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ABSTRACT

Standard diffusion and flow matching approaches have recently been explored
as imitation-based planners for autonomous driving due to their ability to pro-
duce multi-modal trajectories with high fidelity. However, these methods still suf-
fer from limitations, e.g., low efficiency and reliance on post-processing. These
issues are alleviated through practices from conventional imitation-based meth-
ods, but the principles of well-designed diffusion-based planners are still under-
explored. In this paper, we propose FlashPlanner, a flow-matching-based plan-
ner for online planning of autonomous driving. FlashPlanner introduces a novel
globally consistent velocity field as the training objective, which frames flow
matching to model instantaneous dynamics in a consistent velocity field. This
training objective manages to unleash the potential of diffusion-based planners
and enables stable one-step generation of high-quality trajectories in closed-loop
planning. Moreover, we systematically analyze the existing design choices of
diffusion-based methods and prune inherent redundancy, which further acceler-
ates the diffusion-based planning. FlashPlanner achieves state-of-the-art per-
formance on the closed-loop nuPlan benchmark and delivers 12× faster inference
(166FPS) compared to the existing best baseline (13FPS). We will open-source
our project.

1 INTRODUCTION

Learning-based planning (Jaeger et al., 2025; Hu et al., 2023) has emerged as a promising approach
for autonomous driving (AD), offering scalable and flexible advantages over rule-based methods. In
particular, imitation-based (Cheng et al., 2024b;a) planners achieve remarkable success based on the
availability of large-scale data today. However, conventional imitation-based methods struggle with
challenges such as distribution shift and unimodality. The following works have attempted to address
these challenges by introducing many techniques, yet they still rely on rule-based post-processing
to refine or select good trajectories (Cheng et al., 2024a). This suggests that these methods still fall
short of effectively modeling the expert policy in the dataset.

Recently, diffusion-based planners have been popular for planning tasks in robotics (Black et al.; Chi
et al., 2023). The multi-modality and high-quality outcomes of diffusion-based planners advance the
performance of the imitation-based paradigm. However, when applied in autonomous driving, sev-
eral methods encounter obstacles like low efficiency, mode collapse, and trajectory divergence (Yang
et al., 2024; Liao et al., 2025; Xing et al., 2025). These obstacles are alleviated through practices
from conventional imitation-based methods, such as introducing prior anchors, imposing auxiliary
losses, and jointly modeling the ego and other agents (Liao et al., 2025; Zheng et al., 2025). These
designs introduce additional computation, while the core challenges of imitation learning often per-
sist. On the other hand, diffusion models face an enduring challenge: the outstanding output quality
and significant computational cost of the iterative denoise/flow steps (Frans et al., 2024). Recent
methods, especially in the image generation task, preserve output quality while reducing sampling
steps by introducing more appropriate training objectives, such as consistent endpoint or averaged
velocity prediction (Song et al., 2023; Geng et al., 2025; Stability AI, 2025). Nevertheless, the suit-
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Figure 1: Different training objectives of diffusion models. (a) Standard diffusion models learn
the score or local instantaneous velocity, so reducing denoising/flow steps for acceleration will
yield large discretization errors. (b) Consistency models enable few-step generation through self-
consistency or distillation, but often introduce complex training procedures, extra variance, or ac-
cumulated errors. (c) GCVF takes the global average velocity as the consistent velocity field and
enforces alignment of the instantaneous velocity with this velocity field along the marginal path.
The global consistency of GCVF straightens the flow paths, enabling one-step generation while pre-
serving monotonic performance improvement with increased flow steps.

able learning objectives for planning tasks remain underexplored, falling short of fully harnessing
the potential of diffusion-based planners. We refer readers to Appendix A.1 for related works A.1.

To address these limitations, we propose FlashPlanner, a lightweight and efficient flow-matching-
based planner for real-time planning of autonomous driving. FlashPlanner introduces a Globally
Consistent Velocity Field (GCVF) as the training objective, which frames flow matching to model
instantaneous dynamics in a consistent velocity field ( Figure 1,c). This objective imposes a global
consistency constraint across different intermediate flow steps, which straightens the flow paths dur-
ing training. Compared with score prediction or velocity prediction in standard diffusion models (
Figure 1,a), consistency constraints of GCVF substantially avoid discretization errors when using
few flow steps. Moreover, different from finite-horizon training used in consistency models (Song
et al., 2023; Geng et al., 2025), GCVF avoids a complex training procedure and diminishes the ex-
tra variance and accumulated errors introduced by re-adding noise during generation ( Figure 1,b).
GCVF enables the one-step generation of high-quality trajectories for autonomous driving in diverse
real-world scenarios, while supporting refinement with more inference steps. (see Figure 6 and Fig-
ure 9). We empirically find that our training objective unleashes the potential of diffusion-based
planners, while a simple MLP-based structure can achieve state-of-the-art (SOTA) perfor-
mance (see Table 1 and Table 3). We further revisit the prevalent designs of diffusion-based meth-
ods, which are inherited from conventional learning-based planners, and reveal the essential com-
ponents for trajectory generation. Guided by this systematic analysis, we remove redundant designs
and devise a lightweight architecture tailored to ego trajectory generation. FlashPlanner achieves
superior closed-loop performance among learning-based baselines on the nuPlan, a large-scale real-
world autonomous planning benchmark (Caesar et al., 2021). In reactive mode, it exceeds Diffusion
Planner (Zheng et al., 2025) by 5.56% on Test-14 hard split and by 2.04% on Val-14 hard split.
FlashPlanner also shows outstanding training and inference efficiency, delivering 166 FPS infer-
ence speed and substantially reducing training time to 2.5 h. In summary, our contributions are as
follow:

• We propose a flow-based autonomous driving planner, FlashPlanner, which introduces a con-
sistent velocity prediction as the training objective. FlashPlanner enables one-step generation
of high-quality trajectories for autonomous driving, while supporting refinement with more
inference steps.
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Figure 2: Model architecture of FlashPlanner and comparison with Diffusion Planner. The
globally consistent velocity field unleashes the potential of diffusion-based planners. It enables
pruning of redundant components and yields super-efficient, high-quality trajectory generation.

• We systematically analyze the design choices in existing diffusion-based planners and prune re-
dundant components, e.g., joint modeling agents and overly complex encoder/decoder, leading
to a light and robust architecture for diffusion-based online real-time planning.

• FlashPlanner achieves SOTA performance on the closed-loop nuPlan benchmark and delivers
a speedup of more than 12× compared with the best existing approach (Zheng et al., 2025).

2 PRELIMINARIES

Flow Matching (FM) is a class of generative transport models that learns to transform samples from
a known initial distribution π0 to a target distribution π1, by modeling the time-dependent velocity
field of probability flows. Different from standard diffusion models that usually rely on complex
noise schedules, FM is simulation-free and is easier for training (Xing et al., 2025; Zhang et al.,
2025; Park et al., 2025). For samples x0 ∼ π0 and x1 ∼ π1, the flow path is characterized by
intermediate states xt where t ∈ [0, 1], with the instantaneous velocity defined as

vt =
dxt

dt
. (1)

A neural network vθ is trained to approximate this velocity field by minimizing the loss function:

L(θ) = Et,x0,x1∥vθ(xt, t)− vt∥2. (2)

The learned velocity predictor vθ enables sample generation by solving the ordinary differential
equation (ODE) dxt

dt = vθ(xt, t) starting from x0 ∼ π0, yielding the solution:

x1 = x0 +

∫ 1

0

vθ(xt, t)dt. (3)

A practical instantiation is Rectified Flow (Liu et al., 2022), which defines the path via optimal
transport displacement, where π0 is typically the standard normal distribution N (0, I).

xt = (1− t)x0 + tx1, (4)

3 METHOD

In this section, we present FlashPlanner, a flow-based planner that enables one-step generation. We
begin by introducing our proposed training objective, Globally Consistent Velocity Field (GCVF),

3
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for flow matching. We then reformulate the GCVF-based planning task for autonomous driving.
Building on this foundation, we finally introduce the lightweight and robust architecture of Flash-
Planner, which is obtained through a detailed revisiting of design choices in existing diffusion-based
planners and removing redundant components.

3.1 GLOBALLY CONSISTENT VELOCITY FIELD FOR MATCHING

Straight ODE flow paths have been demonstrated to be effective for one-step and few-step gener-
ation, since learned straight flow paths substantially reduce discretization error (Park et al., 2024;
Liu et al., 2022). While Rectified Flow constructs straight conditional paths as in Equation (4), the
learned marginal velocity field vθ in Equation (2) typically induces curved marginal paths, result-
ing in a performance degradation when reducing flow steps (Liu et al., 2022; Geng et al., 2025). To
tackle this issue, Rectified Flow (Liu et al., 2022) uses iterative retraining to straighten the flow paths,
but it requires additional training and offers limited improvement. Our method, Globally Consistent
Velocity Field (GCVF), addresses this problem by enforcing alignment between the instantaneous
and average velocity along the marginal path.

The instantaneous velocity is defined in Equation (1). We introduce the average velocity over an
interval [t, 1]:

ut =
x1 − xt

1− t
, (5)

which is the displacement from any intermediate state xt to the endpoint x1 divided by the re-
maining time interval. We parameterize a neural network as a data predictor fθ(xt, t) that directly
approximates the clean endpoint x1. The training objective is

L(θ) = E[||vt − ut(θ)||2] = E

[∥∥∥∥dxt

dt
− fθ(xt, t)− xt

1− t

∥∥∥∥2
]
, (6)

which explicitly enforces equality between instantaneous and average velocities, producing straight
flow paths. Given the conditional flow in Equation (4), it reduces to the endpoint regression:

L(θ) = E
[
∥fθ(xt, t)− x1∥2

]
. (7)

Thus, the training requires only supervised prediction of x1 from intermediate states, for stable op-
timization. E.g., the ODE solution in Equation (3) can be reformulated regarding the data predictor:

x1 = x0 +

∫ 1

0

(fθ(xt, t)− x0)dt. (8)

GCVF presents a simple yet effective approach that enables few-step generation through endpoint
approximation. Our empirical evaluation demonstrates that, when applied to trajectory generation of
autonomous driving, GCVF achieves higher planning scores than standard Flow Matching (Lipman
et al., 2022) (Equation (2)) with exceptional efficiency in both training and inference.

