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Abstract

Collecting large quantities of high-quality data can be prohibitively expensive
or impractical, and a bottleneck in machine learning. One may instead augment
a small set of n data points from the target distribution with data from more
accessible sources, e.g. data collected under different circumstances or synthesized
by generative models. We refer to such data as ‘surrogate data’. We study a
weighted empirical risk minimization (ERM) approach for integrating surrogate
data into training. We analyze mathematically this method under several classical
statistical models, and validate our findings empirically on datasets from different
domains. Our main findings are: (i) Integrating surrogate data can significantly
reduce the test error on the original distribution. Surprisingly, this can happen
even when the surrogate data is unrelated to the original ones. We trace back
this behavior to the classical Stein’s paradox. (ii) In order to reap the benefit of
surrogate data, it is crucial to use optimally weighted ERM. (iii) The test error of
models trained on mixtures of real and surrogate data is approximately described
by a scaling law. This scaling law can be used to predict the optimal weighting
scheme, and to choose the amount of surrogate data to add.

1 Introduction and overview

1.1 Motivation and formulation

Consider a standard learning setting where we are given n i.i.d. points zi from a target distribution
D. Given a family of parametric models governed by the parameters’ vector θ, the goal is to find θ
that minimizes the expected test loss Rtest(θ) incurred by the model predictions, where expectation is
taken over the distribution D. In many application domains, the available data Z = (zi)i≤n from the
target distribution, referred to as either real or original data, may be difficult or expensive to acquire.
One may then attempt to supplement these data with a different, cheaper source. Examples of such
cheaper sources are (i) publicly available datasets; (ii) datasets owned by the same research group
or company but acquired in different circumstances, e.g. in a different location; (iii) synthetic data
produced by a generative model.

We will denote the data points obtained from this source by zs
i , and assume we have m of them.

We assume the ‘surrogate’ data Zs = (zs
i )i≤m to be i.i.d. samples with distribution Ds. In general,

we will not assume the distribution Ds of synthetic data to be close to the original data distribution
D. However we assume that these distributions are over the same domain. A number of questions
arise: (i) How should we use the surrogate data in training? (ii) How many surrogate samples should
we add to the original data? (iii) Can we predict the improvement in test error achieved by adding
surrogate samples to the training?
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A natural approach would be to add the surrogate data to the original one in the usual training
procedure, and indeed many authors have explored this approach (see Section 1.3). Namely, one
attempts to minimize the overall empirical risk R̂naive

n+m(θ) =
∑n

i=1 ℓ(θ; zi) +
∑m

i=1 ℓ(θ; z
s
i ), where

ℓ(z, θ) is a train loss function.

However, a moment of reflection reveals that this approach has serious shortcomings. Consider a
simple mean estimation problem, whereby zi ∼ N(θ∗, Id), zs

i ∼ N(θs
∗, Id), ℓ(θ; z) = ∥θ − z∥2,

and Rtest(θ) = ∥θ − θ∗∥2. A straightforward calculation yields that the test error of the empirical
risk minimizer θ̂

naive

n+m := argmin R̂naive
n+m(θ) is

Rtest(θ̂
naive

n+m) =
(

m
n+m

)2

∥θs
∗ − θ∗∥2 + d

n+m . (1)

As m increases the variance (the second term) decreases, but the bias due to the difference ∥θs
∗ − θ∗∥

increases, and the error approaches ∥θs
∗ − θ∗∥2, i.e. the model will be only as good as if training

only on surrogate data.

In order to overcome these limitations, we study a weighted ERM approach, and will show that the
weight plays a crucial role. Namely, we consider the following regularized empirical risk:

R̂n,m(θ;α) :=
1− α

n

n∑
i=1

ℓ(θ; zi) +
α

m

m∑
i=1

ℓ(θ; zs
i ) + Ω(θ) , (2)

where α ∈ [0, 1] is the weight of the surrogate dataset and Ω : Rd → R≥0 is a regularizer, e.g. a
ridge Ω(θ) = λ∥θ∥22. We denote by

θ̂n,m(α) := argminθ R̂n,m(θ;α) (3)

the corresponding empirical risk minimizer, and by Rtest(θ̂n,m(α)) the corresponding test error.

For supervised learning tasks, a sample z is represented as z = (y,x), where x ∈ Rd is covariate
vector and y ∈ R is response variable and θ parametrizes a family of models f(x;θ) that predict
the response y given covariate vector x. We consider losses of the form ℓ(θ, z) = L(y, f(x;θ))
and Rtest(θ) := Ez∼DLtest(y, f(x;θ)) for some functions L and Ltest. We allow for the test loss Ltest

to be different from the train loss L, but we will omit the subscript ‘test’ from the risk R and the
loss L whenever clear from the context.
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Figure 1: IMDB and Rotten Tomatoes data and neural networks. Test error when trained on mixtures
of original and surrogate data. Black curves: prediction from Eq. (4).
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Figure 2: Performance of unweighted vs weighted ERM approach for the setting in Figure 1

Figure 1 provides a preview of our results, for a sentiment analysis task. (Technical details provided
in Section 4 and Appendix A.3). Each frame corresponds to a different combination of n and m, and
we report the test error of our approach as a function of the weight parameter α (red circles). Solid
lines report the prediction of a scaling law that will be one of the main results presented below.

We observe that the weighted ERM approach systematically achieves better test error than either
training only on original data (α → 0) or on surrogate data (α → 1). Further the error for optimal α
is always monotone decreasing both in m and n, and the approach outperforms the naive unweighted
approach. This is shown more clearly in Figure 2, which also shows that the performance of
unweighted ERM can degrade with more surrogate data. Also, while scaling laws typically do not
capture the dependence on hyperparameters, the scaling law presented below predicts the dependence
on α reasonably well. This is particularly useful, because such a scaling law can be used to tune α
optimally and to predict the amount of surrogate data needed.

1.2 Summary of results

We study the method outlined above both mathematically and via numerical experiments. Our
mathematical results are developed in four different settings: (i) The Gaussian sequence model
(Section 3.1); (ii) A non-parametric function estimation setting (Section 3.2); (iii) Low-dimensional
empirical-risk minimization (Section 3.3); (iv) High dimensional ridge regression (Section 3.4);

We carry out experiments with the following data sources. (1) Simulated data from linear or Gaussian
mixture models: this allows us to explicitly control the distribution shift between the original and
surrogate datasets, as well as check our theoretical results in a controlled setting. (2) Real natural
language processing (NLP) data for sentiment analysis, with the role of original dataset played by
IMDB reviews and the role of surrogate datasets played respectively by Rotten Tomatoes review and
Goodreads book reviews. (3) Progression-free survival analysis using Lasso on TCGA PanCancer
dataset with female patients data and male patients data as original and surrogate data, respectively.
(4) Real image classification data, with CIFAR-10 and CIFAR-100 datasets respectively playing the
role of original and surrogate data. Our results support the following conclusions:

Surrogate data improve test error. Including surrogate data in training generally improves the
test error on the original data, even if the surrogate data distribution is far from the original one. In
agreement with the interpretation of surrogate data as a regularizer (see also Sec. 2), the improvement
is generally positive, although its size depend on the data distributions.

Tuning of α. The above conclusion holds under the condition that α can be tuned (nearly) optimally.
For each of the theoretical settings already mentioned, we characterize this optimal value. We verify
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that nearly optimal α can be effectively selected by minimizing the error on a validation split of the
original data. An attractive alternative is to use the scaling law we discuss next.

Scaling law. We propose a scaling law that captures the behavior of the test error with n,m,α:

R(θ̂n,m(α))−R∗ ≈ α2Rex
su(∞) +

[
α2

(
Rex

su(m)−Rex
su(∞)

)1/β
+ (1− α)2Rex

or (n)
1/β

]β
. (4)

Here R∗ is the minimal (Bayes) error, Rex
su(m) := R(θ̂0,m(1)) − R∗ is the excess test error when

training on the surrogate data (and testing on original), Rex
or (n) := R(θ̂n,0(0)) − R∗ is the excess

test error1 when training on original data (and testing on original), and β is a scaling exponent as
described in Section 4. The above scaling admits natural generalizations; see Section 5.

Practical uses of the scaling law. Given data {zi}i≤n and a source of surrogate data, we would like
to predict how much the test error can be decreased by including any number m of surrogate samples
in the mix. The scaling law (4) suggests a simple approach: (1) Learn models on purely original
data to extract the behavior of test loss R(θ̂n,0(0)).; (2) Learn models on purely surrogate data to
extract the behavior of R(θ̂0,m(1)). (A relatively small sample is sufficient for this step.) (3) Use the
minimum over α of Eq. (4) to predict the test error at any given pair n,m.

We can further leverage the scaling law to achieve the desired error by: (I) Using the scaling
law to determine the number of surrogate samples needed to achieve the desired performance.
(II) Acquiring the surrogate samples and train the model using weighted ERM with optimal weighting
predicted by scaling law.

1.3 Related work

The use of surrogate data to enhance training has attracted increasing research effort, also because of
the recent progresses in generative modeling.

This line of work has largely focused on the techniques to generate synthetic data that are well suited
for training. A wide variety of methods have been demonstrated to be useful in generating data
for computer vision tasks, ranging from object classification to semantic segmentation [RSM+16,
JRBM+17, AAMM+18, TPA+18, CLCG19, HSY+22, MPT+22, YCFB+22]. We refer to [SLW20]
for a review. More recently, synthetic data have been used for training in natural language processing
[HNK+22, MHZH22].

Scaling laws have been broadly successful in guiding the development of large machine learning mod-
els [HNA+17, RRBS19, HKK+20, KMH+20, TDR+21, HKHM21, HBM+22, ANZ22, MRB+23].
We expect them to be similarly useful for integrating heterogeneous data into training. The change in
scaling laws when training on synthetic data was the subject of a recent empirical study [FCK+23].
On the other hand, no systematic attempt was made at integrating real and synthetic data.

In data augmentation [KSH12, SK19], the original samples are supplemented with transformed or
noisy version of the same. In contrast, we assume that surrogate data is obtained from a different
source than the original one, and the surrogate samples are independent of the original samples.

