
Fine-Grained Constraint Generation-Verification for Improved
Instruction-Following

Anonymous ACL submission

Abstract

The ability of Large Language Models (LLMs)001
to follow natural language instructions is cru-002
cial. However, numerous studies have demon-003
strated that LLMs still struggle to follow in-004
structions with complex constraints, limiting005
their application in other areas. Meanwhile,006
obtaining high-quality instruction-following007
data often requires substantial manual annota-008
tion, which is both time-consuming and labor-009
intensive. In this work, we present FiGV, a010
fine-grained constraint generation-verification011
strategy for synthesizing instruction-following012
data. FiGV employs LLM-driven processes013
to generate fine-grained constraints and check014
the legality of the synthetic instructions. Sub-015
sequently, LLMs are utilized to perform nu-016
anced, constraint-level verification to deter-017
mine whether the generated responses adhere to018
the synthetic instructions, with LLM-generated019
functions incorporated for auxiliary validation020
tailored to the types of constraints. Experi-021
ments on 7B to 70B models demonstrate that022
FiGV consistently achieves strong performance023
across various benchmarks designed to evaluate024
the instruction-following capabilities of LLMs.025

1 Introduction026

The field of large language models (LLMs) has wit-027

nessed remarkable advancements in recent years,028

demonstrating a wide range of impressive capabili-029

ties (Zhao et al., 2024a). Among these, instruction-030

following stands out as one of the most critical031

requirements for LLMs, as it directly influences032

how effectively these models align with human033

intentions (Wang et al., 2023), serving as a key fac-034

tor in ensuring the safety and reliability of LLMs.035

(Huang et al., 2023).036

Although the instruction-following capability of037

LLMs is crucial, current models still exhibit limita-038

tions in following instructions with complex con-039

straints (Zhou et al., 2023b; Jiang et al., 2024; Qin040

et al., 2024). To enhance the instruction-following041

Simple Instruction

How to improve coding skills?

Respond within 100 words
Keep a formal tone

Give an example at the end

Give an example at the end

+ Length

+ Style Keep a formal tone

+ Content
…

Fine-Grained
Constraints Generation

Respond within 100 words

Synthetic Instruction

LLM Response

Fine-Grained
Constraints Verification

Answer with emoji only

Respond with a six-word story

Use only questions to form your reply

Atomic, Irrelevant Constraints

Does the response
follow the instruction?

Yes / No

Direct Verification

(a) Previous
method

(b) FiGV

Figure 1: Comparison between the previous method for
generating instruction-following data and FiGV. FiGV
adopts a fine-grained constraint generation-verification
strategy to ensure data quality.

capability of LLMs, current measures typically fo- 042

cus on instruction-tuning (Wei et al., 2022; Liu 043

et al., 2023; Zhang et al., 2024a) the models using 044

instruction-response pairs, where the former repre- 045

sents the human-provided instruction, and the latter 046

denotes the desired response that aligns with the 047

given instruction . The data used in this instruction- 048

tuning phase is mainly obtained through manual 049

annotation or the synthesis of complex instruc- 050

tions. For manual annotation, the high cost, low 051

efficiency, and uncertain quality of human-labeled 052

data make it difficult to scale, thus failing to meet 053

the large-scale data requirements of current LLMs 054

(Long et al., 2024). Regarding the synthesis of com- 055

plex data, previous work (He et al., 2024; Sun et al., 056

2024) has primarily focused on incorporating mul- 057

tiple constraints into instructions and then using 058

exisiting LLMs like GPT-4 to generate responses. 059

While this approach yields promising results, the 060

quality of the synthesized complex instructions is 061

1

hard to control, and the reliability of the distilled062

data cannot be guaranteed (Cui et al., 2024).063

In this work, we address these issues by in-064

troducing a Fine-grained Constraints Generation-065

Verification method for automatically synthesiz-066

ing instruction-following data, named FiGV, which067

support both Supervised Fine-Tuning (SFT) and068

Direct Preference Optimization (DPO) algorithm069

(Rafailov et al., 2023). To generate high-quality070

complex instruction-following data, FiGV incor-071

porates several key components, including fine-072

grained constraints generation, instruction verifi-073

cation, and verified response generation to ensure074

that the instructions are diverse, realistic, and com-075

prehensive, while responses remain reliable and076

aligned with the given instructions. During the con-077

straints generation step, LLMs are prompted to gen-078

erate fine-grained constraints based on the original079

instructions, considering multiple categories. In the080

instruction verification process, validity analysis is081

conducted on the synthesized instructions to en-082

sure their reasonableness and verify that the added083

constraints do not conflict with one another. In084

the verified response generation phase, we employ085

LLMs to generate responses for the synthetic in-086

structions and conduct fine-grained constraint-level087

verification to ensure that the generated responses088

align with each constraint in the instructions. To089

enhance the verification process, LLM-generated090

functions are introduced for auxiliary validation091

based on the types of constraints. By operating en-092

tirely under LLM supervision, FiGV demonstrates093

both automation and scalability.094

A series of experiments are conducted to validate095

the effectiveness of FiGV by training LLMs rang-096

ing from 7B to 70B parameters, including models097

from the Qwen2 (Qwen, 2024), LLaMA3 (Meta,098

2024), and GLM4 (GLM, 2024) series, across099

both SFT and DPO training algorithms. The ef-100

fectiveness of our methodology is assessed using101

widely adopted instruction-following benchmarks,102

including IFEval (Zhou et al., 2023b), Follow-103

Bench (Jiang et al., 2024), and InFoBench (Qin104

et al., 2024). The results on these three instruction-105

following benchmarks demonstrate that FiGV sig-106

nificantly enhances LLMs’ performance in com-107

plex instruction-following tasks. Experiments on108

MT-Bench (Zheng et al., 2023) and AlpacaEval109

(Dubois et al., 2024) further demonstrate that the110

models trained using our method exhibit perfor-111

mance comparable to their respective alignment112

models in general instruction-following abilities.113

2 Related Work 114

2.1 Instruction Following 115

Instruction-following is one of the essential capa- 116

bilities of LLMs. Previous studies (Weller et al., 117

2020; Mishra et al., 2022) has demonstrated that 118

fine-tuning LLMs with annotated instructional data 119

can enhance their ability to follow general language 120

instructions. However, recent studies (Qin et al., 121

2024; Zhou et al., 2023b; Jiang et al., 2024) indi- 122

cates that LLMs still struggle to follow complex 123

instructions effectively. To address this issue, re- 124

cent research (Sun et al., 2024; He et al., 2024) 125

suggests that increasing the number and variety of 126

constraints can enhance the complexity of instruc- 127

tions, thereby improving the model’s ability to fol- 128

low complex instructions. Typically, such studies 129

(Zhang et al., 2024b; Dong et al., 2024; Sun et al., 130

2024) involve collecting a series of seed instruc- 131

tions, generating constraints, and subsequently cre- 132

ating responses based on these instructions and con- 133

straints using advanced LLMs. These efforts have 134

demonstrated that constraint-based instruction tun- 135

ing can significantly improve LLMs’ instruction- 136

following performance. In this work, we intro- 137

duce an approach to enhance LLMs’ instruction- 138

following capabilities by generating and verifying 139

fine-grained constraints. 140

2.2 Synthetic Data 141

Training LLMs on synthetic data is a promising 142

approach for enhancing their capability to solve a 143

wide range of tasks (Long et al., 2024; Liu et al., 144

2024a). Recent studies, such as Alpaca (Taori et al., 145

2023) and WizardLM (Xu et al., 2024), have uti- 146

lized synthetic data for instruction tuning of LLMs. 147

Compared to manually annotated instruction tuning 148

data, synthetic data offers mainly two advantages: 149

it is faster and more cost-effective to generate task- 150

specific synthetic data, and its quality and variety 151

often exceed what human annotators can produce 152

(Zhang et al., 2024a). In the field of instruction- 153

following, some studies (Sun et al., 2024; He et al., 154

2024; Dong et al., 2024) have employed synthetic 155

data to enhance the instruction-following capabili- 156

ties of LLMs, yielding promising results. However, 157

they often lack effective evaluation and filtering 158

for the instructions and responses. In this work, 159

we propose a method that effectively supervises 160

the quality of synthesized instruction-following 161

data, enabling us to obtain high-quality instruction- 162

following data. 163

2

Simple
Instruction

How to improve
coding skills? Give an example at the end

Synthetic Instruction:

1. Completeness
2. No Conflicts
3. Enough Context

How to improve coding skills? Please respond within 50 words,
maintaining a formal tone and giving an example at the end.

