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Abstract

Estimating the average treatment effect (ATE) when
participants can self-select into treatment or control
groups based on their preferences can lead to significant
selection bias and large variance of the estimation. We
propose an incentivization framework that realigns par-
ticipant preferences to balance covariates, thereby re-
ducing bias and variance in treatment effect estimation.
Our approach leverages incentive mechanisms solved
under budget constraints to redistribute participants to-
wards underrepresented groups. We provide theoreti-
cal guarantees for variance reduction using the Aug-
mented Inverse Probability Weighting (AIPW) estima-
tor and analyze the impact of unobserved confounders,
showing that aligning incentives mitigates bias in treat-
ment effect estimation. To achieve these goals, we intro-
duce a low-switching learning-to-incentivize algorithm
that dynamically adjusts incentives while adhering to
resource constraints, achieving consistent and asymp-
totically efficient ATE estimation.

Introduction and Related Work
In estimating average treatment effect (ATE), conventional
A/B testing randomize participants into treatment and con-
trol groups, ensuring that the two groups are balanced in
terms of observed and unobserved characteristics. These
types of randomized control trials (RCTs) have many de-
sired statistical properties and is now widely adopted in
clinical research, public health interventions, and social sci-
ences to evaluate the efficacy of treatments and interven-
tions. However, in many cases RCTs are infeasible either
due to ethical or practical restrictions, or due to unafford-
able costs (Johnston et al. (2006), Haussmann et al. (2023)).

The problem of estimating causal effects when individu-
als do not adhere to their assigned treatment group is called
non-compliance problem in econometrics/causal inference.
Existing methods address this issue in various settings, but
the effects they estimate, such as the intent-to-treat (ITT) ef-
fect or local-average-treatment-effect (LATE) derived from
instrumental variable (IV) approaches, differ from the con-
ventional average treatment effect (Wang and Tchetgen Tch-
etgen (2018), Swanson et al. (2018)). However, drawing
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from perspectives in economics and operations research
(McFadden (1974), Greene (2012), Train (2009)), if we as-
sume that non-compliance is not random and that individu-
als behave rationally in making choices, the pattern of non-
compliance can be modeled mathematically. This approach
utilizes random utility theory, which, while less conventional
in econometrics, is widely employed in behavioral studies.
Specifically, well-established random choice models, such
as the Multinomial Logit (MNL) model, can be applied to
systematically characterize non-compliance behavior. These
models assume that participants select options based on their
preferences and utilities, providing a structured framework
to analyze and predict non-compliance patterns.

Our goal is to minimize the Mean Square Error (MSE)
of our estimation of treatment effect, which is composed
of bias and variance. The self-selection process introduces
bias known as acquisition bias (Hernán et al. (2004), Rosen-
baum and Rubin (1983), Heckman (1979), Imbens and
Wooldridge (2009), Manski (1990), Stuart (2010)), since
outcomes are correlated with utility due to the existence of
confounding factors. Namely, the utility of certain choice
might highly depends on the expected outcome. Therefore,
one of the most fundamental assumption in causal inference
literature, unconfoundedness, doesn’t hold here, leading to
failure of existing estimation procedures.

Under an ideal setting when all confounders are observed,
we prove that the use of the propensity score adjustment
method can correct for selection bias by reweighting or strat-
ifying the participants based on the probability of being
assigned to the treatment, fixing the bias caused by self-
selection. While this approach effectively removes selection
bias, it introduces a new challenge: high variance due to fea-
ture imbalance. In order to correct for bias, we are putting
much more weight on rare observations, causing the estima-
tion to be unstable. Addressing this feature imbalance re-
mains critical for achieving more precise and reliable ATE
estimates (Hainmueller (2012), Imai and Ratkovic (2014),
Tan (2010)).

The issues of self-selection bias and high variance stem
from an incentive misalignment between the experimenter
and the participants. Participants make choices based on
their personal preferences or utilities, which often conflict
with the experimenter’s objective of achieving balanced and
unbiased treatment assignment. To address this misalign-



ment, we introduce external intervention mechanisms de-
signed to realign incentives to acheive feature balance. By
doing so, we can reduce bias and achieve a more stable and
reliable estimation of treatment effects. We prove that incen-
tivizing the most imbalanced features can greatly reduce the
variance of estimation.

Moreover, in most practical cases unobserved con-
founders exist and can never be identified, and we prove
that under mild assumption on the confounding effect, we
can prove that the estimation effect is systematically under-
estimated, and the bias is increasing with larger incentive
gaps. In summary, we analyze the effect of incentives in
bias and variance of treatment effect estimation, showing
that incentive misalignment can leads to large variance and
self-selection bias, proving optimal incentive mechanism to
have a accurate and stable estimation. In addition, we pro-
pose adaptive experiments that begin without knowledge of
the underlying model, iteratively estimate key parameters
during the experiment, and adjust the incentive mechanism
based on the updated model. This dynamic approach ensures
that incentives are progressively optimized, achieving accu-
rate and stable treatment effect estimation under practical
constraints.

Problem Formulation
Notations
We draw i.i.d. samples X1, X2, . . . , Xn from a distribution
PX on a compact set X . Each participant chooses a treat-
ment Wi ∈ {0, 1} (treatment or control) based on covariates
Xi, with the propensity score defined as e(Xi) := P (Wi =
1 | Xi). To ensure overlap, we assume η < e(X) < 1−η for
some constant η > 0, known as ”overlap condition” (Imai
and Ratkovic (2014), Petersen et al. (2012)).

The observed outcome is Yi = Y (Wi)(Xi), with potential
outcomes Y (1)(X) and Y (0)(X), which have expectations
µ(1)(X), µ(0)(X) and variances (σ(1))2, (σ(0))2. These can
be expressed as:

Y (1)(Xi) = µ(1)(Xi) + ϵi, Y
(0)(Xi) = µ(0)(Xi) + ϵi,

where ϵi represents random noise. For simplicity, we assume
constant variance. Participants make decisions based on util-
ity functions α(1)(Xi) and α(0)(Xi), modeled linearly as:

α(1)(Xi) = V (1)(Xi) + ϵ1, α
(0)(Xi) = V (0)(Xi) + ϵ0,

where V (1)(Xi) = θ⊤1 Xi + c1 and V (0)(Xi) = θ⊤0 Xi + c0.
Based on the multinomial logit model, participants choose
the treatment with the highest utility, leading to a Bernoulli-
distributed treatment assignment:

e(Xi) =
exp(V (1)(Xi))

exp(V (1)(Xi)) + exp(V (0)(Xi))
.

We assume unconfoundedness, meaning potential outcomes
{Y (1)(Xi), Y

(0)(Xi)} are conditionally independent of Wi

given Xi:

Assumption 1. {Y(1)(Xi), Y
(0)(Xi)} ⊥ Wi | Xi

Remark 1. The error term in utilities follows a Gumbel dis-
tribution. This random component reflects uncertainties such
as unpredictability in future outcomes, variability in human
behavior, or partial information, and it is independent of the
outcome Y . Based on these reasons, humans will have a ran-
dom decision based on a noisy evaluation of their utility.
Thus, the source of randomness in human choice is uncor-
related with the realization of outcome. This independence
ensures that the selection process, represented by W , does
not confound the outcome Y .

The primary causal quantity of interest is the average
treatment effect (ATE):

τ := E[µ(1)(X)− µ(0)(X)].

After collecting all data from the experiment, the experi-
menter constructs an estimator τ̂ of τ . Our goal is to min-
imize the expected square loss of τ̂ , E[(τ̂ − τ)2], where the
expectation is taken over all data and treatment randomness.

Incentivize through Utility Distortion
Selection bias arises when participants self-select into
groups based on their preferences, leading to imbalanced
treatment allocation. While propensity score methods can
correct for this bias, they often result in large estimation
variance. To simultaneously reduce both bias and variance,
we propose incentivizing participants to achieve a more bal-
anced allocation across groups.

Consider a total budget B distributed among n partici-
pants. Our policy is the incentive allocated to each partic-
ipant denoted as p(Xi) for i = 1, ..., n. Here we assume
that p is a deterministic policy based on Xi, meaning that
each set of features corresponds to a unique incentive. The
policy allocates incentives to participants choosing the less
preferred treatment, effectively redistributing participants to
balance the groups.

For a participant with features Xi who prefers the control
group (α(1)(Xi) ≤ α(0)(Xi)), an incentive p(Xi) shifts the
preference towards the treatment group. This adjusts the
propensity score closer to 0.5, calculated as:

e(Xi) = P (Wi = 1 | Xi) (1)

=
exp(V (1)(Xi) + p(Xi))

exp(V (1)(Xi) + p(Xi)) + exp(V (0)(Xi))
. (2)

Estimator
Assume an experiment collects data {Xi,Wi, Yi}ni=1. We
use the Augmented Inverse Probability Weighting (AIPW)
estimator. Under assumptions of conditional independence,
positivity, and correct model specification, the true AIPW is:

τ∗AIPW = E

[
µ(1)(X)− µ(0)(X) +

Y − µ(1)(X)

e(X)
W

− Y − µ(0)(X)

1− e(X)
(1−W )

]
.

