
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADIENT-BASED PROGRAM SYNTHESIS
WITH NEURALLY INTERPRETED LANGUAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in program induction has long been the trade-off between
symbolic and neural approaches. Symbolic methods offer compositional generali-
sation and data efficiency, yet their scalability is constrained by formalisms such as
domain-specific languages (DSLs), which are labor-intensive to create and may
not transfer to new domains. In contrast, neural networks flexibly learn from data
but fail to generalise systematically. We bridge this divide with the Neural Lan-
guage Interpreter (NLI), an architecture that learns its own discrete, symbolic-like
programming language end-to-end. NLI autonomously discovers a vocabulary of
subsymbolic primitive operations and uses a novel differentiable neural executor
to interpret variable-length sequences of these primitives. This allows NLI to
represent programs that are not bound to a constant number of computation steps,
enabling it to solve more complex problems than those seen during training. To
make these discrete, compositional program structures amenable to gradient-based
optimisation, we employ the Gumbel-Softmax relaxation, enabling the entire model
to be trained end-to-end. Crucially, this same differentiability enables powerful
test-time adaptation. At inference, NLI’s program inductor provides an initial
program guess. This guess is then refined via gradient descent through the neural
executor, enabling efficient search for the neural program that best explains the
given data. We demonstrate that NLI outperforms in-context learning, test-time
training, and continuous latent program networks (LPNs) on tasks that require com-
binatorial generalisation and rapid adaptation to unseen tasks. Our results establish
a new path toward models that combine the compositionality of discrete languages
with the gradient-based search and end-to-end learning of neural networks.

1 INTRODUCTION

A central challenge in machine learning is the trade-off between symbolic and neural representations.
Symbolic approaches rely on explicit rules, which enable strong compositional generalisation (Lake
& Baroni, 2018), often from only a few examples (Solar-Lezama et al., 2006; Gulwani, 2011). Yet
their scalability is constrained by formalisms such as domain-specific languages, which require
human effort to generate, may not transfer to other domains, and are combinatorially expensive to
search. Neural approaches, by contrast, scale effectively but behave as monolithic models. The
knowledge they acquire is entangled within their weights, making it difficult to reuse beyond the
training distribution, even when generalisation only requires recombining concepts already learned
(Baroni, 2020).

In the context of program synthesis, we make progress toward bridging this divide with a model that
learns its own symbolic representation, end-to-end, directly from data. Specifically, it simultaneously
learns a domain-specific neural language and a neural interpreter for such a language. Similar
to traditional handcrafted symbolic representations, the learned language enables compositional
generalisation. Similar to neural representations, the neural interpreter’s differentiability allows us to
use gradient descent to search the language-induced space for solution programs. Recent work, such
as Latent Program Networks (LPNs) (Macfarlane & Bonnet, 2024), has explored learning program
representations with continuous latent spaces. However, this approach is limited in its ability to
generalise by composing learned concepts, which is a key strength of symbolic representations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our architecture, the Neural Language Interpreter (NLI), uses an encoder-decoder model to discover
discrete representations (Jang et al., 2017; Maddison et al., 2016) of programs. To learn a discrete
vocabulary that can represent programs in the target domain, we train on programming-by-example
(PBE) tasks. During inference, conditioned on a specification of examples, NLI’s encoder produces
a sequence of discrete tokens, as its internal inferred program representation. NLI’s encoder acts
as a program inductor; the token sequence forms a neural program. The decoder serves as a neural
executor, interpreting the program one token at a time, mapping the test input to an output, similar to
neural executors used in conditional world models Ha & Schmidhuber (2018). Both the encoder and
decoder are designed to be fully differentiable, and so NLI can be trained end to end.

Since the neural executor consumes one token at a time, NLI is not bound to a constant number
of computation steps, as in previous approaches such as LPN. The number of steps in NLI’s
programs can grow with the token length of programs. This is important because it enables NLI to
solve problems more challenging than those with constant-time requirements, seen during training.
Moreover, since NLI’s programs can recombine learned tokens in different ways and at different
lengths, we hypothesise that its language supports the combinatorial generalisation lacking in previous
approaches.

In addition to the engineering hurdle of designing domain-specific languages, our work is motivated
by the need to bypass the difficult combinatorial search problem inherent to program synthesis. Rather
than learning external guiding functions for search (Barke et al., 2020; Odena et al., 2021; Ameen
& Lelis, 2023), guidance is embedded in the language NLI learns. Because the neural executor is
differentiable, we can search in the space of neural programs with gradient descent. Synthesising a
neural program with NLI is thus analogous to local search in symbolic spaces (Husien & Schewe,
2016), but with the advantage of having gradient signals. Another benefit of a learned language is
how the search is initialised, which can dramatically affect efficiency (Hoos & Stützle, 2004; Sadmine
et al., 2024). NLI’s inductor provides an initial guess for a neural program solution at test time, and
the gradient search then refines this guess to find the combination of learned primitives that solves
the problem.

In this paper, we introduce the Neural Language Interpreter (NLI), a model that learns its own
discrete programming language and a differentiable interpreter for executing it. By combining
symbolic compositionality with neural end-to-end training and gradient-based program search, NLI
addresses the limitations of both paradigms. Across sequence-based compositional benchmarks, NLI
achieves strong out-of-distribution accuracy on length extrapolation, primitive extraction, and novel
composition tasks, where in-context learning, test-time training, and latent program networks fail.
NLI matches or exceeds the performance of neuro-symbolic baselines on DeepCoder, despite training
only from input–output examples without ground truth program representations.

2 PROBLEM STATEMENT

We formalize our task as program induction, where the goal is to infer the underlying behaviour of
an unknown program p from input-output examples using a model M . Given a set S = {(xi, yi)}ni=1
of n input-output pairs generated by p and a new query input xn+1, M(S, xn+1) predicts the
corresponding output p(xn+1). This aligns with the programming by example (PBE) formalization,
where information about program p is available only via its outputs. Training tasks are formed
by sampling a latent program p from a distribution Ptrain over the space of possible programs P .
Program specifications are formed from n+1 inputs sampled from the program-dependent conditional
distribution {xi}n+1

i=1 ∼ P (X|p). This distribution generates inputs relevant to the logic of program
p. The first n input-output pairs form the specification S = {(xi, p(xi))}ni=1, from which the model
must induce the program’s logic. The model’s objective is to minimise the prediction error between
its prediction, ŷn+1 = M(S, xn+1), and the true output p(xn+1), to train the model to generalise
program execution to a new input, not merely fit the given pairs. The model has no access to the
program’s fully observable representation p during training or test time. This is vital, as real-world
tasks often involve latent functions without an observable specification. At test time, the model is
evaluated on programs drawn from Ptest, which can differ from Ptrain in order to test for compositional
generalisation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 DISCRETE SEQUENTIAL INFERENCE

Existing neural program synthesis methods fail at compositional generalisation, struggling to recom-
bine learned concepts for novel tasks. The Neural Language Interpreter (NLI) overcomes this by
learning a discrete, symbolic-like programming language end-to-end. Programs are variable-length
token sequences processed by a differentiable neural executor, enabling training on input-output
examples via Gumbel-Softmax. This facilitates efficient, gradient-based search at test time to re-
fine initial programs. NLI outperforms baselines on tasks requiring combinatorial generalisation,
successfully extrapolating program lengths and synthesising novel compositions of learned skills.

