
Under review as submission to TMLR

Sketch and shift:
a robust decoder for compressive clustering

Anonymous authors
Paper under double-blind review

Abstract

Compressive learning is an emerging approach to drastically reduce the memory footprint
of large-scale learning, by first summarizing a large dataset into a low-dimensional sketch
vector, and then decoding from this sketch the latent information needed for learning. In
light of recent progress on information preservation guarantees for sketches based on random
features, a major objective is to design easy-to-tune algorithms (called decoders) to robustly
and efficiently extract this information. To address the underlying non-convex optimization
problems, various heuristics have been proposed. In the case of compressive clustering, the
standard heuristic is CL-OMPR, a variant of sliding Frank-Wolfe. Yet, CL-OMPR is hard
to tune, and the examination of its robustness was overlooked. In this work, we undertake a
scrutinized examination of CL-OMPR to circumvent its limitations. In particular, we show
how this algorithm can fail to recover the clusters even in advantageous scenarios. To gain
insight, we show how the deficiencies of this algorithm can be attributed to optimization
difficulties related to the structure of a correlation function appearing at core steps of the
algorithm. To address these limitations, we propose an alternative decoder offering sub-
stantial improvements over CL-OMPR. Its design is notably inspired from the mean shift
algorithm, a classic approach to detect the local maxima of kernel density estimators. The
proposed algorithm can extract clustering information from a sketch of the MNIST (resp.
of the CIFAR10) dataset that is 10 times smaller than previously and much easier to tune.

1 Introduction

In an era where resources are becoming scarcer, reducing the footprint of learning algorithms is of paramount
importance. In this context, sketching is a promising paradigm. This consists in conducting a learning task on
a low dimensional vector called a sketch that captures the essential structure of the initial dataset (Cormode
et al., 2011). In other words, the sketch is an informative summary of the initial dataset which may be used
to reduce the memory footprint of a learning task.

This article studies decoding in the context of compressive clustering. This is an emerging topic of research
in machine learning aiming to scale up the (unsupervised learning) task of clustering by conducting it on a
sketch (Gribonval et al., 2021b). In this context, the sketch1 is the mean of a given feature map over the
dataset (Keriven et al., 2017), and decoding consists in the recovery of the cluster centroids from such a
sketch. So far, this learning step was conducted using a heuristic decoder called CL-OMPR (Keriven et al.,
2017). Despite existing proofs of concept for compressive learning with CL-OMPR, an in-depth examination
of the properties of this decoder has been lacking.

The starting point of our study is a scrutinized examination of CL-OMPR. First, using a numerical exper-
iment, we show how CL-OMPR might fail to recover the clusters even in an advantageous scenario where
the dataset is generated through a Gaussian mixture model with well-separated clusters. Second, to provide
an explanation of this deficiency, we analyze the first step of the algorithm which consists in finding a new
centroid that maximizes a correlation function. The latter is an approximation of the kernel density esti-
mator (KDE) associated to a shift-invariant kernel when the feature map corresponds to a Fourier feature

1The word “sketching” is highly overloaded in machine learning. In this paper it refers to a vector computed as in (1).
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map. We show that the main shortcomings of CL-OMPR stem from optimization difficulties related to the
correlation function. Third, we propose an alternative decoder which takes into account these difficulties
and validate it on synthetic and real datasets. In particular, in the case of spectral features of MNIST, we
demonstrate that our algorithm can extract clustering information from a sketch that is 10 times smaller.

This article is structured as follows. Section 2 recalls definitions and notions related to compressive clustering.
In Section 3, we conduct a numerical simulation that highlights the limitations of CL-OMPR. In Section 4, we
propose an alternative decoder that circumvents the shortcomings of CL-OMPR. Section 5 gathers numerical
simulations that illustrate the improvement of the alternative decoder upon CL-OMPR.

2 Background

Clustering algorithms group elements into categories, also called clusters, based on their similarity. Numerous
clustering algorithms have been proposed in the literature; see e.g. Jain (2010).

Beyond the classical Lloyd-Max approach (Lloyd, 1982), compressive clustering (Keriven et al., 2017) was
showed to offer an alternative both well-matched to distributed implementations and streaming scenarios and
able to preserve privacy, see e.g. Gribonval et al. (2021b). The approach aims at drastically summarizing a
(large) training collection while retaining the information needed to cluster. This objective is similar to that
of coresets (see e.g. Feldman & Langberg (2011); Guo et al. (2022)), but the approach is radically different.
Coresets summarize a collection of training samples by selecting a limited subset of representative samples
(or sometimes of transformed samples). In contrast, compressive clustering is somewhat more democratic:
instead of selecting a few “meritorious” samples, it computes a unique vector, called a sketch (of dimension
moderately higher than the dimension of each training sample), that depends equally on all samples. The
computation of this sketch is designed to capture the relevant information of the whole training collection
to perform a given clustering task.

For instance, in Keriven et al. (2018a), the authors compressed 1000 hours of speech data (50 gigabytes) into
a sketch of a few kilobytes on a single laptop, using a random Fourier feature map. In this work, the sketch
zX of a dataset X = {x1, . . . , xN} ⊂ Rd was taken to be

zX := 1
N

N∑
i=1

Φ(xi), (1)

where Φ : Rd → Cm is a given feature map. For instance, random Fourier features (RFF) are defined as
Φ(x) = (ϕωj

(x))j∈[m] ∈ Cm, where

ϕω(x) := 1√
m

ei⟨x,ω⟩, (2)

and ω1, . . . , ωm are i.i.d. samples from N (0, σ−2Id), with σ > 0 (Rahimi & Recht, 2007).