(3)



where e(X) is the true propensity score, and
µ(1)(X), µ(0)(X) are the true conditional expectations
of the potential outcomes given X . The AIPW estimator
is known to be unbiased and asymptotically efficient,
providing optimal variance among unbiased estimators
under mild conditions. It has two key advantages: (1) it
explicitly incorporates the propensity score to adjust for
confounding, thereby reducing bias due to imbalanced
treatment assignments; and (2) it leverages regression-based
outcome models to correct for potential noise or bias in
the observed outcomes, further enhancing robustness and
efficiency. This dual incorporation of propensity scores
and regression estimation provides resilience to model
misspecification when either the propensity score model or
the outcome model is correctly specified.

The variance of the AIPW estimator is:

Var(τ∗AIPW) =
1

n
E

[
σ2

e(X)(1− e(X))

+
(
µ(1)(X)− µ(0)(X)− τ

)2]
. (4)

where e(X) is the true propensity score, and
µ(1)(X), µ(0)(X) are the true conditional means of
the potential outcomes.

In practice, the true models e(X), µ(1)(X), and µ(0)(X)
are unknown and must be estimated. The plugged-in AIPW
estimator is:

τ̂AIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

+
Yi − µ̂(1)(Xi)

ê(Xi)
Wi

− Yi − µ̂(0)(Xi)

1− ê(Xi)
(1−Wi)

)
. (5)

To simplify the analysis, we focus on the true AIPW esti-
mator τ∗AIPW in the next two sections. We will analyze its
properties under ideal conditions where the true mdoels are
unknown. In the last section, we address the practical case of
τ̂AIPW, showing its convergence to τ∗AIPW as n → ∞, given
sufficient data and appropriate model assumptions.

Optimal Incentivize Mechanism to Balance
Covariates

If we are given a model α(1), α(0), µ(1), µ(0), PX , the
variance of our ATE estimation by the AIPW estimator
τ∗AIPW is given by:

Var(τ∗AIPW) =
1

n
E

[
σ2

e(X)(1− e(X))

+
(
µ(1)(X)− µ(0)(X)− τ

)2]
. (6)

Our goal is to minimize this variance by incentivizing trial
participants to choose the less preferred treatment, thereby

achieving a more balanced distribution of features in the
treatment and control groups. This balance helps reduce the
first term in the variance expression, which depends on the
propensity score e(X). Thus, the question is: What is the
optimal incentive policy p(X) that minimizes the variance
under the given constraints?

To address this, we frame the problem as an optimization
task, with the decision variable p(X) representing the incen-
tive policy:

min
p(X)

1

n
E[(

σ2

e(X)(1− e(X))
) + (µ(1)(X)− µ(0)(X)− τ)2]

Observe that only the first component is influenced by p(X),
we isolate this term and denote it as F = σ2

e(X)(1−e(X)) . The
optimization problem can then be re-expressed as:

min
p(X)

∫
F (X, p(X))PX dX

s.t.
∫

p(X)PX dX ≤ B

n
, p(X) ≥ 0,∀X. (7)

The first constraint ensures that the total expected spending
over all participants does not exceed the budget B. The sec-
ond constraint ensures the non-negativity of our incentivize
policy. By framing the problem this way, we focus on de-
termining the optimal allocation of incentives that balances
treatment assignment while adhering to resource constraints.

Next we will provide an outline of the solution to the
above optimization problem. We first prove the property of
F (X, p(X)) in the following lemma:

Lemma 1. The function F (X, p(X)) = σ2

e(X)(1−e(X)) ,
where e(X) depends on p(X), is convex with respect to
p(X).

The convexity of F (X, p(X)) ensures that the optimiza-
tion problem for minimizing the variance of the AIPW esti-
mator has a well-defined solution. Convexity implies that as
the propensity score e(X) approaches its optimal value (e.g.
0.5 under symmetric variance assumptions), the variance de-
crease. However, the rate of decrease slows as the propensity
score nears the optimal value.

We derive a unique closed-form solution based on the
principle of equalizing the marginal rate of variance reduc-
tion per unit of incentive. We refer to this as Equal Deriva-
tive Solution, where the optimal incentive policy ensures
that the decrease in variance with respect to the incentive,
dF
dp , is balanced across participants up to a threshold. This
solution leverages the convexity of F to guarantee the exis-
tence and uniqueness of a threshold parameter λ.

Theorem 1. (Equal Derivative Solution) Under the convex-
ity of F , there exists a unique threshold λ such that the opti-
mal incentive policy p∗(X) satisfies:

• If dF
dp < −λ, then p∗(X) = gλ(X) > 0.

• If dF
dp ≥ −λ, then p∗(X) = 0.



By the monotonicity of e(X), there exists a threshold η
such that:
• If e(X) < η ≤ 1

2 or 1−η < e(X) ≤ 1, the policy adjusts
e∗(X, p∗(X)) = η.

• If η ≤ e(X) ≤ 1 − η, no incentives are applied
(e∗(X, 0) = e(X)).

The key insight in theorem 1 lies in targeting participants
with the most imbalanced propensity scores, as incentiviz-
ing them yields the fastest variance reduction under the same
budget constraints. Specifically, the objective is to prioritize
individuals whose preferences are strongly skewed toward
one group, adjusting their incentives to achieve a more bal-
anced allocation.

Bias Analysis with Unobserved Confounders
In section 2, we relied on the unconfoundedness assumption,
which posits that all relevant confounders are observed, and
thus, treatment assignment is conditionally independent of
the potential outcomes. While this assumption is standard
in causal inference, it is often considered too strong and
untestable in practice, as it requires all confounders to be
identified and measured (Imbens and Rubin (2015), Hernán
and Robins (2020)). Furthermore, the unconfoundedness as-
sumption is inherently unidentifiable because there is no em-
pirical test to confirm whether all confounders have been ac-
counted for.

To relax this assumption, we now consider a more realistic
scenario where most, but not all, confounders are observed.
Specifically, we assume that even after conditioning on the
observed covariates X , there remain unmeasured factors that
influence both treatment selection and potential outcomes.
Mathematically, the utilities associated with treatment selec-
tion are modeled as:

α(1)(Xi) = V (1)(Xi) + ϵ1,

α(0)(Xi) = V (0)(Xi) + ϵ0

where ϵ1 and ϵ0 represent unobserved factors. As a re-
sult, the utilities α(1)(Xi) and α(0)(Xi) remain correlated
with the potential outcomes Y1(Xi) and Y0(Xi), introduc-
ing residual confounding even after conditioning on X .

Equivalently, we can express the outcome as:

Yi(X,α) = fi(X,α) + η = f̃i(X) + gi(X,α) + η,

where:
• f̃i(X) = Eα[fi(X,α)] is the marginalized outcome,

which depends only on X . This term represents the part
of the outcome that is observable and can be estimated.

• gi(X,α) = fi(X,α) − f̃i(X) is the deviation caused by
α, capturing the residual dependence of the outcome on
the unobserved confounders. By construction, gi(X,α)
satisfies Eα[gi(X,α)] = 0.

Intuitively, f̃i(X) accounts for the main effects of the ob-
served covariates X , while gi(X,α) quantifies the impact
of the unobserved confounders α on the outcome. Since we
expect that the remaining unobserved confounders have only
a small impact on the outcome, we assume gi(X,α) is small

in magnitude. As the symmetry of α and β in the utility func-
tion, we will assume g1 = g0 = g throughout this section.

This type of analysis, which involves quantifying and ac-
counting for the residual impact of unobserved confounders,
falls under the framework of partial identification or sensi-
tivity analysis. Such approaches are useful for assessing the
robustness of causal conclusions when full identification of
treatment effects is infeasible.(Imbens and Rubin (2015))

To simplify the analysis, we fix X and occasionally omit it
in the notation for brevity. We define the utility gap between
the two choices as:

gap(X) = V (1)(X)− V (0)(X),

where the gap is conditioned on a given X . Without loss of
generality, we assume gap(X) > 0.

Throughout this section, we analyze the bias under the
true AIPW estimator and the estimations of the potential out-
comes Ȳ1 and Ȳ0 can be expressed as:

Ŷ1 =
1

n

n∑
i=1

(
µ(1)(Xi) +

Yi − µ(1)(Xi)

e(Xi)
Wi

)
,

Ŷ0 =
1

n

n∑
i=1

(
µ(0)(Xi) +

Yi − µ(0)(Xi)

1− e(Xi)
(1−Wi)

)
.

These expressions represent the estimates of the potential
outcomes based on the observed data and the true propensity
scores e(Xi), as well as the outcome models µ(1)(X) and
µ(0)(X).

The selection bias associated with feature X can be char-
acterized in the following lemma:
Lemma 2. The selection bias in the estimated potential out-
comes is given by:

E[Ŷ1 − Y1] = EX

[
E
(
g(X,α) | α+ gap(X) > β

)]
,

E[Ŷ0 − Y0] = EX

[
E
(
g(X,α) | α− gap(X) > β

)]
,

where α and β are independently drawn from a Gumbel dis-
tribution.