…

+ Length Respond within 50 words
+ Style Keep a formal tone

+ Content

Fine-Grained Constraints Generation

Response 1

Stage 1: Instruction Synthesis

List 10 points in bullets
……

Listing 10 points is incompatible
with the 50-word length constraint，
need to remove this constraint.

Stage 2: Verified Response Generation

Scoring

Instruction
Verification

Fine-Grained Constraints Verification:

If you wanna get better at coding, just keep practicing, study algorithms
and data structures, read code written by others, and work on diverse
projects. For instance, you could make a simple calculator in Python.

50-word length

Formal tone

Example at the end

LLM Response:

+ Structure

len(text.split()) < 50

‘wanna’ is informal

‘For instance’ captured

Score 1

Response 2 Score 2

Response N Score N

Ranking

Low-Score
Response

High-Score
Response

SFT DataDPO Data

Best-of-n Sampling

I’m not good at
checking text length,

need to write a function.

How to improve coding skills?
Please respond within 50 words,
maintaining a formal tone,
giving an example at the end
and listing 10 points in bullets.

Synthetic
Instruction

Figure 2: An overview of FiGV: The left section illustrates the Instruction Synthesis stage (Section 3.1), where
fine-grained constraints are derived from original instructions and their legitimacy is verified. The right section
presents the Verified Response Generation stage (Section 3.2), where responses are generated from synthetic
instructions and verified at the constraint level to ensure adherence.

3 Method164

In this section, we provide a detailed explanation of165

the methodologies employed in FiGV for construct-166

ing the instruction-following dataset. This process167

comprises two primary stages: the synthesis of in-168

structions from original instructions (Section 3.1)169

and the generation of verified responses to these170

synthetic instructions (Section 3.2).171

3.1 Instruction Synthesis172

Building on insights from previous work (Dong173

et al., 2024; He et al., 2024; Sun et al., 2024),174

we identify the integration of diverse, realistic,175

and well-balanced combinations of constraints as176

the key to constructing high-quality instruction-177

following datasets.178

In the instruction synthesis stage, FiGV begins179

with leveraging the supervisor model to generate180

fine-grained constraints derived from the original181

instructions. These constraints are then combined182

with the original instructions to create synthetic183

instructions. To ensure the quality of the gener-184

ated data, FiGV incorporate a verification process185

to confirm that the constraints are non-conflicting186

and that the resulting instructions are coherent and187

reasonable. This systematic process allows us to188

produce high-quality synthetic instructions adapted189

to diverse scenarios.190

Fine-Grained Constraints Generation This191

stage aims to generate realistic, detailed, and con-192

textually relevant constraints across multiple cat-193

egories. To achieve this, we first analyze a large194

corpus of open-source, real user instructions to195

identify comprehensive types of constraints. These196

constraints are then refined by human experts into 197

several distinct categories. For further clarity and 198

guidance, we include example constraints under 199

each category, which were generated by GPT-4 200

(OpenAI, 2023). 201

To prompt the supervisor model for constraint 202

generation, we randomly provide it with a subset 203

of the predefined constraint categories. The super- 204

visor model then proposes constraints relevant to 205

the original instructions, tailored to the selected 206

categories. This approach generates constraints 207

that are more relevant and realistic compared to 208

using specific atomic constraints alone (Dong et al., 209

2024). By synthesizing fine-grained constraints 210

across multiple aspects, we generate synthetic in- 211

structions that are both complex and comprehen- 212

sive, capturing a wide range of constraints and sce- 213

narios.. 214

Instruction Verification The synthetic instruc- 215

tions generated by the supervisor model may not 216

always be reliable. For instance, the added con- 217

straints might be contradictory, or the synthetic 218

instruction could lack important content from the 219

original instruction. Therefore, it is necessary to 220

validate the synthetic instructions produced in the 221

previous step. 222

During the validation process, the supervisor 223

model evaluates the synthetic instruction to en- 224

sure it meets three key criteria: completeness, non- 225

conflicting constraints, and sufficient contextual 226

information to support a meaningful query. Only 227

instructions satisfy these requirements are deemed 228

valid. Following this process, we obtain the filtered 229

synthetic instruction, denoted as IS. 230

3

3.2 Verified Response Generation231

After constructing fine-grained constraints and syn-232

thesizing complex instructions, obtaining high-233

quality responses that strictly adhere to these con-234

straints is critical for effective model fine-tuning.235

Previous studies (Jiang et al., 2024; Sun et al.,236

2024) have employed LLMs to evaluate whether237

responses comply with instructional constraints.238

However, research has also identified significant239

limitations in LLM-based evaluations. For instance,240

(Kamoi et al., 2024) highlighted that LLMs often241

provide unreliable explanations, particularly when242

detecting errors. Similarly, in our experiments, we243

observed frequent inaccuracies in evaluating spe-244

cific criteria, such as output length and keyword245

frequency.246

To address these limitations, FiGV employs a hy-247

brid strategy that combines direct LLM evaluation248

with verification functions also generated by LLMs.249

This integrated approach enhances the accuracy250

of evaluations by complementing the subjective251

assessments of LLMs with objective verification252

mechanisms, ensuring that responses more consis-253

tently adhere to the instructional constraints.254

Constraints Classification In this step, we clas-255

sify the constraints in each synthetic instruction256

into two categories based on their verifiability:257

those requiring automated functions due to limi-258

tations in LLM performance, and those that LLMs259

can evaluate effectively. This classification yields a260

synthetic instruction set with extracted constraints,261

denoted as D1 = {IS, CF, CL}, where CF repre-262

sents constraints that are more reliably verified by263

automated functions, such as text length or key-264

word existence, which LLMs struggle to evaluate265

accurately. On the other hand, CL includes con-266

straints that LLMs can evaluate well, often involv-267

ing nuanced or contextual aspects of the instruction.268

This classification allows us to apply the most ap-269

propriate verification strategy for each constraint270

type, improving overall reliability and consistency.271

Verification Function Generation In this part,272

we utilize the supervisor model to generate verifi-273

cation functions for the constraints identified in the274

previous steps as effectively verifiable by functions.275

To ensure the quality of these functions, we adopt276

the cross-validation method from AutoIF (Dong277

et al., 2024) to validate the quality of these verifica-278

tion functions. As a result, we extend the synthetic279

instruction set to include the generated verifica-280

tion functions, denoted as D2 = {IS, CF, CL, F}, 281

where F represents the set of verification functions 282

corresponding to CF. 283

Response Generation & Verification After ob- 284

taining the synthetic instructions, we generate cor- 285

responding responses and evaluate their adherence 286

to the specified constraints. To achieve this, we 287

employ best-of-n sampling, generating multiple 288

responses for each synthetic instruction. These re- 289

sponses are then evaluated and scored by both the 290

supervisor model and LLM-generated functions to 291

assess adherence to each constraint. The constraint- 292

following score (CF) can be calculated as follows: 293

CF =
1

m

m∑
j=1

(
Ifj ·

SF
j + SL

j

2
+ (1− Ifj) · S

L
j

)
(1) 294

where m is the total number of constraints in 295

the synthetic instruction. SL
j represents the adher- 296

ence to the j-th constraint as evaluated by the LLM 297

supervisor model (boolean: 0 or 1), while SF
j de- 298

notes the adherence score for the same constraint as 299

assessed by the LLM-generated function (ranging 300

from 0 to 1). The indicator function Ifj determines 301

whether the j-th constraint can be evaluated by a 302

function, with a value of 1 if applicable and 0 other- 303

wise. This scoring method allows for a fine-grained 304

verification of constraint adherence. 305

For Supervised Fine-Tuning (SFT), we select the 306

response with the highest CF score, provided that it 307

exceeds a specified threshold. This ensures that syn- 308

thetic instructions with conflicting constraints are 309

further filtered out. For Direct Preference Optimiza- 310

tion (DPO) (Rafailov et al., 2023), we use the SFT 311

model to perform another round of best-of-n sam- 312

pling. In this step, both high and low CF-scoring 313

responses are selected to construct preference data, 314

enabling the model to learn from comparative re- 315

sponses effectively. 316

4 Experiments 317

We conduct comprehensive experiments to evalu- 318

ate the effectiveness of FiGV, mainly focus on the 319

instruction-following performance. 320

4.1 Experimental Setup 321

Datasets We utilized LMSYS-Chat-1M 1 as the 322

initial seed dataset. To ensure data quality, user 323

instructions in the raw dataset were assessed across 324

1https://huggingface.co/datasets/lmsys/
lmsys-chat-1m

4

https://huggingface.co/datasets/lmsys/lmsys-chat-1m
https://huggingface.co/datasets/lmsys/lmsys-chat-1m

