Do All Tokens Matter?
Exploring Sparse Memory in Long-Sequence Generalization

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-
strated remarkable progress in generating high-
quality natural language through extensive pre-
training over Transformer architectures. How-
ever, the quadratic complexity of transformers
in sequence computation greatly limits their ca-
pability to efficiently train long sequences. To
this end, we divide the input sequences of the
Transformer network as two distinct compo-
nents: the farget part for next-token prediction,
and the memory part that serves as the condi-
tional context for the prediction of the target
part. On the basis of this, we analyze the statis-
tical law of attention patterns in modeling long
context that demonstrates a highly positive cor-
relation between the sparsity of the memory
and target part with increasing sequence length.
We encapsulate it as the Pareto Principle of
Transformer. Therefore, in this paper, we in-
troduce SPARSE MEMORY TRAINING, a sim-
ple training technique to optimize the complex-
ity of Transformer models in long-sequence
generalization by sparsifying the memory part.
Specifically, we apply a sparse sampling pol-
icy over the memory part that decays with the
distance from the target part, to obtain sparse
memory and preserve their positions. With-
out any architectural modifications, our method
can extend existing Transformer-based LLMs
to capture long-range dependencies within a
fixed window size during the training. Ex-
perimental results on multiple datasets also
demonstrate the effectiveness and efficiency of
SPARSE TRAINING to mitigate the complexity
of the Transformer network in building long-
sequence dependency. The code is provided in
the supplementary materials.

1 Introduction

With the aid of large-scale pre-training tech-
niques (Kaplan et al., 2020; Ouyang et al., 2022)
on the Transformer models (Vaswani et al., 2017),
large language models (LLMs) (OpenAl, 2023;

Touvron et al., 2023a,b; Team, 2024a; Jiang et al.,
2023; Team and Google, 2023; Team, 2024b)
have recently achieved incredible progress in solv-
ing massive natural language processing (NLP)
tasks. Despite these remarkable advancements,
the inherent issue of quadratic complexity in the
Transformer networks severely limits their capa-
bility to extend long-sequence modeling, draw-
ing enormous attention from both the industry and
academia to address this critical issue.

Many efforts have been devoted to generaliz-
ing the context windows of LLMs beyond their
pre-training settings. Among these works, some
attempted to develop sparse architectures (Child
et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020; Choromanski et al., 2021; Tay et al., 2023;
Han et al., 2024; Xiao et al., 2024) to reduce the
quadratic complexity of Transformer network dur-
ing the training phase. However, these architectures
rely on sparse patterns and limit their scalability
to fall behind the original ones. Therefore, further
works continue to explore how to extend existing
LLMs to support long-sequence dependency. To
this end, some papers (e.g., RoPE (Su et al., 2024),
ALiBi (Press et al., 2022), LEX-Transformer (Sun
et al., 2023b)) point out that good positional infor-
mation plays an important role in enabling length
extrapolation. On the basis of these, some papers
(e.g., PI (Chen et al., 2023), Yarn (Peng et al.,
2024)) extend positional information to enlarge
context windows via interpolation. Although these
works offer a solid initialization for modeling po-
sitional information in long sequences, they still
experience performance deterioration without any
fine-tuning. How to devise an efficient training
method to extend the context window of existing
LLMs still remains an ongoing challenge.

In this paper, inspired by previous experi-
ences (Child et al., 2019; Beltagy et al., 2020; Za-
heer et al., 2020; Choromanski et al., 2021; Tay
et al., 2023; Han et al., 2024; Xiao et al., 2024),

D Target Token

Position

Memory Token (Sampled)

'
;_Sample (p = 25%)

X16
Iy Iy
1 1 1

!

Transformer (Decoder)]

[} L) L) ¥ L)
1 1 1 1 1
1 1 1 1 '
1 L

-

L) L)
1 1
1 '

L

1 1 1 1

Po | Pa

Pio P11 P12 (P13 P14 P1s
& 9° g 9P

1z [ad (g [

\

g (s [(215
\

J

% (% [(1)
J

Y
Memory token

Y
Target token

Figure 1: The example of SPARSE MEMORY TRAINING. Assume the window size of this language model is 8. We expect to
sample 8 tokens from a document with 16 tokens to simulate training. Here, we divide the input document as the memory part
(xo—11) and the target part (x12—15). Then, we sample (xo, x4) from (xo—7) with a probability of 25%, and (210, x11) from
(zs—11) with a probability of 50%. We concatenate the sampled tokens (xo, x4, 10, 11) With the target tokens, preserving their

positions for next-token prediction..

we observe and analyze the phenomenon of atten-
tion sparsity, particularly in long-sequence mod-
eling, and further attribute it as “Pareto Principle
of Transformers”. That is, only a small subset
of tokens dominates the attention distribution of
the Transformer network empirically for model-
ing long-sequence dependency. Based on these
observations, we raise the following question: Is
it possible to simulate attention sparsity without
modifying the architecture during the training?

Therefore, in this paper, we introduce SPARSE
MEMORY TRAINING, which aims to extend the
long-context capability of existing LLM frame-
works by sampling sparse memory as the condi-
tional information for pre-training. Specifically,
we define the distant tokens as the memory tokens,
and argue that they generally contribute less infor-
mation to the token prediction compared to those
are closer to the target. That means, most of com-
putations (i.e., dot product) between distant tokens
and the target tokens are redundant. Hence, the
core idea behind our method is to sample tokens
from the distant tokens and simultaneously keep
their corresponding positions, and then adopt the
standard next-token prediction for the target tokens.
This process is illustrated in Figure 1. More specifi-
cally, we divide the input sequences as the memory
part and the farget part. Based on the posterior dis-
tribution of attention sparsity, we devise a sampling
policy over the memory part with a decay factor
across the distance to collect tokens. That implies
tokens closer to the target part will be sampled at
a higher probability while the farther tokens are

sampled at a lower probability. This design en-
ables us to replicate the sparsity of long-sequence
dependencies at the input level, rather than archi-
tecture. Generally, it also offers us three key ben-
efits to model long-sequence dependency: 1) Effi-
cient Long-Sequence Training. By training on the
sampled sequence with length Lq,pe < L, our
method can reduce the space and time complexity
from O(L?) to O(Lgample) when compared with
directly training long sequences (Fu et al., 2024) on
the Transformer network; 2) Sparsity Simulation.
By applying a decay sampling policy across the
length, our method also simulates the situation of
the attention sparsity in long-sequence modeling; 3)
Architecture Invariance. Compared with previous
sparse architectures, SPARSE MEMORY TRAINING
does not involve any modifications to the architec-
ture, making it adaptable to any LLM framework
for long-sequence dependency modeling.