As a special case, if gap(X) = 0 and g1(X,α) =
g0(X,α) for all X , then the AIPW estimator τ̂ is unbiased,
i.e.,

E[τ̂ ] = τ.

The condition g1(X,α) = g0(X,α) is necessary to
achieve unbiasedness when gap(X) = 0. This is because
α + gap(X) and α − gap(X) are symmetric expressions
when gap(X) = 0. For E[Ŷ1−Y1] and E[Ŷ0−Y0] to vanish
simultaneously when gap(X) = 0, the conditional expecta-
tions E[g1(X,α) | α > β] and E[g0(X,α) | α > β] must
be equal for all X . This requires g1(X,α) and g0(X,α) to
have identical functional forms (and distributions) for any
given X . Intuitively, the symmetry between α+gap(X) and
α−gap(X) ensures that the selection processes for the treat-
ment and control groups are mirror images when the utility
gap vanishes. If g1 ̸= g0, differences in how unobserved
confounders α influence treatment and control groups will
introduce residual bias, even when gap(X) = 0.

This result highlights two critical factors in mitigat-
ing selection bias. First, aligned incentives, represented by



gap(X) = 0, eliminate preference-driven selection bias
by making participants indifferent between the treatment
and control groups. Second, symmetry in the residual con-
founder effects (g1 = g0) ensures that any unobserved con-
founder effects are balanced between the two groups. When
these conditions are satisfied, the AIPW estimator remains
unbiased, even in the presence of unobserved confounders.
This lemma underscores that incentive misalignment, quan-
tified through the utility gap gap(X), is the fundamental
source of selection bias.

The following result provides an upper bound on the mag-
nitude of the selection bias:

Lemma 3. Assume the confounding effect g(X,α) is εX -
Lipschitz for some (arguably small) εX > 0. Then the selec-
tion bias can be bounded as:

|E[τ̂ ]− τ | ≤ EX [εX |gap(X)|].
Building on this, suppose we know only that g(X,α) is

ε-Lipschitz for all X . In this case, the best possible partial
identification interval for the true treatment effect τ is:

[τ − εEX |gap(X, p∗(X))|, τ + εEX |gap(X, p∗(X))|] ,
where p∗(X) is the optimal Equal Derivative solution de-
signed to minimize variance. This shows that our incen-
tivize mechanism is not only the best in variance reduction,
but also for minimizing the bias range. In our specific set-
ting, the confounder affects both the utility and the outcome,
and these two are often highly correlated (Szklo and Nieto
(2014)). This motivates the following assumption:

Assumption 2 (Monotonic Confounding). For each X and
for both the treatment and control groups, the confounding
effect gi(X,α) is monotonic in α.

This assumption reflects a natural setting where the con-
founding variable α has a consistent directional effect on
the outcome Y . Under this mild and arguably reasonable as-
sumption, we demonstrate that aligning incentives reduces
or at least controls the scale of selection bias. First, We show
that the estimation bias is a monotonic function of utility
gap, and the treatment effect is always over-estimated for
the preferred treatment.

Proposition 1. The conditional bias for feature X is:

bias(X) = Ŷ1(X)− Ŷ0(X)− (Y1(X)− Y0(X)) > 0.

If gap(X) = 0 and g1 = g0, the bias vanishes, i.e.,
bias(X) = 0. Moreover, the estimation bias is an increasing
function of the utility gap. Specifically, there exists a mono-
tonically increasing function t such that:

bias(X) = t(gap(X)).

This result establishes that aligning incentives, thereby re-
ducing the utility gap, decreases the self-selection bias for
each feature X . As a corollary, if the preference structure is
consistent across the entire population, i.e., gap(X) > 0 or
gap(X) < 0 for all X , aligning incentives reduces selection
bias across the entire population. To illustrate this relation-
ship more explicitly, we consider the following simple yet
illustrative case:

Lemma 4. If g0(X,α) = g1(X,α) = εα− E[εα], then:

bias(X) = εgap(X).

This lemma demonstrates that when the deviation func-
tions are linear in α, the selection bias scales directly with
the utility gap gap(X).

Learn to Incentivize: Adaptive Experiments to
Reduce Variance

In this section, we return to the unconfoundedness as-
sumption, which underpins much of our analysis. As dis-
cussed previously, while this assumption may be strong and
untestable in practice, it provides a framework for identify-
ing treatment effects. Additionally, when unconfoundedness
cannot be fully assumed, the methods of partial identifica-
tion from the last section remain applicable and can provide
bounds on the treatment effect estimates.

Recall that our primary goal is to both reduce the selection
bias and minimize estimation variance by incentivizing ex-
periment participants appropriately. If we assume that all un-
derlying models α(1)(X), α(0)(X), µ(1)(X), µ(0)(X), PX

are known prior to the experiment, the Equal Derivative So-
lution provides the optimal allocation mechanism, denoted
by p∗(X), with a corresponding propensity score e∗(X).
This solution guarantees that the output estimator achieves
the lowest possible variance, as established by the following
theorem.

Theorem 2. (Static Policy Optimal Variance)
If the models α(1)(X), α(0)(X), µ(1)(X), µ(0)(X), PX are
known, then the optimal estimation accuracy is achieved by
the AIPW estimator:

Var (τ̂∗AIPW ) = v∗.

The theorem is given by the efficiency of AIPW estima-
tor and also the optimiality of equal derivative solution de-
sign. Here v∗ represents the minimal variance achievable un-
der a static allocation policy, demonstrating the efficiency of
static allocation when all models are known. However, in
most real-world settings, it is neither feasible nor reasonable
to assume that customer utilities or outcomes models are
fully known before conducting experiments. Instead, these
models must be learned during the course of the experiment.
This necessitates the use of adaptive experimental designs,
where participants’ observed behaviours and responses dy-
namically inform subsequent incentive allocations.

For experiments that use adaptive budget allocation mech-
anisms, where the incentive policy p(X) can depend on prior
observations or history, we establish a fundamental lower
bound on the estimation variance for any unbiased estima-
tor. This result defines the statistical limit of the problem
and highlights the constraints imposed by the available re-
sources.

To formalize the variance limit in the context of budget
constraints, we define v∗(B) as the minimal achievable vari-
ance for unbiased estimation when allocating a total budget
B across participants. Importantly, v∗(B) is defined with re-
spect to a single participant’s allocation mechanism, scaled
appropriately for n participants.



Theorem 3. (Statistical Limit for Adaptive Policies)
For any adaptive budget allocation mechanism or adaptive
algorithm running on n participants satisfying the resource
constraint EX (

∑n
i=1 pi(X)) ≤ B, the output estimator τ̂

satisfies:

Var(τ̂) ≥ 1

n
v∗(

B

n
).

This inequality demonstrates that no allocation mecha-
nism—adaptive or static—can achieve an estimation vari-
ance below the limit using the Equal Derivative Solution,
serving as a benchmark against which all experimental de-
signs can be evaluated.

In practical settings, the models
α(1)(X), α(0)(X), µ(1)(X), µ(0)(X), PX are typically
unknown. This raises a critical question:
Can we design an adaptive experiment that:

1. Learns the underlying models
α(1)(X), α(0)(X), µ(1)(X), µ(0)(X), PX during the
experiment, and

2. Constructs an (asymptotically) unbiased estimation τ̂ that
approximates the optimal variance v∗:

V ar(τ̂) ≤ (1 + o(1))v∗

We give an affirmative answer by proposing the following
low switching learning-to-incentivize algorithm.

Algorithm 1 Low-Switching Learning-to-Incentivize Algo-
rithm
Input: Total sample size n, number of batches K, initial
batch length coefficient c.
Output: Final unbiased estimator τ̂ .
Initialization: Set initial policy p(X) = 0.

1: for k = 1 do
2: Set batch length mk = c

√
n.

3: Collect mk samples using policy p(X) = 0.
4: Estimate initial model parameters

θ̂
(1)
1 , θ̂

(1)
0 , ĉ

(1)
1 , ĉ

(1)
0 via logistic regression.

5: end for
6: for k = 2 to K do
7: Set batch length mk = 2k−2c

√
n.

8: Solve the optimization problem with proportional
budget to compute estimated policy p̂(X).

9: Compute conservative policy pLB(X) = p̂(X) −
2O
(

1√
mk

)
.

10: Collect mk samples using policy p(X) = pLB(X).
11: Update model parameters θ̂(k)1 , θ̂

(k)
0 , ĉ

(k)
1 , ĉ

(k)
0 via lo-

gistic regression.
12: end for
13: Compute final unbiased estimator τ̂ based on all col-

lected data.