Relation to MeanFlow: The concept of average velocity is also introduced in MeanFlow (Geng
et al., 2025), where it is defined between two time steps t and r as:

u(zt, r, t) =
1

t− r

∫ t

r

v(zτ , τ)dτ. (9)

MeanFlow calculates the displacement by integrating instantaneous velocities, whereas our defini-
tion in Equation (5) computes it as the difference between two endpoints. Based on this distinction,
MeanFlow employs neural networks to directly approximate the average velocity, whereas GCVF
uses networks to predict the endpoint, indirectly deriving the average velocity. Furthermore, Mean-
Flow establishes its training objective via the functional relationship between instantaneous and av-
erage velocities naturally derived from Equation (9), without additional assumptions. Notably, this
relationship holds universally for both curved and straight flow paths. The one-step generation capa-
bility of MeanFlow relies on an accurate approximation of average velocities between start and end
points. In contrast, GCVF imposes the constraint that instantaneous velocities along the flow path
equal average velocities, thereby achieving one-step generation through straight flow paths. The per-
formance comparison between MeanFlow and GCVF for autonomous driving trajectory generation
is demonstrated in Figure 8 and Table 6.
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3.2 TASK FORMULATION

Autonomous driving motion planning takes processed environmental context as input and produces
safe, feasible, and optimal future trajectories for the ego-vehicle to follow (Cheng et al., 2024b).
Leveraging the strong expressive power of generative models, we propose FlashPlanner for this
task, which generates multi-modal, high-quality trajectories in real-time.

The trajectory is represented as a sequence of states x = {(xτ , yτ , θτ )}Tτ=1, where T denotes the
planning horizon, θτ is the heading angle, and (xτ , yτ ) indicates the location at time τ in the current
ego-vehicle coordinate system. We adopt the convention that subscripts index the continuous flow-
matching time t ∈ [0, 1], while superscripts index the discrete trajectory timesteps τ ∈ {1, . . . , T}.
FlashPlanner directly predicts the clean trajectory x1 from a partially noised sample xt. Drawing
from Equation (7), the training objective is:

L(θ) = E
[
||fθ(xt, t,C)− x1||2

]
, (10)

where x1 represents the expert trajectories used for supervision, and C denotes the environmental
context about current vehicle states, historical data, lane information, and navigation information.

During inference, FlashPlanner generates multi-modal trajectories by transporting samples from an
initial noise distribution to the trajectory distribution conditioned on the environmental context. We
solve the corresponding flow ODE using the Euler method, yielding the final trajectory as:

x1 = x0 +

n∑
i=1

1

n
[fθ(xti , ti,C)− x0] , (11)

where n is the total number of inference steps, and ti ∈ [0, 1] is the flow time at the i-th step. In
practice, n = 1 is sufficient to produce high-quality trajectories. By sampling different initial noise
x0, FlashPlanner can generate diverse future trajectories.

3.3 REDUNDANCY REDUCTION STRATEGIES
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Figure 3: Redundancy reduction roadmap. Step-by-step
evolution from Diffusion Planner (baseline) to FlashPlan-
ner (ours), illustrating the cumulative impact of our de-
sign choices on nuPlan Test14-hard (Reactive mode) per-
formance and inference throughput. Detailed description of
each variant is provided in Appendix A.2. All experiments
were conducted on the same device.

Existing diffusion-based plan-
ners often incorporate design
choices inherited from conventional
imitation-based methods, e.g., heavy
transformer-based networks, joint
modeling of both prediction and
planning tasks, and introducing aux-
iliary loss (Yang et al., 2024; Zheng
et al., 2025). For example, Diffusion
Planner (Zheng et al., 2025), one
of the best diffusion-based AD
planners, jointly models the motion
prediction and closed-loop planning
tasks as a trajectory generation task
inspired by prior works (Ngiam et al.,
2021; Hu et al., 2023). However, this
design involves additional compu-
tation and convergence difficulties,
while its effectiveness has not been
fully validated. In other words, many
of these designs are likely redundant,
and the existing diffusion-based
planners keep them because the
potential of generative modeling is
not fully realized. Given that our
GCVF offers stronger approximation capacity and robustness, we boldly remove a series of
redundant designs and empirically verify their redundancy in diffusion-based planners (see Figure 3
and Table 7). As a result, we obtain a lightweight yet powerful diffusion-based planner with
real-time performance. Accordingly, we first describe the redundant structures we removed, and
then present our lightweight architecture.
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Planning-only objective: Trajectories of neighboring vehicles are useful for the planning task, but
joint modeling of traffic prediction and ego planning in the same network introduces unnecessary
computational complexity and requires additional modules for multi-agent interaction representa-
tion. Inspired by Chen & Krähenbühl (2022), we focus exclusively on ego planning while lever-
aging other vehicles’ trajectories as additional ego samples for training. Specifically, we densify
supervision by treating other agents as ego vehicles via coordinate transformation. This approach
utilizes other agents’ behaviors to create more diverse, challenging driving scenarios without extra
data collection, thereby enhancing sample efficiency and generalization capability.