To verify the effectiveness of SPARSE MEMORY
TRAINING, we conduct extensive experiments on
and public benchmark datasets. Experimental re-
sults demonstrate that by deploying SPARSE MEM-
ORY TRAINING over existing LLM frameworks, it
can effectively improve the capability of model to
infer over long contexts. Our contributions can be
summarized as follows:

* We conduct an in-depth analysis of the statistical
attention patterns in Transformers across differ-
ent LLMs, and summarize several laws regard-
ing attention distribution, including its sparsity,
weight allocation and decay over distance.

* Based on our analysis, we propose SPARSE
MEMORY TRAINING, a novel training approach
to extend context window size of LLMs by sam-
pling sparse memory, without any modifications
in the architectures.

* Empirically, we demonstrate the effectiveness of
SPARSE MEMORY TRAINING through extensive
experiments on multiple state-of-the-art LLMs
over public benchmarks.

2 Statistical Laws of Attention Patterns

To unveil the secrets of sparsity beneath the at-
tention mechanism of Transformer networks, we
first analyze several statistical patterns of attention
across different samples in this section. Here, in the
standard Transformer architecture (Vaswani et al.,
2017), the token features are aggregated through
the self-attention mechanism as follows:

M
(V.. H) xa((QmH)T(KmH))

m=1
(1
where H € RP*¥ s the input sequence embed-
ding and 6, = {(Vim, Q. Kin) b C RPxD
denotes the parameters with M heads. N is the
number of input tokens and D is the embedding
dimension. o denotes the attention mask and acti-
vation, e.g., scaling by % followed by softmax op-
eration. Conventionally, “attention matrix" refers
to the matrix o ((Q,,H) " (K, H)) € RV with
causal masking applied, i.e., each token attends to
all preceding tokens.
To better understand the attention patterns from
a statistical point of view, we visualize the atten-
tion matrix in different LLMs (e.g., GPT-2 (Rad-
ford et al., 2019), LLama-2 (Touvron et al., 2023b)
and Mistral (Jiang et al., 2023)) by calculating its
average attention weights over each layer and sam-
ple, shown in Figure 2. All results are tested in
the WikiText-103 dataset (Merity et al., 2017) and
measured by the maximum length of their context
window. Let A, denote the average attention ma-
trix for the language model M. We discuss several
key insights in the following subsections.

2.1 Pareto Principle of Transformers

Generally, a common observation is that the at-
tention distribution always exhibits sparsity when
processing long sequences. From Figure 2, we can
clearly observe that the tokens close to the query
tokens (i.e., diagonal red pixels) usually receive

more attention than distant tokens. To further an-
alyze the attention distribution, we also count the
cumulative sum S = Zle a(;) of the attention
weight sorting by their distance to the query token
or their ranked corresponding weight !. Our results
are displayed in Figure 3. From Figure 3b, we can
find that approximately 25% of the tokens account
for the vast majority of the total attention, which
we refer to as the “Pareto Principle of Transform-
ers". These observations also suggest that for long-
sequence modeling, attention patterns are usually
sparse and most of pair-wise computations in the at-
tention operations are redundant. Our studies raise
a question: is it possible to sample a few tokens
for long-sequence modeling while simultaneously
preserving such a sparsity?

2.2 Attention decay with distances

Figure 3c presents the sum of the attention weight
per 1024 tokens. From this figure, the first bin
contributes more than 50% percent of the total at-
tention weight. Furthermore, there is a clear down-
ward trend as the position increases, except the last
one . In contrast, standard Transformer networks
assume that each position contributes equally when
calculating the outputs of attention layers, ignor-
ing these evident statistical patterns. Therefore, we
deem it important to incorporate such an attention
decay to reduce the complexity of long-sequence
modeling. To handle it, previous works (Xiao et al.,
2024; Han et al., 2024; Jiang et al., 2023) explore
applying some specific attention patterns to sam-
ple tokens for inference, like sliding window or
A-shape. The former only passes close tokens to
Transformers, while the latter considers the first
few tokens together with the close tokens critical
to making predictions. However, as shown in Fig-
ure 3(a), the middle tokens (approximately from
L/4 to the end) account for at least 30% of the
attention, indicating that these tokens may encode
crucial information for downstream tasks. Hence, it
remains to be addressed how to generalize existing
LLM frameworks to unseen length by training.

'We rank each token x; by their attention weight to guar-
antee its attention weight o) > ai41).

*The original Pareto Principle from economics states that
a small proportion of factors often account for a large portion
of the effect. https://en.wikipedia.org/wiki/Pareto_
principle.

Based on previous experiences, Transformer networks
suffer from “attention sink" (Xiao et al., 2024) that means the
first few tokens usually occupy a ratio of attention weight.

https://en.wikipedia.org/wiki/Pareto_principle
https://en.wikipedia.org/wiki/Pareto_principle

8

g

Query Position
Query Position

acor | oo
0 128 25 384 512 640 768 896 10; 512 1024 1536 2048 2560 3072 3584 4096 0
Key Position Key Position

(b) LLaMA-2

(a) GPT-2

Query Position

Y
1024 2048 3072 4096 5120 6144 7168 8192
Key Position

(c) Mistral

Figure 2: Attention visualization on different LLMs. GPT-2 is over 1024 samples with a length of 1024, LLaMA-2
is over 4096 samples with a length of 4096, and Mistral-7B is over 2048 samples with a length of 8§192. All results
are computed by averaging across samples, layers and heads.

1.0 1.0

e
3
o
%

1
>

o
>

o
IS
o
kS

b
o
o
o

— o2
— LaMa2 78

Mistral 78,
0.0 0.0

Cumulative Attention Weight
Cumulative Attention Weight

Query 8192

° ° ° °
o [IS &

Attention Weight Per Bin

°

Ao
— on h
— LaMa2 78 3.
Mistral 78 ‘»-..T___.___

L/a 3L/4 L

L2
Relative Token Position

(a) Cumulative Sum (distance).