We propose an estimation which is consistent and its
mean square error approaches the optimal variance through a
low-switching learning-to-incentivize algorithm. This al-
gorithm operates over log(n) sequential batches, dynami-
cally refining the incentive policy to balance exploration and

exploitation. Note that in the optimization step, we adopt
a proportional budget approach, where the input budget is
scaled by the fraction of samples remaining (e.g., if the to-
tal budget is B and n1 samples remain, we allocate n1

n B as
input) to ensure a conservative design.

Below, we outline the key steps and theoretical guarantees
of the algorithm. In the first batch, no incentives are offered
(p = 0). This phase serves two important purposes:
1. Conservative Budget Usage: This zero-price policy acts
as a buffer to ensure that we do not overspend before the
experiment concludes.
2. Pretraining Phase: Since no prior information about the
model is available at the start, this batch allows us to collect
unbiased data for rough model estimation.

Using the data (Xi, Yi,Wi) collected in this phase, we
estimate the underlying distribution PX , which governs the
covariates. A uniform convergence result provides a guar-
antee for the accuracy of this estimation (van der Vaart and
Wellner (1996)):

Lemma 5. (Uniform Convergence of Empirical Distribu-
tion).
Let X1, X2, . . . , Xn be i.i.d. samples drawn from an un-
known continuous distribution PX with a probability density
function p(x). The Kernel Density Estimate (KDE) of p(x)
is given by:

P̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K is a symmetric kernel function and h > 0 is the
bandwidth parameter.

Assume:

1. The function p(x) is Lipschitz continuous, satisfying
|p′(x)| ≤ L.

2. K is a smooth, symmetric kernel such that:∫
K(u) du = 1,

∫
uK(u) du = 0,

∫
u2K(u) du = κ.

3. The kernel K is uniformly bounded: |K(u)| ≤ M .

Then, for any ϵ > 0, the uniform deviation of P̂n(x) from
p(x) is bounded as:

Pr

(
sup
x∈X

∣∣∣P̂n(x)− p(x)
∣∣∣ ≥ ϵ

)
≤ C exp

(
−cnhϵ2

)
,

where C and c are constants that depend on K, h, and the
smoothness of p(x).

Next, we estimate the conditional expectation function.
The following assumption guarantees the accuracy of this
estimation:

Assumption 3 (Oracle for Expectation Function Estima-
tion). Let (X1, Y1), . . . , (Xm, Ym) denote a batch of i.i.d.
data drawn from the joint distribution PX · PY |X , where
X ∼ PX and the conditional expectation is E[Y | X =
x] = µ(x)). Assume that the batch size satisfies m ≥
C3 log n for a sufficiently large constant C3.

We posit the existence of a regression oracle that takes
(X1, Y1), . . . , (Xm, Ym) as input and outputs an estimated



function µ̂ : X → R approximating µ(x), such that with
probability 1− δ (for δ = 1

n4 ):

EX∼PX

[
(µ(X)− µ̂(X))2

]
≤ C4

σ2

mα
log

(
1

δ

)
,

where C4 > 0 is a constant, α depends on the complexity
of the distribution PX , and σ2 represents the variance of the
noise in the data.

Using the data (Xi,Wi), where Xi ∼ PX represents the
features and Wi ∈ {0, 1} denotes the treatment assignment,
we estimate the parameters of the utility functions α(1)(X)
and α(0)(X), which follow linear models:

α(1)(X) = θ⊤1 X + c1, α(0)(X) = θ⊤0 X + c0.

The parameter set ϕ = (θ1, c1, θ0, c0) is estimated using lo-
gistic regression or similar methods. Importantly, the low-
switching design ensures that the data within each batch
is collected i.i.d., facilitating accurate parameter estimation.
We make the following assumption for an oracle that guar-
antees estimation accuracy for logistic regression, which is
already well established (Hosmer et al. (2013)):
Assumption 4 (Oracle for Parameter Estimation). Let
(X1,W1), . . . , (Xm,Wm) denote a batch of i.i.d. data,
where Xi ∼ PX and the probability of treatment assign-
ment follows:

P (Wi = 1 | Xi) = e(Xi) =
exp(α(1)(Xi))

exp(α(1)(Xi)) + exp(α(0)(Xi))

Assume the batch size m ≥ C3 log n for a sufficiently large
constant C3. Then, there exists an estimation oracle that
takes (X1,W1), . . . , (Xm,Wm) as input and outputs an es-
timated parameter set ϕ̂ = (θ̂1, ĉ1, θ̂0, ĉ0), such that with
probability 1− δ (for δ = 1

n4 ):

1. The squared error for θ̂1 satisfies:

EX∼PX

[
∥θ1 − θ̂1∥2

]
≤ C4

dσ2

mα
log

(
1

δ

)
,

where α = 1, d is the dimension of θ1 and σ2 represents
the variance of the noise in the data.

2. Similar guarantees hold for θ̂0, ĉ1, and ĉ0, with appropri-
ately defined constants C5, C6, C7.

Remark 2. The parameter estimation guarantees rely on the
properties of PX , which governs the covariate distribution.
The batch size m must be sufficiently large to achieve these
guarantees, ensuring accurate parameter recovery under the
linear utility model.

In the second batch, we can solve the optimization prob-
lem with our estimated models to derive an estimated incen-
tivize mechanism p̂(X).
Lemma 6. Under appropriate regularity conditions and
given a sufficiently large batch size ni (where i denotes the
batch index), the estimated mechanism p̂(X) is close to the
true optimal allocation mechanism p∗(X), with a high de-
gree of confidence:

|p∗(X)− p̂(X)| ≤ 1
√
ni

.

To ensure conservativeness, we always select the lower
bound of the confidence interval for incentives: p̂LB(X) =
p̂(X)− 2 1√

n
. This choice satisfies:

p∗(X)− 3
1√
n
≤ p̂LB(X) ≤ p∗(X).

The next lemma tells the approximation error of the
propensity score.
Lemma 7. Given the adjusted incentive mechanism p̂LB, the
resulting adjusted propensity score eLB(X) is guaranteed to
approximate the optimal propensity score e∗(X) with high
confidence:

|e∗(X)− eLB(X)| ≤ 1
√
ni

.

We then apply the conservative incentive policy p̂LB(X),
run experiments, collect data, and re-estimate models. This
process is repeated for each batch until all batches are com-
pleted. Our algorithm is designed with a conservative strat-
egy to ensure that the total budget is respected. Specifically:
Proposition 2. With high probability, the algorithm will not
exceed the allocated budget during the course of the experi-
ment.

After completing all batches, we guarantee that the output
estimator τ̂ satisfies the following: 1. The estimator τ̂ is con-
sistent. 2. The variance of τ̂ is close to the theoretical lower
bound v∗:
Theorem 4. After completing the experiment, the mean
square error of the estimator τ̂ satisfies:

E[(τ̂ − τ)2] ≤ (1 +O(n− 1
2α))v∗.

Proposition 3. By Central Limit Theorem, the estimator sat-
isfies: √

n(τ̂ − τ) ⇒ N(0, v∗),

where v∗ is the minimum variance achievable.

Conclusion
In this work, we proposed a novel approach to address se-
lection bias and covariate imbalance in experimental de-
signs where participants self-select into treatment or con-
trol groups. Through the integration of random utility mod-
els and the application of incentivization mechanisms, we
demonstrated that aligning participants’ incentives with the
experimental objectives effectively minimizes bias and vari-
ance in treatment effect estimation. Our theoretical frame-
work, supported by the derivation of optimal incentive poli-
cies and robust estimation techniques, highlights the im-
portance of balancing feature distributions while adhering
to practical constraints such as budget limitations. Further-
more, we extended our analysis to settings with unobserved
confounders, providing insights into bias dynamics and par-
tial identification of treatment effects. Finally, we intro-
duced adaptive experimental designs that iteratively esti-
mate key parameters and refine incentive mechanisms in real
time, ensuring that treatment effect estimation becomes pro-
gressively more accurate and stable as the experiment pro-
gresses.
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Appendix
Proof of Lemma 1
Assume e(X) < 0.5 WLOG. We aim to prove that the
function F (X, p(X)) = f(e(X, p(X))), where f(e) =

− σ2

e(1−e) , satisfies: 1. F ′(X, p(X)) < 0 (non-increasing) for
e(X, p(X)) < 0.5, and 2. F ′′(X, p(X)) > 0 (convexity) for
e(X, p(X)) < 0.5, where e(X, p(X)) is the softmax-based
probability for the treatment group.

Define the propensity score e(X, p(X)) as:

e(X, p(X)) =
exp(u1(X) + p(X))

exp(u1(X) + p(X)) + exp(u0(X))
.

Here, u1(X) and u0(X) are fixed utility components for the
treatment and control groups, while p1(X) is the incentive
adjustment applied to the treatment group. Introduce the no-
tation:

A = exp(u1(X) + p(X)), B = exp(u0(X)).

Thus, the propensity score simplifies to:

e(X, p(X)) =
A

A+B
.

The first derivative of e(X, p(X)) with respect to p(X) is
computed as:

d

dp(X)
e(X, p(X)) =

dA
dp(X) (A+B)−Ad(A+B)

dp(X)

(A+B)2
.