Model IFEval FollowBench InFoBench

Pr. (S) Ins. (S) Pr. (L) Ins. (L) HSR-Avg SSR-Avg Easy Hard Overall

GPT-3.5-Turbo-1106† 60.4 69.5 63.8 72.8 66.2 72.5 90.4 85.1 86.7
GPT-4-1106-Preview† 76.9 83.6 79.3 85.3 73.4 77.2 90.1 89.1 89.4
GPT-4o-2024-0513 81.1 86.7 85.4 89.6 76.7 79.4 89.2 92.1 90.7
GLM-4-0520 79.1 85.0 83.7 88.7 70.5 75.3 85.7 87.8 87.1

Qwen2-7B(LMSYS-Chat) 37.9 48.8 39.2 50.2 41.3 54.3 77.5 75.7 76.3
Qwen2-7B-Instruct 50.8 60.9 55.3 64.6 55.5 63.7 83.3 81.0 81.8
AutoIF-Qwen2-7B-DPO† 44.0 55.0 46.6 57.9 - 56.6 - - -
FiGV-Qwen2-7B-SFT 64.9 74.3 69.9 78.7 55.7 63.2 84.3 82.0 82.7
FiGV-Qwen2-7B-DPO 67.5 77.0 71.7 80.5 57.0 65.1 84.6 83.7 84.0

LLaMA3-8B(LMSYS-Chat) 42.9 52.2 44.0 53.3 41.5 56.1 78.9 74.3 75.7
LLaMA3-8B-Instruct 69.9 78.2 77.6 84.4 59.4 67.3 83.4 84.0 83.8
AutoIF-LLaMA3-8B-DPO† 28.8 42.4 43.1 56.0 - 49.9 - - -
FiGV-LLaMA3-8B-SFT 67.7 76.7 72.6 80.5 57.8 67.0 80.5 80.0 80.2
FiGV-LLaMA3-8B-DPO 74.1 81.5 77.1 84.1 60.5 67.4 82.5 81.9 82.3

GLM4-9B(LMSYS-Chat) 41.3 52.2 42.3 53.1 43.5 57.9 76.4 74.8 75.3
GLM4-9B-Chat 69.7 77.8 71.0 79.1 59.5 66.9 82.3 81.7 81.9
FiGV-GLM4-9B-SFT 67.1 76.3 70.4 79.0 58.5 66.7 83.8 81.7 82.2
FiGV-GLM4-9B-DPO 73.9 81.2 77.3 83.8 61.5 69.3 85.4 84.1 84.5

Qwen2-72B-Instruct 77.1 80.5 84.3 86.9 68.9 73.2 85.2 85.0 85.0
AutoIF-Qwen2-72B-Instruct-DPO† 80.2 86.1 82.3 88.0 - 67.5 - - -
FiGV-Qwen2-72B-SFT 78.6 84.7 82.6 87.9 64.9 69.8 87.4 87.3 87.4
FiGV-Qwen2-72B-DPO 81.0 85.4 84.5 88.3 67.1 72.5 89.6 89.0 89.4

LLaMA3-70B-Instruct 77.6 84.4 84.8 89.6 64.7 69.0 87.5 88.1 88.0
AutoIF-LLaMA3-70B-Instruct-DPO† 80.2 86.7 85.6 90.4 - 66.5 - - -
FiGV-LLaMA3-70B-SFT 77.3 83.6 82.7 86.3 63.2 68.9 85.2 85.8 85.6
FiGV-LLaMA3-70B-DPO 81.4 86.2 85.9 90.7 64.9 69.1 89.2 88.9 89.0

Table 1: Main results on three instruction-following benchmarks: IFEval, FollowBench and InFoBench. Pr. and Ins.
denote prompt and instruction levels, respectively. S and L represent strict and loose metrics for IFEval. We use
bold text for the best results and underline for the second-best results within the same model. Results with † are
directly sourced from original papers or benchmarks.