4 TRAINING OBJECTIVE

We train the encoder–decoder with a variational objective inspired by the ELBO. The goal is to
reconstruct a program’s output for a query input, conditioned on a specification of other input-output
pairs from the same program.

Formally, the program inductor qϕ infers a latent program representation from the specification,
which the neural interpreter pθ then executes to predict the output for a new query. The model is
trained end-to-end on specifications of size n using a leave-one-out loss: for each pair, NLI induces
a program from the remaining n − 1 pairs (Si = S \ {(xi, yi)}) and maximises the likelihood of
predicting the held-out pair. The objective is:

L(ϕ, θ,D) = E
Si∼D

[
1

n

n∑
i=1

(Lrecon(ϕ, θ;xi, yi, Si) + λreg · Lreg(ϕ;Si))

]
(1)

where D is the distribution of specifications. This objective has two components.

Reconstruction Loss (Lrecon) This term ensures that the latent program is expressive enough to
predict the program’s output on a held-out input. It is defined as the negative log-likelihood of the
target output yi given the input xi and the latent program z̃i inferred from the sub-specification Si:

Lrecon(ϕ, θ;xi, yi, Si) = − log pθ(yi | xi, z̃i), z̃i ∼ qϕ(· | Si). (2)

Encoder Regularisation Loss (Lreg) This regularising loss encourages reuse of tokens in the neural
vocabulary of size V , biasing the encoder (via parameters ϕ) toward discovering a compositional
latent program space. We implement a differentiable approximation of the number of unique tokens
used anywhere in the batch. By penalising programs that use many unique vocabulary entries, Lreg
promotes generalisation: the model learns to build new programs by recombining a compact set of
discovered primitives rather than memorising arbitrary token sequences for each task. The probability
of token k being chosen at position i in sequence b is denoted pb,i,k, and this loss biases the encoder
toward discovering programs as reusable compositions rather than introducing a unique token for
each new program.

Lreg =

V∑
k=1

[
1− exp

(
B∑

b=1

N∑
i=1

log(1− pb,i,k)

)]
. (3)

4.1 DISCRETE PROGRAM REPRESENTATION LEARNING

The encoder of NLI functions as a program inductor, denoted as qϕ, from which a latent program
representation z = (z1, . . . , zT) is sampled, given a specification Si containing input-output examples.
This representation, z, is a sequence of continuous vectors that serves as a differentiable proxy for
a sequence of discrete tokens drawn from a learned codebook of size K. This codebook includes
a dedicated skip token, which functions as a no-op, allowing the model to effectively learn shorter
programs by ignoring certain computational steps within the fixed-length sequence T .

For program induction firstly a transformer, which we denote by the function hϕ, maps each
pair (xj , yj) in a single specification to a sequence of contextual embeddings, ej = h(xj , yj) =
(ej,1, ej,2, . . . , ej,T). These sequences are then aggregated, across the specification, by computing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the element-wise arithmetic mean across all n− 1 pairs, ēt = 1
n−1

∑n−1
j=1 ej,t, to produce a single,

permutation-invariant sequence of specification embeddings, ē = (ē1, ē2, . . . , ēT). In addition to
being permutation invariant, this aggregation method also enables generalisation to specification sizes
different from those seen during training, as demonstrated in Macfarlane & Bonnet (2024).

To obtain a differentiable proxy for a discrete program, this sequence of continuous embeddings is
projected to the codebook space. A shared multi-layer neural network f maps each embedding et to
a vector of logits, parameterising a categorical distribution over the K codebook entries. We then
apply the Gumbel-Softmax relaxation to sample a "soft" one-hot vector at each position π̃t:

lt = f(et) ∈ RK π(et, τp, gt) = softmax
(
lt + gt
τp

)
∈ ∆K

where gt is a sample from a Gumbel distribution and τ is the temperature. The final program
representation z = (z1, . . . , zT) is defined as the continuous approximation of a discrete program,
which is passed to the decoder, and is constructed by taking a weighted combination of the codebook
embeddings V using these soft vectors:

zt = V ⊤π(ēt, τp, gt), z = (z1, . . . , zT)

During training, the temperature τ is steadily annealed, progressively improving the approximation
of a discrete sample from the un-normalised distribution lt.

4.2 RECURRENT NEURAL PROGRAM EXECUTION

A common failure point for standard decoders is that they overfit to program lengths and structures
seen during training. We implement the neural interpreter as a recurrent application of an executor
network to achieve compositional generalisation. This executor network conditions on the program
representation z one token at a time, using a shared neural executor dθ to iteratively update an
intermediate program state st. This sequential execution naturally handles novel combinations of
primitives and variable program lengths, forcing the model to learn reusable, abstract building blocks.
This approach stands in contrast to methods like LPNs, which are limited to representing entire
programs in a single monolithic embedding.

The execution process is detailed in Algorithm 1. An initial state is created by embedding the input
query xq. This state is then refined over T steps in a loop, where at each step t, the executor dθ
uses the current program token zt to compute an updated state. A crucial feature is the skip-token
gating mechanism: the probability of the skip token, πt[skip_idx], is taken from the encoder’s output
and used to linearly interpolate between the previous state st−1 and the newly computed state. This
allows the model to effectively ignore an instruction zt. After the final token is processed, the last
state is used to generate the output.

Algorithm 1 Neural Language Interpreter (Decoder pθ)
1: function pθ(yq|xq, z, τd, h)
2: (E, d,MLP)← θ ▷ Unpack implicit parameters from θ
3: s0 ← Embed(xq, E) ▷ Embed input
4: for t = 1→ T do
5: kt ← d(st−1, zt−1) ▷ Transform state
6: lt ← MLP(kt) ▷ Project hidden state to logits
7: πt ← softmax ((lt + ht)/τd) ▷ Apply Gumbel-Softmax (ht is Gumbel noise)
8: ot ← E⊤πt ▷ Compute new potential state
9: st ← πt[skip_idx] · st−1 + (1− πt[skip_idx]) · ot ▷ Update state with skip-gating

10: end for
11: ly ← MLP(kT) ▷ Generate final output logits
12: return softmax(ly)
13: end function

4.3 SEARCHING NEURAL PROGRAMS

A key benefit of our model is the ability to refine an initial program prediction at test time using
gradient-based search. While the encoder provides a fast first guess, it may not be optimal, especially

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Neural Program Search

7 3 7 2 1

1 3 4 9 1

2 4 1 3 9

9 2 4 1 8

1 9 4 3 1

9 3 1 4 2

8 1 4 2 9

1 2 7 3 7

1 3 4 9 1 1 9 4 3 1

2 4 1 3 9 9 3 1 4 2

9 2 4 1 8 8 1 4 2 9

InterpreterInterpreter

Inductor Interpreter

Executor2 4 1 3 9 9 3 1 4 29 4 1 3 2 Executor Executor

Figure 1: Overview of the inference process. The program inductor generates a sequence of latent
program tokens conditioned on the specification. Neural Program Search refines this program to
better explain the specification, and the neural interpreter then executes the improved program token
by token.

for out-of-distribution programs. Our search operates not in the discrete space of programs, but in a
continuous relaxation of the discrete tokens. Because it represents programs as sequences of learned
primitives, this space can construct entirely new programs of arbitrary length, even those never seen
during training. The search, therefore, becomes a process of discovering these novel compositions.