Since dA
dp(X) = A and d(A+B)

dp(X) = A, we have:

d

dp(X)
e(X, p(X)) =

AB

(A+B)2
.

This is always positive for A,B > 0.
The second derivative is:

d2

dp(X)2
e(X, p(X)) =

d
dp(X)AB · (A+B)

(A+B)3

−
2AB · d

dp(X) (A+B)

(A+B)3
.

Using d
dp(X)AB = AB and d

dp(X) (A + B) = A, this
simplifies to:

d2

dp(X)2
e(X, p(X)) =

AB [(A+B)− 2A]

(A+B)3
.



When e(X, p(X)) < 0.5, we have A < B, which implies
(A+B)− 2A = B −A > 0. Thus:

d2

dp(X)2
e(X, p(X)) > 0.

This proves that e(X, p(X)) is convex with respect to p(X).

Now consider f(e) = − σ2

e(1−e) , where e = e(X, p(X)).

Using the chain rule and computing the derivative of f(e),
we have:

f ′(e) =
σ2

e2
− σ2

(1− e)2
.

When e(X, p(X)) < 0.5, we know e < 1 − e, so e2 <
(1− e)2. This implies:

f ′(e) < 0.

Thus, f(e(X, p(X))) is non-increasing for e(X, p(X)) <
0.5.

The second derivative is:

f ′′(e) = −2σ2

e3
− 2σ2

(1− e)3
.

Since 0 < e < 1, both terms are positive, so:

f ′′(e) > 0.

This proves that f(e(X, p(X))) is convex for all 0 <
e(X, p(X)) < 1.

Finally, consider the composition F (X, p(X)) =
f(e(X, p(X))). Using the above results:
1. e(X, p(X)) is convex with respect to p(X),
2. f(e) = − σ2

e(1−e) is convex and non-increasing for
e(X, p(X)) < 0.5. The composition rule for con-
vex functions states that if f(e) is convex and non-
decreasing, or in this case non-increasing and strictly pos-
itive, then F (X, p(X)) = f(e(X, p(X))) is convex when-
ever e(X, p(X)) is convex.

Thus, F (X, p(X)) is both convex and non-increasing
for e(X, p(X)) < 0.5. The analogous results hold for
e(X, p(X)) > 0.5.

Proof of Theorem 1

We want to minimize the variance lower bound through our
decision variable p(X):

min
p(X)

∫
F (X, p(X))PX dX

s.t.
∫

p(X)PX dX ≤ B

n
, p(X) ≥ 0,∀X. (8)

The Lagrangian L(p, λ, µ) is:

L(p, λ, µ) =
∫

F (X, p(X))PXdX

+

∫
µ(X)(−p(X)) dX

+ λ

(∫
p(X)PX dX − C

)
. (9)

where λ ≥ 0 and µ(X) ≥ 0 are dual variables.
The Karush-Kuhn-Tucker (KKT) conditions provide the
necessary conditions for optimality. These include:

1. Stationarity

∂F (X, p(X))

∂p(X)
= µ(X)− λ, ∀X.

2. Primal Feasibility:∫
p(X)PX dX ≤ C, p(X) ≥ 0 ∀X.

3. Dual Feasibility:

λ ≥ 0, µ(X) ≥ 0 ∀X.

4. Complementary Slackness:

λ

(∫
p(X)PX dX − C

)
= 0, µ(X)p(X) = 0 ∀X.

The Euler-Lagrange equation gives the necessary condi-
tions for p(X) to be a stationary point of the functional. The
general form for a functional

∫
L(X, p(X), p′(X)) dX is:

∂L

∂p
− d

dX

(
∂L

∂p′(X)

)
= 0.

In this case, since the Lagrangian does not depend on p′(X),
the Euler-Lagrange equation simplifies to:

∂

∂p(X)
[F (X, p(X))PX + λp(X)PX + µ(X)p(X)] = 0.

Differentiating term by term with respect to p(X) gives:

∂F (X, p(X))

∂p
PX + λPX + µ(X) = 0.

If p(X) > 0, complementary slackness implies µ(X) =
0. With PX > 0, this reduces to:

∂F (X, p(X))

∂p
= −λ.

Using this, we define p(X) = g−λ(X), representing the
incentive policy that achieves the target rate of decrease in
F (X, p(X)).

Next, we analyze the behavior of F (X, p(X)) based on
the convexity properties established earlier. The conditions
F ′(X, p(X)) < 0 and F ′′(X, p(X)) > 0 ensure that
F (X, p(X)) is non-increasing and convex with respect to
p(X), thus any solution to the optimality condition corre-
sponds to the global minimum of the functional.

To interpret the optimal solution, consider two cases
based on the rate of variance reduction:



Case 1: F ′(X, p(X)) < −λ
If the marginal rate of variance reduction is sufficiently fast
(i.e., F ′(X, p(X)) < −λ), budget is allocated until the rate
of decrease slows to match −λ. The corresponding optimal
policy is:

p(X) = g−λ(X).

If the total budget is not fully utilized(∫
p(X)PX dX < C

)
, the KKT conditions imply λ = 0,

indicating no resource scarcity. In this case, we set
e(X) = 0.5, achieving the maximum reduction in variance.

Case 2: F ′(X, p(X)) ≥ −λ
If the marginal rate of variance reduction is already too slow
(i.e., F ′(X, p(X)) > −λ), no additional budget is allocated:

p(X) = 0.

Proof of Lemma 6
Utility function estimation To bound the error between
the true function α(1)(X) and its estimate α̂(1)(X), consider
the following setup:

The true function is given by α(1)(X) = θ⊤1 X+c1, while
the estimated function is α̂(1)(X) = θ̂⊤1 X + ĉ1.

The difference between the two functions is:

α(1)(X)− α̂(1)(X) = (θ⊤1 X + c1)− (θ̂⊤1 X + ĉ1),

which simplifies to:

α(1)(X)− α̂(1)(X) = (θ1 − θ̂1)
⊤X + (c1 − ĉ1).

Taking the norm of this difference, we have:

∥α(1)(X)− α̂(1)(X)∥ = ∥(θ1 − θ̂1)
⊤X + (c1 − ĉ1)∥.

The term (θ1−θ̂1)
⊤X is a scalar, so its norm can be bounded

using the Cauchy-Schwarz inequality:

∥(θ1 − θ̂1)
⊤X∥ ≤ ∥θ1 − θ̂1∥∥X∥.

If we assume that X is bounded by a constant M > 0, i.e.,
∥X∥ ≤ M , this simplifies to:

∥(θ1 − θ̂1)
⊤X∥ ≤ M∥θ1 − θ̂1∥.

In assumption 4, we assume that the parameter θ1 is esti-
mated with an error bounded by a small constant ϵ > 0:

∥θ1 − θ̂1∥ ≤ ϵ.

Combining this with the previous inequality, we obtain:

∥(θ1 − θ̂1)
⊤X∥ ≤ Mϵ.

Now, consider the full error between α(1)(X) and α̂(1)(X):

∥α(1)(X)− α̂(1)(X)∥ = ∥(θ1 − θ̂1)
⊤X + (c1 − ĉ1)∥.

Using the triangle inequality, we split this into two terms:

∥α(1)(X)− α̂(1)(X)∥ ≤ ∥(θ1 − θ̂1)
⊤X∥+ ∥c1 − ĉ1∥.

Substituting the bound for ∥(θ1 − θ̂1)
⊤X∥, we get:

∥α(1)(X)− α̂(1)(X)∥ ≤ Mϵ+ ∥c1 − ĉ1∥.

A similar argument applies to the second function, α(0)(X),

where:

α(0)(X) = θ⊤0 X + c0, α̂(0)(X) = θ̂⊤0 X + ĉ0.

By following the same steps, we obtain:

∥α(0)(X)− α̂(0)(X)∥ ≤ Mϵ+ ∥c0 − ĉ0∥.

Propensity Score Estimation Denote ∥e(X) −
ê(X)∥, ∥α(1)(X) − α̂(1)(X)∥, and∥α(0)(X) − α̂(0)(X)∥
as the errors in the propensity score and utility functions.
Without loss of generality, we assume that the price policy
p(X) = 0 in this analysis.

We approximate the change in e(X) using the first-order
Taylor expansion, then take the absolute value. By triangle
inequality:

∥e′(X)− e(X)∥ ≤
∣∣∣∣ ∂e

∂α(1)

∣∣∣∣ ∥α(1)(X)− α̂(1)(X)∥

+

∣∣∣∣ ∂e

∂α(0)

∣∣∣∣ ∥α(0)(X)− α̂(0)(X)∥.

(10)

Here, e(X) is given by:

e(X) =
exp(α(1)(X))

exp(α(1)(X)) + exp(α(0)(X))
.

First, calculate ∂e
∂α(1) . Using the quotient rule:

∂e

∂α(1)
=

∂

∂α(1)

(
exp(α(1))

exp(α(1)) + exp(α(0))

)
.