dimensions such as clarity, specificity, answerabil-325

ity, and reasonableness, with only high-scoring326

instructions selected as seed data. Our training327

dataset is generated using the method described in328

Section 3, with GLM-4-0520 (GLM, 2024) serv-329

ing as the supervisor model. Specifically, we used330

20% of the prompts in the LMSYS-Chat dataset331

after filtration as seed data, resulting in a total of332

28k SFT data and 7k DPO data. We employed the333

LLM decontaminator (Yang et al., 2023) to check334

potential data contamination between our training335

data and the testing sets and subsequently removed336

any contaminated data from the training set.337

Implementation Details We conduct experi-338

ments on three open-source base models series:339

Qwen2 (Qwen2-7B and Qwen 2-72B) (Qwen,340

2024), LlaMA3 (LlaMA3-8B and LLaMA3-70B)341

(Meta, 2024), and GLM-4 (GLM-4-9B) (GLM,342

2024). We use the dataset above to train our SFT343

model from the base model and then further train344

the DPO model using the preference data we con-345

structed on top of the SFT model. 346

The baseline includes alignment models (e.g., 347

Qwen2-7B-Instruct) and base models (e.g., Qwen2- 348

7B) fine-tuned using the original LMSYS-Chat 349

dataset, with responses in the dataset rewritten by 350

the supervisor model GLM-4-0520. The AutoIF 351

(Dong et al., 2024) series are included for com- 352

parison, with experimental settings kept consistent 353

with ours to ensure fairness. 354

Evaluation To assess the effectiveness of our 355

approach in enhancing the model’s instruction- 356

following capabilities, we evaluate FiGV using 357

three instruction-following benchmarks: IFEval 358

(Zhou et al., 2023b), FollowBench (Jiang et al., 359

2024), and InFoBench (Qin et al., 2024). 360

IFEval includes 25 instruction types and 541 in- 361

structions that can be automatically validated using 362

Python scripts, focusing on objective and repro- 363

ducible metrics. For IFEval, we report the strict and 364

loose accuracy at both the prompt and instruction 365

levels. FollowBench is a fine-grained instruction- 366

5

following benchmark with five difficulty levels (L1367

to L5) based on the number of constraints per in-368

struction. Using advanced LLMs like GPT-4, it369

evaluates responses for constraint satisfaction. For370

FollowBench, we report the average of Hard Satis-371

faction Rate for fully satisfied instructions and the372

Soft Satisfaction Rate for individual constraint sat-373

isfaction. InFoBench evaluates LLMs’ instruction-374

following ability by breaking down complex in-375

structions into simpler tasks and leverages GPT-4376

for assessment. For InfoBench, we report success377

rates across easy and hard sets, along with the over-378

all success rate.379

4.2 Main Results380

The main results of our experiments on IFEval,381

FollowBench, and InFoBench are presented in Ta-382

ble 1. The models trained using FiGV method383

demonstrate excellent performance on both three384

instruction-following benchmarks.385

Compared to models trained on the LMSYS-386

Chat dataset, our SFT models perform better across387

all instruction-following benchmarks, demonstrat-388

ing enhanced instruction-following capabilities389

across diverse tasks. Furthermore, the DPO model390

trained with FiGV-constructed preference data of-391

ten outperforms both corresponding alignment392

models and the AutoIF series trained from align-393

ment models on all three benchmarks.394

The significant improvements observed in the395

DPO model compared to the SFT model can be at-396

tributed to the method used for constructing the397

preference data. In FiGV, constraint-level veri-398

fication is conducted to assess whether the gen-399

erated responses adhere to the synthetic instruc-400

tions, with LLM-generated functions integrated for401

auxiliary validation tailored to specific constraint402

types. By sampling responses from the SFT model403

and scoring them, a substantial number of positive404

and negative sample pairs are generated for DPO405

training. This enables the DPO model to effec-406

tively address the shortcomings identified during407

the SFT stage, thereby significantly enhancing its408

instruction-following capabilities.409

Due to the fine-grained constraints from mul-410

tiple aspects in our training dataset, our models411

demonstrate exceptional capabilities in handling412

complex combination of constraints, particularly413

evident in their performance on level 4 and level 5414

of FollowBench and the hard set of InFoBench. For415

instance, Qwen-2-7B-DPO outperformed Qwen-2-416

7B-Instruct on levels 4 and 5 of FollowBench, and417

GLM-4-9B-DPO surpassed GLM-4-9B-Chat on 418

the hard set of InFoBench. These results under- 419

score the effectiveness of our approach in enhanc- 420

ing the models’ ability to follow instructions in 421

complex and challenging tasks. 422

4.3 Analyses 423

4.3.1 Ablation Studies 424

Model IFEval FollowBench InFoBench

Pr.(S) HSR-Avg Overall

GLM-4-9B SFT
- w/o Verify 62.1 56.8 80.9
- w Direct Verify 63.6 57.5 81.9
- w Fine-grained 64.9 58.2 82.0
- w Func + Fine-grained 67.1 58.5 82.2

GLM-4-9B DPO
- w Direct Verify 66.0 56.7 82.0
- w Fine-grained 71.3 60.9 83.7
- w Func + Fine-grained 73.9 61.5 84.5

Table 2: Model’s performance on IFEval, FollowBench,
and InFoBench with different strategies for response
verification.

Model Supervisor
Model

IFEval FollowBench

Pr.(S) HSR-Avg

Qwen2-7B GPT-4o-0513 65.9 57.0
GLM-4-0520 64.9 55.7

LLaMA3-8B GPT-4o-0513 68.2 58.5
GLM-4-0520 67.7 57.8

GLM-4-9B GPT-4o-0513 67.7 59.5
GLM-4-0520 67.1 58.5

Table 3: SFT model’s performance on instruction fol-
lowing benchmarks with different supervisor models.
Bold text indicates the best result within the same base
model.

The models trained using FiGV exhibited ex- 425

ceptional performance across all three instruction- 426

following benchmarks. A critical factor contribut- 427

ing to this success is our strategy of jointly employ- 428

ing LLMs and LLM-generated functions to ver- 429

ify whether responses adhere to each constraint in 430

the instructions. To assess the effectiveness of the 431

fine-grained constraints verification strategy within 432

FiGV, we conducted an ablation study at both the 433

SFT and DPO training stages of GLM4-9B. The 434

results of this study are detailed in Table 2. In this 435

context, Direct Verify uses the supervisor model to 436

assess if the response follows the entire instruction 437

without checking each constraint individually. Fine- 438

grained examines if each specific constraint is met, 439

6

while Func + Fine-grained uses LLM-generated440

functions to assist in this process.441

The results presented in Table 2 clearly demon-442

strate the impact of various response verification443

strategies on model performance. A consistent444

improvement in performance metrics is observed445

when moving from no verification to LLM Direct446

Verification, with further enhancements noted when447

employing the Fine-Grained Verification strategy.448

Notably, the LLM + Function Fine-Grained Verifi-449

cation approach achieved the highest scores across450

all benchmarks. This trend underscores the im-451

portance of fine-grained verification of constraints452

and indicates that evaluating responses for adher-453

ence to the constraints within instructions is crucial454

for constructing high-quality data for instruction-455

following.456

We also conducted ablation experiments during457

the data synthesis phase using different supervisory458

models. As shown in Table 3, the stronger supervi-459

sor model GPT-4o-0513 demonstrates slightly bet-460

ter performance compared to GLM-4-0520. This is461

consistent with the observation that stronger mod-462

els also serve as more effective synthetic data gen-463

erators (Kim et al., 2024).464

4.3.2 Complexity and Quality465

1 2 3 4 5 6
Complexity Score

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r

Distribution of Complexity Score

Original
Synthetic

Figure 3: The distribution of complexity scores for orig-
inal instructions and synthetic instructions. The instruc-
tions enhanced by FiGV demonstrate greater complexity
compared to the original ones.

It is widely accepted that lengthy, challenging, and466

complex data samples yield greater benefits for in-467

struction tuning (Zhao et al., 2024b). For instance,468

WizardLM (Xu et al., 2024) prompt ChatGPT to469

"evolve" data samples by deliberately enhancing470

their complexity, which led to improvements in471

LLM performance. To further investigate the im-472

Category Win Rate (%)
Verified Response 54.28
Tie 11.58
Unverified Response 34.14

Table 4: Quality comparison between verified and un-
verified response.

provement in complexity of our dataset compared 473

to original LMSYS-Chat dataset, we employed the 474

deita-complexity-scorer (Liu et al., 2024b) to eval- 475

uate the instructions originally present in LMSYS- 476

Chat and those enhanced using FiGV. As illustrated 477

in the Figure 3, the instructions enhanced by FiGV 478

exhibit higher complexity compared to the origi- 479

nal ones. This demonstrates the superiority of our 480

synthesized data for instruction tuning. 481

During the instruction-tuning phase, the quality 482

of the response is also crucial for the alignment of 483

the model (Zhou et al., 2023a; Liu et al., 2024b). To 484

validate that our evaluation of responses not only 485

ensures adherence to complex constraints specified 486

in the instructions but also maintains the overall 487

quality of the responses, we prompted GPT-4 using 488

the pairwise comparison prompt from MT-Bench 489

(Zheng et al., 2023). This was employed to com- 490

pare the highest-scoring responses after instruction- 491

following evaluation with those directly output 492

without evaluation. As illustrated in Table 4, the 493

responses filtered through the instruction-following 494

evaluation exhibit higher general quality. This 495

demonstrates that our data is also beneficial for 496

aligning with general human preferences. 497

4.3.3 General Abilities 498

Model AlpacaEval MT-Bench IFEval

LC WinRate Score Pr.(S)

Qwen2-7B-Instruct 32.6 8.49 50.8
Qwen2-7B-DPO 33.2 8.28 66.9
LLaMA3-8B-Instruct 31.1 7.96 69.9
LLaMa3-8B-DPO 36.2 7.56 73.6
GLM-4-9B-Chat 38.5 8.54 69.7
GLM-4-9B-DPO 37.2 8.49 71.1

Table 5: Model’s performance on the AlpacaEval and
MT-Bench for general instruction-following ability eval-
uation.

To verify that our synthetic data is effective not 499

only for the instruction-following task but also in 500

enhancing general capabilities, we also conduct 501

evaluations using two widely recognized bench- 502

marks AlpacaEval (Dubois et al., 2024) and MT- 503

7

Bench (Zheng et al., 2023) that assess LLMs’ gen-504

eral ability to align with human preferences. Al-505

pacaEval is an LLM-based automatic benchmark506

for evaluating response quality by comparing it507

against GPT-4’s reference output and calculating508

the win rate. We use GPT4-1106-Preview (Ope-509

nAI, 2023) as evaluator and adopt AlpacaEval 2.0510

Length-Adjusted win rate as our metric. MT-Bench511

(Zheng et al., 2023) is a multi-turn conversational512

benchmark consisting of 80 questions, where the513

model responds to an initial question followed by a514

predefined subsequent question, with GPT-4 rating515

the responses on a scale from 1 to 10.516

As shown in Table 5, our DPO models not only517

demonstrate excellent performance in instruction-518

following evaluations, but they also achieve scores519

that are comparable to or even exceed those of520

corresponding alignment models on MT-Bench521

and Alpaca-eval. This indicates that our models522

not only enhance instruction-following capabilities523

but also effectively retain general-purpose abilities,524

demonstrating consistent improvements in align-525

ing with general human preferences. The under-526

lying reason for this phenomenon, as discussed in527

Section 4.3.2, is that the data generated by FiGV528

exhibits excellent complexity and quality. Addi-529

tionally, the inclusion of fine-grained constraints530

from different aspects adds diversity to the data.531

This matches previous research (Liu et al., 2024b)532

indicating that good data for alignment requires533

such characteristics.534

4.3.4 Scaling Anlysis535

Stage Data
Amount

IFEval FollowBench

Pr.(S) HSR-Avg

SFT LMSYS-Chat(28k) 41.3 43.5

SFT 28k (100%) 67.1 58.5
SFT 14k (50%) 65.8 57.4
SFT 7k (25%) 63.7 56.3
SFT 3.5k (12.5%) 60.5 54.6

DPO 7k (100%) 73.9 61.5
DPO 3.5k (50%) 72.0 60.4
DPO 1.75k (25%) 71.7 59.3
DPO 0.875k (12.5%) 70.1 57.6

Table 6: Model’s performance on IFEval, FollowBench,
and InFoBench with different amounts of training data.