The key benefit of searching in the relaxed representation of discrete tokens is that, like during
training, execution remains fully end-to-end differentiable. This allows us to use gradient ascent, an
efficient optimisation method crucial for navigating the vast combinatorial space of possible programs.
The search objective is to find the latent embeddings e∗ that maximise the expected likelihood of the
specification data S = {(xj , yj)}, with the expectation taken over the program and layer Gumbel
samples:

e∗ = argmax
e

E
g∼Gumbel(0,1)T

h∼Gumbel(0,1)T

 ∑
(xj ,yj)∈S

log pθ(yj |xj , z(e, τp, g), τd, h)


To encourage finding a strong approximation to a discrete solution, during the optimisation of this
objective, we perform temperature annealing of both τp and τd. The optimisation begins with a high
temperature to smooth the landscape and encourage broad exploration. As the search progresses, we
gradually lower the temperature, encouraging the discovery of a discrete program along with discrete
intermediate computation between tokens.

Instead of using a single starting point, we initialise the search from multiple locations to better
explore the vast program space and avoid getting stuck in local minima. Specifically, we sample m
initial latent embeddings from a Gaussian distribution, with parameters µ = et, σ. We then perform
L steps of gradient ascent in parallel from each of the starting points. This parallel search strategy
is not only effective for exploration but is also highly scalable, allowing us to leverage multiple
hardware devices efficiently.

Most program induction methods have to contend with the problem of finding many programs that
explain a given specification. This is a considerable concern in both pure parameter-based modelling
and also latent space optimisation (Macfarlane & Bonnet, 2024), where early stopping is often used
to limit the chance of converging to programs that do not generalise. In NLI, this is less of a concern
as the search space is less flexible than such continuous search spaces, limited to recomposing a set
of discrete embeddings. Therefore, the risk of overfitting is relatively limited.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

We evaluate NLI’s compositional generalisation capabilities across a custom diagnostic benchmark
for compositional generalisation and the compositionality version of the DeepCoder benchmark
(Balog et al., 2016), introduced in (Shi et al., 2023), comparing to a range of neural and neuro-
symbolic baselines.

Benchmarks The custom suite uses fixed-length sequences (20) and is designed to reveal failure
modes in PBE, where models see only input–output pairs. It comprises three splits containing different
tasks: Shift-L, training on small sequence shifts k ∈ {1, . . . , 5} and testing on larger unseen shifts
k ∈ {6, . . . , 10}; Shift-P, the inverse, training on large shifts k ∈ {7, 8, 9} and testing on smaller
ones k ∈ {1, 2, 3}; and Comp-I, where models trained on single primitives (e.g., f(x) or g(x)) must
compose them at test time (e.g., f(g(x))). We also explore the compositionality deepcoder dataset
that scales the number of primitives and program complexity, see appendix A.

Baselines and Models We compare NLI against several strong baselines: In-Context Learning
(ICL), Test-Time Training (TTT), Latent Program Networks (LPN), and a discrete variant (D-LPN).
We evaluate three inference strategies for our model: Base Inference (direct encoder output), Prior
Search (sampling from the encoder), and our primary method, Gradient Search, which optimises the
program in the latent space.

5.1 COMPOSITIONAL GENERALISATION IN NEURAL MODELS

Table 1: Performance for different methods and datasets, in the custom suite. We report final accuracy
for both in-distribution and out-of-distribution test splits (ID and OOD).

Shift-L Shift-P Comp-I
Method ID OOD ID OOD ID OOD

In-Context 1.00 0.00 1.00 0.00 1.00 0.13
TTT 1.00 0.00 1.00 0.00 0.95 0.14

LPN 1.00 0.00 1.00 0.00 1.00 0.18
LPN Gradient Search 1.00 0.03 1.00 0.00 1.00 0.29
D-LPN 1.00 0.02 1.00 0.00 0.99 0.15
D-LPN Gradient Search 1.00 0.01 1.00 0.00 0.99 0.20

NLI 1.00 0.00 1.00 0.00 1.00 0.17
NLI Prior Search 1.00 0.10 1.00 0.00 1.00 0.23
NLI Gradient Search 1.00 0.99 1.00 1.00 1.00 0.91

We train all models for 100k batches of size 512 and evaluate on held-out test splits, in- and out-of-
distribution. Due to the inference cost differences between NLI and baselines, for completeness, for
all baselines we also performed training runs with matched compute by increasing decoder layers,
for all baselines; this led to a degradation of in-distribution performance and no generalisation. We
report the higher, low inference 2-layer decoder results in table 1.

All models achieve near-perfect accuracy on the in-distribution (ID) test sets, demonstrating their
ability to solve tasks similar to those seen during training with neural induction. On the more
challenging out-of-distribution (OOD) splits, however, all baselines and the non-search variants of
our model fail to generalise. In-Context Learning (ICL) and the Latent Program Network (LPN and
D-LPN) show near 0% OOD accuracy on the shift tasks (Shift-L and Shift-P). Search-based LPNs
achieve only minor gains on Compose Isolation (Comp-I), but still fail to solve the task. In contrast,
NLI with Gradient Search exhibits strong compositional generalisation across all three benchmarks:
on Shift-L (length generalisation) it reaches 99% by extrapolating from small to larger unseen shifts;
on Comp-I (composing concepts) it achieves 91% by synthesising programs such as f(g(x)); and
on Shift-P (primitive extraction) it attains a perfect 100% by “decompiling” primitives after training
only on complex ones. These results confirm that NLI achieves systematic generalisation, enabled
by gradient-based search, whereas the base encoder and prior search variants have performance in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

line with In-Context, TTT and LPN baselines, which achieve no generalisation. The learned codes
further reveal systematic reuse of primitives. The model consistently represents a single left shift
with token 231 and a two-step shift with token 476, constructing larger programs by combining these
two building blocks. The OOD case of eight shifts is also expressed as a mixture of these primitives
(found via gradient search), highlighting how generalisation arises from recombination rather than
memorisation.

5.1.1 LEARNED PROGRAM REPRESENTATIONS

We study the task of shifting sequences to the left. During training, the model observes shifts of
length 1 to 5 (inclusive). In principle, the network could learn a separate token for each shift. Instead,
it discovers a more efficient representation by reusing tokens. Specifically, it learns a token (231) that
corresponds to a single left shift. By repeating this token, the network composes shifts of lengths 2
and 3. For larger shifts, it introduces a second token (476) corresponding to a two-step shift. This
enables the model to combine primitives to generate more complex shifts. For example, a shift of 4 is
represented as one two-step shift plus two one-step shifts. At test time, when generalising OOD to
larger shifts, the model composes primitives in the same manner. For instance, to represent an 8-step
shift, it uses four single-shift tokens and two two-shift tokens. This demonstrates both compression
(a small set of primitives) and compositionality (systematic reuse of primitives).