Let f = exp(α(1)) and g = exp(α(1)) + exp(α(0)). Then:

∂e

∂α(1)
=

f ′ · g − f · g′

g2
.

Substituting f ′ = exp(α(1)), g′ = exp(α(1)), and g =
exp(α(1)) + exp(α(0)), we have:

∂e

∂α(1)
=

exp(α(1)) exp(α(0))

(exp(α(1)) + exp(α(0)))2

Simplify:

∂e

∂α(1)
= e(X)(1− e(X)).

Next, calculate ∂e
∂α(0) . Similarly:

∂e

∂α(0)
= − exp(α(1)) exp(α(0))

(exp(α(1)) + exp(α(0)))2
.

This simplifies to:

∂e

∂α(0)
= −e(X)(1− e(X)).



Thus, the total change in e(X) is:

∥e′(X)− e(X)∥ ≤
∣∣∣∣ ∂e

∂α(1)

∣∣∣∣ ∥α(1)(X)− α̂(1)(X)∥

+

∣∣∣∣ ∂e

∂α(0)

∣∣∣∣ ∥α(0)(X)− α̂(0)(X)∥

≤ e(X)(1− e(X))
(
∥α(1)(X)− α̂(1)(X)∥

+ ∥α(0)(X)− α̂(0)(X)∥
)
. (11)

Since:

∥α(1)(X)− α̂(1)(X)∥+ ∥α(0)(X)− α̂(0)(X)∥ ≤ ϵ1 + ϵ2.

Thus:

∥e(X)− ê(X)∥ ≤ e(X)(1− e(X))(ϵ1 + ϵ2).

If ϵ1 = ϵ2 = ϵ, then:

∥e(X)− ê(X)∥ ≤ e(X)(1− e(X))(2ϵ).

The maximum value of e(X)(1 − e(X)) occurs at e(X) =
0.5, where e(X)(1− e(X)) = 0.25. Thus:

∥e(X)− ê(X)∥ ≤ 0.25 · 2ϵ = 0.5ϵ.

Incentive policy estimation
The decision variable p(X) is determined by matching the
speed of decrease in variance, given by the gradient:

∂F (X, p(X))

∂p(X)
= −λ.

We know:

e(X, p(X)) =
exp(α(1)) exp(p(X))

exp(α(1) + p(X)) + exp(α(0))

=
exp(α(1)) exp(p(X))

exp(p(X)) + exp(α(0) − α(1))

=
e(X) exp(p(X))

e(X) exp(p(X)) + (1− e(X))
.

and ∥e(X)− ê(X)∥ ≤ ϵ.
Claim 1: ∥e(X, p(X))− ê(X, p(X))∥ ≤ ϵ

To approximate this, we use a first-order Taylor expansion:

∥e(X, p(X))−ê(X, p(X))∥ ≤
∣∣∣∣∂e(X, p(X))

∂e(X)

∣∣∣∣·∥e(X)−ê(X)∥.

Now, we compute the derivative:

∂e(X, p(X))

∂e(X)
=

e(X) exp(2p(X)) + exp(p(X))(1− e(X))2

(e(X) · exp(p(X)) + (1− e(X)))2
.

By Taylor expansion of the exponential function,
exp(p(X)) ≤ 1 + p(X) + p(X)2

2 and exp(2p(X)) ≤
1 + 2p(X) + 2p(X)2, we can then bound the numerator as:

e(X)(1+2p(X)+2p(X)2)+

(
1 + p(X) +

p(X)2

2

)
(1−e(X))2.

and bound the denominator as:(
e(X) + (1− e(X)) + e(X)p(X) +

e(X)p(X)2

2

)2

.

Combining together, when p(X) is small, the derivative can
be simplified to:

∂e(X, p(X))

∂e(X)
≤ e(X) + (1− e(X))2 < 1.

Since ∥e(X)− ê(X)∥ ≤ ϵ, it follows that:

∥e(X, p(X))− ê(X, p(X))∥ ≤ ϵ.

Claim proved.
Claim 2:
We want to show that if ∥e(X) − ê(X)∥ < ϵ, then

|F (ê(X)) − F (e(X))| < ϵ for the function F (e(X)) =
σ

e(X)(1−e(X)) .
To do this, we use the first-order Taylor expansion:

|F (ê(X))− F (e(X))| ≤ |F ′(e(X))| · ∥ê(X)− e(X)∥.
To ensure that |F (ê(X)) − F (e(X))| < ϵ whenever

∥e(X) − ê(X)∥ < ϵ, it’s sufficient to have |F ′(e(X))|
bounded.

The derivative F ′(e(X)) can be computed as:

F ′(e(X)) =
σ(1− 2e(X))

e(X)2(1− e(X))2
.

Since η < e(X) < 1− η, we can bound F ′(e(X)) by:

|F ′(e(X))| =
∣∣∣∣ σ(1− 2e(X))

e(X)2(1− e(X))2

∣∣∣∣ ≤ |σ| · |1− 2e(X)|
e(X)2(1− e(X))2

.

Using |1− 2e(X)| ≤ max(1− 2η, 2η − 1), we get:

|F ′(e(X))| ≤ |σ| ·max(1− 2η, 2η − 1)

η4
.

Claim proved.
If the two functions F (e(X), p(X)) and F (ê(X), p(X))

are close, then their gradients will also be close by Mean
Value Theorem, provided that the functions are sufficiently
smooth. Specifically:∣∣∣∣∂F (e(X), p(X))

∂p
− ∂F (ê(X), p(X))

∂p

∣∣∣∣ ≤ L ϵ,

for some constant L depending on the smoothness of the
gradient.

By Implicit Function Theorem, small changes in the gra-
dient result in small changes in p(X) and p̂(X). Specifically,
the difference between p(X) and p̂(X) is bounded by:

|p(X)− p̂(X)| ≤ L ϵ

|∂2F/∂p2|
.

Here, |∂2F/∂p2| is the second derivative of F with respect
to p(X), which we assume is bounded away from 0 for sta-
bility.

Proof of Lemma 7
Each optimal policy p∗(x) corresponds to an optimal allo-
cation function e∗(x), taking into account the entire distri-
bution of x. Our policy p̂LB(x) corresponds to an allocation
function eLB(x).

To show that |p(LB) − p∗| < ϵ implies |e(LB) − e∗| < ϵ,



where

e∗ =
exp(α1 + p∗)

exp(α1 + p∗) + exp(α0)
,

e(LB) =
exp(α1 + p(LB))

exp(α1 + p(LB)) + exp(α0)
.

The difference can be written as:

|e(LB) − e∗| =
∣∣∣∣ exp(α(1) + p(LB))

exp(α(1) + p(LB)) + exp(α(0))

− exp(α(1) + p∗)

exp(α(1) + p∗) + exp(α(0))

∣∣∣∣.
Let:

x1 = exp(α(1)+p(LB)), x2 = exp(α(1)+p∗), y = exp(α(0)).

Then:

e(LB) =
x1

x1 + y
, e∗ =

x2

x2 + y
.

The difference can be expressed as:

|e(LB) − e∗| =
∣∣∣∣ x1

x1 + y
− x2

x2 + y

∣∣∣∣ .
|e(LB) − e∗| =

∣∣∣∣x1(x2 + y)− x2(x1 + y)

(x1 + y)(x2 + y)

∣∣∣∣ .
|e(LB) − e∗| = y|x1 − x2|

(x1 + y)(x2 + y)
.

Since x1 = exp(α(1) + p(LB)) and x2 = exp(α(1) + p∗),
we have:

|x1 − x2| =
∣∣∣exp(α(1) + p(LB))− exp(α(1) + p∗)

∣∣∣ .
|x1 − x2| = exp(α(1))

∣∣∣exp(p(LB))− exp(p∗)
∣∣∣ .

Using the Mean Value Theorem on exp(p), which has a
derivative of exp(p), we get:∣∣∣exp(p(LB))− exp(p∗)

∣∣∣ ≤ exp(ξ)|p(LB) − p∗|,

where ξ is between p(LB) and p∗. Since exp(ξ) ≤
max(exp(p(LB)), exp(p∗)), we can bound |x1 − x2| as:

|x1−x2| ≤ exp(α(1))max(exp(p(LB)), exp(p∗))|p(LB)−p∗|.
Substitute this bound for |x1 − x2| into the expression for
|e(LB) − e∗|:

|e(LB) − e∗| ≤ exp(α(1))max(exp(p(LB)), exp(p∗))

y

× |p(LB) − p∗|.
The denominator (x1 + y)(x2 + y) is positive and can be

bounded below:

(x1 + y)(x2 + y) ≥ y2,

because x1, x2 ≥ 0.

Thus:

|e(LB)−e∗| ≤ exp(α(1))max(exp(p(LB)), exp(p∗))|p(LB) − p∗|
y

Since |p(LB) − p∗| < ϵ, we have:

|e(LB) − e∗| ≤ C · ϵ,

where C is a constant depending on exp(α(1)), exp(α(0)),
and the range of p(LB) and p∗. By choosing ϵ small enough,
this guarantees that |e(LB) − e∗| < ϵ. This completes the
proof.