MLP vs. Transformer: Prior diffusion-based planners typically employ heavy transformer-based
decoders with multi-layer self-attention to capture interactions between the ego trajectory and the
environment (Zheng et al., 2025; Yang et al., 2024). However, recent advances in related do-
mains (Chen et al., 2025) have demonstrated that appropriate objective design and architecture
enable lightweight networks to deliver robust performance. Inspired by that, we developed an
extremely lightweight MLP-based decoder for FlashPlanner. It replaces the complex transformer
structure and condition mechanism with several fully-connected layers and layer-norm layers. We
empirically find that a compact MLP-based decoder is sufficient for high-quality trajectory genera-
tion while substantially reducing computational overhead.

Other Reduction Strategies. We further investigate more components, such as data augmentation,
the depth of the encoder, and the structure of the predicted vector. Figure 3 provides an overview of
the design choices introduced in FlashPlanner, which reveal the components for trajectory genera-
tion. Due to space limit, detailed analysis of each component is presented in Appendix A.5.

3.4 LIGHTWEIGHT MODEL ARCHITECTURE

FlashPlanner presents a lightweight MLP-centric architecture, featuring a simple yet effective mech-
anism for trajectory generation. Figure 2 and Figure 4 illustrate an overview of the complete archi-
tecture, and a detailed description is provided as follows.
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Figure 4: FlashPlanner’s Reillustration.

Encoder. For a driving scene at the current timestep,
the encoder inputs consist of the historical trajectories
of Nd dynamic agents over Th timestamps, the status
of Ns static obstacles, and the information of Nl lanes,
denoted as Fd ∈ RNd×Th×Dd , Fs ∈ RNs×Ds , and
Fl ∈ RNl×Pl×Dl , respectively, where Pl represents the
number of waypoints per lane polyline. The feature di-
mension Dd contains agent coordinates, heading, veloc-
ity, size, and category. Ds is analogous but excludes
velocity. Dl provides lane details encompassing way-
point coordinates, traffic light status, and speed limits.
Following the encoder architecture of Diffusion Plan-
ner (Zheng et al., 2025), each modality is initially em-
bedded by modality-specific MLPs and processed with
MixerBlocks (Tolstikhin et al., 2021) for feature extrac-
tion and temporal-spatial fusion. Subsequently, the en-
coded representations are concatenated across modalities
and passed through a multi-head self-attention block to
model cross-modal interactions, producing a comprehen-
sive scene encoding F ∈ R(Nd+Ns+Nl)×D, where D is
the hidden dimension. In contrast to the multi-layer stack-
ing used in Diffusion Planner, we adopt a more efficient design featuring only one MixerBlock per
modality and a single self-attention layer, achieving significant parameter reduction while maintain-
ing representation capabilities.

Decoder. It integrates scene context, navigation information, noised ego future trajectory, and flow
timestep to generate ego future trajectory. Specifically, the scene encoding F from the encoder is
aggregated via mean pooling, yielding a compact scene representation F′ ∈ RD. The navigation
information, which specifies the intended route and provides critical guidance for motion planning,
is denoted as Fr ∈ RNr×Pl×Dl where Nr indicates the number of lanes in the route. We encode
Fr through MLP and MixerBlock to obtain the route embedding F′

r ∈ RD. The flow timestep t is

6
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Table 1: Closed-loop planning results on nuPlan dataset.

Type Planner Val14 Test14-hard
NR R NR R

Expert Log-replay 93.53 80.32 85.96 68.80

Rule-based
& Hybrid

IDM 75.60 77.33 56.15 62.26
PDM-Closed 92.84 92.12 65.08 75.19
PDM-Hybrid 92.77 92.11 65.99 76.07
GameFormer 79.94 79.78 68.70 67.05
PLUTO 92.88 76.88 80.08 76.88
Diffusion Planner w/ refine. 94.26 92.90 78.87 82.00
FlashPlanner w/ refine. (Ours) 94.97 93.12 80.83 82.71

Learning-based

PDM-Open 53.53 54.24 33.51 35.83
UrbanDriver 68.57 64.11 50.40 49.95
GameFormer w/o refine. 13.32 8.69 7.08 6.69
PlanTF 84.27 76.95 69.70 61.61
PLUTO w/o refine. 88.89 78.11 70.03 59.74
Diffusion Planner 89.76 82.56 75.67 68.56
FlashPlanner (Ours) 89.19 84.60 76.46 74.12

mapped to a fixed-dimensional embedding T ∈ RD via sinusoidal positional encoding. The noised
ego future trajectory Xt ∈ RTf×3 is projected to X′

t ∈ RD using MLP. Finally, the four embeddings
[F′,F′

r,T,X′
t] are concatenated and processed through a lightweight MLP head to generate the

denoised ego future trajectory, achieving effective multi-modal information fusion efficiently.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset and Benchmark. We train and evaluate FlashPlanner on the nuPlan dataset (Caesar et al.,
2021), which provides the first publicly accessible, large-scale planning benchmark for autonomous
driving with its associated closed-loop simulation framework. For training, we employ a standard-
ized split comprising 1 million frames sampled across all scenario types to ensure broad coverage
of driving contexts. For evaluation, we conduct extensive experiments on both the Test14-hard
and Val14 benchmarks under non-reactive (NR) and reactive (R) modes. The closed-loop score
is adopted as our primary metric, which is a composite measure that aggregates progress, time-
to-collision, speed-limit compliance, and comfort into a unified score ranging from 0 to 100, with
higher values indicating better planning performance.