L4 L2
Token Ranked by Attention Weight

(b) Cumulative Sum (weight).

°
B

3L/4 L 1000 2000 3000 4000 5000 6000 7000 8000
Relative Token Position

o

(c) Attention Sums Per Bin.

Figure 3: Spatial distribution of Attention in the Transformer network. (a) The cumulative sum of attention weight
of each position; (b) The cumulative sum of attention weight sorted by the weight of each token in descending order;
(c) We count the distribution of attention weight and divide it into bins where each bin includes 1024 tokens.

3 Sparse Memory Training

As mentioned previously, the backbone of most
modern LLM frameworks is decoder-only Trans-
former, whose quadratic complexity in computing
(QnH) " (K,,H) € RV*N in equation 1 makes
it inefficient when handling long sequences (large
N). To this end, we believe that an ideal solution
to extend the capability of LLMs to generalize long
sequences should meet these criteria: 1) It should
not introduce any modification over architectures
to preserve its architectural integrity; 2) It should
be able to simulate the sparsity of the attention dis-
tribution in sequence computations; 3) It should
effectively reduce the time and space complexity,
avoiding quadratic growth. Therefore, in this pa-
per, we introduce SPARSE MEMORY TRAINING,
a novel training strategy to extend existing LLMs
to support long sequence generalization.

3.1 Framework

Assume the final part of a long sequence as X =
{Xm+1, - - -, XN }, Where m starts from a large posi-
tion (e.g., beyond 4096 in LLaMA-2). The conven-
tional method to establish long-sequence training

is to directly calculate the whole sequence from po-
sition 1 to N via attention operations (i.e., O(N?)),
while bringing massive and redundant computa-
tions. Therefore, we claim that the core challenge
to address the long-context issue is how to bridge
the connection between two distant tokens. How-
ever, considering the sparsity between the distant
and the target tokens, we argue that not all pairwise
computations in attention are essential, and some
distant tokens could be ignored for modeling long
contexts to simulate sparsity.

To this end, for an input sequence X =

{x1,...,xx}, we divide it into the memory
part Xymem = {Xi1,...,Xm} and the target part
Xtarget = {Xm+1,---,XN}, Where m exceeds

the predefined context window L (e.g., 4096 in
LLaMA-2) of original LLMs. Here, we assume
IN — m]| is equal to L/2. Therefore, we propose
SPARSE MEMORY TRAINING, which aims to sam-
ple a sub-sequence Xmem = {Zip, .-, X /2} from
the memory part X,em, Where the sampled indices
{i1,...,iL 2} are from [1, m]. Then, we concate-
nate the sampled Xmem and the target part Xarget
as the input sequence and thus employ the stan-

dard next-token prediction for the target part. To
identify the long-range dependencies among se-
quences, we also preserve the corresponding posi-
tional indices of each token, as Transformer is a
position-independent architecture . Here, we use
cross-entropy loss to optimize our model, and the
objective function of SPARSE MEMORY TRAIN-
ING is defined as:
1 al .

TN > logp(ilemii<i<i, Xmem, 0),

i=m+1

2)
Here, we enable the target part to follow the stan-
dard next-token prediction for modeling continuous
sequences, and then we use the sampled memory
part to establish the long-sequence dependencies
between the target part and the distant tokens. Fig-
ure 1 also illustrates the pipeline of our method. In
Figure 1, we sample four tokens (zg, x4, 210, Z11)
from the memory part, and then auto-regressively
predict tokens in the target part. So, in this case,
we extend the window size of the language model
to 16 tokens while its predefined window size is
8. Therefore, in SPARSE MEMORY TRAINING, its
complexity is independent of the input sequence
length N, stated as follows:

Lemma 3.1 Given length-N sequences and an
LLM pretrained on length L < N, SPARSE MEM-
ORY TRAINING reduces causal language modeling
complexity from O(N?) to O(L?) for both space
and time.

We can find that this design enables us to conduct
long-sequence training without any architectural
modifications, and only requires O(L?) complexity
during the training. In addition, we also design
two techniques to enhance our model: 1) Sparse
Sampling with decay over the distance to simulate
attention sparsity in long-sequence dependency; 2)
Mixed Training to guarantee the original capability
of LLMs wheni < L.

3.2 Sparse Memory Sampling with Decay

SPARSE MEMORY TRAINING adopts a sampling
policy to sample distant tokens and build their con-
nections with the target part. Based on our analysis
in section 2, the attention distribution also mani-
fests sparsity with the increasing distance. There-
fore, using uniform sampling from the memory
parts is unsuitable as it cannot highlight this char-
acteristic. Consequently, we expect to develop a

*Transformer identifies the order of tokens via their posi-
tional embeddings.

sparse sampling policy that should satisfy these
two criteria: 1) Captures the sparsity of the atten-
tion distribution, ensuring sufficient allocation to
nearby tokens that are likely to be important; 2) Re-
flects the decay pattern of attention with increasing
relative distances. To this end, we design a sparse
sampling with a decay over the distance. Here, we
set up an initial window size W for sampling. If
the length of memory part is smaller than twice the
size of W, we employ a uniform sampling to ob-
tain N tokens from the position 1 to M. Otherwise,
we uniformly sample % tokens from the position
M — W to M (i.e., the closest interval to the target
part), and another g tokens are sampled from the
remaining memory part with a larger window. This
design enables us to sample more tokens within
the nearest window, but also guarantees that the
farthest tokens can also be accessed. More details
can refer to Appendix B.1.

3.3 Mixed Training

While our proposed SPARSE MEMORY TRAINING
can effectively help us capture long-range depen-
dencies of the distant tokens, it will also suffer
from another common issue: catastrophic forget-
ting (Luo et al., 2023; Wu et al., 2024; Kotha et al.,
2024; Huang et al., 2024) in the original positions
(i.e., From 1 to L). To address this issue, we de-
vise mixed training that combines SPARSE MEM-
ORY TRAINING and standard next-token prediction
on the original window to preserve the capability
of LLMs in processing tokens within the position
from 1 to L.