Learned Program Representations for Shift-L

Ground Truth Program NLI Program Representation

shift_left(1) 231
shift_left(2) 231 231
shift_left(3) 231 231 231
shift_left(4) 231 476 231
shift_left(5) 231 476 476
...
shift_left(8) (OOD) 231 231 231 231 476 476

5.2 UNDERSTANDING THE ORIGINS OF NLI’S GENERALISATION CAPABILITIES

0 20 40 60 80 100
Test Accuracy (%)

no discrete program

no recurrent execution

no discrete layer

no layer gumbel

no skip token

no encoder loss

no program gumbel

Base

1%

2%

5%

5%

24%

66%

76%

97%

Figure 2: Ablations of the NLI base model to iden-
tify components critical for OOD generalisation.

To investigate the origins of NLI’s generalisa-
tion, we conduct an ablation study across the
datasets in table 1, with results shown in fig. 2.
The base model achieves nearly perfect OOD ac-
curacy (97%), and we remove components indi-
vidually to assess their importance. Most prove
indispensable: dropping recurrent execution or
the discreteness of either program or layer repre-
sentations collapses OOD accuracy to near zero
(1–5%). This shows that discrete programs, dis-
crete layer traces, and recurrent dynamics are all
essential for generalisation. Dropping the skip
token reduces performance to 24%, consistent
with the model’s ability to learn its own skip, but
benefits from a dedicated token for faster, more
stable training. We also test the importance of
the encoder loss on performance, which results
in a small drop in performance. The benefit of
encoder loss can depend on the type of compo-
sitionality that is being tested. For example, it is useful for the type of composition in Shift-P, where
the underlying program primitives need to be represented to compose new programs that are shorter
than those seen during training. For length generalisation, where primitives that have already been
seen need to be combined into longer programs, the encoder loss does not affect performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 GUMBEL-SOFTMAX

We also observe in fig. 2 that the Gumbel-Softmax relaxation, used to approximate discrete sampling,
is a major driver of performance. Removing layer-level Gumbel sampling (no layer gumbel) causes
near-complete failure on OOD compositional generalisation (dropping to 5%), while removing
program-level Gumbel sampling (no program gumbel) reduces performance by 23 percentage points
(to 76%). Although the encoder still outputs a distribution over a discrete codebook even without
Gumbel-Softmax, we hypothesise that the network can still learn peaked distributions, allowing
meaningful discrete representations to emerge naturally and preserving some degree of generalisa-
tion. However, explicitly adding the Gumbel-Softmax approximation significantly strengthens this
inductive bias, leading to substantially better results.

That said, our approach does not fundamentally depend on Gumbel-Softmax; any smooth relaxation
of discrete sampling could be substituted (e.g., VQ-VAE with the straight-through estimator (van den
Oord et al., 2017)). We chose Gumbel-Softmax primarily for its superior training stability. The
straight-through estimator in VQ-VAE is known to suffer from biased gradients, codebook collapse
(where many codebook entries remain unused, often requiring oversized codebooks or continual
pruning) (Huh et al., 2023), and internal covariate shift between encoder outputs and codebook
vectors (Łańcucki et al., 2020). Gumbel-Softmax is not without pitfalls either; stable training requires
careful temperature scheduling. We find that annealing the temperature too quickly leads to severe
performance degradation, as shown in our ablation on the Shift-L dataset (appendix C). With a
gradual annealing schedule, however, training remains reliable and yields the strong results reported.

5.4 SCALING TEST-TIME PROGRAM SEARCH

1 4 16 100 400
Gradient steps

0

20

40

60

80

100

Ac
cu

ra
cy

 o
n

te
st

 se
t (

%
)

Num starts
1
16
128
512
2048
4096

Figure 3: Performance on Compose-I, scaling
two axes of test-time compute: gradient steps
and number of starts.

To evaluate the effectiveness of our gradient-based
search, we analyse how performance scales with
the available computational budget at test time. We
benchmark on the Comp-I dataset, varying two key
hyperparameters: the number of parallel initialisa-
tions, Num starts, and the number of optimisation
iterations, Gradient steps. The results, presented in
fig. 3, demonstrate a strong and consistent positive
correlation between test-time compute and final ac-
curacy.

5.5 DEEPCODER

To assess the scalability of our approach, we evaluate
NLI on the DeepCoder benchmark (Shi et al., 2023),
a standard testbed for compositional generalisation
in program synthesis.

Dataset overview: The DeepCoder dataset consists of short functional programs that manipulate
lists of integers using a dedicated domain-specific language (DSL). Each program is a straight-line
sequence of assignments. Every line defines a new variable by applying exactly one DSL operation
to the input(s) or to previously defined variables, and the final variable is the program output.

The DSL includes first-order operations (Head, Last, Take, Drop, Access, Minimum,
Maximum, Reverse, Sort, Sum, etc.) as well as higher-order functionals (Map, Filter, Count,
ZipWith, Scanl1) that accept one of a small fixed set of lambda expressions (e.g., +1, *2, (-),
>0, squaring, etc.).

For example, the program x0 = INPUT → x1 = Map(×2) x0 → x2 = Filter(>0) x1
→ x3 = Sort x2 → x4 = Reverse x3 applied to the input list [-2, 5, 0, 3, -1]
yields the sorted positive doubled values [10, 6] as output.

We note that the original training datasets for DeepCoder composition have not been made public;
therefore, data generation was run from scratch to generate datasets of size 11.6 million induction
tasks, to train the neural baselines (NLI, LPN and In-context). Due to the prohibitive costs of the data
sampling function, this is less than the 60 million used in the original work; however, baselines all

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

achieve competitive performance. We highlight that neuro-symbolic approaches all leverage access
to ground-truth programs during training, where NLI and LPN do not require this. However, adding
program representations during training can serve as a powerful training signal for the neural decoders,
which are otherwise bottlenecked by the encoder’s induction capacity. Therefore, for NLI and LPN,
we add NLI w/ program and LPN w/ program baselines. These leverage an additional encoder
mapping from program representations to latent space, resulting in an additional reconstruction loss,
which is simply added to the total loss with equal weight to the standard encoder reconstruction loss.
We give a complete description of the program encoder and our training procedure in appendix D.
In contrast, NLI, along with neural baselines such as LPN, and an In-context baseline, must induce
program behaviour solely from input-output pairs. All neural benchmarks were trained for 200k
batches of size 512, see appendix B for more details. We find that end-to-end neural methods such as

Length
Generalization

Compose Different
Concepts

Switch Concept
Order

Compose New
Operation

Add Operation
Functionality

Mean
Performance

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

NLI
NLI w/ Programs
LPN

LPN w/ Programs
In-context
ExeDec

Transformer Program Synthesis
Latent Programmer

Figure 4: Comparison of fully neural baselines and NLI against neuro-symbolic methods. Neuro-
symbolic models (ExeDec, Transformer, Latent Programmer) use ground-truth program annotations,
while neural models (In-context, LPN, NLI) rely only on input–output pairs.

NLI and LPN substantially outperform earlier Latent Programmer approaches and Transformer-based
program synthesis. Secondly, despite the absence of program supervision, they achieve performance
competitive with ExeDec (Shi et al., 2023), highlighting the capacity of neural PBE approaches to
autonomously discover structured program representations.