The problem we consider was also studied within ‘domain adaptation’, a subarea of transfer learn-
ing [MPRP16, TJJ20]. Among others, [BDBC+10] establishes bounds on the generalization error
of weighted ERM via uniform convergence. However these bounds do not reveal the full advantage
achieved by this approach and are not precise enough to justify the scaling laws that we derive. Recent
works in domain adaptation study the behavior of test error error [Has21, KJSJ24, YLS+24] and its
scaling laws [Has21], but only consider vanilla ERM, a special of weighted ERM considered here.

2 Regularization, Gaussian mean estimation, Stein paradox

The role of the parameter α can be understood by considering the limit m → ∞:

R̂n,∞(θ;α) = 1−α
n

∑n
i=1 ℓ(θ; zi) + αRs(θ) + Ω(θ) ,

1We assume here that limn→∞ R(θ̂n,0(0)) = R∗, i.e. that we achieve Bayes risk with infinitely many
original samples. See Section 5.
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and Rs(θ) = Ezs∼Dsℓ(θ; zs) is the population risk for surrogate data. This suggests to think of the
surrogate data as an additional (highly non-trivial) regularizer, with parameter α. This leads to a
simple yet important insight: adding surrogate data to the original data is beneficial if α is chosen
optimally, and large m reduces statistical fluctuations in this regularizer. This contrasts with the
unweighted approach whose test error in general deteriorates for large m.

As a toy example, reconsider the mean estimation problem mentioned in the introduction: zi ∼
N(θ∗, Id) and zs

i ∼ N(θs
∗, Id), ℓ(θ; z) = ∥θ−z∥2 and Rtest(θ) = ∥θ−θ∗∥2. We have θ̂n,m(α) =

(1− α)
∑

i≤n zi/n+ α
∑

i≤m zs
i/m. In other words, the weighted ERM shrinks the mean of the

original data towards the mean of the surrogate data. For a given α, the resulting test errors are

R(θ̂n,m(α)) = α2Rex
su(∞) +

(
α2

m + (1−α)2

n

)
d , Rex

su(∞) = ∥θ∗ − θs
∗∥2 , (5)

and for the optimum value α∗ = argminα R(θ̂n,m(α)), this yields

R(θ̂n,m(α∗)) =

(
Rex

su(∞) + d/m

Rex
su(∞) + d/m+ d/n

)
· d
n
. (6)

Note that 1/n is the error of training only on original data and the prefactor is always strictly smaller
than one. Hence, weighted ERM always achieves better error than training only on original data,
regardless of the distance between original and surrogate data, although the improvement is larger
for small Rex

su(∞). This might seem paradoxical at first. As mentioned above, we are shrinking
towards an arbitrary point given by the empirical mean of the surrogate data: how can this help?

In fact, this is a disguised version of the celebrated Stein paradox [EM77, Ste81]: in estimating a
Gaussian mean, a procedure that shrinks the empirical mean towards an arbitrary point by a carefully
chosen amount outperforms the naive empirical mean. In our toy example, the naive empirical mean
corresponds to estimation purely based on the original data, and we shrink it towards the mean of
the surrogate data. Of course, the improvement over empirical mean is only possible if α is chosen
optimally. Equation (6) assumes α = α∗ is chosen by an oracle that knows the value of Rex

su(∞).
Stein’s analysis implies that in the Gaussian mean problem, α can be chosen empirically as long as
the dimension of θ is d ≥ 3. In the settings we are interested in, α can be chosen via cross-validation.

3 Theoretical results

3.1 Gaussian sequence model

The sequence model captures the behavior of many models in non-parametric statistics while being
simpler to analyze [Tsy09, GN21]. It is also known to approximate the behavior of overparametrized
linear regression [CM22]. The unknown target is θ∗ ∈ Rd (with potentially d = ∞), and we observe

yi = θ∗ + σ gi, i ≤ n , ys
i = θs

∗ + σs g
s
i , i ≤ m, (7)

where θs
∗ is also unknown, and gi, g

s
i ∼ N(0, Id) are i.i.d. We study the penalized estimator

θ̂n,m(α) := argminθ

{
(1−α)

n

∑n
i=1 ∥yi − θ∥22 + α

m

∑m
i=1 ∥ys

i − θ∥22 + λ∥θ∥2Ω
}
, (8)

where ∥θ∥2Ω = ⟨θ,Ωθ⟩ and Ω ⪰ 0 is a regularization weight matrix. We will be concerned with the
expected risk

Rn,m(α, λ) = E
{∥∥θ̂n,m(α)− θ∗

∥∥2} . (9)

The proof of the next result is presented in Appendix C.
Theorem 1. Let ω1 ≤ ω2 ≤ · · · be the ordered eigenvalues of Ω, and denote by vi the corresponding
eigenvectors. Further denote by θ∗,>k, θs

∗,>k the projections of θ∗, θ∗,s onto span(vi : i > k), and
similarly for θ∗,≤k, θs

∗,≤k. Assume that ωk ≍ kµ, µ > 1/2, ∥θ∗,>k∥2 ≤ Cθk
−2ρ, ρ ̸= µ, and let ∆k

be such that (for all k): ∆k := ω−1
k |⟨θ∗,≤k − θs

∗,≤k,θ∗,≤k⟩Ω| ≤ C0k
−2(µ∧ρ). Then the following

hold:

(a) There exists an explicit λ∗(α) such that, letting β := 2(µ ∧ ρ)/(1 + 2(µ ∧ ρ)),

Rn,m

(
α, λ∗(α)

)
≤ α2Rex

su(∞) + C ·
[
(1− α)2 σ2

n + α2 σ2
s

m

]β
. (10)
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(b) If µ > 2ρ − 1/2, there exists C ′ > 0 and there exist θ∗,θ
s
∗ satisfying the assumptions in

point (a), such that,

minλ Rn,m

(
α, λ

)
≥ α2Rex

su(∞) + C ′ ·
[
(1− α)2 σ2

n + α2 σ2
s

m

]β
. (11)

Note that since the theorem also implies Rex
su(m) − Rex

su(∞) ≍ (σ2
s/m)β and Rex

or (m) ≍ (σ2/n)β ,
this result confirms the scaling law (4).

3.2 Non-parametric regression in Sobolev classes

In this section we consider the classic non-parametric regression model. We assume that n = Qd for
some integer Q ≥ 2, and the original data (xi, yi)i≤n are defined through

yi = f∗(xi) + εi , εi ∼ N(0, σ2) , (12)
where εi are independent of xi and of each other, and {xi}i≤n equally spaced grid points in the
d-dimensional unit-cube, i.e. Xn = {q/Q : q ∈ [Q]d}. Surrogate data have a similar distribution,
with m = Qd

s equally spaced points xs
i in the unit cube, and ysi = f∗,s(x

s
i )+εsi , where εsi ∼ N(0, σ2

s).
We assume that f∗ has small Sobolev norm, that is,

∥f∗∥2r,2 :=

∫
[0,1]d

(
|f∗(t)|2 + ∥f (r)

∗ (t)∥2
)
dt ≤ 1 .

Recall that ∥f∥2r,2 is a special reproducing kernel Hilbert space (RKHS) norm: we expect some of
the considerations below to generalize to other RKHS norms.

Following our general methodology, we use the estimator

f̂n,m,α = argminf

{
1−α
n

∑n
i=1

(
yi − f(xi)

)2
+ α

m

∑m
i=1

(
ysi − f(xs

i )
)2

+ λ∥f∥2p,2
}
. (13)

We are interested in R(f) = E{(f(x)− f∗(x))
2}, which is the excess squared loss for a test point

x ∼ Unif([0, 1]d).

In order to avoid technical burden we will carry out the analysis for a continuous model, the so-
called white noise model, where we observe the function f at all points x ∈ [0, 1]d, perturbed by
d-dimensional white noise:

dY = f∗(x) dx+ σ√
n
dB(x) , (14)

and similarly for Y s. We use an estimator that naturally generalizes (13) to the continuous case. Our
results for the white noise model are as follows.
Theorem 2. Let β = (2p ∧ 4r)/(d + (2p ∧ 4r)). If r > d/4 and λ = (δKn,mσ2)2r/(d+(2p∧4r)),
then for every δ ∈ (0, 1) there exists a constant C = C(d, δ) such that

R(f̂n,m,α) ≤ (1 + δ)α2Rex
su(∞) + C

{
(1− α)2 · σ2

n + α2 · σ2
s

m

}β

(15)

with high probability, where Kn,m := (1− α)2/n+ α2/m.
Remark 3.1. The white noise model (14) is known to be equivalent to the original model (12)
(with deterministic equispaced designs) in the sense of Le Cam, for r > d/2 [BL96, Rei08]. While
suggestive, this equivalence does not allow us to formally deduce results for the data (12), because it
does not apply to the specific estimators of interest here.

With the given choice of λ, r, the derivation of (15) also implies Rex
su(m)−Rex

su(∞) ≥ C ′(σ2
s/m)β ,

Rex
or (n) ≥ C ′(σ/n)β (for the least favorable f [Tsy09]). Hence (15) is consistent with the scaling

law (4).

3.3 Low-dimensional asymptotics

We study the estimator of Eqs. (2), (3) under the classical asymptotics n,m → ∞ at d fixed. Since
this type of analysis is more standard, we defer it to Appendix B. The main result of this analysis
is that the scaling law (4) holds in this setting, with the classical parametric exponent β = 1, for
α ∈ [0, αmax] for a suitable αmax ∈ (0, 1). Importantly, the interval [0, αmax] includes the optimal
choice of the weight α.
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3.4 High-dimensional linear regression

In this section, we study ridge regression in the high-dimensional regime in which the number of
samples is proportional to the number of parameters. Denoting the original data by (y,X) (with
y ∈ Rn the vector of responses and X ∈ Rn×d the matrix of covariates), and the surrogate data by
(ys,Xs) (with ys ∈ Rm and Xs ∈ Rm×d), we minimize the regularized empirical risk

R̂n,m(θ;α) =
1− α

2n
∥y −Xθ∥22 +

α

2m
∥ys −Xsθ∥22 +

λ

2
∥θ∥22 , (16)

We assume a simple distribution, whereby the rows of X , Xs (denoted by xi, xs
i ) are standard

normal vectors and

y = Xθ∗ + ε , ys = Xsθs
∗ + εs . (17)

for ε ∼ N(0, σ2In), εs ∼ N(0, σ2
sIm). Note that the two data distributions differ in the true

coefficient vectors θ∗ versus θs
∗ as well as in the noise variance. We will denote by θ̂n,m(α) the

ridge estimator, θ̂n,m(α) = argminθ∈Rd R̂n,m(θ;α).