In the current trend of scaling language models,536

increasing the size of the training dataset is one of537

the key strategies (Muennighoff et al., 2023). To538

validate the potential of FiGV in terms of scalability539

for instruction-following tasks, we trained GLM-4-540

9B using 100%, 50%, 25%, and 12.5% of the SFT 541

and DPO datasets, respectively. We then evaluated 542

the fine-tuned model’s performance across the three 543

aforementioned instruction-following benchmarks. 544

As observed in Table 6, the model’s performance 545

increases with the amount of data used. However, 546

even with a reduced dataset, the model maintains 547

relatively high performance. Notably, the model 548

trained with only 12.5% of the data exhibits ex- 549

ceptional performance across all three benchmarks, 550

achieving over 70% prompt strict accuracy on IFE- 551

val and significantly outperforming the model fine- 552

tuned with the original LMSYS-Chat dataset. This 553

finding underscores the superiority of the data syn- 554

thesized by FiGV and further validates the criti- 555

cal importance of data quality in instruction fine- 556

tuning. 557

5 Conclusion 558

In this work, we introduced FiGV, a fine-grained 559

constraints generation-verification method for syn- 560

thesizing high-quality instruction-following data. 561

Our method integrates fine-grained constraints gen- 562

eration, instruction verification, and verified re- 563

sponse generation, all conducted under LLM su- 564

pervision to ensure a fully automated pipeline that 565

produces diverse, realistic, and reliable data for 566

instruction-following tasks. Experimental results 567

on IFEval, FollowBench, and InFoBench demon- 568

strate that our approach significantly improves 569

LLMs’ ability to follow complex instructions. We 570

also conduct extensive analytical experiments to 571

evaluate the effectiveness, scalability, and potential 572

of our method. 573

6 Limitations 574

We identify the limitations of our work in the 575

following aspects. First, the LLM supervisor 576

model generates constraints for the original in- 577

struction based on the predefined constraint cat- 578

egories. While this approach allows for the cre- 579

ation of diverse and realistic constraints, it may 580

still fail to fully capture the wide distribution of 581

constraints present in real-world scenarios. Second, 582

during the response verification stage, although 583

LLM-generated functions are introduced to assist 584

the evaluation, the process fundamentally relies on 585

the LLM-as-a-Judge paradigm. Developing more 586

robust, objective, and reliable methods is necessary 587

to further enhance the accuracy and credibility of 588

the verification process. 589

8

References590

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming591
Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong592
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and593
Maosong Sun. 2024. Ultrafeedback: Boosting lan-594
guage models with scaled ai feedback. Preprint,595
arXiv:2310.01377.596

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu597
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.598
2024. Self-play with execution feedback: Improving599
instruction-following capabilities of large language600
models. Preprint, arXiv:2406.13542.601

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-602
sunori B. Hashimoto. 2024. Length-controlled al-603
pacaeval: A simple way to debias automatic evalua-604
tors. Preprint, arXiv:2404.04475.605

Team GLM. 2024. Chatglm: A family of large language606
models from glm-130b to glm-4 all tools. Preprint,607
arXiv:2406.12793.608

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and609
Yanghua Xiao. 2024. From complex to simple: En-610
hancing multi-constraint complex instruction follow-611
ing ability of large language models. In Findings612
of the Association for Computational Linguistics:613
EMNLP 2024, pages 10864–10882, Miami, Florida,614
USA. Association for Computational Linguistics.615

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie616
Jin, Yi Dong, Changshun Wu, Saddek Bensalem,617
Ronghui Mu, Yi Qi, Xingyu Zhao, Kaiwen Cai, Yang-618
hao Zhang, Sihao Wu, Peipei Xu, Dengyu Wu, Andre619
Freitas, and Mustafa A. Mustafa. 2023. A survey of620
safety and trustworthiness of large language mod-621
els through the lens of verification and validation.622
Preprint, arXiv:2305.11391.623

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun624
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin625
Jiang, Qun Liu, and Wei Wang. 2024. Follow-626
Bench: A multi-level fine-grained constraints fol-627
lowing benchmark for large language models. In628
Proceedings of the 62nd Annual Meeting of the As-629
sociation for Computational Linguistics (Volume 1:630
Long Papers), pages 4667–4688, Bangkok, Thailand.631
Association for Computational Linguistics.632

Ryo Kamoi, Sarkar Snigdha Sarathi Das, Renze Lou,633
Jihyun Janice Ahn, Yilun Zhao, Xiaoxin Lu, Nan634
Zhang, Yusen Zhang, Haoran Ranran Zhang, Su-635
jeeth Reddy Vummanthala, Salika Dave, Shaobo636
Qin, Arman Cohan, Wenpeng Yin, and Rui Zhang.637
2024. Evaluating LLMs at detecting errors in LLM638
responses. In First Conference on Language Model-639
ing.640

Seungone Kim, Juyoung Suk, Xiang Yue, Vijay641
Viswanathan, Seongyun Lee, Yizhong Wang, Kiril642
Gashteovski, Carolin Lawrence, Sean Welleck,643
and Graham Neubig. 2024. Evaluating language644
models as synthetic data generators. Preprint,645
arXiv:2412.03679.646

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 647
Lee. 2023. Visual instruction tuning. Preprint, 648
arXiv:2304.08485. 649

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe 650
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, 651
Diyi Yang, Denny Zhou, and Andrew M. Dai. 2024a. 652
Best practices and lessons learned on synthetic data. 653
Preprint, arXiv:2404.07503. 654

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and 655
Junxian He. 2024b. What makes good data for align- 656
ment? a comprehensive study of automatic data se- 657
lection in instruction tuning. In The Twelfth Interna- 658
tional Conference on Learning Representations. 659

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao 660
Ding, Gang Chen, and Haobo Wang. 2024. On llms- 661
driven synthetic data generation, curation, and evalu- 662
ation: A survey. Preprint, arXiv:2406.15126. 663

Meta. 2024. The llama 3 herd of models. Preprint, 664
arXiv:2407.21783. 665

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 666
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 667
tion via natural language crowdsourcing instructions. 668
Preprint, arXiv:2104.08773. 669

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, 670
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, 671
Sampo Pyysalo, Thomas Wolf, and Colin Raffel. 672
2023. Scaling data-constrained language models. 673
Preprint, arXiv:2305.16264. 674

OpenAI. 2023. Gpt-4 system card. 675

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, 676
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei 677
Liu, Pengfei Liu, and Dong Yu. 2024. InFoBench: 678
Evaluating instruction following ability in large lan- 679
guage models. In Findings of the Association for 680
Computational Linguistics: ACL 2024, pages 13025– 681
13048, Bangkok, Thailand. Association for Compu- 682
tational Linguistics. 683

Team Qwen. 2024. Qwen2 technical report. Preprint, 684
arXiv:2407.10671. 685

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 686
pher D Manning, Stefano Ermon, and Chelsea Finn. 687
2023. Direct preference optimization: Your language 688
model is secretly a reward model. In Thirty-seventh 689
Conference on Neural Information Processing Sys- 690
tems. 691