Baseline. We conduct comparisons between FlashPlanner and existing state-of-the-art models on
the nuPlan benchmark. The baselines are categorized into three groups: Rule-based methods that
rely on manually engineered rules, Learning-based methods that employ neural networks to directly
output the final planned trajectories, and Hybrid methods that incorporate post-processing modules
to refine learning-based outputs. Detailed descriptions of each baseline are given in Appendix A.3.
The implementation details of FlashPlanner can be found in Section A.4.

4.2 MAIN RESULTS

We conduct evaluations of FlashPlanner with state-of-the-art planning methods on the nuPlan bench-
mark, with the quantitative results presented in Table 1. Among learning-based approaches, Flash-
Planner achieves superior overall performance across key metrics, with particularly pronounced
gains in the reactive setting. While both FlashPlanner and Diffusion Planner employ generative
modeling frameworks and deliver comparable non-reactive results, FlashPlanner exhibits substan-
tial improvements in reactive scenarios, outperforming Diffusion Planner by +2.04 on Val14 and
+5.56 on Test14-hard, indicating enhanced robustness to interaction-induced disturbances.

Although hybrid methods such as PDM-Closed and PDM-Hybrid perform competitively on Val14,
they exhibit limited generalization on the more challenging Test14-hard benchmark. In contrast,
FlashPlanner maintains consistently strong performance across both nominal and interaction-heavy
scenarios, even surpassing the expert-level baseline in certain configurations. We attribute these

7
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Table 2: Efficiency of FlashPlanner vs. Diffusion Planner. Experiments on the same device.

Method Val14 Test14-hard Inference Training
NR R NR R FPS Time (h)

Diffusion Planner (500 epochs) 89.76 82.56 75.67 68.56 13.7 38.3
Diffusion Planner (100 epochs) 86.87 76.30 74.62 62.25 13.7 7.7
FlashPlanner (100 epochs) 89.19 84.60 76.46 74.12 166.7 2.5

Speedup - - - - 12.2× 15.3×

gains to the model’s ability to generate high-quality trajectories that are further enhanced by refine-
ment, effectively bridging the performance gap between learning-based and hybrid approaches.

Table 2 reports an efficiency comparison between FlashPlanner and Diffusion Planner, the prior
best learning-based approach. Additional comparisons with learning-based planners are provided
in Table 5. For fairness, Diffusion Planner is evaluated under two training budgets: 500 epochs
(original) and 100 epochs, with all other experimental settings unchanged. Inference time denotes
the per-frame latency in non-reactive mode (seconds), and training time is measured in hours.

FlashPlanner (ours) Diffusion Planner PLUTO PlanTF

Figure 5: Future trajectory visualization in closed-loop evaluation. Trajectory planning re-
sults for a challenging narrow-road turning scenario, showing the planned future trajectory and the
ground-truth of the ego vehicle.

Figure 6: Multi-modal plan-
ning behaviors of FlashPlan-
ner.

Benefiting from our architectural design and parameterization
choice, FlashPlanner achieves 166 FPS inference speed and com-
pletes training in 2.5 hours. Compared to the fully trained Diffu-
sion Planner, FlashPlanner delivers 12× faster inference and 15×
faster training while maintaining superior performance across most
metrics, with only a marginally lower score on Val14 NR. When
both models are trained for 100 epochs, FlashPlanner significantly
outperforms Diffusion Planner across all planning metrics. These
results show the substantial efficiency of FlashPlanner, making it
practical for real-world deployment.

To further show the capabilities of learning-based planners, we
visualize planned trajectories of representative baselines in Fig-
ure 5. FlashPlanner exhibits high-quality trajectory generation with
smooth, kinematically feasible paths. In contrast, Diffusion Plan-
ner and PlanTF tend to become nearly stationary given dense traffic
ahead, reflecting overly conservative behavior and limited dynamic
interaction modeling. PLUTO produces trajectories with abrupt
steering maneuvers and rapid heading changes, indicating large curvature and high yaw-rate that
compromise comfort and lateral stability. Overall, FlashPlanner achieves a more favorable balance
of safety, efficiency, and comfort.

To evaluate FlashPlanner’s multi-modal planning capabilities, we conduct multiple inference runs
from the same initial state in an intersection scenario. As shown in Figure 6, without navigation
guidance, FlashPlanner generates diverse trajectory distributions corresponding to three distinct ma-
neuvers: left turn, right turn, and straight. When provided with navigation constraints, the planner
reliably adheres to the specified route. These results demonstrate that FlashPlanner effectively cap-
tures multi-modal driving behaviors and can generate trajectories following conditional guidance.
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Standard FMGCVF (Ours)
x
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Figure 7: Flow paths visualization. Illustration of the generation process for GCVF and Standard
FM across different inference steps (1, 2, 10, 50), depicting the evolution from the same initial point
sampled from N (0, I) to the final planned state.

4.3 ABLATION STUDY

We demonstrate the effectiveness of two key components, decoder architecture and training objec-
tive, as shown in Table 3. Ablation studies for other design choices are given in Appendix A.5.

Table 3: Ablation study on decoder architec-
ture and training objective. Scores are reported
on nuPlan Test14-hard (NR); the training objec-
tives of GCVF and Standard FM correspond to
Equation (10) and Equation (2), respectively.

