for unified representation learning across modalities.

UniViT as a Vision Encoder for MLLMs. In this section, we evaluate our unified vision encoder,
UniViT, which is designed to seamlessly handle both image and video modalities. We conduct
comprehensive experiments on a diverse set of benchmarks to assess the model’s ability to learn
shared semantic representations across static and temporal inputs. The evaluation is performed
within the LLaVA-NeXT-Video framework under consistent and controlled settings to ensure fair
comparison. We benchmark UniViT on 18 datasets spanning four major domains: General VQA and
Knowledge VQA. These datasets cover both image-based and video-based VQA tasks, providing
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Figure 6: PCA visualization of patch features extracted by our UniViT. Patches displaying similar
colors indicate semantic similarities, reflecting that they embody analogous elements or attributes.

a holistic view of the model’s multimodal reasoning capability. As summarized in Fig. 4, UniViT
achieves strong and consistent performance across all categories, notably outperforming conventional
single-modality baselines such as CLIP and SigLIP. At a resolution of 336px, UniViT surpasses CLIP
on 17 out of 18 benchmarks. Importantly, UniViT demonstrates robust performance across both
Image-VQA and Video-VQA, highlighting its versatility and effectiveness in learning generalizable
multimodal semantics. Notably, these results are achieved without any language supervision, further
demonstrating the strength of our unified framework in capturing cross-modal visual understanding.
This positions UniViT as a practical and scalable solution for real-world multimodal applications.

Scaling Behavior. To investigate the scalability of our unified vision encoder, we conduct a systematic
analysis of its performance across varying configurations using an attentive probe protocol on both
image and video tasks. Rather than comparing against other paradigms, we focus on the internal
scaling behavior of our framework along three progressive dimensions: (1) increasing training data
volume, (2) expanding model capacity, and (3) increasing input resolution.
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Figure 5: Scaling Behavior: Performance scala-
bility of UniViT across model capacities, training
data volumes, and input resolutions. Average ac-
curacy across multiple video tasks demonstrates
consistent improvements with increased scale.

As illustrated in Fig. 5, we analyze the scaling
behavior of UniViT on video tasks by averaging
performance scores from seven video datasets.
This provides a stable estimate of performance
trends specific to video understanding. This con-
trolled design allows us to isolate and examine
the contribution of each scaling factor. We ob-
serve consistent and meaningful improvements
at all stages. Increasing data volume leads to
noticeable gains for both modalities, suggesting
that enhanced data diversity improves unified
semantic modeling. Expanding model capac-
ity, from small to large variants, further boosts
representation quality, with more pronounced
benefits on fine-grained tasks. Higher input res-
olution also contributes positively to overall per-
formance, especially in video tasks where cap-
turing spatial continuity across frames is crucial
for robust representation learning. Compared
to existing models, our approach exhibits more
efficient scaling behavior, with larger variants
delivering consistently stronger improvements across video tasks. These results demonstrate that our
model scales effectively with standard training resources while maintaining strong generalization
across diverse video benchmarks.

4 Ablation Study
Pretraining Strategy. As shown in Table 3a and 3b, we conduct ablation studies to analyze the impact
of robust pretraining strategies and position embedding designs. In Table 3a, we progressively apply
modifications including attentive pooling, and stronger data augmentation. Each contributes positively
to K400 and SSV2, highlighting the importance of stable pretraining for video understanding. In
Table 3b, we compare different designs for position embedding. We find that moving from absolute
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Data K400 SSV2
Baseline 64.1 15.0

+Atten Pool 65.2 15.5
+Data Aug 65.6 15.6

(a) Pretraining Strategy. The ef-
fects attentive pooling, and data
augmentation.

Method K400 SSV2
Abs + ViT 64.2 13.9

Abs + 2DRoPE 64.7 14.3
M-RoPE 65.1 15.2
U-RoPE 65.6 15.6

(b) Position Embedding. Compar-
ison of absolute position, 2D, 3D,
and unified RoPE strategies.

Frames K400 SSV2
Baseline 62.7 13.2

+8 64.4 14.2
+4,8 65.2 15.3

+1,2,4,8 65.6 15.6

(c) Varing Frames with Multi-
Event. Pretraining at varying
frames with multi-event.