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao- 692
hua Dong, Ran Lin, and Ruohui Huang. 2024. 693
Conifer: Improving complex constrained instruction- 694
following ability of large language models. Preprint, 695
arXiv:2404.02823. 696

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 697
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 698
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 699
An instruction-following llama model. https:// 700
github.com/tatsu-lab/stanford_alpaca. 701

9

https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://doi.org/10.18653/v1/2024.findings-emnlp.637
https://doi.org/10.18653/v1/2024.findings-emnlp.637
https://doi.org/10.18653/v1/2024.findings-emnlp.637
https://doi.org/10.18653/v1/2024.findings-emnlp.637
https://doi.org/10.18653/v1/2024.findings-emnlp.637
https://arxiv.org/abs/2305.11391
https://arxiv.org/abs/2305.11391
https://arxiv.org/abs/2305.11391
https://arxiv.org/abs/2305.11391
https://arxiv.org/abs/2305.11391
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://doi.org/10.18653/v1/2024.acl-long.257
https://openreview.net/forum?id=dnwRScljXr
https://openreview.net/forum?id=dnwRScljXr
https://openreview.net/forum?id=dnwRScljXr
https://arxiv.org/abs/2412.03679
https://arxiv.org/abs/2412.03679
https://arxiv.org/abs/2412.03679
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2404.07503
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2104.08773
https://arxiv.org/abs/2305.16264
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2404.02823
https://arxiv.org/abs/2404.02823
https://arxiv.org/abs/2404.02823
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi,702
Xingshan Zeng, Wenyong Huang, Lifeng Shang,703
Xin Jiang, and Qun Liu. 2023. Aligning large lan-704
guage models with human: A survey. Preprint,705
arXiv:2307.12966.706

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin707
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-708
drew M. Dai, and Quoc V. Le. 2022. Finetuned709
language models are zero-shot learners. Preprint,710
arXiv:2109.01652.711

Orion Weller, Nicholas Lourie, Matt Gardner, and712
Matthew E. Peters. 2020. Learning from task de-713
scriptions. In Proceedings of the 2020 Conference on714
Empirical Methods in Natural Language Processing715
(EMNLP), pages 1361–1375, Online. Association for716
Computational Linguistics.717

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,718
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei719
Lin, and Daxin Jiang. 2024. WizardLM: Empow-720
ering large pre-trained language models to follow721
complex instructions. In The Twelfth International722
Conference on Learning Representations.723

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.724
Gonzalez, and Ion Stoica. 2023. Rethinking bench-725
mark and contamination for language models with726
rephrased samples. Preprint, arXiv:2311.04850.727

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,728
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-729
wei Zhang, Fei Wu, and Guoyin Wang. 2024a. In-730
struction tuning for large language models: A survey.731
Preprint, arXiv:2308.10792.732

Xinghua Zhang, Haiyang Yu, Cheng Fu, Fei Huang, and733
Yongbin Li. 2024b. Iopo: Empowering llms with734
complex instruction following via input-output pref-735
erence optimization. Preprint, arXiv:2411.06208.736

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,737
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-738
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,739
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao740
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang741
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.742
2024a. A survey of large language models. Preprint,743
arXiv:2303.18223.744

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,745
Minghao Li, Fei Huang, Nevin L. Zhang, and Yong-746
bin Li. 2024b. Tree-instruct: A preliminary study of747
the intrinsic relationship between complexity and748
alignment. In Proceedings of the 2024 Joint In-749
ternational Conference on Computational Linguis-750
tics, Language Resources and Evaluation (LREC-751
COLING 2024), pages 16776–16789, Torino, Italia.752
ELRA and ICCL.753

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan754
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,755
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,756
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging757
LLM-as-a-judge with MT-bench and chatbot arena.758

In Thirty-seventh Conference on Neural Information 759
Processing Systems Datasets and Benchmarks Track. 760

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 761
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 762
2024. Llamafactory: Unified efficient fine-tuning 763
of 100+ language models. In Proceedings of the 764
62nd Annual Meeting of the Association for Compu- 765
tational Linguistics (Volume 3: System Demonstra- 766
tions), Bangkok, Thailand. Association for Computa- 767
tional Linguistics. 768

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 769
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 770
LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, 771
Luke Zettlemoyer, and Omer Levy. 2023a. LIMA: 772
Less is more for alignment. In Thirty-seventh Con- 773
ference on Neural Information Processing Systems. 774

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha 775
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and 776
Le Hou. 2023b. Instruction-following evaluation for 777
large language models. Preprint, arXiv:2311.07911. 778

10

https://arxiv.org/abs/2307.12966
https://arxiv.org/abs/2307.12966
https://arxiv.org/abs/2307.12966
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2411.06208
https://arxiv.org/abs/2411.06208
https://arxiv.org/abs/2411.06208
https://arxiv.org/abs/2411.06208
https://arxiv.org/abs/2411.06208
https://arxiv.org/abs/2303.18223
https://aclanthology.org/2024.lrec-main.1460
https://aclanthology.org/2024.lrec-main.1460
https://aclanthology.org/2024.lrec-main.1460
https://aclanthology.org/2024.lrec-main.1460
https://aclanthology.org/2024.lrec-main.1460
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=KBMOKmX2he
https://openreview.net/forum?id=KBMOKmX2he
https://openreview.net/forum?id=KBMOKmX2he
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

A Dataset Distribution779

of Constraints Count Percentage (%)

≤ 3 4272 15.2
4 7774 27.6
5 7596 27.1
6 5321 18.9

≥ 7 3161 11.2

Table 7: Distribution of constraint numbers in the in-
structions of the dataset

Table 7 presents the distribution of the number780

of constraints within our synthesized instructions,781

which comprise a total of 28K instances with an av-782

erage of 4.81 constraints per instruction. Of these,783

an average of 2.56 constraints are evaluated solely784

by the LLM supervisor, while 2.25 constraints are785

jointly evaluated by the LLM supervisor and the786

LLM-generated function."787

B Model Training788

For model training, we utilize LLaMA-Factory789

(Zheng et al., 2024) for all stages. For training790

Qwen2-7B, LLaMA3-8B, and GLM-4-9B, we use791

8 × A100 GPUs. For Qwen2-72B and LLaMA3-792

70B, we scale up to 32 × A100 GPUs.793

In the SFT phase, we perform full supervised794

fine-tuning on Qwen2-7B, LLaMA3-8B, and GLM-795

4-9B with a learning rate of 2×10−6, using a cosine796

scheduler and a warm-up ratio of 0.1. The global797

batch size is set to 128, and the models are trained798

for 3 epochs. The maximum context length is 8192799

tokens. For Qwen2-72B and LLaMA3-70B, the800

global batch size is increased to 512.801

In the DPO phase, the learning rate is set to802

1 × 10−6, with a cosine scheduler and a warm-803

up ratio of 0.1. The global batch size is 64, and804

training is performed for 2 epoch with a preference805

beta value of 0.1. The maximum context length806

remains 8192 tokens.807

C Prompt 808

Prompt for fine-grained constraints generation

As an expert in contextual language con-
straints, you will create {Number} constraints
and combine them with the original instruction
to generate a new, more complex instruction.
When creating these constraints, you should
first identify a general category that encom-
passes the overall restrictions you wish to im-
pose. Also, be mindful that constraints should
not be mistaken for additional information or
descriptions; they are merely to narrow the
potential response scope. Furthermore, you
need to consider whether the added constraints
align with the original instruction, whether the
instruction with added constraints is reason-
able and likely to be a real instruction that a
user might issue, and whether it is excessively
rigid.
These are the categories of constraints that
have been provided for you to choose from, if
they are not suitable, you can also create your
own constraints:
{Random Part of Constraints Categories}
Please note that your response should only re-
turn the new instruction without any additional
information (such as the added constraints and
the justification for the instruction’s reason-
ableness)
Here is my original instruction: {Original In-
struction}.
The new instruction is:

809

Prompt for instruction verification

You are a linguistics expert. I will provide
you with an original instruction and an revised
instruction with added format constraints.
You need to extract the newly added con-
straints by comparing the original and new
instructions, list them in the form of [Con-
straint N], and then determine if the original
and new instructions meet the following con-
ditions:
1. The revised instruction should contain all
the content of the original instruction.
2. The constraints added on the new instruc-
tion should be reasonable should not conflict
with each other.
3. The revised instruction should be a reason-