The excess test error (for square loss) is given by R(θ̂) := E
{(

⟨x,θ∗⟩ − ⟨x, θ̂⟩
)2}

= ∥θ̂ − θ∗∥2.
The next result characterizes this error in the proportional asymptotics.

Theorem 3. Consider the ridge regression estimator θ̂n,m(α). Let r := ∥θ∗∥2, rs := ∥θs
∗∥2 and

γ := cos−1(⟨θ∗,θ
s
∗⟩/(∥θ∗∥2∥θs

∗∥2)). Assume n,m, d → ∞ such that n/d → δ, m/d → δs, with
δ + δs > 12. For R(.) defined in Appendix E.1, let

ξ∗(α), ξ∗⊥(α), ω
∗(α) = argminξ,ξ⊥≥0,ω≥0 R(ξ, ξ⊥, ω;α),

be the unique minimizer. Then for any ε, ε0 > 0, there exist c > 0 such that, for all n

P
(
supα∈[ε0,1−ε0]

∣∣R(θ̂n,m(α))− Rtest(α)
∣∣ ≤ ε

)
≥ 1− 2 e−cn ,

where Rtest(α) := (ξ∗(α)− r)2 + (ξ∗⊥(α))
2 + (ω∗(α))2. Further, we can take ε0 = 0 if δ, δs > 1.

Remark 3.2 (Optimizing α over the validation set). Note that the concentration of R(θ̂n,m(α))
around the theoretical prediction Rtest(α) in Theorem 3 is uniform over α ∈ [ε0, 1− ε0]. This means
that we can find the optimal α by computing θ̂n,m(α) over a grid of α values, estimating R(θ̂n,m(α))
over the validation set and choosing the optimal α. The uniform guarantee insures that this procedure
will achieve risk minα∈[0,1] Rtest(α) + oP (1).

Remark 3.3 (Relation to scaling laws). An analysis of the equations for (ξ∗, ξ∗⊥, ω
∗) reveals that, for

large δ, δs, the predicted excess risk behaves as Rtest(α) = α2R∗
s,∞ + α2C1/δs + (1− α)2C2/δ +

o(1/δ, 1/δs) (for some constants R∗
s,∞, C1, C2). This matches the low-dimensional asymptotics and

our scaling law (4) with β = 1. In practice, we find that, for moderate δ, δs, the behavior of Rtest(α)
is better approximated by a different value of β (see Appendix A.)

4 Empirical results

In this section, we present experiments validating that the scaling law (4) is a good approximation
both for simulated and real-world data. For simulated data, we select two different distributions
for the original and surrogate datasets. The test and validation sets are generated from the same
distribution as the original dataset. In case of real-world data, we choose two different datasets as the
original and surrogate datasets. We split the original dataset into train, test, and validation sets, while
all examples in the surrogate datasets are allocated solely to the train split.

For each dataset and model discussed in this section, we carry out the same experiment: (i) We
use models trained on original data to fit the scaling curve R(θ̂n,0(0)) = Aor + Born

−βor and
obtain Aor and βor (ii) We use models trained on purely surrogate data to fit the scaling curve
R(θ̂0,m(1)) = Asu +Bsum

−βsu to obtain Asu and βsu. (iii) Since assume R∗ = R(θ̂∞,0(0)), we let

2The same proof, with some additional technical work, yields a characterization for δ + δs ≤ 1 as well. We
omit it here for brevity.
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R∗ = Aor and excess risk estimates Rex
or (n) = R(θ̂n,0(0))−Aor, Rex

su(m) = R(θ̂0,m(1))−Aor and
Rex

su(∞) = Asu − Aor, and we use β = βor, the fit exponent obtained from original data); (iv) For
each combination of n,m, we use our estimates of Rex

su(m), Rex
or (n) (as measured empirically on

the test set), β, Rex
su(∞), and R∗ to plot the predicted R(θ̂n,m(α)) as a function of α using scaling

law (4). (v) We then train the model using n original and m surrogate examples with weights (1−α)
and, α for the two datasets, respectively. We average the results of 10 independent runs to compare
it against those predicted by the scaling law. For ridge regression, we also compare with exact
high-dimensional asymptotics from Theorem 3.

Let us emphasize that these plots probe the dependence on the hyperparameter α. These are much
more demanding tests that the usual ones in scaling laws. We generally observe that the scaling law
captures well the behavior of the test error for data mixtures. Furthermore, we perform experiments
for variety of loss functions to show these scaling laws hold more widely than the theoretical settings
we considered.

Binary classification with Gaussian mixture data This is a simple simulated setting. The original
dataset consists of independent and identically distributed examples (yi,xi) ∈ R × Rd, d = 200,
where yi is uniform over {+1,−1}, and xi

∣∣
yi

∼ N(yiθ∗, Id), where θ∗ ∈ Rd, ∥θ∗∥ = 1. Surrogate
data have the same distribution, with a different unit vector θ∗,s. This data distribution is parametrized
by d and the angle γ between the original and surrogate parameters, cos γ := ⟨θ∗, θ̂∗,s⟩. We use
γ = π/10 in our experiments. For each (n,m,α), we averaged the results over 10 independent runs.

We use two different models for classification: (1) Logistic regression; (2) A one-hidden layer neural
network with 32 hidden ReLU neurons. The results for both models are presented in Appendix A.1.

Linear regression with Gaussian mixture data For the Gaussian mixture data generation setup
described above, we also perform ridge regression. The results (presented in Appendix A.2) demon-
strate that classification loss and square loss often have a similar qualitative behavior as a function of
weight α, as seen by comparing the classification loss in Figure 7 and the squared loss in Figure 11 for
the same setup. Although our theoretical results do not apply directly to classification loss, we believe
that our qualitative conclusions generalize. This is confirmed by the similar behavior between the two
losses and the successful prediction of actual risk by scaling laws in our classification experiments.
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Figure 3: CIFAR10 and CIFAR100 data. Test error when trained on mixtures of original and surrogate
data. Black curves: prediction from Eq. (4).
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Figure 4: Lasso-based Cox regression on TCGA PanCancer dataset. Test error when trained on
mixtures of original and surrogate data. Black curves: prediction from Eq. (4).

Sentiment analysis in movie reviews As original data, we use the IMDB dataset (link) which has
25k reviews for training, each labeled as positive or negative. For validation and testing, we split the
IMDB test dataset of 25k reviews into a validation set of 10k reviews and test set of 15k reviews.

We experiment with two different surrogate datasets: 1) Rotten Tomatoes dataset of movie reviews
(link): these are data with different distribution but within the same domain. This dataset contains
movie reviews and the corresponding sentiments, 2) Goodreads book reviews (link): these are data
from a substantially different domain. This dataset has reviews and their ratings. We choose 10k
reviews each with a rating of 5 and 1, and label them as positive and negative, respectively.

We convert reviews into feature vectors with d = 884 dimensions as explained in Appendix A.3. We
use logistic regression and neural network models with the same set of parameters as in the Gaussian
mixture experiments (except for the input dimension).

Results with neural nets and Rotten Tomatoes as synthetic dataset are presented in Figure 1 and the
remaining results are in Appendix A.3.

Image classification with CIFAR10 and CIFAR100 We use 50,000 CIFAR10 training images as
original data, its 10 classes for the classification task, and test on the 10,000 CIFAR10 test images.
We use 50,000 CIFAR100 training images as surrogate data. We train a 9-layer ResNet model for
classification. Appendix A.4 presents details on the data pre-processing and mapping of labels.
Results are shown in Figure 3. Note that CIFAR10 and CIFAR100 datasets are quite different from
each other, as they have no overlap either in the images or in their label sets. Yet, the test error on
training on their mixture is well predicted by the scaling law (4).

Lasso-based Cox regression on TCGA PanCancer dataset We use the public domain TCGA
pancancer dataset [GCH+20] (link), with gene expressions as covariates and progression-free survival
(PFS) as response. After filtering and feature selection, we are left with 3580 female patients, which
we use as original data, and 3640 male patients, which we use as surrogate data. We fit CoxPHFitter
model (link) with 500 selected genes and use “1-concordance score” as our loss function. The results
are shown in Figure 4. The details of pre-processing and experiment parameters3 are in Appendix A.5.

High-dimensional ridge regression We simulate the data distribution in Section 3.4, i.e., yi =
⟨θ∗,xi⟩ + εi, i ≤ n; ysi = ⟨θ∗,s,x

s
i ⟩ + εsi , i ≤ m; with xi,x

s
i ∼ N(0, Id), εi ∼ N(0, σ2),

3We observe that training at α = 1 yields a somewhat singular behavior: we use a α = 0.95 as a proxy of
α = 1, see appendices.
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Figure 5: Ridge regression on simulated data. Here d = 500, n = 1000, σ2 = σ2
s = 1, ∥θ∗∥ =

∥θ∗,s∥ = 1, regul. par. λ = 2−10, and m varies by column. Top row γ = π/2, bottom row γ = π/6.

εsi ∼ N(0, σ2
s), and fit a simple linear model using ridge regression. The results are shown in Figure 5.

In our experiments, we use d = 500, σ2 = σ2
s = 1, ∥θ∗∥ = ∥θ∗,s∥ = 1 and regularization parameter

λ = 2−10. Under these settings, the model is parametrized by the angle γ between θ∗ and θ∗,s,
where cos γ := ⟨θ∗,θ∗,s⟩. We used γ = π/6 and π/2 in our experiments.4

The theoretical predictions of Theorem 3 for these curves in high-dimensional asymptotics
n,m, d → ∞, with n/d → δ, m/d → δs are reported as blue lines, and match remarkably well with
the empirical data. The simple scaling law (4) nevertheless provides a good approximation of these
(more complicated) theoretical formulas.