The sketch zX can be seen as the mean of the generalized moment defined by the feature map Φ, i.e.,
zX = Ex∼πN

Φ(x), where πN :=
∑N

i=1 δxi
/N is the empirical distribution of the dataset X . In other words,

zX = AπN , where A is the so-called sketching operator A : P(Rd) → R on P(Rd), the set of probability
distributions on Rd, defined by

Aπ =
∫
Rd

Φ(x)dπ(x). (3)

A theoretical analysis of compressive clustering using random Fourier features was conducted in Gribonval
et al. (2021a); Belhadji & Gribonval (2022). In particular, it was shown that the sketch size m must depend
on the ambient dimension d of the dataset and the number k of centroids in order to recover the centroids
with high probability. More precisely, a sufficient sketch size was shown to scale as O(k2d), while numerical
investigation in Keriven et al. (2017) showed that a sketch size m = O(kd) is enough in practice to recover
the cluster centroids. Alternatively, data-dependent Nyström feature maps were shown to require a sketch
size that depends on the effective dimension of the dataset, which may be smaller than O(kd) (Chatalic
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et al., 2022). In these works, centroid recovery was achieved by addressing the following inverse problem

min
α∈Rk

+;
∑k

i=1
αi=1

c1,...,ck∈Θ

∥zX −
k∑

i=1
αiΦ(ci)∥, (4)

where Θ ⊂ Rd is a compact set. As a heuristic to address the non-convex moment-matching problem, Keriven
et al. (2017) proposed Compressive Learning-OMP (CL-OMPR), which is an adaptation of Orthonormal
Matching Pursuit (OMP), a widely used algorithm in the field of sparse recovery (Mallat & Zhang, 1993; Pati
et al., 1993). In a nutshell, CL-OMPR minimizes the residual ∥zX −

∑k
i=1 αiΦ(ci)∥ by adding “atoms” Φ(ci)

in a greedy fashion; see Algorithm 1 for a simplified version of CL-OMPR and Algorithm 3 in Appendix A
for the details. The definition of CL-OMPR was indeed inspired by a variant of OMP, namely OMP with
replacement (OMPR), and adapted to the continuous setting with gradient descent steps. This is similar
in spirit to Sliding Franke-Wolfe (Denoyelle et al., 2020), a continuous adaptation of Franke-Wolfe which is
itself related to OMP, see e.g. Cherfaoui et al. (2019). Despite a promising behaviour in several empirical
proofs of concept, CL-OMPR is only a heuristic and our first main contribution in the next section is to
highlight its weaknesses, before using the resulting diagnoses to propose a new decoder and demonstrating
the resulting improved performance and robustness.

Data: Sketch zX , sketching operator A, parameters k,T ≥ k, domain Θ
Result: Set of centroids C, vector of weights α
r ← zX ; C ← ∅;
for i = 1 . . . T do

Step 1: Find a new centroid and expand the support C

fr(c) := Re⟨r,Aδc⟩ //⟨z, z′⟩ :=
∑m

j=1 zjz′
j , ∀z, z′ ∈ Cm

c← arg maxc∈Θ fr(c)
C ← C ∪ {c}

end
Step 2: Reduce the support C by Hard Thresholding when i > k

Step 3: Project to find α : α← arg minα≥0 ∥zX −
∑|C|

i=1 αiΦ(ci)∥
Step 4: Fine tuning by gradient descent steps: C, α← arg minC⊂Θ,α≥0 ∥zX −

∑|C|
i=1 αiΦ(ci)∥

Step 5: Update the residual: r ← zX −
∑|C|

i=1 αiΦ(ci)
end

Algorithm 1: CL-OMPR

3 Illustrating and diagnosing failures of CL-OMPR

Since its introduction by Keriven et al. (2017), CL-OMPR has been popular among methods that cluster
using the sketch in (1) (Chatalic et al., 2018; 2022). In this section, we show how CL-OMPR is in fact not
robust in the task of the recovery of centroids. To simplify the analysis, since the goal is to show that failures
can happen even in favorable scenarios, we consider a setting where: i) the data is drawn from a mixture
of well-separated Gaussians, ii) the dataset size N is very large, and iii) the sketch size m is very large. We
show through a numerical experiment, that CL-OMPR fails to accurately reconstruct the centroids even in
these optimal conditions.

3.1 A numerical experiment

We consider a dataset X = {x1, . . . , xN} ⊂ R2, where N = 100000 and the xi are i.i.d. draws from a
mixture of isotropic Gaussians

∑k
i=1 αiN (ci, Σi), where k = 3, α1 = α2 = α3 = 1/3, c1, c2, c3 ∈ R2 and

Σ1 = · · · = Σk = σ2
X I2 ∈ R2×2 as shown in Figure 1b. We consider a sketching operator defined through

random Fourier features associated to i.i.d. Gaussian frequencies ω1, . . . , ωM drawn from N (0, σ−2I2) with
σ > 0. Recall that, in the context of k-means clustering, the mean squares error (MSE) of a set of centroids
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(a) MSE as a function of σ
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(b) The synthetic dataset

Figure 1: Average MSE of Lloyd’s algorithm, CL-OMPR for two sketch sizes, and the proposed Algorithm 2
on a synthetic dataset with three well-separated clusters in dimension 2. For well chosen values of σ the
MSE is of the order of 0.01, to be compared with inter-cluster squared distances of the order of 0.25, and
intra-cluster variances of the order of 0.05.