Method K400 SSV2
only Obj. 62.3 12.5
only Evt. 61.9 11.3
Obj.+Evt. 62.7 13.2

Obj.+Multi-Evt. 65.6 15.6

(d) Clustering Strategy. Perform
clustering at the Event-level and
Object-level.

Num Classes K400 SSV2
500k 65.2 15.5
1M 65.6 15.6
2M 65.8 15.5
5M 65.2 15.4

(e) Classes Number. The number
of classes during event-level and
object-level clustering.

Table 3: Ablation experiments on K400 and SSV2 under few-shot settings. (a) Pretraining strategies.
(b) Position embeddings. (c) Multi-event frame sampling. (d) Semantic clustering strategies. (e)
Number of clustering classes. The entries marked in gray are the same, which specify the default
settings.

position embedding to 2D-RoPE with 1d-absolutioe position and 3D-RoPE leads to substantial
performance gains, with 3D-RoPE achieving better results. This suggests that temporal embedding
better captures motion dynamics. Our U-RoPE decouples spatial and temporal dimensions during
embedding, enabling more flexible handling of both image and video modalities, and achieves the
best overall performance.

Effect of Variable Spatiotemporal Streams. We begin with a baseline where the model is pretrained
using only 16-frame video clips. To enhance temporal modeling, we introduce variable-length frame
inputs (e.g., 1, 2, 4, 8, 16 frames) with dense labels, as shown in Table 3c. On K400, performance
remains stable across frame combinations. In contrast, the more temporally complex SSV2 benefits
notably from dense supervision with diverse frame counts, suggesting it helps capture short-range
temporal dynamics. To qualitatively assess the short-range temporal robustness of our model, we
visualize patch-level features using PCA, as shown in Fig. 6. The model produces consistent local
semantic representations across a variety of image and video inputs, demonstrating strong spatial
grounding and frame-invariant semantic encoding. Together, these findings validate the effectiveness
of our variable-frame pretraining strategy and highlight the model’s generalization capability.

Qualitative Analysis of Frame-Agnostic Semantics. We visualize the object-level feature distri-
bution using T-SNE projection on K400, comparing both image and video samples. As shown in
Fig. 7, our model produces well-formed and compact clusters, where image and video instances
from the same semantic class are consistently grouped together. This indicates a strong alignment of
visual representations across modalities. The tight intra-class clusters and clear inter-class boundaries
demonstrate the model’s ability to abstract high-level semantics that are shared between static and
temporal visual data. Compared to the State of the Art model, such as SigLIP2 and DINOv2, our
method achieves superior intra-class compactness and inter-class separation, highlighting its strength
in learning modality-invariant and semantically consistent features.

The Effect of Clustering. To investigate the impact of different clustering strategies on video
understanding, we perform ablation studies at both the event and object levels. As shown in Table 3d,
using only object-level clustering achieves 62.3% on K400 and 12.5% on SSV2. Clustering only at the
event level yields similar performance. However, combining object-level and event-level clustering
leads to consistent improvements on both benchmarks (62.7% and 13.2%), indicating that the two
levels provide complementary information. Furthermore, when we extend to multi-granularity event
clustering (Obj.+Multi-Evt.), the performance improves further, achieving the best results on both
datasets (65.6% and 15.6%). These results demonstrate that clustering at varying event granularities,
in combination with object-level semantics, significantly enhances video understanding.
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Figure 7: Visualization of object feature distributions using T-SNE projection onto a spherical space
on K400 and K700 dataset. Class tokens serve as query vectors for QKV computation.

Impact of Number of Class Choices. As shown in Table 3e, we jointly vary the number of training
classes. We observe that performance improves as both values increase, peaking at 1M classes.
Interestingly, despite the significant increase in video data, the optimal number of classes aligns with
that used in large-scale image pretraining, suggesting that current video datasets exhibit relatively low
semantic diversity. At the same time, assigning multiple positives per sample proves beneficial for
learning richer and more robust representations, especially in complex temporal tasks such as SSV2.