Note in particular that in the top row of Figure 5, we have ⟨θ∗,θ∗,s⟩ = 0, i.e. the surrogate data are
as far as possible from the original ones. Nevertheless, the induced regularization effect leads to
smaller test error on the original distribution.

We observe proposed scaling law (4) predicts well the behavior of the experiments, across of the
datasets above, and for most combinations of original and surrogate examples we have tested.

Finally, we emphasize that the scaling law is only an empirical approximation of reality. This is
clearly illustrated by the example of ridge regression: in this case, we use Theorem 3 to precisely
predict the discrepancy between precise asymptotics and scaling law, see Appendix A.6.

5 Discussion

We conclude by discussing two possible generalizations of the scaling law (4), and its applicability.
First, throughout this paper we assumed that Rex

or (∞) = 0, namely that we can achieve the Bayes
error by training on infinitely many original samples. In practice this will not hold because of
the limited model complexity. Following standard scaling laws [KMH+20, HBM+22], this effect
can be accounted for by an additional term C · N−ω, where N is the model size (number of
parameters). Second, the scaling law (4) implies as special cases that Rex

or (n) ≈ Aorn
−β , Rex

su(m) ≈
Rex

su(∞) +Asum
−β . In particular, the exponent β is the same when training on real or surrogate data.

In practice, we observe often two somewhat different exponents βor ̸= βsu. In these cases, we set
β = βor, and this appears to work reasonably well. However, we can imagine cases in which the
difference between βor and βsu is significant enough (4) will stop being accurate.
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A Details of empirical results

A.1 Binary classification with Gaussian mixture data
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Figure 6: Gaussian mixture data and logistic regression. Test error when trained on original (left plot)
and surrogate (right plot) data only (red dots). Best fits are shown in black. These gives the estimates
β = 0.72, R∗ = 0.157, and Rex

su(∞) = 0.013.
We provide details for the models used in the simulations.

Logistic regression: We use the scikit-learn implementation with the lbfgs solver, fitting the intercept,
with maximum iterations set to 10k. For each run of each (n,m,α) combination, we set the ℓ2
penalty (parameter C in scikit-learn) to 2i, i = −8, ..., 8 and 10i, i = −6,−5,−4,−3, 3, 4, 5, 6, and
only report the test result for the value that achieves the best validation error. The results of the
individual scaling law estimates and the comparison of joint training results with the scaling law
predictions are shown in Figures 6 and 7.

Neural network: The network has one hidden layer with 32 ReLU neurons, and an output neuron
using sigmoid. For training, we use the binary cross entropy loss, a constant learning rate of 0.05, and
batch size 64. We train the network for 1,000 epochs. Similar to the procedure in logistic regression,
we use ℓ2 regularization (weight decay) and use the validation set to choose the best regularization
parameter from the set {0, 10−5, 10−4, 10−3, 2 · 10−3, 4 · 10−3, 10−2, 2 · 10−2, 4 · 10−2, 10−1, 2 ·
10−1, 4 · 10−1}. The results of the individual scaling law estimates and the comparison of joint
training results with the scaling law predictions are shown in Figures 8 and 9.

A.2 Linear regression with Gaussian mixture data

For the Gaussian mixture data, described in the previous section, we perform weighted ridge regres-
sion experiments according to equation (16) and plot the square loss. As before, we choose the best
regularizer for the ridge regression of the set 2i, i = −8, ..., 8 and 10i, i = −6,−5,−4,−3, 3, 4, 5, 6,
and report the test result for the value that achieves the best validation error. The results are presented
in Figures 10 and 11.

A.3 Sentiment analysis in movie reviews

To convert the movie reviews and book reviews to vectors, we use a combination of two different
embedding: We use all the reviews in the training data and then use nltk tagger [Bir06] to find the
most frequent 500 adjectives appearing in the samples used for training. Then we use the common
Tfidf vectorizer (we used scikit-learn’s implementation of tfidf vectorizer) for which we use the list of
these most common 500 adjectives as vocabulary. This gives us a vector of length 500 dimension for
each review. In addition, we also apply “Paraphrase-MiniLM-L6-v2” sentence transformer which is
based on BERT with 6 Transformer Encoder Layers, and return a 384 dimension vector representation
of the reviews. For each movie review we concatenate the results of tfidf vectorizer and sentence
transformer to get a 884 dimensional representation that we use as our input vector.
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Figure 7: Gaussian mixture data and logistic regression. Test error when trained on mixtures of
original (n varying by row) and surrogate (m varying by column) data. Black curves: scaling formula
(4).

We use logistic regression and neural networks with the same set of parameters as in the Gaussian
mixture experiments (except for the input dimension). We plot the average loss over 10 independent
runs.

Results omitted from the main text are presented in Figures 12–16.

A.4 Image classification with CIFAR10 and CIFAR100

We largely use the model and the training procedure described at https://jovian.ml/aakashns/05b-
cifar10-resnet. We normalize the images for mean and standard deviation. We train a 9-layer ResNet
model for classification, using Adam for optimization, weight decay, and gradient clipping, trained
over 16 epochs with a one-cycle learning rate scheduling policy, minimizing cross entropy loss. For
each combination of m, n, and α, we report the average test error over 10 runs. Since there is no
overlap between the label sets of CIFAR10 and CIFAR100, the latter dataset needs to be relabeled.
We do this by training a separate 9-layer ResNet model on 10,000 randomly chosen CIFAR10 images
from the training set of 50,000 examples (without creating a separate split for them), and use its
predictions on CIFAR100 images as labels.

Scaling curves are presented in Figure 17 and 3.
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Figure 8: Gaussian mixture data and neural network. Test error when trained on original (left plot)
and surrogate (right plot) data only (red dots). Best fits are shown in black. These gives the estimates
β = 0.79, R∗ = 0.160 and Rex

su(∞) = 0.010.

A.5 Lasso on TCGA PanCancer dataset

We used public domain TCGA pancancer dataset. After, filtering samples with incomplete values we
are left with 9220 patients, each having 20,531 gene expression values and the outcome was PFS
(progression-free survival). Out of these we used a group of 2000 patients, splitted into train and
test set of 1000 each to select 500 genes having the largest absolute Cox PH score. We also used
the mean and standard deviation of gene expression values of these 2000 patients to normalize the
gene expression columns for the remaining 7220 patients. Among the remaining of 7220 patients
3580 were females. We treated the female patients data as original data, and split them into train
(50%), test (25%) and validation split (25%). The remaining 3640 patients data was used as surrogate
dataset. We fit CoxPHFitter model (link) with 500 selected genes and use “1-concordance score”
as our loss function. We used the validation split to choose best value of ℓ1 penalty parameter
from 2i, i = 2, 0,−2,−4,−6,−8,−10,−12,−14,−16 in the model. We observed discontinuity
at α = 1. To avoid this discontinuity, we approximated R(θ̂n,m(1)) by R(θ̂n,m(1 − ϵ)) if n > 0

and by R(θ̂m/2,m(1 − ϵ)) if n = 0, where we choose ϵ = 0.05. We plot the average loss over 10
independent runs. The results are presented in Figures 18 and 4.

A.6 High-dimensional ridge regression

We present additional ridge regression experiments here in Figs. 19–30. We plot the average loss
over 10 independent runs. In these experiments, as in the main paper, we set d = 500, σ2 = σ2

s = 1,
∥θ∗∥ = 1, ∥θ∗,s∥ = 1, except for the last four Figs. 27–30, where we use ∥θ∗,s∥ = 1/2. We used
angle γ = π/6 and π/2 in our experiments.

We consider two methods: (1) Fix λ to a very small value 2−10, and (2) For each random draw of
datasets select λ that achieves the best validation performance. For the latter method, we try λ = 2i,
where i = −10,−8,−6, . . . , 8, 10. For ridge regression simulations, we directly plot the excess test
risks, as the parameter θ for original data is known and for any θ̂ the excess test risk in this model is
∥θ − θ̂∥2.

B Low-dimensional asymptotics

B.1 Formal statements

In this appendix, we present our results on the estimator of Eqs. (2), (3) under the classical asymptotics
n,m → ∞ at d fixed. For simplicity, we assume no regularizer is used in this regime.
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Figure 9: Gaussian mixture data and neural network. Test error when training mixture of original (n
varying by row) and surrogate (m varying by column) data. Black curves: scaling law (4).

Beyond classical regularity assumptions of low-dimensional asymptotics, in this section we will
make the following assumption which guarantees that original and surrogate distribution are ‘not
arbitrarily far.’ Recall that Rs(θ) denotes the population error on surrogate data.
Assumption 1 (Distribution shift for low-d asymptotics). There exists a constant K∗ such that for
all θ ∈ Rd, ∣∣Rs(θ)−R(θ)

∣∣ ≤ K∗
(
1 +R(θ)

)
. (18)

The regularity conditions are similar to the ones in [vdV00]. Here and in the following B(θ∗, r) is
the ball of radius r centered at θ∗.
Assumption 2 (‘Classical’ regularity).

(a) The original population risk R(θ) is uniquely minimized at a point θ∗.