Proof for Proposition 2
Under batch i, we draw samples {Xi1, . . . , Xini} and assign
the policy p∗(Xij) to each sample Xij . Let B∗

i be the spend-
ing under policy p∗(Xij) in batch i, and Bi be the spending
under conservative policy p̂LB(Xij) in batch i, and B be the
expected spending per sample under the distribution of X .

Consider the base case: The budget spent in Batch 1 is B1,
and no incentives are provided in the first batch (B1 = 0).
Therefore:

nB −B1 ≥ (n− n1)B

because B1 = 0 where n1 is the number of samples in Batch
1. This satisfies the budget constraint for the first batch.

Inductive hypothesis: Assume that after k batches, the
budget satisfies:

nB −B1 −B2 − · · · −Bk ≥ (n− n1 − n2 − · · · − nk)B.

Inductive step: For the (k + 1)-th batch, we have the
remaining budget:

nB −B1 −B2 − · · · −Bk+1 = nB −B2 − · · · −Bk+1

Since for each Bi, Bi ≤ niB +
√
niB (proved below in 1),

then we can bound the above by:

nB −B2 − · · · −Bk+1 ≥ nB − n2B −
√
n2B

− · · · − nk+1B −√
nk+1B.

Since
∑k+1

i=2

√
niB ≤ n1B = c

√
nB for large enough n1

(proved below in 2):

nB − n2B −
√
n2B − · · · − nk+1B −√

nk+1B

≥ (n− n1 − n2 − · · · − nk+1)B.

Thus, the inductive step holds.
By induction, after k batches, the remaining budget satis-

fies:

nB −B1 −B2 − · · · −Bk ≥ (n− n1 − n2 − · · · − nk)B,

which ensures that the total spending will always remain
within the budget nB.

1. Proof of Bi ≤ B∗
i ≤ niB +

√
niB

In lemma 5, we have shown that the empirical distribution
p̂X approximates the true distribution pX at batch i. Then
Ep̂X

[p∗(Xij)] = B. Since each Xi are drawn i.i.d. and pol-
icy p∗(Xij) is fixed within this batch, p∗(Xij) is also i.i.d.
Then we can apply the Law of Large Numbers, as the em-



pirical average converges to the expected spending:

B∗
i =

ni∑
j=1

p∗(Xij) ≤
(
1 +

1
√
ni

)
niB = niB +

√
niB

By our design Bi ≤ B∗
i , thus Bi ≤ B∗

i ≤ niB +
√
niB.

2. Proof of
∑k+1

i=2

√
niB ≤ n1B = c

√
nB for large

enough n1

The total contribution of
√
niB over batches i = 2 to k can

be bounded by
∑k

i=2

√
ni..

Since the total number of batches is log(n), and
√
ni ≤√

n, we can write:
k∑

i=2

√
niB ≤ log(n)

√
nB.

For the constraint log(n)
√
n ≤ c

√
n, we choose c =

M log(n), where M is a sufficiently large constant. This en-
sures:

k∑
i=2

√
niB ≤ n1B = c

√
nB.

Proof of Lemma 2

The bias of AIPW estimator is

E[Ŷ1] = E

[
1

n

n∑
i=1

(
µ(1)(Xi) +

Yi − µ(1)(Xi)

e(Xi)
Wi

)]

= E

[
µ(1)(X) +

Y − µ(1)(X)

e(X)
W

]
= E

[
YW

e(X)

]
= EX

[
E[Y |W = 1]

P (W = 1|X)

e(X)
+ 0

P (W = 0|X)

e(X)

]
= EX

[
E[f̃1(X) + g1(X,α)|α+ gap(X) > β]

]
= EX [E[g1(X,α)|α+ gap(X) > β]] + EX [f̃1(X)]

= EX [E[g1(X,α)|α+ gap(X) > β]] + E(Y1).
(12)

The second equality comes from i.i.d. data generating pro-
cess. The fourth one is by definition of expectation, and the
fifth one is given by the characterization of random choice
model P (W = 1|X). The sixth holds since f̃1(X) is in-
dependent of α and β. Therefore, we have proved the bias
of treatment group. Similar analysis holds for control group.
The last claim holds due to the symmetry of α and β and g1,
g0.

Proof of Lemma 3
We will prove in lemma 4 that for each fix X , we have

E[g(X,α)|α+ gap(X) > β]− E[g(X,α)|α− gap(X) > β]

=

∫ (
g(X,α+ gap(X))− g(X,α)

)
f1(α) dα∫

f1(α) dα
,

where f1(α) = exp
(
− exp(−(α+ gap(X)))

)
× exp

(
− (α+ exp(−α))

)
.

(13)
Since we also have E(g(X,α)) = 0, we know that

E[g(X,α)|α + gap(X) > β] ≤ εXgap(X)
1+exp(gap(X)) . Simi-

larly we can prove that E[g(X,α)|α − gap(X) > β] ≥
− εXgap(X) exp(gap(X))

1+exp(gap(X)) . Therefore, we have for any X ,

E[Ŷ1(X) − Ŷ0(X) − (Y1(X) − Y0(X))] ≤ εXgap(X).
The result holds by taking expectation with respect to X .

Proof of Lemma 4
By definition of Gumbel distribution, we have

bias(X) = E[g(X,α)|α+ gap(X) > β]

− E[g(X,α)|α− gap(X) > β]

=

∫ (
g(X,α+ gap(X))− g(X,α)

)
f1(α) dα∫

f1(α) dα
,

where f1(α) = exp
(
− exp(−(α+ gap(X)))

)
× exp

(
− (α+ exp(−α))

)
.

(14)
take g(X,α) = εα− E(εα), we know that it equals ε.

Proof of Theorem 3
In theorem 4 of (Li et al. (2024)), it is proved that for any
possible adaptive algorithm ALG and any unbiased estimator
τ̂ , the variance

Var(τ̂) ≥ EPX

((
µ(1)(x)− µ(0)(x)− EX

[
µ(1)(x)− µ(0)(x)

])2
+

σ(1)(x)2

eÂLG(x)
+

σ(0)(x)2

1− eÂLG(x)

)
.

where ÂLG is defined as

eÂLG(X) = P ÂLG(W = 1 | X)

=
1

n

n∑
t=1

∫
P (W = 1 | X,Ft−1) dP

ALG(Ft−1).

and Ft−1 is the filtration up to time t− 1. By convexity, one
can check that the pricing strategy pÂLG(X) which gives
the corresponding eÂLG satisfies the budget constraint:

EX(pÂLG(X)) ≤ B

n
.

Therefore, we know that the variance given by applying
pÂLG throughout the n periods, which gives the variance
of τ̂ , is no smaller than 1

nv
∗(Bn ).



Proof of Theorem 4
Following the proof in Li et al. (2024), we will define the
following three estimators. We will use the AIPW estimator
to estimate the treatment effect, which is defined as

τ̂X1 =
1

n

n∑
i=1

(
µ̂(1)(Xi)− µ̂(0)(Xi)

+
Yi − µ̂(1)(Xi)

i(Xi, p(Xi))
Wi

− Yi − µ̂(0)(Xi)

1−i (Xi, p(Xi))
(1−Wi)

)
.

(15)

where we use the superscript X to emphasize the exis-
tence of covariates, and µ̂(1)(X), µ̂(0)(X) as the estima-
tion for outcome function of treatment and control µ(1)(X),
µ(0)(X). Similarly, we can define the intermediary and op-
timal estimator as

τ̂X2 =
1

n

n∑
i=1

(
µ(1)(Xi)− µ(0)(Xi)

+
Yi − µ(1)(Xi)

ei(Xi, p(Xi))
Wi

− Yi − µ(0)(Xi)

1− ei(Xi, p(Xi))
(1−Wi)

)
.

(16)

τ̂∗X =
1

n

n∑
i=1

(
µ(1)(Xi)− µ(0)(Xi)

+
Yi − µ(1)(Xi)

e∗(Xi, p∗(Xi))
Wi

− Yi − µ(0)(Xi)

1− e∗(Xi, p∗(Xi))
(1−Wi)

)
.

(17)

where the optimal propensity score e∗(X) =
σ(1)(X)/(σ(1)(X) + σ(0)(X)) and the estimator τ̂∗X

achieves optimal variance v∗ using the optimal incentive
mechanism p∗. Throughout the proof, we will condition
on the proved high probability event that p(Xi) in the
learning-to-incentivize algorithm will never run out of
budget. We can divide the mean square error of the AIPW
estimator into three parts: model estimation, propensity
score optimization, and cross term:

E
(
τ̂X1 − τ

)2 − E
(
τ̂∗X − τ

)2
= E

(
τ̂X1 − τ̂X2 + τ̂X2 − τ

)2 − E
(
τ̂∗X − τ

)2
= E

(
τ̂X1 − τ̂X2

)2︸ ︷︷ ︸
model estimation

+ E
(
τ̂X2 − τ

)2 − E
(
τ̂∗X − τ

)2︸ ︷︷ ︸
propensity score optimization

+ 2E
(
(τ̂X1 − τ̂X2 )(τ̂X2 − τ)

)︸ ︷︷ ︸
cross-term

.