A direct comparison between NLI and LPN further reveals complementary strengths. NLI generalises
more effectively to longer programs and novel concept compositions, which is a particular strength of
NLI due to its ability to compose programs of arbitrary length. In contrast, LPN excels at switching
concept order and extending functionality with new operations. These differences suggest that
their learned latent structures capture distinct inductive biases, leading to different generalisation
behaviours out of distribution.

6 RELATED WORK

Symbolic Program Synthesis. Early work in program synthesis largely relied on symbolic techniques
and DSLs. Classical systems, such as those by Summers (1977) and Gulwani (2011), used predefined
DSLs with explicit search over symbolic programs. These methods provide interpretability and
exactness but suffer from scalability issues, as every new domain requires manual DSL design.
Recent neuro-symbolic hybrids, such as DeepCoder (Balog et al., 2016), combine a neural predictor
with symbolic search, predicting program components to accelerate search. However, their reliance
on restricted DSLs limits generalisation beyond the designed primitives.

Neural Program Induction and Meta Learning Neural approaches aim to overcome the brittleness
of symbolic methods by learning programs directly from examples. Neural Programmer-Interpreters
(Reed & De Freitas, 2016) execute programs implicitly with recurrent models, while Devlin et al.
(2017) introduced meta-induction for few-shot learning. These models improve adaptability but often
fail to generalise compositionally and demand large supervision. ExeDec (Shi et al., 2023) added
execution decomposition as an inductive bias, yet still relies on ground-truth decompositions and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

remains costly. Meta learning advances this by training networks to adapt across task distributions
(Finn et al., 2017), a setup closely related to the optimisation considered here.

Latent Representations of Programs. Another line of work introduces latent spaces to represent
programs more flexibly. CompILE (Kipf et al., 2018) segments demonstrations into reusable latent
codes with Gumbel-Softmax relaxation, showing benefits for imitation learning. The Latent Pro-
grammer (Hong et al., 2020) extends this idea to discrete latent codes that plan over input–output
examples, using a VQ-VAE style autoencoder with beam search in latent space, see appendix E for a
discussion on its relation to NLI. Most recently, Latent Program Networks (LPNs) (Macfarlane &
Bonnet, 2024) proposed continuous latent program representations to facilitate test-time search, but
the lack of discrete compositional structure hinders combinatorial generalisation.

Compositionality and Generalisation. Compositional generalisation remains a central challenge
in neural program synthesis. Lake & Baroni (2018) demonstrated that standard seq2seq models
fail to generalise systematically to novel compositions. Approaches such as the Compositional
Recursive Learner (CRL) (Chang et al., 2019) attempt to address this by learning to compose reusable
transformations. Similarly, recursion-based methods (Cai et al., 2017) leverage inductive biases
from programming languages to handle inputs of greater complexity than those seen during training.
While these directions highlight the importance of compositional structure, they either rely on strong
supervision or achieve only limited scalability.

Discrete Representation Learning. Discrete latent representations provide a natural way to capture
compositional structure and improve interpretability. The Vector-Quantized Variational Autoencoder
(VQ-VAE) (van den Oord et al., 2017) exemplifies this approach by learning a finite codebook of
tokens, with gradients passed via a straight-through estimator. A complementary method is the
Gumbel-Softmax relaxation (Jang et al., 2017), which reparameterizes categorical sampling with a
differentiable approximation. Together, these techniques enable end-to-end training with discrete
variables while retaining symbolic structure. A practical example arises in hierarchical reinforcement
learning, where the options framework (Sutton et al., 1999) defines a set of reusable, temporally
extended actions that compose into complex behaviours. Such discrete units, whether tokens in
generative models or skills in RL, form compact and interpretable building blocks that support
compositional generalisation and long-horizon reasoning.

7 CONCLUSION

In this work, we introduced the Neural Language Interpreter (NLI), a novel architecture that bridges
the divide between symbolic and neural approaches in program synthesis. By learning a discrete,
symbolic-like language and a differentiable interpreter, NLI combines the compositional strengths
of symbolic systems with the flexibility of neural networks. The model discovers a vocabulary of
primitive operations and composes them into variable-length programs, refined at test time through
efficient gradient-based search. Our evaluations show that NLI outperforms existing methods on
challenging compositional generalisation tasks, with ablations confirming that the discrete, sequential
program representation is key to this success.

Limitations and Future Work: NLI introduces a new paradigm for program induction that demon-
strates promising compositional generalisation. While we believe it has strong potential to scale to
significantly harder problems, the present work is an initial exploration and naturally comes with
several limitations that highlight exciting directions for future research. A primary bottleneck is
the computational cost of test-time search in the latent representation space; although NLI proves
remarkably robust to overfitting even under constrained search budgets, scaling to more complex tasks
will likely require more efficient inference strategies, with evolutionary/local search being promising
directions. As problem difficulty increases, programs will grow both in length and vocabulary size,
potentially leading to vanishing or exploding gradients, which, while not observed in our experiments,
could require architectural modifications at scale. The current interpreter also limits expressive power:
each layer conditions on exactly one token, preventing parameterised primitives (e.g., add(k) for
variable k), and execution follows a strictly sequential flow without conditional branching.

REFERENCES

Saqib Ameen and Levi H. S. Lelis. Program synthesis with best-first bottom-up search. Journal of
Artificial Intelligence Research, 77:1271–1310, 2023. doi: 10.1613/jair.1.14394.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for bottom-up enumerative
synthesis. In Proceedings of the ACM on Programming Languages, volume 4, pp. 1–29, 2020.

Marco Baroni. Linguistic generalization and compositionality in modern artificial neural networks.
Philosophical Transactions of the Royal Society B, 375(1791):20190307, 2020.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. arXiv preprint arXiv:1704.06611, 2017.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L Griffiths. Automatically composing
representation transformations as a means for generalization. In International Conference on
Learning Representations (ICLR), 2019.

Jacob Devlin, Jonathan Uesato, Rishabh Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Neural program meta-induction. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31, 2018.

Jason Hong, Maxwell Nye, Joshua B Tenenbaum, and Charles Sutton. Latent programmer: Discrete
latent codes for program synthesis. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications.
Elsevier/Morgan Kaufmann, 2004.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-
through estimator: Overcoming optimization challenges in vector quantized networks. In Interna-
tional Conference on Machine Learning, pp. 14096–14113. PMLR, 2023.

Idress Husien and Sven Schewe. Program generation using simulated annealing and model checking.
In Rocco De Nicola and Eva Kühn (eds.), Software Engineering and Formal Methods, pp. 155–171,
2016. ISBN 978-3-319-41591-8.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations (ICLR), 2017.

Thomas Kipf, Ethan Li, Hanjun Dai, Zornitsa Kozareva, Jiaming Song, Arvind Neelakantan, and Max
Welling. Compile: Compositional imitation learning and execution. In International Conference
on Machine Learning (ICML), 2018.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873–2882. PMLR, 2018.

Adrian Łańcucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans JGA
Dolfing, Sameer Khurana, Tanel Alumäe, and Antoine Laurent. Robust training of vector quantized
bottleneck models. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7.
IEEE, 2020.