(b) θ 7→ ℓ(θ; z) is non-negative lower semicontinuous. Further, define the following limit in
[0,∞] for u ∈ Sd−1:

ℓ∞(u; z) := lim inf
θ→∞

θ/∥θ∥2→u

ℓ(θ; z) . (19)

Then we assume infu∈Sd−1 Eℓ∞(u; z) ≥ R(θ∗) + c for some c > 0.
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Figure 10: Gaussian mixture data and ridge regression. Test error when trained on original (left plot)
and surrogate (right plot) data only (red dots). Best fits are shown in black. These gives the estimates
β = 0.60, R∗ = 0.49, and Rex

su(∞) = 0.03.
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Figure 11: Gaussian mixture data and ridge regression. Test error when trained on mixtures of
original and surrogate data. Black curves: prediction from Eq. (4).
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Figure 12: IMDB and Rotten Tomatoes data and logistic regression. Test error when trained on
original (left plot) and surrogate (right plot) data only (red dots), together with scaling law fits (black
lines). Best fit parameters are β = 0.27, R∗ = 0.101 and Rex

su(∞) = 0.148.
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Figure 13: IMDB and Rotten Tomatoes data and logistic regression. Test error when trained on
mixtures of original and surrogate data. Black curves: prediction from Eq. (4).
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Figure 14: IMDB and Goodreads book reviews (as surrogate dataset) and logistic regression. Test
error when trained on original (left plot) and surrogate (right plot) data only (red dots), together with
scaling law fits (black lines). Best fit parameters are β = 0.27, R∗ = 0.101 and Rex

su(∞) = 0.101.
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Figure 15: IMDB and Goodreads book reviews and logistic regression. Test error when trained on
mixtures of original and surrogate data. Black curves: prediction from Eq. (4).
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Figure 16: IMDB and Rotten Tomatoes data and neural networks. Scaling law fits for models trained
on original (left plot) and surrogate (right plot) data only (red dots)(as in Fig. 12), together with
scaling law fits (black lines). Best fit parameters are β = 0.37, R∗ = 0.145 and Rex

su(∞) = 0.095.
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Figure 17: CIFAR10 and CIFAR100 data: (left) Test error scaling of original data (left) and surrogate
data (right). Best fit parameters are β = 0.404, R∗ = 0.0013, and Rex

su(∞) = 0.199.
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Figure 18: Lasso-based Cox regression on TCGA PanCancer dataset with female patients data as
original data and male patients data as surrogate data. Scaling law fits for models trained on original
(left plot) and surrogate (right plot) data only (red dots)(as in Fig. 12.) Best fit parameters are
β = 1.55, R∗ = 0.29 and Rex

su(∞) = 0.29.
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Figure 19: Ridge regression with γ = π/2, and regularization parameter λ = 2−10: Test error scaling
of the original data (left), and surrogate data (right). Best curve fits give the estimates β = 1.57 and
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Figure 20: Ridge regression with γ = π/2, and regularization parameter λ = 2−10
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Figure 21: Ridge regression with π/6 between θ and θs, and regularization parameter λ = 2−10: Test
error scaling of the original data (left), and surrogate data (right). Best curve fits give the estimates
β = 1.57 and Rex

su(∞) = 0.29
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Figure 22: Ridge regression with π/6 between θ and θs, and regularization parameter λ = 2−10
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Figure 23: Ridge regression with π/2 between θ and θs, and the best regularization parameter: Test
error scaling of the original data (left), and surrogate data (right). Best curve fits give the estimates
β = 0.94 and Rex

su(∞) = 1.0
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Figure 24: Ridge regression with γ = π/2, and the best regularization parameter

24



0 5000 10000 15000 20000 25000 30000
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ex
ce

ss
 sq

ua
re

d 
lo

ss

actual
best fit

0 5000 10000 15000 20000 25000 30000
m

actual
best fit

Figure 25: Ridge regression with π/6 between θ and θs, and the best regularization parameter: Test
error scaling of the original data (left), and surrogate data (right). Best curve fits give the estimates
β = 0.94 and Rex

su(∞) = 0.24
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Figure 26: Ridge regression with π/6 between θ and θs, and the best regularization parameter
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Figure 27: Ridge regression with π/2 between θ and θs, ∥θ∥ = 1, ∥θs∥ = 1/2 and the best
regularization parameter: Test error scaling of the original data (left), and surrogate data (right). Best
curve fits give the estimates β = 0.94 and Rex

su(∞) = 1.00

0.2

0.4

0.6

0.8

1.0

ex
ce

ss
 sq

ua
re

d 
lo

ss

m = 1000
theory
scaling law
simulation

m = 2000

n = 1000

m = 4000

0.2

0.4

0.6

0.8

1.0

ex
ce

ss
 sq

ua
re

d 
lo

ss

n = 2000

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ex
ce

ss
 sq

ua
re

d 
lo

ss

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n = 4000

Figure 28: Ridge regression with π/2 between θ and θs, ∥θ∥ = 1, ∥θs∥ = 1/2 and the best
regularization parameter
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Figure 29: Ridge regression with γ = π/2, ∥θ∥ = 1, ∥θs∥ = 1/2, and regularization parameter
λ = 2−10: Test error scaling of the original data (left), and surrogate data (right). Best curve fits give
the estimates β = 1.57 and Rex

su(∞) = 1.27
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Figure 30: Ridge regression with γ = π/2, ∥θ∥ = 1, ∥θs∥ = 1/2, and regularization parameter
λ = 2−10
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(c) θ 7→ ℓ(θ; z) is differentiable at θ∗ almost surely, both under z ∼ P and under z ∼ Ps.
Further, there exists r > 0 such that, letting B := B(θ∗, r), the following holds for a
constant C:

E sup
θ1 ̸=θ2∈B

{ |ℓ(θ1; z)− ℓ(θ2; z)|2

∥θ1 − θ2∥22

}
≤ C < ∞ . (20)

(d) The functions θ 7→ R(θ), θ 7→ Rs(θ), are twice differentiable in a neighborhood of θ∗,
with Lipschitz continuous Hessian. Further ∇2R(θ∗) ≻ 0 (strictly positive definite).

Proposition B.1. Under Assumption 1 and Assumption 2, define the following d× d matrices

H := ∇2R(θ∗) = E[∇2ℓ(θ∗; z)] , (21)

K := Cov
(
∇ℓ(θ∗; z);∇ℓ(θ∗; z)

)
, (22)

Ks := Covs
(
∇ℓ(θ∗; z

s);∇ℓ(θ∗; z
s)
)
, (23)

where Cov, Covs denote the covariances, respectively, with respect to the original data (i.e., with
respect to z ∼ P), and with respect to the surrogate data (i.e., with respect to zs ∼ Ps). Further
define the d-dimensional vector

gs := ∇Rs(θ∗)−∇R(θ∗) . (24)

Then there exists αmax ∈ (0, 1] (depending only on the constants in the assumptions) such that, for
all α ∈ [0, αmax], the excess risk of the estimator θ̂n,m(α) satisfies (for D := ∥gs∥ bounded by a
constant)

R
(
θ̂n,m(α)

)
−R

(
θ∗

)
= α2⟨gs,H−1gs⟩+ (1− α)2

n
· Tr

(
H−1K

)
(25)

+
α2

m
· Tr

(
H−1Ks

)
+O

(( 1

m ∨ n
+Dα2

)( 1

(m ∨ n)1/2
+Dα

))
.

(Here the big O hides dependence on the constants in Assumptions 1 and 2.)
Remark B.1. For economy of notation we stated Proposition B.1 in the case in which the excess risk
is measured by using the same loss as for training, i.e. ℓtest = ℓ. However the same result Eq. (25)
applies with minor modifications to the case ℓtest ̸= ℓ (and thus, with R replaced by Rtest), provided
Rtest is also twice differentiable with Lipschitz Hessian, and ∇Rtest(θ∗) = 0. In this case, (25) has to
be modified replacing H−1 by H−1∇2Rtest(θ∗)H

−1.
Remark B.2. The error terms in Eq. (25) are negligible under two conditions: (i)m and n are large,
which is the classical condition for low-dimensional asymptotics to hold; (ii) ∥gs∥2 = ∥∇Rs(θ∗)∥2α
is small. In particular, the latter condition will hold in two cases. First, when ∥∇Rs(θ∗)∥2 is of order
one (i.e. the distribution shift is large), but α is small (surrogate data are downweighted). Note that,
when the distribution shift is large, and the sample size n is large enough, we expect small α to be
optimal and therefore Eq. (25) covers the ‘interesting’ regime.

Second, when ∥∇Rs(θ∗)∥2 is small (i.e. the shift is small) and α is of order one. If in addition we
have ∇2Rs(θ∗) ≈ ∇2Rs(θ∗), it can be shown that the range of validity of Eq. (25) covers the whole
interval α ∈ [0, 1].

Remark B.3. Note that the distribution shift is measured in Eq. (25) by the first term ⟨gs,H−1gs⟩.
The original and surrogate distribution can be very different in other metrics (e.g. in total variation
or transportation distance), but as long as gs is small (as measured in the norm defined by H−1),
surrogate data will reduce test error.

Note that, within the setting of Proposition B.1, the excess error of training only on original data
is Rex

or (n) := R(θ̂n,0(0)) − R(θ∗) = Tr
(
H−1K

)
/n + o(1/n), while Rex

su(m) := R(θ̂n,m(0)) −
R(θ∗) = ⟨gs,H−1gs⟩+Tr

(
H−1Ks

)
/m+ o(1/m). Hence Eq. (B.1) can be recast in the form of

our general scaling law (4), namely:

R(θ̂n,m(α))−R
(
θ∗

)
≈ α2Rex

su(∞) +
[
α2

(
Rex

su(m)−Rex
su(∞)

)
+ (1− α)2Rex

or (n)
]
,

which (as expected) corresponds to the parametric scaling exponent β = 1.

An immediate consequence of Proposition B.1 is that surrogate data do not hurt, and will help if their
distribution is close enough to the original one (under the assumption of optimally chosen α).
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Corollary B.2. Under the assumptions of Proposition B.1, let Ror(n) := Tr
(
H−1K

)
/n, and

Rsu(m) := ⟨gs,H−1gs⟩+Tr
(
H−1Ks

)
/m. For α∗

n,m = Ror(n)/(Rsu(m) +Ror(n)), we have

R
(
θ̂n,m(α∗

n,m)
)
−R∗ =

(
Ror(n)

−1 +Rsu(m)−1
)−1

+∆n,m,

with ∆n,m of the same order as the error in Prop. B.1.

B.2 Proofs

Lemma B.3. Under the assumptions of Proposition B.1 (Assumption 1 and Assumption 2) there
exists αmax ∈ (0, 1], depending only on the constants appearing there such that the following holds:

(i) The function θ 7→ R(θ;α) := (1−α)R(θ)+αRs(θ) has a unique minimizer θ∗(α) ∈ Rd.
Further θ∗(α) ∈ B(θ∗, r), and θ∗(α) → θ∗ as α ↓ 0.

(ii) We have θ̂n,m(α) → θ∗ in probability as n,m → ∞.

Proof. Fix r0 ∈ (0, r] By Assumption 2.(a), infθ ̸∈B(θ∗;r0) R(θ) > R(θ∗) + δ0 for some constant
δ0. Hence, using Assumption 1, for any θ ̸∈ B(θ∗; r)

R(θ;α) ≥ R(θ)−K∗α
[
1 +R(θ)

]
≥ (1−K∗α)R(θ)−K∗α

≥ (1−K∗α)(R(θ∗) + δ0)−K∗α .