C = {c1, . . . , ck} is defined by

MSE(C;X ) := 1
N

N∑
n=1

min
i∈[k]
∥xn − ci∥2. (5)

This is the quantity directly optimized by Lloyd’s algorithm, while CL-OMPR instead addresses the opti-
mization problem (4) as a proxy, both with constraint ci ∈ Θ := [−1, 1]2 here. Figure 1a compares the MSE
of Lloyd’s algorithm, compressive clustering using CL-OMPR, and compressive clustering using Algorithm 2
for sketch sizes m ∈ {30, 1000}, averaged over 50 realizations of the sketching operator, as a function of
the “bandwidth” σ (of random Fourier features). As in previous work, we observe that the performance
of CL-OMPR improves for large values of m. Moreover, we observe that, for m = 1000, the performance
of CL-OMPR can be close to that of Lloyd-max, but the range of σ for which this is the case is narrow
(σ ≈ 0.3), indicating that the parameter σ of the sketched clustering pipeline is hard to tune. On the
contrary, the performance of Algorithm 2 is the same as Lloyd’s algorithm in a wider range of the bandwidth
(σ ∈ [0.03, 0.3]), even at moderate sketch sizes m = 30 for which CL-OMPR is unable to approach this
performance for any value of σ.

3.2 Diagnoses via links with kernel density estimation

As we now show, compressive clustering bears strong links with kernel density estimation, and some of the
difficulties in tuning σ observed above are reminiscent of classical kernel size tuning issues (Chen, 2017). We
also highlight more specific difficulties of CL-OMPR as a decoder, which will help us design a better decoder
(Algorithm 2) in the next section.

To relate compressive clustering to kernel density estimation, we examine the correlation function, which
appears in Step 1 of CL-OMPR (Algorithm 1).
Definition 1. Given a sketching operator A : P(Rd) → Cm, and given r ∈ Cm, define the correlation
function fr : Rd → R associated to r and A as

fr(x) := Re⟨r,Aδx⟩. (6)

Figure 2 shows the correlation function fzX associated to r = zX = AπN , in the first step of CL-OMPR,
with the sketching operator defined in Section 3.1 for m ∈ {100, 1000}, and σ ∈ {0.01, 0.05, 0.1, 0.2, 1} where
πN =

∑N
i=1 δxi

/N corresponds to the dataset represented by Figure 1b. We observe that, for σ = 1, the
correlation function has a single global maximum, which does not reflect the dataset’s “clustered” geometry.
As for σ ∈ {0.1, 0.2}, the correlation function exhibits multiple local maxima, the most significant ones
being aligned with the cluster locations: the correlation function retains the dataset’s geometry. In the case
σ = 0.05, the correlation function continues to depict the dataset’s geometry while introducing a number
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of spurious local maxima, especially for a small sketch size m = 100. Finally, for σ = 0.01, the correlation
function is heavily distorted by ’noise’ especially for m = 100. In light of these observations, we expect that
recovering the clusters from the sketch will be infeasible for high and small values of σ, whereas it might be
possible but poses challenges from an optimization perspective for intermediate σ’s.
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(b) σ = 0.05
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(c) σ = 0.1
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(d) σ = 0.2
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(e) σ = 1
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(h) σ = 0.1
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(i) σ = 0.2
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Figure 2: The correlation function for m = 100 (top) versus m = 1000 (bottom).

An important fact is that the correlation function approximates the kernel density estimator

f̂KDE(x) := 1
N

N∑
i=1

κσ(x, xi), (7)

where κσ(x, y) = Eω∼N (0,σ−2Id)Re⟨Aδx,Aδy⟩. Indeed, if zX = AπN , then

Eω∼N (0,σ−2Id)fzX (x) = 1
N

N∑
i=1

Eω∼N (0,σ−2Id)Re⟨Ax,Axi⟩ = f̂KDE(x). (8)

As a consequence, step 1 in CL-OMPR (Algorithm 1) can be seen as a search for local maxima of f̂KDE
through its approximation fzX . In other words, compressive clustering is related to density-based clus-
tering methods, to which it brings the ability to work in memory-constrained scenarios, with distributed
implementations, in streaming contexts, or with privacy constraints.

Classical difficulties of density-based clustering. Density-based clustering methods are attractive
thanks to their capacity to identify clusters of arbitrary shapes: they define clusters as high density regions
in the feature space (Fukunaga & Hostetler, 1975). Thus, some of the difficulties that the practitioner of
compressive clustering may face are inherent to density-based clustering methods such as the selection of
the kernel or the selection of the parameter of the kernel (Comaniciu & Meer, 2002): a very large value of
σ yields a smeared kernel and thus a smooth KDE for which the whole dataset belongs to a single cluster,
while a very low value of σ yields a trivial KDE where every point in the dataset belongs to its own cluster.

Specific difficulties of CL-OMPR. In addition, CL-OMPR (Algorithm 1) comes with its own difficulties.
First, Step 1 is performed by randomly initializing a candidate centroid c and performing gradient ascent on
fr. Such a gradient ascent can fail for several reasons:

• If the data is well clustered, then gradients are vanishingly small beyond a distance of roughly σ away
from the true cluster centroids. Gradient ascent will essentially not move the randomly initialized
centroid c. This is illustrated on Figure 3 in Section 4.1.
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• For moderate sketch sizes m, spurious local maxima of fzX appear due to Gibbs-like phenomena:
the approximation of the smooth f̂KDE of (6) by fzX

gives rise to oscillations, see Figure 2.

Second, the residual is updated in Step 5 by removing from zX the sketch of an estimated |C|-mixture of
Diracs corresponding to the term

∑|C|
i=1 αiΦ(ci) = A

∑|C|
i=1 αiδci

; see (3). In the most favorable case where
each cluster is very localized, this is indeed likely to lead to a new correlation function fr with no local
maximum around each of the already found centroids. However, the picture is quite different in the more
realistic case where clusters have non-negligible (and possibly non-isotropic) intra-cluster variance. In the
latter case, the correlation function fr of the residual updated in CL-OMPR indeed often still has a local
maximum quite close to an already found centroid, leading the algorithm to repeatedly select the same
dominant clusters and missing the other ones. This is illustrated in Figure 4 in Section 4.2, where we
propose a fix. Finally, we observed that due to Step 2 of Algorithm 1, after first increasing the number of
selected centroids from 1 to k, CL-OMPR repeats T − k times the addition of a new one followed by the
removal of one, thus never exploring more than k + 1 candidates at a time. As we will, a variant allowing
more exploration is beneficial.