810

11

able and meaningful question likely to be a
real question a user might ask, and contain
enough context for answering, and it should
be an instruction rather than a statement.
The input format is:
[Original instruction]: Original instruction
[Revised Instruction]: Revised instruction
with added format constraints
The output format is:
[Constraints Indentified]:
Constraint 1: Your first extracted constraint
Constraint 2: Your second extracted constraint
...
Constraint N: Your Nth extracted constraint
[Analysis]: Here, you need to analyze each
condition one by one to see if they are met.
[Final Result]: Output YES or NO here. If
all the 3 conditions are met you should output
YES, otherwise output NO. Do not include
any other information.
Now please evaluate the following original
instruction and revised instruction and provide
your judgment:
[Original instruction]: {Original Instruction}
[Revised Instruction]: {Revised Instruction}
Please provide your judgment:

811

Prompt for constraints classification

You are a linguistics expert. I will provide
you with an original instruction, and a revised
instruction that includes additional constraints.
Your task is to identify the constraints added
in the revised instruction compared with the
original instruction and determine which of
these constraints relate to keywords, length, or
changing case.
To be more specific:
Keyword Usage may include requirements
about the presence of specific keywords, the
frequency of these keywords, and letter fre-
quency in keywords. Note that only keywords
with specific definitions or requirements are
considered, instead of general keywords like
transition phrases or third-person perspectives.
Length Requirements may include limits on
the number of words, number of characters,
or the length of each sentence or the whole
response.
Case Constraints may involve requirements
about the use of capital words or lowercase

812

words in the prompt.
You also need to state why the constraints
can be checked by pure Python code without
searching for outside resources and assuming
some certain prerequisites.
Input format:
Original Instruction: What is oyster sauce?
Revised Instruction: Describe oyster sauce,
use only one-sentence responses, begin with
"Oyster sauce is", and incorporate an id-
iomatic expression that illustrates its flavor
profile and do not exceed 200 words. Do not
use any contractions in your response.
Output format:
{

"Constraints_extracted": {
"Constraint 1": "Use only one-
sentence responses.",
"Constraint 2": "Begin with
'Oyster sauce is.'",

"Constraint 3": "Incorporate an
idiomatic expression that

illustrates its flavor profile.",
"Constraint 4": "Do not exceed
200 words.",

"Constraint 5": "Do not use any
contractions."

},
"Analysis": "Constraint 2 is
related to keywords constraints
and can be checked by
python code using startwith()
function. Constraint 4 is related
to length constraints and can
be checked by python code
using len() and split() function
to count how many words.
Constraints 5 is related to
keywords constraints but can
not be checked by python code
since the variety of contractions
is too large.",
"Final_result": ["Constraint 2",
"Constraint 4"]

}

The value of "Constraints_extracted" should
be a dictionary containing the constraints ex-
tracted from the revised instruction. The
value of "Analysis" should be a string ex-
plaining which constraints relate to keywords,

813

12

length, or changing case and why they can
be checked by pure Python code. The value
of "Final_result" should be a python list con-
taining the constraints that relate to keywords,
length, or changing case and can be checked
by pure Python code.
Provide your judgment result below, Please
note that you should only return a json object
with the format we discussed above:
Original Instruction: {Original Instruction}
Revised Instruction: {Revised Instruction}
Output:

814

Prompt for generating verification function

You are an expert for writing evaluation func-
tions in Python to evaluate whether a response
strictly follows a format constraint in the user
instruction.
Input Format: A format constraint in the user
instruction.
Output Format: A single JSON includes the
evaluation function in the key ‘func‘, and a list
of three test cases in the key ‘cases‘, which
includes an input in the key ‘input‘ and an
expected output in the key ‘output‘ in (true,
false). Here is an example of output JSON
format:

{{"func": JSON_STR(use only
\\n instead of \n),
"cases": [{{"input": bool,
"output": bool}}]}}.

Other Requirements:
1. Please write a Python function named ‘eval-
uate‘ to evaluate whether an input string ‘re-
sponse‘ follows this format constraint. If it
follows, simply return True, otherwise return
False.
2. If your function requires any external li-
braries, ensure to include the import state-
ments within the evaluate function.
Here is the constraint: {Constraint}
Please output your json here:

815

Prompt for constraints-following evaluation

You are a linguistics expert. I will provide
you with a instruction and a response to this
instruction. I will also give your a list of con-

816

straints that the response should follow. Your
task is to determine whether the response ad-
heres to these constraints.
Please follow the input and output formats
provided below:
Input format:
[Instruction]: Provide a summary of the ben-
efits of learning a second language in three
bullet points. Each bullet point should be one
sentence long and include the word "advan-
tage." Avoid using technical jargon and ensure
the summary is suitable for a general audience.
[Response]:
- One advantage of learning a second language
is enhanced cognitive abilities.
- Another one is the increased cultural aware-
ness and appreciation.
- A third advantage is the improved employ-
ment opportunities.
[Constraints]: ["The summary should be in
three bullet points.", "Each bullet point should
be one sentence long.", "Each bullet point
should include the word ’advantage’.", "Avoid
using technical jargon.", "Ensure the summary
is suitable for a general audience."]
Output format:

{{
"Analysis": {{
"Constraint 1": "Constraint 1 is
met, the response contains three

bullet points.",
"Constraint 2": "Constraint 2 is

met, each bullet point
is one sentence long.",

"Constraint 3": "Constraint 3 is
not met, the setence after
the second bullet point
does not include the word
'advantage'.",

"Constraint 4": "Constraint 4 is
met, the response avoids
technical jargon.",

"Constraint 5": "Constraint 5 is
met, the summary is suitable
for a general audience."

}},
"Final_result": [true, true, false,
true, true]

}}

The value of "Final_result" should be a python
817

13

list of boolean values indicating whether each
constraint is met.
Provide your judgment result below, Please
note that you should only return a json object
with the format we discussed above:
[Instruction]: {Instruction}
[Response]: {Response}
[Constraints]: {Constraints}
[Output]:

818

Constraints Categories

Keyword Usage:
Description: Ensuring the use of specific key-
words or avoiding certain forbidden words in
the text. This includes requirements for the
number, frequency, occurrence of specific let-
ters, and placement of keywords.
Example:

• Keywords existence
• Forbidden words
• Keywords frequency
• Letter frequency in keywords
• Keywords in specific positions

Language Style:
Description: Adhering to specific language
style or tone in the response, such as using a
particular dialect or regional language, adopt-
ing a formal or informal tone, using gender-
specific or gender-neutral language, or em-
ploying idioms or colloquial expressions.
Example:

• Constraints on what kinds of Language
should be used in response

• Specific dialects or regional language
constraints

• Formal or informal tone
• Gender-specific / Gender-neutral lan-

guage
• Use of idioms or colloquial expressions

Length Requirements:
Description: Specifying concrete limits on
text length including the number of para-
graphs, sentences, words, initial words in para-
graphs, or length of each sentence in terms of
words or characters.
Example:

• Number of Paragraphs
• Number of Sentences

819

• Number of Words
• First Word in i-th Paragraph should be ...
• Number of characters
• Length of each sentence in terms of

words or characters

Content Structure:
Description: Organizing content according to
specific requirements, including the number
of placeholders, inclusion of postscripts, pres-
ence of specific phrases or idioms, use of spe-
cific tags or markers, and the number of refer-
ences or citations.
Example:

• Number of placeholders
• Postscript
• Specific phrases or idioms
• Presence of specific tags or markers
• Number of references or citations

Case Constraints:
Description: Imposing constraints on the use
of upper or lower case letters in the text, in-
cluding overall frequency, use of title case
for headings, consistency within paragraphs,
and consistency in the use of abbreviations or
acronyms.
Example:

• Capital words or Lowercase words
• Frequency of capital/lower words
• Title case for headings
• Case consistency within a paragraph
• Consistency in the use of abbreviations

or acronyms

Formatting Rules:
Description: Specifying concrete formatting
requirements for the text, including multiple
sections, the number of bullet lists, highlighted
sections, the name of the title, and specific
alignment (left, right, center).
Example:

• Multiple sections
• Number of bullet lists
• Number of highlighted sections
• Name of the title
• Specific alignment (left, right, center)

Mixed Approaches:
Description: Combining various methods in
the text response, such as repeating user
prompts before answering, providing multiple

820

14

responses for a single prompt, writing from
different perspectives, and integrating ques-
tions and answers in the response.
Example:

• Repeat the user prompts before answer-
ing the question

• Give multiple responses for a single
prompt

• Use of different perspectives in the re-
sponse

• Integrating questions and answers in the
response

Punctuation Usage:
Description: Imposing specific rules on the
use of punctuation marks, such as avoiding
commas or colons, using specific punctuation
marks at certain positions, the frequency of
semicolons or ellipses, and the use of excla-
mation marks or question marks.
Example:

• No use of comma/colons
• Specific punctuation marks at certain po-

sitions
• Frequency of semicolons or ellipses
• Use of exclamation marks or question

marks

Opening and Closing Rules:
Description: Specifying concrete require-
ments for the opening and closing of the text,
such as starting or ending with specific words,
punctuation, or quotations, including a famous
quote, or beginning or ending with a summary
statement.
Example:

• Start/end with specific words
• Start/end with specific punctuation or

quotation
• Start/end with a famous quote
• Start/end with a summary statement

Literary Techniques:
Description: Using specific literary techniques
to enhance the text, including metaphors or
similes, alliteration or assonance, hyperbole
or understatement, irony or sarcasm, and per-
sonification or onomatopoeia.
Example:

• Use of metaphors or similes
• Use of alliteration or assonance

821

• Use of hyperbole or understatement
• Use of irony or sarcasm
• Use of personification or onomatopoeia

Output Formatting:
Description: Ensuring the text is output in a
specified format, such as a table or list, using
a specific font or color, in a specific file format
(e.g., PDF, CSV), in a certain structure (e.g.,
JSON, XML), or in a particular layout (e.g.,
grid, list).
Example:

• Output in a specific format (e.g., table,
list)

• Output in a specific font or color
• Output in a specific file format (e.g., PDF,

CSV)
• Output in a specific structure (e.g., JSON,

XML)
• Output in a specific layout (e.g., grid, list)

Perspective Constraints:
Description: Ensuring the text is written from
a specific narrative perspective, such as strictly
first-person, second-person, or third-person,
alternating perspectives in different sections,
using an omniscient or limited viewpoint, and
avoiding shifts in perspective mid-paragraph.
Example:

• Write strictly from a first-person, second-
person, or third-person perspective

• Alternate perspectives in different sec-
tions

• Use an omniscient or limited viewpoint
• Avoid shifting perspectives mid-

paragraph
822

D Detailed Experimental Results 823

Table 8 shows the detailed experimental results 824

across IFEval, FollowBench and InFoBench. 825

15

Table 8: Complete results on two instruction-following benchmarks: IFEval, FollowBench and InFoBench.

Model
IFEval FollowBench InFoBench

Pr. (S) Ins. (S) Pr. (L) Ins. (L) L1 L2 L3 L4 L5 HSR-Avg SSR-Avg Easy Hard Overall

GPT-3.5-Turbo-1106 60.4 69.5 63.8 72.8 80.3 68.0 68.6 61.1 53.2 66.2 72.5 90.4 85.1 86.7
GPT-4-1106-Preview 76.9 83.6 79.3 85.3 84.7 75.6 70.8 73.9 61.9 73.4 77.2 90.1 89.1 89.4
GPT-4o-2024-0513 81.1 86.7 85.4 89.6 87.2 77.8 73.4 74.9 70.2 76.7 79.4 89.2 92.1 90.7
GLM-4-0520 79.1 85.0 83.7 88.7 82.1 73.7 70.5 65.7 60.5 70.5 75.3 85.7 87.8 87.1

Qwen2-7B(LMSYS-Chat) 37.9 48.8 39.2 50.2 61.2 53.9 37.6 27.8 26.0 41.3 54.3 77.5 75.7 76.3
Qwen2-7B-Instruct 50.8 60.9 55.3 64.6 76.5 63.3 58.2 42.0 37.7 55.5 63.7 83.3 81.0 81.8
AutoIF-Qwen2-7B-DPO 44.0 55.0 46.6 57.9 - - - - - - 56.6 - - -
FiGV-Qwen2-7B-SFT 64.9 74.3 69.9 78.7 73.1 65.4 57.3 42.1 40.6 55.7 63.2 84.3 82.0 82.7
FiGV-Qwen2-7B-DPO 67.5 77.0 71.7 80.5 72.2 70.8 53.2 47.8 41.0 57.0 65.1 84.6 83.7 84.0

LLaMA3-8B(LMSYS-Chat) 42.9 52.2 44.0 53.3 62.1 52.0 39.6 29.0 24.8 41.5 56.1 78.9 74.3 75.7
LLaMA3-8B-Instruct 69.9 78.2 77.6 84.4 75.9 69.1 59.5 49.8 42.6 59.4 67.3 83.4 84.0 83.8
AutoIF-LLaMA3-8B-DPO 28.8 42.4 43.1 56.0 - - - - - - 49.9 - - -
FiGV-LLaMA3-8B-SFT 67.7 76.7 72.6 80.5 72.4 70.4 59.2 44.1 42.8 57.8 67.0 80.5 80.0 80.2
FiGV-LLaMA3-8B-DPO 74.1 81.5 77.1 84.1 75.5 72.1 59.9 49.2 45.7 60.5 67.4 82.5 81.9 82.3

GLM4-9B(LMSYS-Chat) 41.3 52.2 42.3 53.1 62.1 54.8 42.9 32.8 25.1 43.5 57.9 76.4 74.8 75.3
GLM4-9B-Chat 69.7 77.8 71.0 79.1 76.2 67.8 56.8 51.4 45.3 59.5 66.9 82.3 81.7 81.9
FiGV-GLM4-9B-SFT 67.1 76.3 70.4 79.0 74.9 69.1 61.0 49.8 37.5 58.5 66.7 83.8 81.7 82.2
FiGV-GLM4-9B-DPO 73.9 81.2 77.3 83.8 74.5 73.2 62.5 51.1 46.1 61.5 69.3 85.4 84.1 84.5

Qwen2-72B-Instruct 77.1 80.5 84.3 86.9 84.3 73.7 67.8 61.8 57.2 68.9 73.2 85.2 85.0 85.0
AutoIF-Qwen2-72B-Instruct-DPO 80.2 86.1 82.3 88.0 - - - - - - 67.5 - - -
FiGV-Qwen2-72B-SFT 78.6 84.7 82.6 87.9 80.3 69.5 62.5 57.1 55.1 64.9 69.8 87.4 87.3 87.4
FiGV-Qwen2-72B-DPO 81.0 85.4 84.5 88.3 82.3 71.0 67.5 58.7 56.0 67.1 72.5 89.6 89.0 89.4

LLaMA3-70B-Instruct 77.6 84.4 84.8 89.6 75.7 71.4 60.4 61.9 54.3 64.7 69.0 87.5 88.1 88.0
AutoIF-LLaMA3-70B-Instruct-DPO 80.2 86.7 85.6 90.4 - - - - - - 66.5 - - -
FiGV-LLaMA3-70B-SFT 77.3 83.6 82.7 86.3 74.6 72.0 66.3 49.6 53.3 63.2 68.9 85.2 85.8 85.6
FiGV-LLaMA3-70B-DPO 81.4 86.2 85.9 90.7 76.0 71.2 60.8 55.4 61.1 64.9 69.1 89.2 88.9 89.0

16

	Introduction
	Related Work
	Instruction Following
	Synthetic Data

	Method
	Instruction Synthesis
	Verified Response Generation

	Experiments
	Experimental Setup
	Main Results
	Analyses
	Ablation Studies
	Complexity and Quality
	General Abilities
	Scaling Anlysis

	Conclusion
	Limitations
	Dataset Distribution
	Model Training
	Prompt
	Detailed Experimental Results