In the other hand R(θ∗;α) ≤ (1 +K∗α)R(θ∗) +K∗α, whence

R(θ;α)−R(θ∗;α) ≥ (1−K∗α)δ0 − 2K∗αR(θ∗)

− 2K∗α, ,

which is strictly positive for α < αmax(r0) := δ0/(4K∗(1 + R(θ∗)). Hence the minimum must
be achieved in B(θ∗; r0) (note that since R(θ), Rs(θ) are lower semicontinuous, the minimum is
achieved).

By Assumption 2.(d), for r0 sufficiently small, θ 7→ ∇R(θ;α) is strictly convex in B(θ∗; r0) and
therefore the minimizer is unique. This proves point (i).

Point (ii) follows from a modification of Theorem 5.14 in [vdV00]. Namely, for a diverging
sequence {(n(k),m(k)) : k ∈ N}, we consider to R̂∗,k(u) := R̂n(k),m(k)(c(u)u;α), where
c(u) := (1 + ∥u∥2)−1/2. This function is lower semicontinuous on the compact set B(0; 1) and
converges almost surely to its expectation for every fixed u in this set, and hence the argument of
Theorem 5.14 [vdV00] applies here.

Proof of Proposition B.1. By a modification of Theorem 5.39 in [vdV00] (here θ∗(α) is defined as
in Lemma B.3)

θ̂n,m(α) = θ∗(α) +
1− α

n
H(α)−1

n∑
i=1

[
∇ℓ(θ∗(α); zi)− E∇ℓ(θ; z)

]
(26)

+
α

m
H(α)−1

m∑
i=1

[
∇ℓ(θ∗(α); z

c
i )− Es∇ℓ(θ; z)

]
+OP (m

−1 + n−1) , (27)

where H(α) := (1− α)∇2R(θ∗(α)) + α∇2Rs(θ∗(α)). Note that in the present setting the error is
of order m−1 + n−1 because we assume the Hessian to be Lipschitz continuous.

The population minimizer θ∗(α) solves

0 = ∇R(θ∗(α);α)

= ∇R(θ∗;α) +∇2R(θ∗;α)(θ∗(α)− θ∗) +

∫ 1

0

[
∇2R(θt;α)−∇2R(θ∗;α)

]
(θ∗(α)− θ∗) dt ,

29



where θt = tθ∗(α) + (1− t)θ∗. Denoting by L2 the Lipschitz constant of the Hessian (in operator
norm), and recalling that ∇R(θ∗) = 0, we have

∇2R(θ∗;α)(θ∗(α)− θ∗) = −α∇Rs(θ∗) + u ,

∥u∥2 ≤ L2∥θ∗(α)− θ∗∥2 .

Recalling that, by Lemma B.3, θ∗(α) → θ∗ as α → 0, this implies

θ∗(α)− θ∗ = −H−1∇Rs(θ∗)α+O
(
(
(
∥∇Rs(θ∗)∥2 ∨ ∥∇Rs(θ∗)∥22

)
α2) . (28)

Substituting in Eq. (26), we get

θ̂n,m(α)− θ∗ =−H−1∇Rs(θ∗)α+
1− α

n
H(α)−1

n∑
i=1

[
∇ℓ(θ∗(α); zi)− E∇ℓ(θ; z)

]
(29)

+
α

m
H(α)−1

m∑
i=1

[
∇ℓ(θ∗(α); z

c
i )− Es∇ℓ(θ; z)

]
+∆ , (30)

∥∆∥ ≤C
(
∥∇Rs(θ∗)∥2 ∨ ∥∇Rs(θ∗)∥22

)
α2 +

C

m ∧ n
. (31)

The claim follows by substituting the above in

ER(θ̂n,m(α))−R(θ) = E⟨θ̂n,m(α)− θ∗,H(θ̂n,m(α)− θ∗)⟩+O
(
E∥θ̂n,m(α)− θ∗∥3

)
(32)

and using H(α) = H +O(α).

C Gaussian sequence model: Proofs for Section 3.1

C.1 General ridge regression

We define Σ̂ = XTX/n, Σ̂s = XT
sXs/m, and Σ̂α = (1− α)Σ̂+ αΣ̂s. We then have

Rn,m(α, λ) =Bn,m(α, λ) +
(1− α)2σ2

n
· Vn,m(α, λ) +

α2σ2
s

n
· V s

n,m(α, λ) , (33)

Bn,m(α, λ) :=
∥∥∥Σ1/2(Ω+ Σ̂α)

−1
(
Ωθ∗ − αΣ̂s(θ

s
∗ − θ∗)

)∥∥∥2 , (34)

Vn,m(α, λ) := Tr
(
(Ω+ Σ̂α)

−1Σ̂(Ω+ Σ̂α)
−1Σ

)
, (35)

V s
n,m(α, λ) := Tr

(
(Ω+ Σ̂α)

−1Σ̂s(Ω+ Σ̂α)
−1Σ

)
(36)

C.2 Proof of Theorem 1

Without loss of generality, we can assume Ω = diag((ωk)k≥1) with ωk non-decreasing. A simple
calculation gives the following general expression for the test error:

Rn,m(α, λ) =Bn,m(α, λ) + sn,m(α) · Vn,m(α, λ) , (37)

Bn,m(α, λ) :=

∞∑
k=1

( 1

1 + λωk

)2[
(α+ λωk)θ∗,k − αθs∗,k

]2
, (38)

Vn,m(α, λ) :=

∞∑
k=1

( 1

1 + λωk

)2

, (39)

sn,m(α) := (1− α)2
σ2

n
+ α2σ

2
s

m
. (40)

We define (with k1 = 0 if the condition is never verified)

k1 := max
{
k : λωk ≤ 1

}
. (41)
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Note that

0 < k ≤ k1 ⇒ 0 < λωk ≤ 1 , (42)
k1 < k ⇒ 1 < λωk . (43)

We now estimate various sums by breaking them by the value of k

Bn,m ≤
k1∑
k=1

[
(α+ λωk)θ∗,k − αθs∗,k

]2
+

∞∑
k=k1+1

1

(λωk)2
[
(α+ λωk)θ∗,k − αθs∗,k

]2
≤

k1∑
k=1

[
α2(θ∗,k − θs∗,k)

2 + 2α(θ∗,k − θs∗,k)λωkθ∗,k + (λωk)
2θ2∗,k

]
+

∞∑
k=k1+1

[ α2

(λωk)2
(θ∗,k − θs∗,k)

2 − 2α

λωk
(θ∗,k − θs∗,k)θ∗,k + θ2∗,k

]
≤ α2∥θ∗,≤k1

− θs
∗,≤k1

∥2 + 2α

ωk1

|⟨θ∗,≤k1
− θs

∗,≤k1
,θ∗,≤k1

⟩Ω|+
1

ω2
k1

∥θ∗,≤k1
∥2Ω2

+ α2ω2
k1+1∥θ∗,>k1

− θs
∗,>k1

∥2Ω−2 + 2αωk1+1

∣∣⟨θ∗,>k1
− θs

∗,>k1
,θ∗,>k1

⟩Ω−1

∣∣+ ∥θ∗,>k1
∥2 ,

and

Vn,m ≤ k1 +
∑
k>k1

ω2
k1+1

ω2
k

≤ (k1 + c#) ,

since under the assumption ωk ≍ kµ, µ > 1/2, we have
∑

k>k1
(ωk1+1/ωk)

2 ≤ c#.

Recalling the definitions in the theorem, and letting

δk := max
(
ωk+1

∣∣⟨θ∗,>k − θs
∗,>k,θ∗,>k⟩Ω−1

∣∣; ω2
k+1∥θ∗,>k − θs

∗,>k∥2Ω−2

)
,

we have

Bn,m ≤ α2∥θ∗ − θs
∗∥2 + ∥θ∗,>k1∥2 +

1

ω2
k1

∥θ∗,≤k∥2Ω2 + 3δk1 + 2∆k1 ,

whence

Rn,m(α, λ) ≤ α2∥θ∗ − θs
∗∥2 + ∥θ∗,>k1∥2 +

1

ω2
k1

∥θ∗,≤k1∥2Ω2 + (k1 + c#) · sn,m(α) + 3δk1 + 2∆k1

= α2Rex
su(∞) + ∥θ∗,>k1

∥2 + 1

ω2
k1

∥θ∗,≤k1∥2Ω2 + (k1 + c#) · sn,m(α) + 3δk1 + 2∆k1 .

Next we specialize to the case ∥θ∗,>k∥2 ≤ Cθk
−2ρ, ωk ≍ kµ µ ̸= ρ. In this case we have

ω−2
k ∥θ∗,≤k∥2Ω2 ≤ Ck−2(µ∧ρ), and therefore, by suitably adjusting the constant C

Rn,m(α, λ) ≤ α2Rex
su(∞) + Ck

−2(µ∧ρ)
1 + (k1 + c#) · sn,m(α) + 3δk1

+ 2∆k1
.

We now bound δk. By Cauchy-Schwarz and monotonicity of ω,

ωk+1

∣∣⟨θ∗,>k − θs
∗,>k,θ∗,>k⟩Ω−1

∣∣ ≤ ∥θ∗,>k − θs
∗,>k∥2∥θ∗,>k∥2 ≤ 2Cθk

−2ρ ,

and further

ω2
k+1∥θ∗,>k − θs

∗,>k∥2Ω−2 ≤ 2∥θ∗,>k∥2 + 2∥θs
∗,>k∥2 ≤ 4Cθk

−2ρ . (44)

Therefore,

Rn,m(α, λ) ≤ α2Rex
su(∞) + Ck

−2(µ∧ρ)
1 + (k1 + c#) · sn,m(α) + 2∆k1 .

Proof of claim (a). The stated assumption on ∆k imply that (eventually adjusting the constant C):

Rn,m(α, λ) ≤ α2Rex
su(∞) + Ck

−2(µ∧ρ)
1 + (k1 + c#) · sn,m(α) .
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We now select λ∗(α) so that k1 ≍ sn,m(α)−1+β where β = 2(µ ∧ ρ)/(1 + 2(µ ∧ ρ)). (this is
possible for all n,m large enough under the assumption on ωk), to A straightforward calculation
yields:

Rn,m(α, λ∗(α)) ≤ α2Rex
su(∞) + C · sn,m(α)β ,

which proves claim (a).