4 Towards a robust decoder for compressive clustering

In this section, we propose a decoder that overcome the limitations of CL-OMPR mentioned in the end
of Section 3.2. For this, we introduce three ingredients: i) several approches to handle the non-convex
optimization problem that appears in Step 1 of CL-OMPR, which consists in seeking the centroids among
the local maxima of the correlation function fzX , ii) reducing the support C through hard-thresholding is
executed after selecting all the candidate centroids, iii) allowing to fit a |C|-mixture of Gaussians instead
of Diracs to take into consideration clusters with non-negligible (and possibly nonisotropic) intra-cluster
(co)variance: considering the selected c from Step 1 as the mean of a new Gaussian, this requires estimating
the covariance matrix of this added Gaussian.

Algorithm 2 proceeds in two steps. The first one, which is reminiscent of Orthogonal Matching Pursuit (Pati
et al., 1993; Mallat & Zhang, 1993), consists in seeking an initial support C̃ ⊂ Θ of T ≥ k candidate centroids.
This is achieved by iteratively seeking a candidate point ci that locally maximizes the correlation function
fr, then seeking the vector α ∈ Rt

+ that minimizes a residual, which expression depends on the fitted model:
a mixture of Diracs, or a mixture of Gaussians. The latter requires the estimation of the local covariance
matrix Σi using a procedure EstimateSigma, that we will motivate in Section 4.2 and detail in Appendix B.
This procedure either outputs a valid (i.e., positive definite) covariance matrix, or zero, in which case the
corresponding component is set to a Dirac. Observe that updating the residual in every iteration is crucial
(but not sufficient – this motivates to consider Gaussian mixtures) in order to obtain candidate centroids that
are different at each iteration. This step depends on the fitted model. When fitting a mixture of Gaussians,
updating the residual boils down to calculating the terms AN (ci, Σi), which are equal to the characteristic
functions of the corresponding Gaussians when A is build using random Fourier features (Keriven, 2017,
Equation 5.7). The second step consists in pruning the support to C to obtain the targeted number k of
centroids.

We next discuss the choice of the procedures GetLocalMaximum and EstimateSigma.

4.1 Detecting local maxima of the correlation function

We describe in this section, three algorithms to implement GetLocalMaximum in Step 1 of Algorithm 2. The
pros and cons of these variants are discussed theoretically and will be assessed numerically in Section 5.

Discretized approach: The first option consists in replacing the optimization problem maxc∈Θ fr(c) by
maxc∈Θ̃ fr(c), where Θ̃ ⊂ Θ is a (finite) discretization of Θ. This approach is recurrent in the literature of
superresolution (Tang et al., 2013; Traonmilin et al., 2020), where Θ is usually a subset of a low-dimensional
vector space. We show later that this approach yields significant improvement over CL-OMPR. However, in
high-dimensional settings Θ ⊂ Rd, the cardinality of Θ̃ must grow exponentially with the dimension d.
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Data: Sketch zX , sketching operator A, number of centroids k, number of atoms T ≥ k, fitted model
’model’, a domain Θ ⊂ Rd

Result: The set of centroids C = {c1, . . . , ck}, the vector of weights α = (α1, . . . , αk)
r ← zX ; C ← ∅;
Step 1: Look for an initial support

for i = 1, . . . , T do
fr(x)← Re⟨r,Aδx⟩
ci ← GetLocalMaximum(fr; Θ) //Find a new centroid
C ← C ∪ {ci} //Expand the support
if model = Dirac then

α← arg min
α∈R|C|

+
∥zX −

∑|C|
j=1 αjAδcj

∥ //Project to find the weights

r ← zX −
∑|C|

j=1 αjAδcj
//Update the residual

end
else if model = Gaussian then

Σi ← EstimateSigma(fzX , ci)//Estimate the covariance matrix
if Σi ≡ 0 then

πi ← N (ci, Σi)//Define new Gaussian component
end
else if Σi ̸= 0 then

πi ← δci
//Revert to Dirac component

α← arg min
α∈R|C|

+
∥zX −

∑|C|
j=1 αjAπj∥ //Find the weights

r ← zX −
∑|C|

i=1 αiAN (ci, Σi) //Update the residual
end

Step 2: Reduce the initial support when T > k
if |C| > k then

Select indices i1, . . . , ik of the largest k elements of α: αi1 , . . . , αik

C ← {ci1 , . . . , cik
} //Reduce the support

α← (αi1 , . . . , αik
) //Reduce α

end
Algorithm 2: Proposed decoder

(a) A comparison of the dynamics

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

4

2

0

2

4

6

8

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

4

2

0

2

4

6

8

(b) ∥∇fzX ∥2 (left) vs. ∥∇fzX /fzX ∥2 (right) in log scale

Figure 3: A comparison between plain gradient ascent and sketched mean shift in the identification of a local
maximum of fzX ; dynamic ranges of ∥∇fzX ∥2 and ∥∇fzX /fzX ∥2.