5 Related Work
Advances in Visual Representation Learning. The adoption of Vision Transformers [21, 39] has
become a prevailing paradigm in the field of visual representation learning. Concurrently, equivariant
self-supervised learning approaches [20, 45, 26, 29, 19] have emerged to predict structured data
transformations consistent with group-theoretic formulations. Masked image modeling methods [30,
9, 22, 65] acquire visual representations by reconstructing masked regions of the input image in the
pixel space. Moreover, JEPAs [6, 8] predict masked regions within a learned latent space rather
than in the raw pixel domain. Contrastive Language-Image Pretraining (CLIP) [11, 55, 40, 24, 67,
50] aligns images and texts within a shared embedding space through instance-level contrastive
supervision. However, existing approaches predominantly focus on either static image understanding
or spatiotemporal modeling in isolation. In this work, UniViT structuring a shared semantic space for
images and videos by modeling intra- and inter-instance, effective transfer to downstream tasks.

Cluster Discrimination. Instance discrimination methods [17, 31, 47], exemplified by CLIP [47,
69, 28], leverage instance-level contrastive supervision but neglect semantic similarities across
instances, whereas cluster-based approaches [14, 5, 15] assign single pseudo-labels per sample,
failing to adequately represent images containing multiple visual elements. To better capture semantic
structures, cluster discrimination methods [14, 5, 72, 15] typically iteratively assign pseudo-labels
through clustering and train classifiers based on these labels, grouping visually similar instances to
encourage semantic coherence. However, conventional approaches assign only a single pseudo-label
per image, limiting their capacity to represent multiple semantic concepts within one instance, an
issue recently addressed by multi-label clustering methods such as Unicom [2] and MLCD [4]. In
this work, we adopt multi-label clustering to unify the representation learning of images and videos,
effectively enhancing the semantic coherence.

Efficient Training. Recent literature has explored various strategies for efficient CLIP training, such
as large-batch optimization (up to 160K) [46, 50] and specialized optimizers like LAMB[56, 70].
RoPE originally designed for language models [54], has also been adapted to vision transformers
via two-dimensional extensions [33, 1]. Additionally, significant efforts have focused on effective
data curation and filtering at scale [25, 50, 24, 67], as well as image recaptioning using MLLMs [23,
38, 43, 66, 57, 3]. Motivated by these advances, we extend these methodologies to video data,
constructing a unified data engine that facilitates robust representation learning across both images
and videos.

6 Conclusion & Limitation
In this paper, we introduced UniViT, a cluster-driven unified self-supervised learning framework
designed to jointly capture structured semantics across both spatial and temporal modalities through
clustering and discrimination. Leveraging multi-granularity event-level clustering for videos and
object-level clustering for images, UniViT first constructs structured semantic clusters across modali-
ties during the clustering stage. Subsequently, in the discrimination stage, UniViT explicitly incorpo-
rates these clusters as pseudo-labels into a contrastive objective, effectively integrating structured
semantic representations into a unified embedding space. To address limitations inherent to traditional
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position encoding and fixed-input approaches, we further introduced U-RoPE and VS2, enhancing
semantic stability and flexibility across modalities. Extensive evaluations across multiple benchmarks
demonstrate UniViT’s superior scalability and its ability to achieve state-of-the-art performance on
various downstream tasks, highlighting its effectiveness in unified visual representation learning.

Limitation: We clarify the limitations of our proposed UniViT: (i): UniViT relies on offline clustering
with pretrained embeddings, potentially introducing biases from the initial feature extraction model
and limiting its ability to adaptively update cluster assignments during training. (ii): Although
our VS2 strategy supports flexible temporal lengths and arbitrary input resolutions, long sequences
or extremely high-resolution inputs may still incur substantial computational costs, potentially
constraining practical scalability in resource-limited scenarios.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The study is based on a proprietary dataset that is subject to confidentiality
constraints. Due to these restrictions, we are currently unable to provide public access to the
dataset and code. We are exploring possibilities for future release, subject to approval.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We clearly provide our experiment setting in the section, Baseline and Imple-
mentation details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computation resources in Implemen-
tation details
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper strictly adheres to all requirements of the NeurIPS Code of Ethics,
including transparency in data usage, fairness in research methods.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly acknowledge the original owners of the assets, including code,
data, and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the details of how our model is used as the vision encoder in the
LLM-based MLLM, along with the corresponding experimental settings, in UniViT as an
Encoder of MLLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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