N

L :E[Z logp(xi|xm+1§t<ia)~(mem, 9)]+
i=m-+1

L
BE[Y _ log p(xilxi<i, 0)],
=1
(3)

where (3 is a hyper-parameter to balance the Sparse
Memory Training and the original next-token pre-
diction, empirically set to 1. Specifically, we only
tune Q, K of each Transformer layer 3 to further
reduce computations and keep original knowledge.

3.4 Discussion

In this section, we also want to discuss why
SPARSE MEMORY TRAINING is effective at pro-

5For most of LLM frameworks, they apply RoPE (Su et al.,
2024) to query and key vectors.

cessing long-context information. We attribute its
effectiveness from two perspectives as follows:

Positional Generalization The critical part of
attention operation to capture dependency is
(Q»H)" (K,,H), when Q,, and K,, have been
applied with positional information. Therefore, the
way to enable model to learn positional information
beyond the original context window is important.
During pre-training with window size L, the model
only accessed the positional encoding of positions
(1,...,L), and thus cannot be generalized to un-
trained positional encoding. However, in SPARSE
MEMORY TRAINING, we enable model to access
more positions beyond L for optimization.

Lemma 3.2 With the sampling strategy described
in 3.2, each position n of the input sequence has
a non-zero probability of being sampled, and such
probability generally decays by distance.

Training Mismatch Another issue of SPARSE
MEMORY TRAINING is whether it can build next-
token prediction based on the sampled memory to-
kens. We deem that SPARSE MEMORY TRAINING
can be considered as a kind of dropout (Srivastava
et al., 2014) at the token level, compared with stan-
dard training. That makes it compatible with other
LLM training techniques and does not involve any
modification at the architecture level.

4 Experiment

Table 1: Perplexity () and Accuracy (1) of LLaMA-
2-7B on several datasets. The performance of LLaMA-
2-7B after SPARSE MEMORY TRAINING is stable and
improves with longer contexts.

PG19 arXiv SlimPajama
Model Length
PPL (1) Acc(f) PPL(I) Acc() PPL(I) Acc(f)
4K 7.88 0.54 8.22 0.54 5.73 0.61
. 8K 151.83 0.31 140.32 0.32 130.07 0.34
Vanilla
16K 1052.86 0.15 1209.21 0.16 1269.29 0.17
32K 2638.58 0.08 341744 0.08 2584.39 0.1
64K 5438.16 0.05 715467 0.04 617295 0.05
8K 11.08 0.48 16.77 0.45 13.43 0.48
16K 9.59 0.51 13.76 0.48 10.69 0.51

Ours
32K 8.48 0.53 9.62 0.52 7.90 0.55

64K 8.02 0.54 9.15 0.53 7.39 0.57

We evaluate the effectiveness of SPARSE MEM-
ORY TRAINING to extend the context window
of Transformer networks via the continual train-
ing. We conduct a series of experiments using
the LLaMA-2-7B model ® (Touvron et al., 2023b)

*Model weights are available at https://huggingface.

with a pre-trained context window of 4096. All
experiments are conducted on an Ubuntu server
with 8 Nvidia H100 GPUs. In particular, we aim
to study the following research questions: RQI:
How effective is our SPARSE MEMORY TRAIN-
ING at extending the context window of a given
large language model? RQ2: As a training tech-
nique, will SPARSE MEMORY TRAINING preserve
the language ability acquired during pre-training?
RQ3: Can SPARSE MEMORY TRAINING reduce
the computational complexity when modeling long
contexts, as stated in Lemma 3.1? Additionally,
we study the training curves and the orthogonality
of SPARSE MEMORY TRAINING with zero-shot
generalization models in Appendix D.3 and D.4.

Training. We use the LLaMA-2-7B model as the
backbone network and continue to train it on the
PG19 (Rae et al., 2020) dataset. We adopt the train-
ing techniques described in Section 3.3 to prevent
catastrophic forgetting. This results in approxi-
mately one billion trainable parameters (~ 13%
of all parameters). To further optimize the GPU
memory usage, we leverage Huggingface Acceler-
ate (Gugger et al., 2022) plus Deepspeed (Rajbhan-
dari et al., 2020), speed up with Zero-stage 2 by
using BFloat16. For every 1,000 steps, we extend
the context window by 2K, allowing us to gradu-
ally increase LLaMA-2-7B’s context window from
4K to 64K. Because the complexity of SPARSE
MEMORY TRAINING does not depend on the input
sequence length (Lemma 3.1), each 1000 steps take
approximately 30 minutes and the whole training
can be done in less than 16 hours. More details can
be found in Appendix D.

Evaluation. We choose PG19 (Rae et al.,
2020), arXiv (Clement et al., 2019) and Slimpa-
jama (Soboleva et al., 2023) to measure the long-
context capability of our trained model. Here, we
mainly report results by perplexity and accuracy.
Then, we also adopt LongBench (Bai et al., 2024), a
multi-task long-context benchmark, to evaluate per-
formance over 12 datasets of 6 downstream tasks.
The details of datasets can be found in Appendix C.

4.1 Extending Context Window with SPARSE
MEMORY TRAINING (RQ1)

In this subsection, we investigate the effectiveness
of SPARSE MEMORY TRAINING to extend the
context window of a given large language model.
Here, we evaluate our method on the PG19, arXiv

co/meta-1lama/Llama-2-7b-hf.

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf

Table 2: Accuracy (1) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B after SPARSE
MEMORY TRAINING is stable and slightly improves with longer contexts.