Sketched mean shift approach: Instead of discretizing, we may use a gradient-based method to identify
local maxima of the correlation function. In this context, a simple gradient ascent is ineffective in practice
because the gradient ∇fr is vanishingly weak beyond the immediate vicinity of some points, resulting in a
slow gradient dynamic; see Figure 3 for an illustration in the case of r = zX .
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As an alternative, we propose to perform reweighted gradient ascent iterations

c← ΠΘ(c + η

|fr(c)|∇fr(c)), (9)

where ΠΘ is the projection onto Θ with respect to the Euclidean distance. This boils down to the ascent
algorithm based on the gradient of log fr, when fr takes positive values. As illustrated in Figure 3a in the case
of the correlation function fzX , this algorithm exhibits improved dynamics compared to plain ascent of the
gradient of fr: the trajectory from the same starting point hardly changes when using plain gradient ascent
iterations, but it does reach a centroid when performing the reweighted gradient ascent of (9). Figure 3b
compares the norm of ∇fzX to the norm of ∇fzX /fzX : we observe that the former is very small in most
regions while the latter reaches much larger values in general, except nearby stationary points where it
vanishes. Now, (9) is reminiscent of the mean shift algorithm (Fukunaga & Hostetler, 1975; Cheng, 1995)
mentioned in Section 3.2. The latter boils down to a gradient ascent applied to the logarithm of the KDE,
defined by (7), when κσ is the Gaussian kernel, hence the name sketched mean shift. Still, the usual mean
shift algorithm requires access to the whole dataset X in every iteration, while (9) doesn’t, thanks to the
very principle of the sketching approach which summarizes the dataset into zX . Observe that making use
of the iteration (9) requires that the function fr does not vanish on the whole path of optimization. This
property was empirically observed in the numerical simulations presented in Section 5.

The sketched mean shift algorithm might still converge to a spurious local maximum, particularly when the
sketch size m is low. Thus, the best output of sketched mean shift over L random initializations of c is
computed. As we will see in the experiments Section 5, this approach is more efficient than discretization.

4.2 The importance of the fitted model

Figure 4 illustrates the benefit of fitting a k-mixture of Gaussians instead of a k-mixture of Diracs during
the iterations of Algorithm 2: with mixtures of Dirac, once the residual r is updated, the corresponding
correlation function fr still has a (high) local maximum close to the previously found centroid, leading the
algorithm to select a nearly identical cluster. This no longer happens when fitting a mixture of Gaussians,
with properly chosen covariance. The implementation of this in Algorithm 2 requires to estimate the local
covariance matrix once a centroid c is selected in Step 1. In Appendix B, we propose an estimator of this
matrix. As we shall see in Section 5, this allows to robustify further the decoder for lower values σ than
if we simply fit k-mixture of Diracs. The theoretical study of this estimator, especially in high-dimensional
domains, is left for a future work.
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Figure 4: The correlation function fr associated to the residual r at the first and second iteration of Algo-
rithm 2 using two fitted models: mixture of Diracs and mixture of Gaussians. The red points correspond to
the selected centroids.

5 Numerical simulations

In this section we present numerical experiments that illustrate the performance of the newly proposed
decoder. In Section 5.1 we conduct numerical experiments on synthetic datasets to study the performance of

8
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the decoder in high-dimensional settings. In Section 5.2, we investigate the importance of the fitted model
using synthetic datasets. Finally, in Section 5.3, we perform the experiments on real datasets.

5.1 The discretized approach compared to the sketched mean shift approach

In this section, we compare the two variants of Algorithm 2 proposed in Section 4.1. For this purpose,
we conduct numerical simulations on a synthetic dataset X ⊂ R6 made of three clusters: the dataset
X = {x1, . . . , xN} contains N = 100000 vectors in R6 which are obtained by i.i.d. sampling from a mixture
of isotropic Gaussians

∑k
i=1 αiN (ci, Σi), where k = 3, α1 = α2 = α3 = 1/3, c1, c2, c3 ∈ R2, and Σ1 = · · · =

Σk = σ2
X I2 ∈ R2×2. The centroids ci and variance σ2

X were chosen using a function implemented in the
Python package Pycle2 to ensure enough separation while essentially fitting the dataset in [−1, 1]6. The
dataset and the code to generate a similar one can be downloaded from a link that will be provided after
de-anonymization. For all algorithms we use as a domain Θ the hypercube Θ = [−1, 1]6.

Performance is defined relative to the performance of Lloyd’s algorithm, i.e., using a normalized version of
the MSE called the relative squared error (RSE) and widely used in previous work on compressive clustering.
The RSE is defined as

RSE(C;X ) := MSE(C;X )
MSE(CLloyd;X ) , (10)

where MSE(C;X ) is given by (5) and CLloyd is the configuration of centroids given by Lloyd’s algorithm (best
of 5 runs with different centroid seeds).

Figure 5a compares the RSE of compressive clustering using CL-OMPR, compressive clustering using Al-
gorithm 2 based on the discretized approach, and compressive clustering using Algorithm 2 based on the
sketched mean shift approach. By definition, the RSE of Lloyd’s algorithm is one.

For each compressive approach, the RSE is averaged on 50 realizations of the sketching operator and presented
for two sketch sizes m ∈ {200, 1000}. For the three compressive algorithms, we take T = 2k. Moreover,
for the two variants of Algorithm 2, we take L = 10000 random initializations that are i.i.d. samples from
the uniform distribution on Θ = [−1, 1]6. We observe that both CL-OMPR and Algorithm 2 based on the
discretized approach fail to match or even approach the performance of Lloyd’s algorithm (i.e., to achieve
an RSE close to one) for any bandwidth of σ, while the performance of Algorithm 2 based on the sketched
mean shift approach is very similar to that of Lloyd’s algorithm for m = 200, and matches it for m = 1000
in a range of bandwidths (σ ∈ [0.1, 0.3]). In other words, CL-OMPR fails to capture the local maxima of
fr. The use of weighted gradient descent as in (9) in the second variant allows to better capture the local
maxima, hence Algorithm 2 based on the sketched mean shift approach outperforms Algorithm 2 based on
the discretized approach. As a result from now on when considering Algorithm 2 we systematically focus on
the sketched mean shift approach.