Proof of Claim (b). We choose ωk = kµ, θ∗,k = k−ρ′−1/2, θs∗,k = θ∗,k + akk
−ρ−1/2, with

ak ∼ Unif({−A,+A}) . We will choose A ≤ 1 a sufficiently small numerical constant. Note that,
for µ > 2ρ+ 1/2

∆k = k−µ

∣∣∣∣∣
k∑

ℓ=1

aℓℓ
µ−2ρ−1

∣∣∣∣∣ ≤ CAk−µ+ε

∣∣∣∣∣
k∑

ℓ=1

ℓ2µ−4ρ−2

∣∣∣∣∣
1/2

≤ CAk−2ρ−1/2+ε′ ,

where, for any ε > 0, the first inequality holds with probability at least 1/2 for all k > k0(ε). We
can therefore select the aℓ, so that ∆k ≤ C ′′Ak−2ρ−ε for some C ′′ < ∞.

Following the calculation at point (a) decompose the bias term as

Bn,m =

∞∑
k=1

( 1

1 + λωk

)2[
α2(θ∗,k − θs∗,k)

2 + (λωk)
2θ2∗,k

]
+ 2αEn,m ,

En,m :=

∞∑
k=1

( 1

1 + λωk

)2

(θ∗,k − θs∗,k)λωkθ∗,k .

Note that |En,m| ≤ δk1 +∆k1 ≤ CAk
−2(µ∧ρ)
1 . Therefore

Bn,m − α2∥θ∗ − θs
∗∥2

≥
∞∑
k=1

( λωk

1 + λωk

)2

θ2∗,k − α2
∞∑
k=1

[
1−

( 1

1 + λωk

)2
]
(θ∗,k − θs∗,k)

2 − CAk
−2(µ∧ρ)
1

≥ 1

4ω2
k1+1

∥θ∗,≤k1∥2Ω2 +
1

4
∥θ∗,>k1∥2 −

A

4ωk1+1
∥θ∗,≤k1∥2Ω − A

4
∥θ∗,>k1∥2 − CAk

−2(µ∧ρ)
1

≥ C k
−2(µ∧ρ)
1 .

By a similar calculation, we also obtain

Vn,m ≥ C k1 ,

and therefore

Rn,m(α, λ) ≥ α2Rex
su(∞) + Ck

−2(µ∧ρ)
1 + Ck1 · sn,m(α) .

The proof is completed by minimizing over k1.

D Analysis of the nonparametric model: Proofs for Section 3.2

This appendix is devoted to proving Theorem 2. Recall that this is established within the white noise
model of Eq. (14), which we copy here for the readers’ convenience

dY = f∗(x) dx+
σ√
n
dB(x) , (45)

The adaptation of the estimator (13) to this continuous setting is given explicitly below

f̂n,m,α = argmin
f

{
(1− α)∥Y − f

∥∥2
2
+ α∥Ys − f

∥∥2
2
+ λ∥f∥2p,2

}
. (46)

The proof of Theorem 2 is based on a reduction to a suitable ‘sequence model’ via the Fourier
transform, defined as

θ(q) :=

∫
[0,1]d

f(x) e−ι⟨q,x⟩ dx , (47)

32



for q ∈ Qd := {2πq : q ∈ Zd}, where ι =
√
−1. The inverse Fourier transform is defined as

f(x) =
1

(2π)d

∑
q∈Qd

θ(q) eι⟨q,x⟩ . (48)

We let θ∗, θ∗,s, and θ̂λ,p,n,m,α respectively denote the Fourier transform of f∗, f∗,s, and f̂λ,p,n,m,α.

The Fourier transforms of the observations are given by

Ŷ (q) = θ∗(q) +
σ√
n
G(q) , Ŷs(q) = θ∗,s(q) +

σs√
m

Gs(q) , (49)

where G(q) and Gs(q) are i.i.d. standard Gaussian. It then follows that

θ̂n,m(α) = argmin
θ

{
(1− α)∥Ŷ − θ

∥∥2
2
+ α∥Ŷ s − θ

∥∥2
2
+ λ∥θ∥2p,2

}
. (50)

where we abuse the notation to define
∥θ∥2p,2 :=

∑
q∈Qd

cp,q |θ(q)|2 . (51)

with cp,q := 1 + ∥q∥2r. Minimizing (50) we get

θ̂n,m(q;α) =
1

1 + λcp,q

[
(1− α) Ŷ (q) + α Ŷs(q)

]
. (52)

Taking the inverse Fourier transform and plugging it into the excess risk formula we get

R(f̂n,m,α) =
∑
q∈Qd

1

(1 + λcp,q)2
[
α(θ∗,s − θ∗)(q)

+ λcp,qθ∗(q)
]2

+ Vn,m

∑
q∈Qd

1

(1 + λcp,q)2
, (53)

where

Vn,m := (1− α)2
σ2

n
+ α2σ

2
s

m
. (54)

The convexity of x → x2 implies

(a+ b)2 =

(
γ
a

γ
+ (1− γ)

b

1− γ

)2

≤ a2

γ
+

b2

1− γ
(55)

for γ ∈ (0, 1) and therefore we can upper bound the first sum in (53) by taking γ = 1/(1 + δ) for
any δ > 0, which yields

R(fn,m,α) ≤ (1+δ)α2∥θ∗,s−θ∗∥22+
1 + δ

δ

∑
q∈Qd

(
λcp,q

1 + λcp,q

)2

|θ∗(q)|2+Vn,m

∑
q∈Qd

1

(1 + λcp,q)2
.

(56)

D.1 Proof of Theorem 2

We now upper bound the first sum above. We note that, defining q0 via λcr(q0) = 1 (with an abuse
of notation cr(t) = 1 + t2r), whence q0 ≥ (λ/2)−1/2r for all λ < 1:∑
q∈Qd

(
λcp,q

1 + λcr,q

)2

· |θ∗(q)|2 ≤
∑

q∈Qd,∥q∥2≤q0

λ2cr(q)
2|θ∗(q)|2 +

∑
q∈Qd,∥q∥2>q0

|θ∗(q)|2

≤ λ2 max
∥q∥2≤q0

cr(q)
2

cs(q)

∑
q∈Qd,∥q∥2≤q0

cs(q)|θ∗(q)|2 + max
∥q∥2>q0

1

cs(q)

∑
q∈Qd,∥q∥2>q0

cs(q)|θ∗(q)|2

(a)

≤ λ2 max
∥q∥2≤q0

cr(q)
2

cs(q)
max

∥q∥2>q0

1

cs(q)

≤ λ2 max
(
1,

cr(q0)
2

cs(q0)

)
+

1

cs(q0)

≤ Cmax(λ2, λp/r) + Cλp/r ≤ Cλ2∧(p/r) ,
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where in (a) we used the fact that ∥f∗∥22,p =
∑

q cs(q)|θ∗(q)|. Letting Ci(d) be constants depending
on d, we have∑

q∈Qd

1

(1 + λcr,q)2
≤ C1(d)

∫
Rd

1

(1 + λcr,q)2
dq

≤ C1(d)

∫
Rd

1

(1 + λ∥q∥2r))2
dq

≤ C2(d)

∫ ∞

0

td−1

(1 + λt2r)2
dt

≤ C2(d)

∫ λ−1/2r

0

td−1 dt+ C2(d)λ
−2

∫ ∞

λ−1/2r

td−1−4r dt .

For convergence we requite r > d/4, in which case∑
q∈Qd

1

(1 + λcr,q)2
≤ C4(d)λ

−d/2r . (57)

E Analysis of high-dimensional regression: Proofs for Section 3.4

E.1 Auxiliary definition for Theorem 3

Our characterization is given in terms of a variational principle. For δ, δs ∈ (0,∞), define R(·;α) :
R3

≥0 → R via

R(ξ, ξ⊥, ω;α) := −ω
√
ρ2 + ρ2s + ρ

√
δ(τ2 + σ2) + ρs

√
δs(τ2s + σ2

s) (58)

− δρ2

2(1− α)
− δsρ

2
s

2α
+

λ

2

(
ξ2 + ξ2⊥ + ω2

)
,

where τ, τs are defined by

τ2 := (ξ − r)2 + ξ2⊥ + ω2 , (59)

τ2s := (ξ − rs cos γ)
2 + (ξ⊥ − rs sin γ)

2 + ω2 , (60)

and ρ = ρ/
√
1 + t2, ρs = ρt/

√
1 + t2, with ρ solving the polynomial equation

ρ2 = δ(τ2+σ2)(
δ/(1−α)+ω/ρ

)2 +
δs(τ

2
s+σ2

s)(
δs/α+ω/ρ

)2 , (61)

and t is given by

t = ω+δρ/(1−α)
ω+δsρ/α

·
√

δs(τ2
s+σ2

s)
δ(τ2+σ2) . (62)

Theorem 3 states that the asymptotics of the test error is determined by the minimizer of R.

E.2 Proof of Theorem 3

The proof is based on Gordon Gaussian comparison inequality [Gor85, Ver18], and follow a standard
route, see e.g. [TOH15, TAH18, MM21]. We will limit ourselves to outlining the main steps of the
calculation. Throughout, we consider the case ε0 > 0, δ + δs > 1 because the other one (ε0 = 0 and
δ, δs > 1) is analogous and less interesting.