Model Length Single-Doc QA Multi-Doc QA Summarization
Qasper MultiFieldQA HotPotQA WikiMQA GovReport ~ MultiNews
8K 0.28 0.37 0.34 0.33 0.35 0.34
Vanilla 16K 0.14 0.17 0.17 0.17 0.18 0.18
32K 0.08 0.09 0.09 0.09 0.09 0.09
64K 0.04 0.05 0.04 0.05 0.04 0.05
8K 0.47 0.49 0.51 0.50 0.51 0.53
Ours 16K 0.49 0.53 0.54 0.54 0.53 0.54
32K 0.52 0.59 0.58 0.58 0.55 0.57
64K 0.54 0.61 0.60 0.59 0.56 0.56
Model Length Few-shot Learning Synthetic Task Code Completion
TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P
8K 0.40 0.54 0.47 0.46 0.51 0.50
Vanilla 16K 0.28 0.32 0.32 0.31 0.34 0.34
32K 0.15 0.16 0.17 0.16 0.17 0.17
64K 0.05 0.05 0.05 0.04 0.06 0.07
8K 0.61 0.50 0.52 0.46 0.66 0.65
Ours 16K 0.63 0.54 0.55 0.47 0.67 0.65
32K 0.67 0.58 0.56 0.50 0.78 0.79
64K 0.68 0.59 0.58 0.52 0.81 0.81

0 [N
0 1000 2000 3000 4000 5000 6000 7000 8000
ositions

008
0 1000 2000 3000 4000 5000 6000 7000 8000
Key Positions

(a) Raw LLaMA-2 (b) LLaMA-2 using Mixed

Training

Figure 4: Attention visualization on LLaMA 2 after
SPARSE MEMORY TRAINING Qasper Task from Long-
bench. The results are computed by averaging across
different samples, heads, and layers.

and SlimPajama, using LLaMA-2-7B model with
SPARSE MEMORY TRAINING. Besides, we also
evaluate the vanilla LLaMA-2-7B model for com-
parison. The results are reported in Table 1. The
results show that while the vanilla model has lim-
ited performance on sequences beyond its origi-
nal context window, SPARSE MEMORY TRAINING
can significantly improve long-context capability
of LLMs, demonstrated by stable perplexity and
accuracy close to vanilla LLaMA-2-7B on 4K se-
quences. Moreover, as context length increases and
perplexity decreases, SPARSE MEMORY TRAIN-
ING can also enable the model to achieve the ca-
pability of learning long context in a right way.

Besides, we can also observe significant improve-
ment not only on PG19, but also on out-of-domain
datasets (e.g., Arxiv and Slimpajama), proving that
SPARSE MEMORY TRAINING enhances robust gen-
eralization across varying sequence lengths. To
further validate the generalization of our proposed
method in processing long-sequence dependency,
we conduct experiments on LongBench datasets,
and the results are reported in Table 2. We find
SPARSE MEMORY TRAINING significantly im-
proves the performance across all datasets under
each downstream category, which shares a similar
conclusion above. Besides, we measure the per-
plexity on LongBench, reported in Appendix D.5.

To further understand the mechanism of our
method in learning long context, we visualize
the average attention weights on the LongBench
dataset, to compare our method with vanilla model.
As shown in Figure 4, we find that the attention
distribution of the vanilla model is highly concen-
trated on the initial few tokens and some specific
positions beyond the context window, leading to
failure in handling long sequences. In contrast, our
method demonstrate a smooth attention distribu-
tion over a longer context window, which indicates
our method can better capture long-sequence de-
pendencies.

Table 3: Performance on LongBench datasets with 4K input length. The performance of LLaMA-2-7B after SPARSE

MEMORY TRAINING on 4K (pre-train window length) is close to the vanilla model.

. Single-Doc QA Multi-Doc QA Summarization
Model Metric
Qasper MultiFieldQA HotPotQA WikiMQA GovReport ~ MultiNews
. PPL (}) 6.99 5.17 4.98 5.27 4.71 4.47
Vanilla
Acc (1) 0.56 0.62 0.63 0.61 0.63 0.65
Ours PPL () 7.12 5.51 5.27 5.50 4.83 4.57
ul
cc () 056 0.61 0.62 0.61 0.62 0.65
Few-shot Learning Synthetic Task Code Completion
Model Metric
TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P
. PPL (}) 4.97 5.18 4.12 7.39 2.09 2.05
Vanilla
Acc (1) 0.69 0.62 0.69 0.56 0.83 0.83
o PPL (}) 5.14 6.21 4.65 7.86 2.13 2.07
urs
Acc (1) 0.68 0.60 0.66 0.55 0.83 0.83

Table 4: Perplexity (]) and Accuracy (1) on several
datasets with 4K input length.

Model Metric PG19 arXiv SlimPajama
. PPL (}) 7.88 822 5.73
Vanilla Acc () 054 054 0.61
. PPL (}) 790 836 5.89
Sparse Memory Training Acc (1) 054 054 06

Table 5: Time consumption (seconds per step) training
LLaMA-2-7B on PG19. OOM: out of GPU memory.

Training Scheme 4K 8K 16K 32K 64K
Standard 1.56 363 OOM OOM OOM
Sparse Memory Training 1.57 1.57 1.58 1.58

4.2 Maintaining Pre-trained Language
Modeling Ability (RQ2)

As aforementioned in Section 3.3, we also need to
ensure the capability of language models to pro-
cess tokens within the original context window.
Therefore, in this part, we conduct experiments to
validate our method and vanilla model in evaluat-
ing the context window with 4K tokens. We report
our results on PG19, arXiv, SlimPajama in Table 4,
and LongBench in Table 3. From the results, we
can find that SPARSE MEMORY TRAINING con-
figured with mixed training can achieve similar
performance when compared to the vanilla model
in different settings, which also demonstrates the
effectiveness of our design in preserving the origi-
nal knowledge of language models.

4.3 Reducing Long-context Training
Complexity (RQ3)

As mentioned above, by sampling a ratio of the
memory part, we can extend long-sequence train-

ing with quadratic complexity for a fixed length,
and thus reduce both space and time complexity.
Here, we respectively extend the context window
from 4K to 64K, and then report the time consump-
tion per step in Table 5. From Table 5, we observe
that SPARSE MEMORY TRAINING can achieve sim-
ilar time cost compared to standard training under
4K contexts. When we scale up the context length,
our method can still guarantee that our time con-
sumption is independent of the fixed input length.

5 Conclusion

In this paper, we present a novel training frame-
work that can efficiently extend the context win-
dow of LLM frameworks based on the Trans-
former architecture, named SPARSE MEMORY
TRAINING. Specifically, we first analyze statis-
tical laws of existing attention patterns and iden-
tify the phenomenon of “Pareto Principle of Trans-
former”. Based on these observations, we introduce
SPARSE MEMORY TRAINING, which employs a
sampling policy with a decay factor across the dis-
tance to gather tokens as the conditional part for
long-sequence prediction. Based on the sampled
tokens with their corresponding positions, we can
directly adopt the standard next-token prediction
for the long sequences. Our method can effectively
extend the context window of LLM frameworks
within a fixed window training, without any modi-
fication over the architecture. Experimental results
also demonstrate the effectiveness of our proposed
method in processing long-sequence dependency.