Now, we examine how the number of initializations L influences the performance of Algorithm 2. Figure 5b
compares the RSE of compressive clustering using CL-OMPR, and compressive clustering using Algorithm 2
based on the sketched mean shift approach associated to various values of L. We observe that the range of the
bandwidth σ for which Algorithm 2 matches Lloyd’s algorithm (i.e., achieves an RSE close to one) increases
with L for both considered values of m. In particular, we observe that the performance of Algorithm 2 for
large values of σ (σ > 0.3 when m = 1000 and σ > 0.4 when m = 200) does not depend on L, while it is
highly dependent on the value of L for low values of σ. In light of the 2D illustrations of Section 3, this is
likely due to the existence of spurious local maxima for low values of the bandwidth σ. Indeed, spurious
local maxima proliferate as σ gets smaller; see Figure 2 for an illustration. This numerical experiment shows
that the recovery of the centroids from the sketch using Algorithm 2 is possible even for low values of σ by
increasing L. Figure 6 shows the relative squared error (RSE) of compressive clustering using CL-OMPR,
Algorithm 2 based on the sketched mean shift approach (with three values of L: L = 10, L = 100 and
L = 1000), using 50 realizations of the sketching operator and presented for various values of the sketch size
m and the bandwidth parameter σ.

2https://github.com/schellekensv/pycle
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(a) Average RSE of CL-OMPR for two sketch sizes (left: m = 200; right: m = 1000), and Algorithm 2 with two
approaches (discretized and sketched mean shift, L = 1000).
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(b) Average RSE of CL-OMPR for two sketch sizes (left: m = 200; right: m = 1000), and Algorithm 2 using
sketched mean shift for L ∈ {10, 100, 1000}.

Figure 5: Comparison of CL-OMPR and Algorithm 2 with three synthetic clusters in [−1, 1]6

We observe that the range of the bandwidth σ for which Algorithm 2 matches the performance of Lloyd’s
algorithm (this corresponds to reaching an RSE close to 1) increases with m and L. More precisely, as L
gets larger, the performance of Algorithm 2 improves for σ ≤ 0.3, yet without an improvement for larger
values of σ (σ ≥ 0.5). In comparison, the average RSE of CL-OMPR stays above 2 for every value of the
sketch size m and the bandwidth σ.3

Remark 1. All experiments in the main body of this paper are conducted in moderate dimension d ≤ 10,
which is pretty much the standard dimension of state of the art proofs of concept in sketched clustering.
While Algorithm 2 is designed to overcome the important issues of CL-OMPR scrutinized in this paper, we
do not expect this algorithm to be particularly good at overcoming issues related to a curse of dimension.
In particular, it is expected that in high dimension, success will require an exponential growth of L. This
is empirically confirmed with additional experiments in Appendix C.1. Another algorithmic challenge left to
future work is to handle large numbers K of clusters, as CL-OMPR is known to badly scale with K (Keriven
et al., 2017).

5.2 On the importance of the fitted model

In this section, we investigate the importance of the fitted model. For this purpose, we compare fitting
a k-mixture of Gaussians instead of a k-mixture of Diracs on two synthetic datasets. The first one is the
one considered in Section 3, while the second one is formed by 3 clusters in [−1, 1]2, that are not well
separated; see Figure 7b. We compare Algorithm 2 using fitting with k-mixture of Diracs to Algorithm 2
using fitting with k-mixture of Gaussians. In the latter case, the local covariance matrix is estimated as
detailed in Appendix B.

For each dataset, we use as a baseline the best out of 5 replicas (with different centroid seeds) of Lloyd’s
algorithm. For each instance of Algorithm 2 (with Diracs, or with Gaussians; both using the sketched mean

3We use in Figure 6a a threshold (RSE > 5) different than the threshold (RSE > 2) used in Figures 6b to 6d.

10



Under review as submission to TMLR

0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000
m

1

2

3

4

>5

RS
E

(a) CL-OMPR

0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000

m

1

1.2

1.4

1.6

1.8

>2

RS
E

(b) Algorithm 2 (L = 10)

0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000

m

1

1.2

1.4

1.6

1.8

>2

RS
E

(c) Algorithm 2 (L = 100)

0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000

m
1

1.2

1.4

1.6

1.8

>2

RS
E

(d) Algorithm 2 (L = 1000)

Figure 6: Comparison of CL-OMPR and Algorithm 2 on three synthetic clusters in [−1, 1]6

shift approach with L = 1000), and each considered value of the sketch size m and the bandwidth parameter
σ, we compute the average RSE (cf (10)) over 10 realizations of the sketching operator. Figure 7 shows the
obtained RSE for various values of the sketch size m and the bandwidth σ.

In the case of the dataset represented by Figure 7a, we observe that using Gaussians instead of Diracs
primarily enlarges the range of the bandwidth σ for which Algorithm 2 matches Lloyd’s performance (RSE
close to one). For the the dataset represented by Figure 7b, we make several observations: i) when fitting
mixtures of Diracs, the largest bandwidth where the perfomance of Lloyd’s algorithm is matched is smaller
than with the dataset of Figure 7a even for large values of the sketch size (m ≥ 1000), this is due to the
increased difficulty in separating the clusters; ii) fitting mixture of Gaussians improves the performance
of Algorithm 2 for low values of σ: the smallest bandwidth where the perfomance of Lloyd’s algorithm is
matched is smaller than when fitting mixture of Diracs.