We begin by rewriting the ridge cost function in terms of a Lagrangian

R̂n,m(θ;α) = max
u∈Rn

max
us∈Rm

L̂n,m(θ,u,us;α) , (63)

L̂n,m(θ,u,us;α) :=⟨u,X(θ − θ∗)⟩+ ⟨us,Xs(θ − θ∗,s)⟩ − ⟨u, ε⟩ − ⟨us, εs⟩ (64)

− n∥u∥22
2(1− α)

− m∥us∥22
2α

+
λ

2
∥θ∥22 .
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Let ∆(θ,u,us) := ∥u∥2∥θ−θ∗∥2G+∥us∥2∥θ−θ∗,s∥2Gs., where G,Gs are independent standard
normal random variables, independent of X,Xs. By Gordon’s inequality [Gor85], we can compare
the Gaussian process L̂n,m(θ,u,us;α) + ∆(θ,u,us) to

L̂G
n,m(θ,u,us;α) :=∥u∥⟨g,θ − θ∗⟩+ ∥θ − θ∗∥⟨h,u⟩+ ∥us∥⟨gs,θ − θ∗,s⟩+ ∥θ − θ∗,s∥⟨h,us⟩

(65)

− ⟨u, ε⟩ − ⟨us, εs⟩ − n∥u∥22
2(1− α)

− m∥us∥22
2α

+
λ

2
∥θ∥22 .

Next we define the orthonormal vectors

v∗ :=
θ∗

∥θ∗∥2
, v⊥

∗ :=
P⊥

θ∗
θ∗,s

∥P⊥
θ∗
θ∗,s∥2

, (66)

where P⊥
θ∗

= I − P θ∗ := I − v∗v
T
∗ is the projector orthogonal to θ∗. We then decompose

θ = ξv∗ + ξ⊥ v⊥
∗ + θ⊥ , (67)

where ⟨v∗,θ
⊥⟩ = ⟨v⊥

∗ ,θ
⊥⟩ = 0, and define ω := ∥θ⊥∥2. Defining τ2 = ∥θ − θ∗∥22, τ2s =

∥θ − θ∗,s∥22, Eq. (60) follows.

With these notations, and letting σ̂2 = ∥τh+ ε∥22/n− τ2, σ̂2
s = ∥τshs + εs∥22/m− τ2s , we get

L̂ G
n,m(θ, ρ, ρs;α) := max

u,us

{
L̂G
n,m(θ,u,us;α) : ∥u∥ =

ρ√
d
, ∥us∥ =

ρs√
d

}
, (68)

L̂ G
n,m(θ, ρ, ρs;α) =

ρ√
d
⟨g,θ − θ∗⟩+

ρs√
d
⟨gs,θ − θ∗,s⟩+ ρ

√
δ(τ2 + σ̂2) + ρs

√
δs(τ2s + σ̂2

s)

(69)

− δρ2

2(1− α)
− δsρs

2α
+

λ

2

(
ξ2 + ξ2⊥ + ω2

)
.

We finally decompose g = g∥+g⊥ where g∥ ∈ span(v∗,v
⊥
∗ ) and g∥ ⊥ span(v∗,v

⊥
∗ ), and similarly

for gs, and define

L G
n,m(ξ, ξ⊥, ω, ρ, ρs;α) := min

θ

{
L̂ G

n,m(θ, ρ, ρs;α) : θ = ξv∗ + ξ⊥ v⊥
∗ + θ⊥ , ∥θ⊥∥ = ω

}
.

(70)

Defining ι via ∥ρg⊥/
√
n+ ρsgs,⊥/

√
m∥ = (1 + ι)

√
ρ2 + ρ2s, we obtain

L G
n,m(ξ, ξ⊥, ω, ρ, ρs;α) =− (1 + ι)

√
ρ2 + ρ2s · ω +∆+ ρ

√
δ(τ2 + σ̂2) + ρs

√
δs(τ2s + σ̂2

s)

(71)

− δρ2

2(1− α)
− δsρ

2
s

2α
+

λ

2

(
ξ2 + ξ2⊥ + ω2

)
,

where ∆ is the contribution of the perpendicular components. Simple concentration estimates imply
that for any ε > 0 there exist c(ε) > 0 such that

P
(
|σ̂ − σ| ≤ ε

√
τ2 + σ2, |σ̂s − σs| ≤ ε

√
τ2s + σ2

s

)
≥ 1− e−c(ε)n , (72)

P
(
∆| ≤

√
(ρ2 + ρ2s)(ξ

2 + ξ2⊥)
)
≥ 1− e−c(ε)n , (73)

P
(
|ι| ≤ ε) ≥ 1− e−c(ε)n . (74)

We can then estimate L G
n,m(ξ, ξ⊥, ω, ρ, ρs;α) by

L G(ξ, ξ⊥, ω, ρ, ρs;α) =−
√
ρ2 + ρ2s · ω + ρ

√
δ(τ2 + σ2) + ρs

√
δs(τ2s + σ2

s) (75)

− δρ2

2(1− α)
− δsρ

2
s

2α
+

λ

2

(
ξ2 + ξ2⊥ + ω2

)
,
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Differentiating with respect to ρ and ρs and setting the derivatives to 0 yields ρ = ρ/
√
1 + t2,

ρs = ρt/
√
1 + t2, with ρ, t given by Eqs. (61), (62). By computing second derivatives, one obtain

that this is a local maximum. Since L G(ξ, ξ⊥, ω, ρ, ρs;α) → −∞ as ρ2 + ρ2s → ∞, the maximum
over ρ, ρs is either achieved at this point or at the boundary {ρ = 0} ∪ {ρs = 0}. By checking the
signs of partial derivatives along this boundary, the only other possibility is ρ = ρs = 0.

For economy of notation, write F (ρ, ρs) := L G(ξ, ξ⊥, ω, ρ, ρs;α). For any unit vector v =
(v1, v2) ≥ 0, the directional derivative is

∇vF (r)
∣∣
r=0

= −ω + v1
√

δ(τ2 + σ2) + v2
√

δs(τ2s + σ2
s)

≥ ω
[
− 1 + v1

√
δ + v2

√
δs
]
.

By maximizing over the direction, we see that v can be chosen so that ∇vF (0) ≥ ω[−1+
√
δ + δs

]
.

Hence ρ = ρs = 0 cannot be the global aximum for δ + δs > 1.

Hence, we get

R(ξ, ξ⊥, ω;α) = max
ρ,ρs≥0

L G(ξ, ξ⊥, ω, ρ, ρs;α) . (76)

We further note that, for fixed ρ, ρs > 0, the function (ξ, ξ⊥, ω) 7→ L G(ξ, ξ⊥, ω, ρ, ρs;α) is jointly
strictly convex for λ > 0. Hence (ξ, ξ⊥, ω) 7→ R(ξ, ξ⊥, ω;α) is also strictly convex for λ > 0.
Therefore, it has a unique minimizer, which we denote by (ξ∗, ξ∗⊥, ω

∗). Proceeding as in [MM21],
we obtain the following result.

Proposition E.1. Under the assumptions of Proposition 3, for any ε, ε0 > 0 there exists c =
c(ε, ε0) > 0 such that, if α ∈ [ε0, 1− ε0] (letting P⊥ := I − v∗v

T
∗ − v⊥

∗ (v
⊥
∗ )

T)

P
{∣∣⟨v∗, θ̂n,m⟩ − ξ∗

∣∣ ≤ ε,
∣∣⟨v⊥

∗ , θ̂n,m⟩ − ξ∗⊥
∣∣ ≤ ε, ,

∣∣∥P⊥θ̂n,m∥ − ω∗∣∣ ≤ ε
}
≥ 1− 2 e−cn .

(77)

In particular, the last proposition implies (a weaker form of) Theorem 3 whereby the supremum is
taken over a finite net. Namely for η > 0, we define

N(ε0, η) := [ε0, 1− ε0] ∩ ηZ .

Recalling that, in the present case, R(θ̂) = ∥θ̂ − θ∥22, we obtain (after adjusting the constant c) we
have therefore:

P
(

max
α∈N(ε0,η)

∣∣R(θ̂n,m(α))− Rtest(α)
∣∣ ≥ ε

)
≥ 1− 2 e−cn . (78)

Finally, let X+ ∈ R(m+n)×d be the matrix obtained by stacking X and Xs. Given constants
C1, C2, C3, define the good event

G :=
{
C1n ≤ λmin(X

T
+X+) ≤ λmax(X

T
+X+) ≤ C2n; ∥XTy∥ ≤ C3n , ∥XT

s ys∥ ≤ C3n
}
/

(79)

By a standard bound on eigenvalues of Wishart matrices [Ver18], for δ + δs > 1, we can choose
C1, C2, C3 such that

P(G) ≥ 1− 2e−cn . (80)

Further on G, θn,m(α) is bounded (in ℓ2 norm, and Lipschitz continuous in α). As a consequence,
for a sufficiently large constant L,

P
(∣∣R(θ̂n,m(α1))−R(θ̂n,m(α2))

∣∣ ≤ L|α1 − α2|∀α1, α2 ∈ [ε0, 1− ε0]
)
≥ 1− 2e−cn . (81)

The claim follows by using this estimate together with Eq. (78).
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F Datasets information

• Imdb reviews datatset:
– Paper: [MDP+11]
– Link
– Licence: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International

License
• Rotten Tomatoes reviews:

– Paper: [PL05]
– Link
– Data has been scraped from the publicly available website

https://www.rottentomatoes.com as of 2020-10-31.
– Licence: CC0: Public Domain

• Goodreads bookreviews
– Papers: [WMNM19], [WM18]
– Link
– License: Unknown

• CIFAR10 and CIFAR100:
– Paper: [Kri09]
– Link
– License: Unknown

• TCGA Pan-Cancer Clinical Data
– Link
– Publicaly availbale, free to use
– Licence: None

G Compute resources information

We ran all experiments on a single machine with 2 RTX 4090 GPUs and a 24-core Intel Xeon E5
CPU. All experiments completed in less than 24 hours.
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Guidelines:
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss it in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
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• The authors should reflect on the factors that influence the performance of the approach.
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Justification: All assumptions and proofs are clearly mentioned in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
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4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed setup of our experiments ion appendix and the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: All the datasets used are public datasets. The results can be reproduced using
the details we provided.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the experiment sections in appendix and the main
paper.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since we observed a good match between the smooth theoretical curves and
the empirical results across several dozen different dataset/model combinations, we chose
to keep the figures clean by plotting only the average results and omitting the confidence
intervals. If preferred, we are happy to replace the existing plot with ones with confidence
intervals.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]

Justification: We have read the code of ethics and our submission abide by that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning and efficient use of data. There are many potential societal consequences of our
work, none which we feel must be specifically highlighted here.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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necessary safeguards to allow for controlled use of the model, for example by requiring
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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Answer: [NA]
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Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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