6 Limitations

SPARSE MEMORY TRAINING still has some lim-
itations, which can be summarized as follows: 1)
SPARSE MEMORY TRAINING focuses solely on re-
ducing the quadratic complexity of the Transformer
network during training, while it still suffers from
quadratic complexity during the inference stage.
Therefore, we may need to combine other inference
tricks to address this inherent issue of Transformer;
2) Specifically, SPARSE MEMORY TRAINING en-
ables models to learn more semantic information
from unseen positional information, rather than
context information from long sequences. How-
ever, we think that this problem can be alleviated
if we can determine which memory part is more
important to the target part, and leave this part as
future work.

References

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio,
Lorenzo Noci, Aurélien Lucchi, and Thomas Hof-
mann. 2023. Dynamic context pruning for efficient
and interpretable autoregressive transformers. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurlPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119-3137. Association for
Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Guanzheng Chen, Xin Li, Zaigiao Meng, Shangsong
Liang, and Lidong Bing. 2024a. CLEX: continuous
length extrapolation for large language models. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
CoRR, abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024b. Lon-
glora: Efficient fine-tuning of long-context large lan-

guage models. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and
Peter J. Ramadge. 2023. Dissecting transformer
length extrapolation via the lens of receptive field
analysis. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13522—-13537. Association for
Computational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamds
Sarl6s, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Colin B. Clement, Matthew Bierbaum, Kevin P.
O’Keeffe, and Alexander A. Alemi. 2019. On the use
of arxiv as a dataset. Preprint, arXiv:1905.00075.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, Nanning Zheng, and
Furu Wei. 2023. Longnet: Scaling transformers to 1,
000, 000, 000 tokens. CoRR, abs/2307.02486.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending LLM
context window beyond 2 million tokens. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024.
Data engineering for scaling language models to 128k
context. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. CoRR,
abs/2312.00752.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. Lm-
infinite: Zero-shot extreme length generalization for
large language models. In Proceedings of the 2024

http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=Ua6zuk0WRH
https://arxiv.org/abs/1905.00075
https://arxiv.org/abs/1905.00075
https://arxiv.org/abs/1905.00075
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
NAACL 2024, Mexico City, Mexico, June 16-21, 2024,
pages 3991-4008. Association for Computational
Linguistics.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and
Jinsong Su. 2024. Mitigating catastrophic forgetting
in large language models with self-synthesized re-
hearsal. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 1416-1428. Association
for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

Scaling laws for neural language models. CoRR,
abs/2001.08361.

Amirhossein Kazemnejad, Inkit Padhi,
Karthikeyan Natesan Ramamurthy, Payel Das,

and Siva Reddy. 2023. The impact of positional
encoding on length generalization in transformers. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu-
nathan. 2024. Understanding catastrophic forgetting
in language models via implicit inference. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Shanda Li, Chong You, Guru Guruganesh, Joshua
Ainslie, Santiago Ontafién, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh
Bhojanapalli. 2024. Functional interpolation for rel-
ative positions improves long context transformers.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Tatiana Likhomanenko, Qiantong Xu, Gabriel Syn-
naeve, Ronan Collobert, and Alex Rogozhnikov.

10

2021. CAPE: encoding relative positions with contin-
uous augmented positional embeddings. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 16079-16092.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,
and Yue Zhang. 2023. An empirical study of catas-
trophic forgetting in large language models during
continual fine-tuning. CoRR, abs/2308.08747.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczyn-
ski, Xingjian Du, Matteo Grella, Kranthi Kiran GV,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko,
Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hay-
den Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdi-
nand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan
Zhang, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
2023. RWKYV: reinventing rnns for the transformer
era. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 14048-14077. Association for
Computational Linguistics.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2024. Yarn: Efficient context window
extension of large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

https://doi.org/10.18653/V1/2024.ACL-LONG.77
https://doi.org/10.18653/V1/2024.ACL-LONG.77
https://doi.org/10.18653/V1/2024.ACL-LONG.77
https://doi.org/10.18653/V1/2024.ACL-LONG.77
https://doi.org/10.18653/V1/2024.ACL-LONG.77
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747
https://doi.org/10.48550/ARXIV.2308.08747

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
2555-2565. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
Chloe Hillier, and Timothy P. Lillicrap. 2020. Com-
pressive transformers for long-range sequence mod-
elling. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi
Grau-Moya, Rébert Csordds, Mehdi Bennani, Shane
Legg, and Joel Veness. 2023. Randomized positional
encodings boost length generalization of transform-
ers. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1889—1903. Association for
Computational Linguistics.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929—
1958.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023a. Retentive network: A successor to
transformer for large language models. CoRR,
abs/2307.08621.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2023b. A length-extrapolatable
transformer. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2023, Toronto,

11

Canada, July 9-14, 2023, pages 14590-14604. Asso-
ciation for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2023. Efficient transformers: A survey. ACM
Comput. Surv., 55(6):109:1-109:28.

Gemini Team and Google. 2023. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

LLama Team. 2024a. The llama 3 herd of models.
CoRR, abs/2407.21783.

Qwen Team. 2024b. Qwen?2 technical report. CoRR,
abs/2407.10671.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Szymon Tworkowski, Konrad Staniszewski, Mikolaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-
otr Milos. 2023. Focused transformer: Contrastive
training for context scaling. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768.

Suyuchen Wang, Ivan Kobyzev, Peng Lu, Mehdi Reza-
gholizadeh, and Bang Liu. 2024. Resonance RoPE:
Improving context length generalization of large lan-
guage models. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 586—
598, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan,
Thuy-Trang Vu, and Gholamreza Haffari. 2024. Con-
tinual learning for large language models: A survey.
CoRR, abs/2402.01364.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Jianxin Yang. 2023. Longqlora: Efficient and effective
method to extend context length of large language
models. CoRR, abs/2311.04879.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tafion, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlPS 2020, December 6-12, 2020, virtual.