5.3 Experiments on MNIST

In this section, we investigate whether the observations of Section 5.2 hold for real datasets. For this purpose,
we perform experiments on spectral features of the MNIST dataset4, which consist of N = 70000 handwrit-
ten digits features with k = 10 classes. These spectral features are computed by taking the eigenvectors
associated to the d = 10 smallest positive eigenvalues of the normalized Laplacian matrix associated to the
nearest neighbors matrix (Muja & Lowe, 2009), associated to SIFT descriptors of each image (Vedaldi &
Fulkerson, 2010). The resulting matrix can be downloaded from https://gitlab.com/dzla/SpectralMNIST.
Figure 8 shows the RSE, defined by (10) based on Lloyd’s algorithm (best of 5 runs of Lloyd’s algorithm
with different centroid seeds), of compressive clustering using CL-OMPR, and Algorithm 2 with mixtures
of Diracs5 and the sketched mean shift approach (with three values of L: L = 10, L = 100, and L = 1000),
based on 10 realizations of the sketching operator for various values of the sketch size m and the bandwidth
σ. Similarly to the experiment conducted above on the synthetic dataset, we observe that Algorithm 2
outperforms CL-OMPR for σ ≤ 0.5, and get a performance close to Lloyd’s algorithm (RSE ≤ 1.5) on a

4Further experiments on CIFAR10 in Appendix C.2 display a similar behavior.
5Algorithm 2 with a Gaussian mixture led to worse results, likely due to limitations of the covariance estimation procedure

of Appendix B in dimension d = 10. Improving this procedure for high dimensions is a challenge left to future work.
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Figure 7: Performance of compressive clustering using Algorithm 2 on two datasets (left column: a well-
separated dataset; right column: a dataset with closeby clusters). Top: representation of the datasets;
middle: average RSE obtained for various sketch sizes m and scales σ using a mixture of Diracs model.
Bottom: average RSE achieved using a mixture of Gaussians model

range of σ that increases with m and L. In particular, for L = 1000, Algorithm 2 achieves an RSE smaller
than 1.5 for m = 500 (only five times the number of degrees of freedom kd = 100 needed to describe k = 10
centroids in dimension d = 10), while the best achievable RSE by CL-OMPR is close to 2 and was achieved
for a sketch size 10 times larger: m = 5000. For this dataset, the average running time for calculating the
sketch is approximately 0.2 seconds, and the average running time for decoding using CL-OMPR is about
3 seconds. Meanwhile, the running time for decoding using Algorithm 9 depends linearly on the number of
initializations L; for instance, it averages 12 seconds when L = 10. Improving the running time of Equa-
tion (9) is left to future work, as our primary effort in this paper in to demonstrate improved and robustified
RSE performance over a wide range of values of σ and m compared to CL-OMPR.

6 Conclusion

By diagnosing CL-OMPR, we were able to propose a robustified decoder which significantly outperforms
CL-OMPR on synthetic datasets. In particular, we demonstrated on a simple dataset that CL-OMPR fails,
while our algorithm matches the performance of Lloyd’s algorithm, even though (unlike Lloyd’s algorithm)
it only has access to a low-dimensional sketch, which dimension is independent of the size of the dataset.

12



Under review as submission to TMLR

0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000
m

1

1.2

1.4

1.6

1.8

>2

RS
E

(a) CL-OMPR

0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000

m

1

1.2

1.4

1.6

1.8

>2

RS
E

(b) Algorithm 2 (L = 10)

0.1 0.2 0.3 0.4 0.5 0.7 1

100

200

500

1000

2000

5000

m

1

1.2

1.4

1.6

1.8

>2

RS
E

(c) Algorithm 2 (L = 100)
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Figure 8: A comparison of CL-OMPR and Algorithm 2 on spectral features of MNIST

Moreover, compared to previous proofs of concept of compressive learning, our algorithm is able to extract
clustering information from smaller sketches, therefore further reducing the needed memory footprint. Given
the potential of compressive clustering (memory-constrained scenarios, with distributed implementations, in
streaming contexts, or with privacy constraints), this work thus opens up unprecedented prospects for making
the full pipeline of this paradigm both competitive, easy to implement and easy to tune. Considering the
choice of the bandwidth scale σ, which is currently something of an art, the robustness of our algorithm
combined with recently proposed selection criteria (Giffon & Gribonval, 2022) open a promising avenue
to design a fully turnkey pipeline for compressive clustering. The next upcoming challenge is of course
to validate the versatility of the resulting approach on datasets living in high-dimensional domains, while
controlling the number of required intializations L of the sketched mean shift to control its computational
complexity. To achieve this goal, leveraging alternative feature maps would be beneficial (Avron et al.,
2017; Chatalic et al., 2022). On another vein, a promising research path involves estimating local covariance
matrices from the sketch. Given the strong connection of our approach with the mean shift algorithm, for
which the convergence was actively investigated recently (Li et al., 2007; Ghassabeh, 2015; Huang et al., 2018;
Yamasaki & Tanaka, 2019; 2023), we aim to investigate the theoretical properties of sketched mean shift.
Finally, the connection of the mean shift algorithm to EM algorithm (Carreira-Perpinan, 2007) suggests the
possibility to extend our approach in parameter estimation of more general mixture models such as mixture
of alpha-stable distributions (Keriven et al., 2018b).
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A The CL-OMPR algorithm

Data: Sketch zX , sketching operator A, parameter k, bounds ℓ, u
Result: Centroids C, weights α
r ← zX ; C ← ∅;
for t = 1 . . . 2k do

Step 1: Find a new centroid

c← maxc

(
Re
〈

Aδc

∥Aδc∥ , r
〉

, ℓ, u

)
end
Step 2: Expand support

C ← C ∪ {c}
end
Step 3: Enforce sparsity by Hard Thresholding when t > k

if |C| > k then

β ← arg minβ≥0

∥∥∥∥zX −
∑|C|

i=1 βi
Aδci

∥Aδci
∥

∥∥∥∥
Select k largest entries βi1 , . . . , βik

Reduce the support C ← {ci1 , . . . , cik
}

end
end
Step 4: Project to find α

α← arg minα≥0

∥∥∥∥zX −
∑|C|

i=1 αiAδci

∥∥∥∥
end
Step 5: Global gradient descent

C, α← minC,α

(∥∥∥∥zX −
∑|C|

i=1 αiAδci

∥∥∥∥, ℓ, u

)
end
Update residual: r ← zX −

∑|C|
i=1 αiAδci

end
Algorithm 3: CL-OMPR

B An estimator of the local covariance matrix

Algorithm 2 allows to fit a k-mixture of Gaussians, which requires to estimate the local covariance matrix
once a centroid c is selected in Step 1. In this section, we propose an estimator of this matrix. This provides
an implementation of EstimateSigma for Algorithm 2.