(18)

We will prove the following two lemmas, which will then
lead to the desired result.

Lemma 8.

E
(
τ̂X2 − τ

)2 − E
(
τ̂∗X − τ

)2 ≤ O(
1√
n
)E
(
τ̂∗X − τ

)2
(19)

Proof of Lemma 8
As proved in lemma 3 in (Li et al. (2024)), we have

E
(
τ̂X2 − τ

)2 − E
(
τ̂∗X − τ

)2
=

1

n2
E

( n∑
i=1

σ2

ei(Xi)
+

n∑
i=1

σ2

1− ei(Xi)

− n

(
σ2

e∗(Xi)
+

σ2

1− e∗(Xi)

))
.

(20)

As proved in lemma 7, we have in batch k,
∥ei(Xi, p(Xi))−e∗(Xi, p

∗(Xi))∥ ≤ O( 1√
nk−1

). Therefore,
the total regret in (20) can be bounded as

1

n2
E

( n∑
i=1

σ2

ei(Xi)
+

n∑
i=1

σ2

1− ei(Xi)

− n

(
σ2

e∗(Xi)
+

σ2

1− e∗(Xi)

))

≤ 1

n2
E

(O(log(n))∑
k=1

O

(
σ2

e∗(Xi, p∗(Xi))

× 1

1− e∗(Xi, p∗(Xi))

)
nk

1
√
nk−1

)
≤Õ

(
1√
n

)
E
(
τ̂∗X − τ

)2
.

(21)

As we have
∑O(logn)

k=1 nk
1√

nk−1
≤ O(log n)

√
n.

We then have the following lemma for bounding the
model estimation error term.

Lemma 9. E
(
τX1 − τX2

)2 ≤ Õ(n−(1+α)) ≤ Õ(n−α)v∗.

Proof of Lemma 9
We will follow the proof in Li et al. (2024) and also Wager
(2024). We will use data splitting and cross fitting to reduce
the correlations between data. In particular, cross-fitting first
splits the data (at random) into two halves I1 and I2, and
within each half, we are running an independent low swith-
cing learning-to-incentivize algorithm (1), then uses an esti-
mator

τ̂X1 =
|I1|
n

τ̂I1,X
1 +

|I2|
n

τ̂I2,X
1 ,

τ̂I1 =
1

|I1|
∑
i∈I1

(
µ̂I2

(1) (Xi)− µ̂I2

(0) (Xi)

+Wi

Yi − µ̂I2

(1) (Xi)

êI2 (Xi, p(Xi))
− (1−Wi)

Yi − µ̂I2

(0) (Xi)

1− êI2 (Xi, p(Xi))

)
,

(22)



where in batch k in 1, the µ̂I2

(w)(·) and êI2(·) are estimates of
µ(w)(·) and e(·) obtained using only the half-sample I2 in
batch k − 1, and τ̂I2 is defined analogously (with the roles
of I1 and I2 swapped). In other words, τ̂I1 is a treatment
effect estimator on I1 that uses I2 to estimate its nuisance
components, and vice-versa.

To do so, we first note that we can write

τ̂X2 =
|I1|
n

τ̂I1,X
2 +

|I2|
n

τ̂I2,X
2 (23)

analogously to (22) (because τ̂X2 uses oracle nuisance com-
ponents, the crossfitting construction doesn’t change any-
thing for it). Moreover, we can decompose τ̂I1 itself as
τ̂I1,X
1 = Ŷ I1,1

(1) − Ŷ I1

(0)

Ŷ I1,1
(1) =

1

|I1|
∑
i∈I1

(
µ̂I2

(1) (Xi) +Wi

Yi − µ̂I2

(1) (Xi)

êI2 (Xi, p(Xi))

)
etc.,

and define Ŷ I1,2
(0) and Ŷ I1,2

(1) analogously. Given this buildup,
in order to verify lemma (9), it suffices to show that

E
(
Ŷ I1,1
(1) − Ŷ I1,2

(1)

)2
≤ Õ(n−1+α). (24)

etc., across folds and treatment statuses. We now study the
term in (24) by decomposing it as follows:
Ŷ I1,1
(1) − Ŷ

I1,2

(1)

=
1

|I1|
∑
i∈I1

(
µ̂I2

(1)(Xi) +Wi

Yi − µ̂I2

(1)(Xi)

êI2(Xi, p(Xi))

− µ(1)(Xi)−Wi

Yi − µ(1)(Xi)

e(Xi, p(Xi))

)
=

1

|I1|
∑
i∈I1

((
µ̂I2

(1)(Xi)− µ(1)(Xi)
)(

1− Wi

e(Xi, p(Xi))

))
+

1

|I1|
∑
i∈I1

Wi

((
Yi − µ(1)(Xi)

)
×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

))
− 1

|I1|
∑
i∈I1

Wi

((
µ̂I2

(1)(Xi)− µ(1)(Xi)
)

×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

))
.

Now, we can verify that these are small for different rea-
sons. For the first term, we intricately use the fact that,
thanks to our double machine learning construction, µ̂I2

(w)

can effectively be treated as deterministic. And we will
abbreviate e(Xi, p(Xi)) as e(Xi) for simplicity. Thus after
conditioning on I2, the summands used to build this term
become mean-zero and independent (2nd and 3rd equalities

below).

E

[(
1

|I1|
∑
i∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)(
1− Wi

e(Xi)

))2)]
= E

[
E

[(
1

|I1|
∑
i∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)(
1− Wi

e(Xi)

))2∣∣∣∣ I2]]
= E

[
1

|I1|2
∑
i∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)2(

1− Wi

e(Xi)

)2
+
∑

i,j∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)(
1− Wi

e(Xi)

)
×
(
µ̂I2

(1)(Xj)− µ(1)(Xj)
)(
1− Wj

e(Xj)

)∣∣∣∣ I2]]
=

1

|I1|2
E

[∑
i∈I1

Var

[(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)(
1− Wi

e(Xi)

)∣∣∣∣ I2]]
=

1

|I1|2
E

[∑
i∈I1

E

[(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)2( 1

e(Xi)
− 1
)∣∣∣∣ I2]]

≤ 1

η |I1|2
E

[∑
i∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)2]

=
Õ(1)

n1+α
.

(25)

where the third inequality holds as all the cross term
has expectation 0 for i ̸= j. and for each term(
µ̂I2

(1) (Xi)− µ(1) (Xi)
)(

1− Wi

e(Xi)

)
has mean 0. And the

last equality holds since with high probability we can argue

that in batch k, we have E

[(
µ̂I2

(1) (Xi)− µ(1) (Xi)
)2]

≤

O(n−α
k−1) for all batches k and data i in batch k from tk−1+1

to tk. Therefore, we have

E

[∑
i∈I1

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)2] ≤ O(logn)∑

k=1

nk O(n−α
k−1)

≤ Õ(n1−α).
(26)

Similarly, we can prove that the second term

E

[(
1

|I1|
∑
i∈I1

Wi

((
Yi − µ(1)(Xi)

)
×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

)))2]
≤ Õ(1)

n2
.

(27)



Now for the third term, we have

E

[(
1

|I1|
∑
i∈I1

Wi

((
µ̂I2

(1)(Xi)− µ(1)(Xi)
)

×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

)))2]

≤ O(log n)2

|I1|2

O(logn)∑
k=1

E

[( ∑
i∈I1, batch k

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)

×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

))2]
.

(28)
Now within batch k, we know by Cauchy-Schwarz that

E

 ∑
{i:i∈I1, batch k}

((
µ̂I2

(1) (Xi)− µ(1) (Xi)
)( 1

êI2 (Xi)
− 1

e (Xi)

))2

≤ E

 ∑
{i:i∈I1, batch k}

(
µ̂I2

(1) (Xi)− µ(1) (Xi)
)2

× E

 ∑
{i:i∈I1, batch k}

(
1

êI2 (Xi)
− 1

e (Xi)

)2
 = ÕP

(
n1−α
k

)
.

(29)
Therefore we know that

O(log n)2

|I1|2

O(logn)∑
k=1

E

[( ∑
i∈I1, batch k

(
µ̂I2

(1)(Xi)− µ(1)(Xi)
)

×
(

1

êI2(Xi, p(Xi))
− 1

e(Xi, p(Xi))

))2]
≤ O(polylog(n))

n1+α
.

(30)
Combining everything together, we have the conclusion in
(24).

Finally, since we prove that E
(
τ̂X2 − τ

)2 ≤ (1 +

O( 1√
n
))v∗, and E

(
τ̂X1 − τ̂X2

)2 ≤ O(n−α)v∗, by Cauchy-
Schwarz, we can bound the cross term as

E
(
(τ̂X1 − τ̂X2 )(τ̂X2 − τ)

)
≤ O(n−α

2 )v∗.

And this completes the proof of theorem 4.