Matthew V Macfarlane and Clément Bonnet. Searching latent program spaces. arXiv preprint
arXiv:2411.08706, 2024.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai.
BUSTLE: Bottom-up program synthesis through learning-guided exploration. In International
Conference on Learning Representations, 2021.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. In International Conference on
Learning Representations (ICLR), 2016.

Quazi Asif Sadmine, Hendrik Baier, and Levi Lelis. Language models speed up local search
for finding programmatic policies. Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Zhi Shi, Maxwell Nye, Rudy Bunel, Rishabh Singh, Pushmeet Kohli, and Alexander L Gaunt.
Exedec: Execution decomposition for compositional generalization in neural program synthesis.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Martin Rinard. Combinatorial
sketching for finite programs. In Computer Aided Verification, volume 4144 of Lecture Notes in
Computer Science, pp. 404–420. Springer, 2006.

Phillip D Summers. A methodology for lisp program construction from examples. Journal of the
ACM (JACM), 24(1):161–175, 1977.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DATASETS

A.1 COMPOSITIONALITY BENCHMARK

We constructed the Compositionality Benchmark using our own sampling and problem synthesis
procedures to evaluate distinct facets of compositional reasoning. The benchmark comprises three
main tasks designed to probe different dimensions of generalisation. For each task, dataset sizes were
chosen to provide a robust training scale and sufficient evaluation coverage. The three splits are:

1. Permutation Length Generalisation (Shift-L). This task measures extrapolation on a
parameterized function. The model learns a left_shift(n) operation on a sequence.
Training is restricted to a small, contiguous range of integer shifts, specifically for n ∈
{1, 2, 3, 4, 5}. Evaluation is performed on larger, unseen shift values, n ∈ {6, 7, 8, 9, 10}.
This measures the model’s ability to generalise beyond the magnitude of parameters observed
during training.

2. Sub-Function Extraction (Shift-P). This task tests whether a model can infer a general,
parameterized function from sparse and non-contiguous examples. The underlying operation
is again left_shift(n). Training is performed on a sparse set of non-adjacent shift
values (e.g., n ∈ {5, 7, 9}). Evaluation then probes generalisation to a different, unseen
range of values (e.g., n ∈ {1, 2, 3}), testing whether the model has learned the abstract
concept of "shifting by n" rather than memorizing separate programs for each training
example.

3. Composition of Primitives (Comp-I). This task evaluates whether a model can compose
primitive functions it has only seen in isolation. The model is provided with a library
of over 20 primitive sequence-to-sequence operations (e.g., reverse, shift_left_3,
increment_2). During training, the model only sees programs consisting of a single
primitive operation. For evaluation, it must execute programs that are compositions of two or
more primitives, testing for generalisation from individual operations to novel compositions.

Table 2: Dataset sizes for the Compositionality Benchmark.
Split Size
Train 2,000,000
Test 10,000

A.2 DEEPCODER

We use the DeepCoder domain and adopt the compositional generalisation splits from the ExeDec
codebase Shi et al. (2023). Following their Domain-Specific Language (DSL) and splitting procedures,
we sampled 2,000,000 training tasks and 10,000 test tasks. The five splits are designed to probe
different dimensions of compositional generalisation:

1. Length-Generalisation. Training programs contain 1–4 lines, while test programs have
length 5. This evaluates whether models can extrapolate to deeper compositions than
observed during training Balog et al. (2016).

2. Compose-Different-Concepts. Operations are partitioned into two groups: (i) all first-order
operations plus Map, and (ii) all remaining higher-order operations. Training only composes
within a single group, while test programs require mixing across groups. This measures
cross-concept compositionality.

3. Switch-Concept-Order. Training tasks always compose operations in a fixed group ordering
(e.g., first-order → higher-order), while test tasks reverse the ordering. This evaluates
whether models can generalise to new sequential structures of concepts.

4. Compose-New-Operation. The held-out operation is Scanl1. Training tasks either use
Scanl1 in isolation (25% of tasks) or exclude it entirely, while test tasks require Scanl1
to be composed with other operations. This probes whether the model can generalise an
operator from isolated usage to composed contexts.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

5. Add-Operation-Functionality. Training only uses Scanl1 with lambdas (−) and min.
Test tasks require Scanl1with new lambdas (+), (×), and max. This tests whether models
can extend their understanding of a known operator by analogy to other operations.

Table 3: Dataset sizes for DeepCoder, generated using the ExeDec repository.
Split Size
Train 11,600,000
Test 10,000

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B HYPERPARAMETERS

Table 4: Model Hyperparameters for NLI. The same default configuration was used across all datasets.

Hyperparameter Shift-L Shift-P Compose I DeepCoder
Model Architecture

Model Dimension (dmodel) 128 128 128 128
Number of Heads (nhead) 8 8 8 8
Feed-Forward Dimension (dff) 512 512 512 512
Encoder Layers 2 2 2 4
Decoder Layers 2 2 2 2
Positional Embedding Sinusoidal Sinusoidal Sinusoidal Sinusoidal
Gradient Clip Norm 2.0 2.0 2.0 2.0

Program Generation
Program Vocabulary Size 512 512 512 512
Program Length (Training) 10 10 4 4

Training
Learning Rate 2e-4 2e-4 2e-4 2e-4
Num Batches 100k 100k 100k 200k

Gumbel-Softmax Sampling (Program)
Use Program Gumbel True True True True
Start Temperature 8.0 8.0 8.0 8.0
End Temperature 0.5 0.5 0.5 0.5
Annealing Batches 20,000 20,000 100,000 200,000
Decay Strategy Exponential Exponential Exponential Exponential
Straight-Through False False False False

Gumbel-Softmax Sampling (Decoder Layer)
Use Layer Gumbel True True True True
Start Temperature 2.0 2.0 2.0 2.0
End Temperature 0.5 0.5 0.5 0.5
Annealing Batches 20,000 20,000 100,000 200,000
Decay Strategy Exponential Exponential Exponential Exponential
Straight-Through False False False False

Regularization & Losses
Encoder Loss Coefficient 0.00001 0.00001 0.00001 0.00001

Search
Gradient Steps 100 100 100 100
Number of Initializations 1024 1024 8192 1024
Std for initialisation 7.5 7.5 7.5 7.5

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Model Hyperparameters for LPN. The same default configuration was used across all
datasets.

Hyperparameter Shift-L Shift-P Compose I DeepCoder
Model Architecture

Model Dimension (dmodel) 512 512 512 512
Number of Heads (nhead) 8 8 8 8
Feed-Forward Dimension (dff) 512 512 512 512
Encoder Layers 2 2 2 4
Decoder Layers 2 2 2 2
Use Layer Normalization True True True True
Positional Embedding Sinusoidal Sinusoidal Sinusoidal Sinusoidal
Dropout Rate 0.0 0.0 0.0 0.0
VAE Beta (β) 0.001 0.001 0.001 0.001
Gradient Clip Norm 2.0 2.0 2.0 2.0

Training
Learning Rate 2e-4 2e-4 2e-4 2e-4
Num Batches 100k 100k 100k 200k

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Model Hyperparameters for D-LPN. The same default configuration was used across all
datasets.