To begin with an intuition, consider the following setting: the xi are i.i.d. draws from a mixture of isotropic
Gaussians

∑k
i=1 αiN (ci, Σi), where α1, . . . , αk ∈ [0, 1] such that

∑k
i=1 αi = 1 and c1, . . . , ck ∈ Θ ⊂ Rd

and Σ1, . . . , Σk ∈ S++
d with k ∈ N∗. We consider a sketching operator defined through random Fourier

features associated to i.i.d. Gaussian frequencies ω1, . . . , ωM drawn from N (0, σ−2I2), with σ > 0. As the
number of samples N goes to +∞ the KDE converges to the kernel mean embedding fKME of the Gaussian
mixture

∑k
i=1 uiN (ci, Σi) (see Section 3.1.2 in (Muandet et al., 2017)), which is given by (see Lemma 6.4.1

in (Keriven, 2017))

fKME(x) :=
k∑

i=1
ui exp

(
− 1

2(x− ci)T(Σi + σ2Id)−1(x− ci)
)

; x ∈ Rd. (11)
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Now, when the clusters c1, . . . , ck are well-separated, we have for i ∈ {1, . . . , k}

log fKME ≈x→ci
−1

2(x− ci)T(Σi + σ2Id)−1(x− ci) + log ui. (12)

In other words, − log fKME behaves locally as a quadratic function associated to the p.s.d. matrix (Σi +
σ2Id)−1. Thus, if Ĥ is an estimate of the Hessian of − log fKME then Ĥ−1−σ2Id is an estimate of Σi. Since
an estimated covariance matrix must be p.s.d., if the matrix Ĥ−1 − σ2Id turns out to be not p.s.d., then we
set as our estimate Σi := 0 to revert to a Dirac component, see Algorithm 2. Thus, to build an estimator of
Σi we need to estimate the Hessian of − log fKME.

The following estimator is simpy the Hessian of − log fzX evaluated at the point c, and may be seen as a
surrogate of the Hessian of − log fKME evaluated at the point c.
Definition 2. Let c ∈ Rd such that fzX (c) > 0. Define the matrix Ĥ by

Ĥ := −
(

Hess(fzX ; c)fzX (c)−∇cfT
zX
∇cfzX

)
/fzX (c)2, (13)

where Hess(fzX ; c) is the Hessian matrix of the function fzX evaluated at c.

Now, with Φ the random Fourier feature map with components ϕωj
defined by (2), the correlation function

fzX from Definition 1 is

fzX (c) = 1√
m
Re

m∑
j=1

zjϕωj
(c), (14)

where z1, . . . , zm ∈ C are the entries of the sketch zX . Thus

∇cfzX = 1√
m
Re

m∑
j=1

zjωjiϕωj (c), (15)

and the Hessian matrix Hess(fzX ; c) is given by

Hess(fzX ; c) = − 1√
m
Re

m∑
j=1

zjωjωT
j ϕωj

(c), (16)

In other words, the matrix Ĥ defined by (13) can be numerically evaluated at a given c using the values of
the sketch zX and the frequencies ω1, . . . , ωm.

C Additional numerical experiments

C.1 Growth of L with the dimension d

In this section, we briefly illustrate that the number of initializations L needed to achieve good performance
suffers from the curse of dimensionality. For this, we conduct the same experiment across different dimensions
d ∈ {2, 3, 5, 10, 20}: the dataset X is formed by N = 10, 000 elements xi in Rd, obtained through a generative
model. The elements xi are i.i.d. samples from a mixture 0.5N (c1, σ2

X Id) + 0.5N (c2, σ2
X Id), where c1 and c2

are centers of the two normal distributions, σ0 > 0, and Id is the d-dimensional identity matrix. Figure 9
shows the RSE (10) of compressive clustering using the sketched mean shift approach with m = 10d based on
10 realizations of the sketching operator for L ∈ {1, 10, 100, 1000} and d ∈ {1, 2, 5, 10, 20}, for two different
values of bandwidth σ. This empirically confirms that L should grow with the dimension d.

C.2 The case of CIFAR-10

In this section, we investigate whether the observations of Section 5.3 hold for the CIFAR-10 dataset. For this
purpose, we perform experiments on the training set of the CIFAR-10 dataset, which consists of N = 60000
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Figure 9: The dependency between L and d

images features with k = 10 classes. More precisely, we extracted features from the last fully connected
layer (of dimension D = 512) of a trained ResNet18 (He et al., 2016). These extracted features are then
reduced to a dimension of d = 10 using linear PCA. The network is trained on the training set of CIFAR-10
for 50 epochs with SGD with momentum 0.9, learning rate 0.1, learning rate decay 0.1, batch-size 512 and
weight-decay 5× 10−4.

Figure 10 shows the RSE, defined by (10) based on Lloyd’s algorithm of compressive clustering using CL-
OMPR, and Algorithm 2 with mixtures of Diracs and the sketched mean shift approach with L = 250, based
on 10 realizations of the sketching operator for various values of the sketch size m and the bandwidth σ.
Similarly to the experiments conducted in Section 5.3, we observe that Algorithm 2 outperforms CL-OMPR
for σ ≤ 0.5, and get a performance close to Lloyd’s algorithm on a range of σ that increases with m. We
have observed running times that are of the same order of magnitude as in Section 5.3.
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Figure 10: A comparison of CL-OMPR and Algorithm 2 on the features of CIFAR-10
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