Liang Zhao, Xiaocheng Feng, Xiachong Feng, Bing Qin,
and Ting Liu. 2023. Length extrapolation of trans-
formers: A survey from the perspective of position
encoding. CoRR, abs/2312.17044.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2024. Pose: Effi-
cient context window extension of 1lms via positional
skip-wise training. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

12

https://doi.org/10.18653/v1/2024.findings-acl.32
https://doi.org/10.18653/v1/2024.findings-acl.32
https://doi.org/10.18653/v1/2024.findings-acl.32
https://doi.org/10.18653/v1/2024.findings-acl.32
https://doi.org/10.18653/v1/2024.findings-acl.32
https://doi.org/10.48550/ARXIV.2402.01364
https://doi.org/10.48550/ARXIV.2402.01364
https://doi.org/10.48550/ARXIV.2402.01364
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2311.04879
https://doi.org/10.48550/ARXIV.2311.04879
https://doi.org/10.48550/ARXIV.2311.04879
https://doi.org/10.48550/ARXIV.2311.04879
https://doi.org/10.48550/ARXIV.2311.04879
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA

A Related Work

With the rise of advanced LLMs, how to extend the
capability of Transformer-based LLMs to general-
ize across long sequences has become an ongoing
challenge. Generally, the current approaches to
generalize the context window of LLMs can be
grouped into two categories, which are as follows:

Efficient Training with Sparse Architectures
The standard complexity of Transformer networks
is known to scale as O(L?). To alleviate the burden
of quadratic complexity, many research efforts (Tay
et al., 2023) have focused on developing advanced
or sparse architectures to effectively approximate
the attention mechanism. Specifically, some works
like Sparse Transformer (Child et al., 2019) ap-
ply sparse factorization to the attention matrix,
thus reduce the complexity to O(Lv/L). Some
other works (e.g., Linformer (Wang et al., 2020)
and Performer (Choromanski et al., 2021)) attempt
to approximate the self-attention matrix via low-
rank decomposition. Besides, some works (e.g.,
Reformer (Kitaev et al., 2020), Block-wise Self-
Attention (Qiu et al., 2020), LongFormer (Belt-
agy et al., 2020), Big Bird (Zaheer et al., 2020),
LongNet (Ding et al., 2023), Dynamic Context
Pruning (Anagnostidis et al., 2023), PoSE (Zhu
et al., 2024)) propose some sparse attention pat-
terns to reduce time complexity. Recently, some
papers have attempted to develop parallelized RNN
to address this problem, like Mamba (Gu and Dao,
2023), RWKYV (Peng et al., 2023) and RetNet (Sun
et al., 2023a). In order to extend the context win-
dow of Transformer, several methods explore the
use of hybrid window-full attention for training,
that means some layers adopt full attention while
other use sparse attention patterns. For example,
Long Llama (Tworkowski et al., 2023) uses the
bottom layers to retrieve the most relevant top-k
tokens, then performs attention operations on these
tokens to reduce computational complexity. How-
ever, the scalability and capability of these works
are still beneath fully attention architectures, and
thus most mainstream LLM frameworks still adopt
standard Transformer architecture (i.e., full atten-
tion) as the backbone network. Compared with
these works, SPARSE MEMORY TRAINING does
not involve any modifications over architectures but
simulates sparsity at the input-level. Therefore, it
can also be considered as a post-training technique
that can be adopted to existing LLM frameworks,
and maintain the complexity within a fixed window

13

size.

Extend Context Window with Length Extrapola-
tion Instead of directly using sparse architecture,
a large amount of research focuses on inferring un-
seen length beyond the pre-training window size
based on the original Transformer network. These
works can be considered as a kind of position en-
gineering (Zhao et al., 2023). Among these works,
RoPE (Su et al., 2024) and Alibi (Press et al., 2022)
are the most representative ones. These works
can effectively encode relative positional informa-
tion without any learnable parameters, allowing for
length extrapolation. Building on this, some other
works (CAPE (Likhomanenko et al., 2021), SAND-
WICH (Chi et al., 2023), xPOS (Sun et al., 2023b),
LongRoPE (Ding et al., 2024), NoPE (Kazemne-
jad et al., 2023), Reasonance RoPE (Wang et al.,
2024), FIRE (Li et al., 2024), and CLEX (Chen
et al., 2024a)) also extend different positional en-
coding. However, as models have not been gener-
alized to unseen positions through training, these
works still suffer from performance degradation.
Therefore, some works propose position interpola-
tion, that re-scales the out-of-distribution positional
encoding within the pre-trained window size (Chen
et al., 2023, 2024b; Yang, 2023). YaRN (Peng
et al., 2024) leverages neural tangent kernel (NTK)
to interpolate RoPE and generalize LLaMA-2 to
support 128K tokens. Besides, a similar work (Ru-
oss et al., 2023) introduces to randomly sample
some tokens to extend length generalization but
ignores the sparsity when modeling long-sequence
dependency. Generally, our method is orthogo-
nal to these method as we aim to generalize the
long-sequence capability of LL.Ms from the train-
ing level. SPARSE MEMORY TRAINING can also
use these advanced positional embeddings to en-
code long sequences, while in this paper, we mainly
use RoPE as the backbone for experiments.

B Technical Details and Analysis
B.1 Example of Sparse Sampling with decay

In this part, we will present example of our design
sparse sampling strategy with decay. We assume
the window size as W, and then illustrate how our
method allocates sampled tokens based on different
length M of the memory part. The examples are
presented in Table 6. We can find that when the
length M of the memory part is just M, we will
directly sample all tokens from this nearest window.
When M € (W, 4W], we will sample % tokens

Algorithm 1: Sparse Sampling with Decay

Require: uniform(l, r, n) means uniformly
sample n distinct tokens from
position 1 to r.
Input: The Length of Memory Part M, The
Number of Sample Tokens N, The
Initial Sample Window W (default
as N), The number of decay
iterations T

1 def SparseSampling(M, N, W, T):
2 if M < 2W orT == 1 then
3 ids = uniform(1, M, N)
4 else
5 ids = uniform(M - W, M, &)
6 ids = concat(ids,
SparseSampling(M — W, %
2W, T — 1))
7L return ids
Length
Settings | W | W | W | W |[W | W | W
M=W | N |
M=2W | § | §
Mo 3] Y
Mo [§] §
Mo S Y [
Meow [Y | ¥
MW S Y | F

Table 6: Example of Sparse Sampling with decay.

and the remaining % tokens will be gather from
the remaining windows, and so on. During our
sampling, we also introduce the maximum number
of decay iteration I" as when the sampling window
is too distant, the influence of tokens within this
range can be regarded as insignificant.