Hyperparameter Shift-L Shift-P Compose I
Model Architecture

Model Dimension (dmodel) 512 512 512
Number of Heads (nhead) 8 8 8
Feed-Forward Dimension (dff) 512 512 512
Encoder Layers 2 2 2
Decoder Layers 2 2 2
Use Layer Normalization True True True
Positional Embedding Sinusoidal Sinusoidal Sinusoidal
Dropout Rate 0.0 0.0 0.0
Gradient Clip Norm 2.0 2.0 2.0

Training
Learning Rate 2e-4 2e-4 2e-4
Num Batches 100k 100k 100k

Gumbel-Softmax Sampling (Program)
Use Program Gumbel True True True
Start Temperature 8.0 8.0 8.0
End Temperature 0.5 0.5 0.5
Annealing Batches 20,000 20,000 100,000
Decay Strategy Exponential Exponential Exponential
Straight-Through False False False

Gumbel-Softmax Sampling (Decoder Layer)
Use Layer Gumbel True True True
Start Temperature 2.0 2.0 2.0
End Temperature 0.5 0.5 0.5
Annealing Batches 20,000 20,000 100,000
Decay Strategy Exponential Exponential Exponential
Straight-Through False False False

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Model Hyperparameters for In-context. The same default configuration was used across all
datasets.

Hyperparameter Shift-L Shift-P Compose I DeepCoder
Model Architecture

Model Dimension (dmodel) 512 512 512 512
Number of Heads (nhead) 8 8 8 8
Feed-Forward Dimension (dff) 512 512 512 512
Encoder Layers 2 2 2 4
Decoder Layers 2 2 2 2
Use Layer Normalization True True True True
Positional Embedding Sinusoidal Sinusoidal Sinusoidal Sinusoidal
Dropout Rate 0.0 0.0 0.0 0.0
Gradient Clip Norm 2.0 2.0 2.0 2.0

Training
Learning Rate 2e-4 2e-4 2e-4 2e-4
Num Batches 100k 100k 100k 200k

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C GUMBEL-SOFTMAX TEMPERATURE ANNEALING ABLATION

In this section, we investigate how the base NLI model learns discrete program representations under
different Gumbel-Softmax temperature annealing schedules. Stable training requires careful control
of the program- and layer-level temperatures, and here we ablate the effect of the shared annealing
duration on the Shift-L dataset.

Our model uses two independent Gumbel-Softmax temperatures:

• Program temperature (τprog): controls the discreteness of the tokenised high-level program.
• Layer temperature (τlayer): controls the discreteness of per-token execution choices within

each layer.

Both temperatures are linearly annealed over the same number of steps (τprog: 4.0→0.5, τlayer:
2.0→0.5), after which they are held fixed at 0.5 for the remainder of training. All runs use 100k total
training steps and identical hyperparameters, varying only the shared annealing duration.

Table 8: Ablation of the shared Gumbel-Softmax temperature annealing duration on Shift-L (in-
distribution accuracy; 100k total training steps, averaged over 3 seeds).

Annealing duration NLI (ID)
1k steps 0.00
5k steps 0.41
10k steps 1.00
20k steps 1.00
50k steps 1.00
100k steps 1.00

Short annealing schedules (1k–5k steps) fail to produce stable discrete program representations.
Accuracy increases sharply at 10k steps, after which all longer schedules perform identically. This
shows that the model is robust to the exact duration once a minimal threshold is reached, and that our
default 20k-step schedule lies well within the stable regime for Shift-L.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D PROGRAM ENCODER

In this section, we describe the program encoder used alongside the input–output (I/O) encoder. The
program encoder can be leveraged when data is available to provide a stronger, more direct training
signal to the neural executor. When training relies solely on the I/O encoder, the discrete program
latents can become bottlenecked by the encoder’s limited inductive capacity, particularly on harder
tasks. Providing ground-truth programs during training alleviates this issue and allows the executor
to learn the correct program primitives more effectively. Below, we outline the tokenisation scheme,
architecture, and training procedure.

D.1 TOKENISATION

Programs are whitespace-tokenised according to the DeepCoder DSL. The full vocabulary contains
153 tokens: 4 special tokens (PAD, <BOS>, <EOS>, |), 4 structural tokens (=, INPUT, [,]), 15
operations, 19 lambda functions, 10 variable tokens x0–x9, and integer literals from −50 to 50.

Example

String representation: x0 = INPUT | x1 = Map (+1) x0 | x2 = Filter (>0) x1
| x3 = Head x2

Token sequence (with <BOS> and <EOS>): <BOS> x0 = INPUT | x1 = Map (+1) x0 |
x2 = Filter (>0) x1 | x3 = Head x2 <EOS>

Tokenised sequence (token IDs): 1 42 4 5 3 43 18 23 42 3 44 19 33 43 3 45 8
44 2

D.2 ARCHITECTURE

The program encoder uses the same architecture and hyperparameters as the I/O encoder in all
experiments. Both encoders share the same codebook and use Gumbel–Softmax relaxation to produce
discrete latent programs.

D.3 TRAINING WITH THE PROGRAM ENCODER

Access to ground-truth programs P allows the model to bypass the inductive bottleneck of the I/O
encoder and directly expose the executor to correct program structures. We do not introduce a separate
program decoder; instead, both encoders share the neural execution decoder pθ.

During training, the program encoder maps each tokenised program P to discrete latents using the
shared codebook. The total objective adds an auxiliary reconstruction term weighted by λprog, which
we set to 1.0 in all experiments.

Lrec = LIO_rec + λprog_rec Lprog_rec

To ensure both encoders learn a unified latent space, we control gradient flow as follows. Gradients
from Lprog update both the program encoder parameters and the executor, whereas gradients from
LIO do not update the executor (stop-gradient), forcing the I/O encoder to align with the program
encoder’s higher-quality latents.

At test time, the program encoder is discarded. Only the trained I/O encoder and executor are used
for inference and search.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E COMPARISON TO DISCRETE LATENT PROGRAMMER

We compare our model with the Discrete Latent Programmer (DLP) (Hong et al., 2020), which also
employs discrete latent codes for program induction. While both approaches share this high-level
similarity, they diverge substantially in their architectures, training assumptions, and mechanisms
for test-time adaptation. The key differences lie in how programs are executed and how search is
performed at inference.

E.1 PROGRAM EXECUTION AND SUPERVISION

In our model, program tokens are interpreted by a recurrent neural interpreter that applies each token
as an operation to an intermediate state. This sequential execution enables variable-length programs,
promotes compositional reuse of learned primitives, and allows the model to be trained end-to-end on
raw input–output examples alone. Since outputs can be directly compared to targets, no ground-truth
program annotations are required.

DLP, by contrast, does not include a neural interpreter. Its decoder predicts full program sequences
from latent codes, and training requires access to the underlying program representations. This
reliance on program supervision restricts DLP to domains where the generating programs are known
and a domain-specific language is available, limiting its applicability beyond synthetic benchmarks.