Decoder Training Objective Epochs Steps Score

MLP
GCVF 100 1 76.46

Standard FM 100 1 66.56
10 75.57

Transformer

GCVF 100 1 74.93
500 1 76.08

Standard FM
100 1 27.83

10 36.26

500 1 56.63
10 66.07

Decoder Architecture: Despite the wide use
of Transformer-based decoders in learning-
based motion planning, our ablations indicate
that such a choice is unnecessary and ineffi-
cient in this setting. FlashPlanner employs a
lightweight MLP-based decoder that delivers
superior efficiency and planning performance
compared to Transformer alternatives. Un-
der identical configurations with 100 training
epochs, the MLP decoder consistently outper-
forms its Transformer-based counterpart across
both training objectives: 76.46 vs. 74.93
on GCVF and 66.56 vs. 27.83 on Standard
FM. It also demonstrates faster convergence:
the MLP attains strong performance with 100
epochs, whereas the Transformer requires ex-
tended training up to 500 epochs for comparable results. This efficiency advantage is particularly
evident on Standard FM, where the MLP at 100 epochs (66.56) exceeds the Transformer even at
500 epochs (56.63), underscoring the superior learning efficiency of our simplified architecture for
autonomous driving planning.

Training Objective: GCVF demonstrates superior efficiency in both training and inference, achiev-
ing optimal planning performance with minimal computational cost. In contrast, Standard FM re-
quires both intensive training and multi-step inference to reach comparable performance. At infer-
ence, Standard FM attains an acceptable score with 10 flow steps, yet still underperforms GCVF’s
single-step results. Training Standard FM is also more challenging, especially with Transformer-
based decoders: extending training from 100 to 500 epochs increases the score from 28.79 to 57.59,
indicating that substantially longer training is needed to approach convergence.

As illustrated in Figure 7, we visualize the flow paths induced by GCVF and Standard FM. Stan-
dard FM exhibits curved evolution paths with pronounced endpoint variation across different infer-
ence steps, indicating sensitivity to the number of steps and a reliance on multi-step inference for
high-quality outputs. In contrast, our method, which enforces alignment between instantaneous and
average velocity fields, yields straight flow paths with consistent endpoints across varying inference
steps, enabling high-quality trajectory generation in a single step.

5 CONCLUSION

We propose FlashPlanner, a real-time flow-based planner for autonomous driving. FlashPlanner
introduces a novel Globally Consistent Velocity Field (GCVF) for flow matching, which unleashes
the potential of diffusion-based planners. Our GCVF-based training method produces straight flow
paths, which enables stable one-step trajectory generation. We additionally give a detailed analysis
of the existing design choices of diffusion-based methods and prune inherent redundancy, which
further accelerates the diffusion-based planning. FlashPlanner achieves state-of-the-art closed-loop
performance on nuPlan and delivers 166 FPS inference speed with only 2.5h training. FlashPlanner
offers a more friendly training and inference approach for diffusion-based planners.
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6 ETHICS STATEMENT

Our research aims to advance the field of autonomous driving and does not present immediate, direct
negative social impacts. We believe our work has the potential for a positive impact by improving
the safety and reliability of autonomous systems.

The dataset used in this study, namely nuPlan, is publicly available and have been widely adopted
by the machine learning community for academic research. All data was handled in accordance
with their specified licenses and terms of use. We did not use any personally identifiable or sensitive
private information.

We have focused our evaluation on standard academic benchmarks. We encourage future research
building upon our work to consider the specific ethical implications of their target applications.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive description of our
methodology, implementation details, and experimental setup in the main paper. Furthermore, we
commit to making our code, pre-trained models, and experiment configurations publicly available
upon publication of this paper.

8 USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

During the preparation of this manuscript, we utilized Large Language Models (LLMs), specifically
Claude-4 and GPT-5, as a writing assistance tool. The use of LLMs was limited to improving the
grammar, clarity, and readability of the text. This includes tasks such as rephrasing sentences for
better flow, correcting spelling and grammatical errors, and ensuring stylistic consistency.

The core scientific ideas, experimental design, results, and conclusions presented in this paper are
entirely our own. LLMs were not used to generate any of the primary scientific content or interpre-
tations. The final version of the manuscript was thoroughly reviewed and edited by all authors, who
take full responsibility for its content and originality.
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A APPENDIX

A.1 RELATED WORK

Imitation-based Planner. Imitation-based AD planners (Bansal et al., 2018; Vitelli et al., 2022;
Huang et al., 2023) learn the driving policy by cloning control policies from expert demonstrations.
With the abundance and affordability of driving data today, this imitation learning (IL) paradigm
achieves remarkable advances due to its scalability and ease of convergence, especially in the end-
to-end pipelines (Hu et al., 2023; Chitta et al., 2022; Chen et al., 2024). However, IL methods
are vulnerable to issues like covariate shift and mode collapse, which incur performance degrada-
tion, especially on the closed-loop setting (Dosovitskiy et al., 2017; Jia et al., 2024). Many tech-
niques (Cheng et al., 2024b;a) have been proposed to address these issues and push the limit of the
imitation-based approach. Here we adopt the mid-to-mid fashion, which utilizes post-perception
outcomes as input, to focus on the planning task. Despite these efforts, most existing approaches
still heavily rely on post-processing to refine or select appropriate trajectories, which means they fail
to capture the expert driving policies to some extent.

Diffusion and Flow Matching. Diffusion and flow matching have recently gained traction in many
research fields because of their multi-modality and high-quality outputs (Song et al., 2021; Lipman
et al., 2022; Black et al.). A fundamental dilemma in diffusion models is the tension between ineffi-
cient iterative sampling and the need for high-quality outputs (Wang et al., 2025). Lots of alternative
training objectives are proposed to mitigate this challenge, such as consistency constraint (Song
et al., 2023), average velocity prediction (Geng et al., 2025), and state transition mapping (Wang
et al., 2025). Despite these advances, the efficacy of these training objectives remains understudied.

The potential of diffusion and flow matching for planning tasks was first demonstrated in
robotics (Black et al.; Intelligence et al., 2025). Several works adapt diffusion models to advance
IL-based AD planners but encounter unexpected obstacles such as mode collapse, trajectory diver-
gence, and low efficiency (Liao et al., 2025; Xing et al., 2025; Yang et al., 2024). These obstacles
are alleviated through practices from conventional IL methods like introducing prior anchors and
auxiliary losses, which result in inefficient training and inference. Some works (Zheng et al., 2025)
try to reduce the latency by using DPM-Solver (Lu et al., 2022), a smaller encoder, and jointly mod-
eling ego and other agents, which achieves good performance. Nevertheless, these diffusion-based
methods are built atop practices from conventional imitation-based methods, yet the principles for
well-designed diffusion/flow-based planners are still under exploration.

In this paper, we introduce the global consistent velocity field, a robust and performant learning
objective for diffusion-based planners, enabling stable one-step trajectory generation. We further
systematically investigate the components of existing diffusion-based autonomous planners and re-
move redundant designs. Finally, a lightweight yet performant flow-matching planner is proposed,
which delivers strong closed-loop performance with exceptional efficiency.

A.2 DESIGN CHOICES OF FLASHPLANNER

We summarize the design choices of FlashPlanner, built upon Diffusion Planner, as follows.

• GCVF (One Step): Replace the diffusion training and inference paradigm with GCVF,
employing a single inference step.

• Planning-only: Focus exclusively on ego planning, removing traffic prediction network
modules and their corresponding loss terms from the training objective.

• Other-As-Ego: Augment the training dataset with trajectory samples of non-ego vehicles
extracted from existing scenarios.

• MLP Decoder: Replace the Transformer-based decoder with a compact MLP.

• Light Encoder: Reduce the number of self-attention layers in the encoder to one.

• (x, y, θ): Represent ego future states as (x, y, θ) instead of (x, y, cos θ, sin θ).

A.3 EXPERIMENTAL DETAILS

Baseline. We compare FlashPlanner against the following baselines.
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• Log Replay tracks human trajectories using an LQR controller as the expert baseline.

• IDM (Treiber et al., 2000) represents a classic car-following model widely used in traffic
simulations.

• PDM (Dauner et al., 2023) offers three variants: PDM-Closed generates trajectory propos-
als using IDM policies with varying hyperparameters and selects the optimal one through
rule-based scoring; PDM-Open employs MLPs conditioned on centerlines; PDM-Hybrid
combines both approaches.

• GameFormer (Huang et al., 2023) models interactive planning and prediction based on
level-k game theory, with outputs refined through nonlinear optimization.

• PLUTO (Cheng et al., 2024a) extends PDM-Open with contrastive learning for enhanced
environmental understanding, followed by rule-based post-processing.

• Diffusion Planner (Zheng et al., 2025) applies a diffusion transformer to generate ego
trajectories conditioned on vectorized scene representations, with optional refinement.

• UrbanDriver (Scheel et al., 2022) utilizes policy gradient optimization with PointNet-
based polyline encoders and Transformers.

• PlanTF (Cheng et al., 2024b) represents a strong imitation learning baseline built on a
Transformer architecture with efficient designs.

A.4 IMPLEMENTATION DETAILS.

FlashPlanner is trained on 4 NVIDIA A100 80GB GPUs with a batch size of 2048 over 100 epochs,
including a 5-epoch warmup phase. We employed the AdamW optimizer with a learning rate of
1e-3. To ensure fair comparison and evaluate computational efficiency under practical deployment
conditions, all inference experiments were performed on the same device with a single NVIDIA
RTX A6000 GPU and an AMD EPYC 7542 32-Core CPU. The detailed hyperparameter configura-
tion is presented in Table 4.

Table 4: Hyperparameters of FlashPlanner

Parameter Symbol Value
Num. past timestamps Th 21
Num. future timestamps Tf 4
Num. neighboring vehicles Nd 32
Dim. neighboring vehicles Dd 11
Num. static objects Ns 5
Dim. static objects Ds 10
Num. lanes Nl 70
Num. points per polyline Pl 20
Dim. lanes Dl 12
Num. navigation lanes Nr 25
Dim. hidden layer D 192
Time sampler - Uniform
Inference step n 1

A.5 ADDITIONAL RESULTS

Based on the ablation results in Table 7 and Figure 9, we analyze the contribution of our design
choices.

Ego State: Prior works represent the ego’s future state as (x, y, cos θ, sin θ), whereas we use
(x, y, θ). The former introduces redundant constraints (sin2 θ + cos2 θ = 1), which are brittle
and lead to degraded performance in reactive scenarios.