E.2 TEST-TIME PROGRAM SEARCH

A further distinction arises in test-time adaptation. Our model exploits the differentiability of the
neural interpreter to refine latent program embeddings via gradient-based search. This procedure
enables efficient adaptation: initial program guesses from the encoder can be continuously optimized
to better fit new examples, even when they require novel compositions not seen during training.

In contrast, DLP performs beam search in the discrete program space. This search is combinatorial,
lacks gradient guidance, and cannot refine programs based on execution error. As a result, DLP’s
generalisation is hindered, particularly in out-of-distribution settings where small corrections to a
predicted program are necessary. By enabling gradient-based refinement in a relaxed latent space,
our model provides a more powerful and adaptive mechanism for program synthesis.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F NLI PROGRAM REPRESENTATIONS

In this section, we provide examples of the discrete latent codes discovered by NLI, both for
in-distribution programs and for how these primitives are composed by search to generalise out-of-
distribution (OOD).

F.1 SHIFT-L

We study the task of shifting sequences to the left. During training, the model observes shifts of
length 1 to 5 (inclusive). In principle, the network could learn a separate token for each shift. Instead,
it discovers a more efficient representation by reusing tokens. Specifically, it learns a token (231) that
corresponds to a single left shift. By repeating this token, the network composes shifts of lengths 2
and 3. For larger shifts, it introduces a second token (476), which corresponds to a two-step shift.
This enables the model to combine primitives to generate more complex shifts.

For example, a shift of 4 is represented as one two-step shift plus two one-step shifts. At test time,
when generalising OOD to larger shifts, the model composes primitives in the same manner. For
instance, to represent an 8-step shift, it uses four single-shift tokens and two two-shift tokens. This
demonstrates both compression (a small set of primitives) and compositionality (systematic reuse of
primitives).

1 --
2

3 Example 1: Shift Left by 1
4

5 Task Specification:
6 Input: [8, 2, 5, 9, 1, 6, 3, 4, 7, 0]
7 Output: [2, 5, 9, 1, 6, 3, 4, 7, 0, 8]
8

9 Ground Truth Program: y = left_shift(x, 1)
10 NLI Program Representation: 231
11

12 --
13

14 Example 2: Shift Left by 2
15

16 Task Specification:
17 Input: [4, 6, 7, 1, 9, 0, 3, 8, 5, 2]
18 Output: [7, 1, 9, 0, 3, 8, 5, 2, 4, 6]
19

20 Ground Truth Program: y = left_shift(x, 2)
21 NLI Program Representation: 231 231
22

23 --
24

25 Example 3: Shift Left by 3
26

27 Task Specification:
28 Input: [3, 7, 4, 0, 6, 2, 9, 5, 8, 1]
29 Output: [0, 6, 2, 9, 5, 8, 1, 3, 7, 4]
30

31 Ground Truth Program: y = left_shift(x, 3)
32 NLI Program Representation: 231 231 231
33

34 --
35

36 Example 4: Shift Left by 4
37

38 Task Specification:
39 Input: [5, 1, 9, 2, 8, 6, 0, 7, 3, 4]
40 Output: [8, 6, 0, 7, 3, 4, 5, 1, 9, 2]
41

42 Ground Truth Program: y = left_shift(x, 4)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

43 NLI Program Representation: 231 476 231
44

45 --
46

47 Example 5: Shift Left by 5
48

49 Task Specification:
50 Input: [9, 4, 1, 5, 2, 7, 6, 0, 3, 8]
51 Output: [7, 6, 0, 3, 8, 9, 4, 1, 5, 2]
52

53 Ground Truth Program: y = left_shift(x, 5)
54 NLI Program Representation: 231 476 476
55

56 --
57

58 Example 6 (OOD): Shift Left by 8
59

60 Task Specification:
61 Input: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
62 Output: [8, 9, 0, 1, 2, 3, 4, 5, 6, 7]
63

64 Ground Truth Program: y = left_shift(x, 8)
65 NLI Program Representation: 231 231 231 231 476 476
66

67 --

Listing 1: Learned NLI Program Representations for List Shift Tasks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G APPENDIX: TOKEN REUSE REGULARISATION LOSS

To bias the model toward learning a compact and reusable set of primitives, we introduce a regularisa-
tion term applied to the encoder’s output distribution. Since the encoder generates the latent program
representation, this regulariser directly shapes the structure of the learned latent space. We refer to
this term as the token reuse loss. Its role is to discourage the encoder from spreading probability
mass across too many distinct program tokens within a batch. By promoting reuse, the model is
incentivised to discover a small set of fundamental operations that can be recombined to solve a broad
range of tasks, thereby fostering compositional generalisation.

Formally, the loss is defined as the expected number of unique program tokens used across a
training batch. Crucially, this expectation can be computed in a differentiable form, enabling direct
optimisation via gradient descent.

Let P denote the tensor of token probabilities output by the encoder, with dimensions (B,N, V),
where B is the batch size, N is the program length, and V is the vocabulary size. The probability of
token k being chosen at position i in sequence b is denoted pb,i,k.

To approximate the probability that token k never appears in the batch, we make the simplifying
assumption that token draws are independent across positions and across examples. Under this
assumption, the probability of never selecting token k is:

P(token k never appears) =
B∏

b=1

N∏
i=1

(1− pb,i,k). (4)

For numerical stability, we compute this in log-space:

logP(token k never appears) =
B∑

b=1

N∑
i=1

log(1− pb,i,k). (5)

The probability that token k appears at least once in the batch is therefore:

P(token k appears) = 1− exp

(
B∑

b=1

N∑
i=1

log(1− pb,i,k)

)
. (6)

By linearity of expectation, the expected number of unique tokens used in the batch is:

Lreuse =

V∑
k=1

P(token k appears). (7)

PRACTICAL CONSIDERATIONS

The token reuse loss is added to the encoder loss with weight λreuse. As a batch-level statistic, it can
be sensitive to batch size and may be unstable for small batches. In practice, we used large batches
and did not observe instabilities. Importantly, the loss must not dominate training. We therefore
apply a very small weight, ensuring that it provides only a gentle inductive bias toward compact
vocabularies. This prevents collapse into degenerate solutions such as a single-token language, which
would be too limited to represent complex tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used solely as a tool for polishing the writing,
specifically to remove grammatical and spelling errors. They did not contribute to research ideation
or any other significant aspects of the paper.

25

	Introduction
	Problem Statement
	Discrete Sequential Inference
	Training Objective
	Discrete Program Representation Learning
	Recurrent Neural Program Execution
	Searching Neural Programs

	Experiments
	Compositional Generalisation in Neural models
	Learned Program Representations

	Understanding the Origins of NLI's Generalisation Capabilities
	Gumbel-Softmax
	Scaling Test-Time Program Search
	DeepCoder

	Related Work
	Conclusion
	Datasets
	Compositionality Benchmark
	DeepCoder

	Hyperparameters
	Gumbel-Softmax Temperature Annealing Ablation
	Program Encoder
	Tokenisation
	Architecture
	Training with the Program Encoder

	Comparison to Discrete Latent Programmer
	Program Execution and Supervision
	Test-Time Program Search

	NLI Program Representations
	Shift-L

	Appendix: Token Reuse Regularisation Loss
	The Use of Large Language Models (LLMs)