Data Preprocessing: Following Diffusion Planner (Zheng et al., 2025), we apply data augmenta-
tion, including ego-centric transformation, z-score normalization, and state perturbation with future
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Table 5: Efficiency comparison of learning-based planners.

Method Model Size FLOPs Throughput
(MB) (G) (FPS)

PlanTF 7.72 0.67 97
PLUTO w/o refine. 16.18 0.73 47
Diffusion Planner 23.05 1.54 13
FlashPlanner (Ours) 4.60 0.48 166

Table 6: Performance Comparison on nuPlan. All methods were trained for 100 epochs and
evaluated with one-step generation.

Method Val14 Test14-hard
NR R NR R

MeanFlow 86.26 77.38 70.53 65.00
Consistency Models 80.32 73.88 69.22 61.61
GCVF (ours) 89.19 84.6 76.46 74.12

Table 7: Ablation of each component on nuPlan Test14-hard. “w/o” denotes “without.”

Component Setting NR R

Baseline FlashPlanner 76.46 74.12

Ego State (x, y, sin θ, cos θ) 76.96 71.32

Data Preprocessing
w/o data augmentation 68.96 61.82
w/o scenario balancing 71.54 72.52
w/o other-as-ego 77.38 68.34

Time Sampler LogNormal(-0.4, 1.0) 76.06 74.06
Beta(1.0, 1.5) 75.51 70.76

trajectory interpolation. Removing data augmentation yields poor performance, highlighting its role
in mitigating out-of-distribution shift and enhancing generalization. Additionally, balancing the
number of scenarios per type (see Figure 11) in the trainset mitigates dataset skew and consistently
improves planning performance.

For the planning-only objective, we augment the 1M training frames by extracting 250K trajectories
from neighboring vehicles with significant heading or velocity changes, treating them as pseudo-
ego trajectories. This strategy leverages diverse agent behaviors to create more challenging training
samples without additional data collection, demonstrating improved generalization capability.

Time Sampler: We evaluate three time samplers for flow matching: Uniform N (0, 1), LogNormal(-
0.4, 1.0) that emphasizes intermediate times (Esser et al., 2024), and Beta(1.0, 1.5) that biases toward
early times (Black et al.). Results show broad robustness across samplers, with the simplest uniform
sampling achieving the best.

Inference Steps: To numerically solve ODEs, we use the Euler method, which requires a pre-
specified number of steps (Equation (11)). Figure 9 demonstrates that FlashPlanner enables one-
step generation of high-quality trajectories for autonomous driving, while supporting refinement
with more inference steps.
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Figure 8: Future trajectory visualization in closed-loop evaluation. Trajectory planning results
of four methods with varying denoise/flow steps for a challenging narrow-road turning scenario,
showing the planned future trajectory and the ground-truth of the ego vehicle. When navigating
through dense traffic, our method consistently generates safe and feasible driving trajectories across
different inference steps, while other methods result in collisions.
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Figure 9: Ablation study on inference steps (Test14-hard NR).
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Figure 10: Visualization of FlashPlanner Closed-loop planning results on hard cases. Each row
represents a scenario at 0, 5, 10, and 15 seconds intervals. Each frame includes the future planning
of the ego vehicle and the ground truth ego trajectory.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

100 101 102 103 104 105

Scenario counts by type (log scale)

changing_lane_with_trail
starting_u_turn

near_pedestrian_on_crosswalk_with_ego
near_multiple_bikes

crossed_by_bike
stopping_at_traffic_light_with_lead

traversing_narrow_lane
crossed_by_vehicle

high_magnitude_jerk
starting_straight_traffic_light_intersection_traversal

changing_lane_to_right
changing_lane_to_left

starting_protected_noncross_turn
accelerating_at_crosswalk

behind_pedestrian_on_driveable
accelerating_at_traffic_light_with_lead

stationary_at_crosswalk
stopping_at_traffic_light_without_lead

stopping_with_lead
behind_bike

stopping_at_stop_sign_no_crosswalk
following_lane_with_lead

starting_straight_stop_sign_intersection_traversal
stopping_at_crosswalk

starting_protected_cross_turn
stopping_at_stop_sign_without_lead
starting_unprotected_noncross_turn

near_multiple_pedestrians
waiting_for_pedestrian_to_cross
starting_unprotected_cross_turn

near_barrier_on_driveable
starting_right_turn

near_construction_zone_sign
high_lateral_acceleration

following_lane_with_slow_lead
on_stopline_crosswalk

on_stopline_traffic_light
near_pedestrian_on_crosswalk
near_trafficcone_on_driveable

on_carpark
near_multiple_vehicles

stationary_at_traffic_light_with_lead
near_high_speed_vehicle

on_traffic_light_intersection
near_long_vehicle

following_lane_without_lead
traversing_crosswalk

on_intersection
low_magnitude_speed

on_pickup_dropoff
stationary_at_traffic_light_without_lead

on_stopline_stop_sign
stationary_in_traffic

traversing_intersection
high_magnitude_speed

medium_magnitude_speed
traversing_pickup_dropoff

traversing_traffic_light_intersection
stationary

Figure 11: Distribution of scenario types in the training set
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