B.2 Ablation Study

Mixed Training We validate the effectiveness of
mixed training in our design. Here, we train an-
other LLaMA-2 model by using SPARSE MEMORY
TRAINING, but without the mixed training. We
evaluate the model on LongBench, and the results
are reported in Table 7. We observe that the results
are worse than using our proposed SPARSE MEM-
ORY TRAINING with mixed training from 16K to

14

64K, especially in 16K and 32K. We claim that this
performance degradation is caused by catastrophic
forgetting. Overall, these results also demonstrate
the necessity of mixed training in our method.

B.3 Use Top-K attention in GPT2 inference
step

We have visualized the trend between the num-
ber of Top-K highest attention value used during
the inference step of GPT2 and the value of two
key performance metric, perplexity and accuracy,
across multiple datasets from LongBench dataset
(Bai et al., 2024). The results are illustrated in Fig-
ure 5. Despite the difference in values of perplexity
and accuracy across different datasets, these figures
still reveal a very clear and consistent trend: as the
Top-K value increases, perplexity initially drops
quickly, while accuracy sharply rises, before both
metrics stabilize at higher K values. For all datasets,
at very low K values (under 50), perplexity is high
and accuracy is low, indicating that the model per-
forms poorly due to limited access to relevant in-
formation. However, as K increases, perplexity
undergoes a rapid decline, and accuracy improves
sharply. In fact, the most significant changes in
both metrics occur within the first few hundred K
values. This trend suggests that a relatively small
number of key-value pairs provide the majority of
useful context for the model’s predictions. Once
K reaches around 500, the accuracy curve flattens
and the perplexity plateaus, indicating that further
increases in K yield limited improvement in the per-
formance. The stabilization of both perplexity and
accuracy across datasets highlights an underlying
pattern of attention mechanisms: a limited num-
ber of Top-K weights is sufficient to capture most
relevant information, making larger Top-K values
computationally unnecessary beyond a threshold
of approximately 500. A modest number of high-
scoring key-value pairs capture the majority of rel-
evant information needed for effective language
modeling. After this optimal range is reached, fur-
ther increases in K yield no significant improve-
ments in either perplexity or accuracy, implying
that the model has already captured the essential
context.

B.4 Attention Visualization of LLaMA?2
model

In this section, we present a visualization of atten-
tion weight distributions for the LLaMA?2 models n
the LongBench dataset, since understanding how at-

Table 7: PPL (]) of our method without mixed training on LongBench.

Single-Doc QA

Multi-Doc QA Summarization

Model Context Length
Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Sparse Memory Trainin 16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19

PW M drTyrm.nin g 3K 147131 1269.43 2870.13 416276 5820.82 547050

J 64K 310.02 368.17 433.99 418.16 608.48 1135.98
om0 s 70 100 150 150 1750 200 o0 00 70 g0 1250 1500 1750 2000 o %0 s 70 10w 1250 500 1750 200 o 0 %00 730 10 1350 1500 150 2000

(a) 2WikiMQ (b) Dureade (c) GovRepo (d) HotpotQA
o250 S0 780 1000 1250 1500 1750 2000 o 250 500 750 1000 1250 1500 1750 2000 om0 500 730 1000 1250 1500 150 200 o 250 s 750 1000 1250 1500 1750 2000
(f) MultiNew:

(e) LSH

perplexity
- Accuracy

250 500 750 1000 1250 1500 1750 2000
Kk (Top-k)

(i) Musique

Perplexity
+ Accuracy

250 500 750 1000 1250 1500 1750 2000

Perplexity
- Accuracy

250 500 750 1000 1250 1500 1750 2000
k (Top-k)

(j) NarrativeQ.

::::::

250 500 750 1000 1250 1500 1750 2000

Perplexity
- Accuracy

0250 500 750 1000 1250 1500 1750 2000
Kk (Top-k)

:::::::

6 250 500 750 1000 1250 1500 1750 2000

(h) MultiFieldQA ZH

Perplexity
- Accuracy

0 250 500 750 1000 1250 1500 1750 2000
k (Top-k)

(1) Passage Retrieval EN

Perplexity
+— Accuracy

6 250 500 750 1000 1250 1500 1750 2000

K (Top-k)

(m) Passage Retrieval ZH (n) QASPER

k (Top-k)

(0) QMSum (p) RepoBench-P

Figure 5: Top-k Perplexity and Accuracy Results for Various Datasets in Longbench

tention weights are distributed across tokens in long
sequences provides insights into the models’ behav-
ior when dealing with large inputs. The model is
evaluated in terms of cumulative attention weights
across different query token positions in the last
layer of each model. The results are illustrated in
Figure 6 and Figure 7 .

One of the interesting phenomena that can be
observed in the attention visualizations is "Pareto
Principle of Transformers." This principle is an
adaptation of the well-known Pareto distribution,
which states that a small proportion of the causes
is responsible for the majority of the effects. In the
context of Transformer and attention mechanisms,
the inherent sparsity of Transformer suggests that
a large portion of attention weights is concentrated
on a small fraction of key tokens when the sequence
is long, while the majority of key tokens receive
very little attention.

In long sequence modeling, such as the Long-

15

Bench dataset, the Pareto Principle becomes evi-
dent. As demonstrated in the figures, a high per-
centage of attention weights tends to accumulate
among a small subset of the highest-ranked key
tokens. Notably, this phenomenon persists even
after removing the tokens responsible for the "at-
tention sink". In each subfigure, a larger number of
key tokens contribute to the cumulative attention in
the rescaled version, as the attention sink has been
eliminated and fewer keys hold significant atten-
tion weights. This observation supports the notion
that Transformers could benefit from our method
by focusing on sparse key tokens. For sequences
longer than 2000 tokens, the concentration of at-
tention on a small set of tokens suggests the it is
possible to employ methods like SparseTraining
to significantly reduce computational complexity
while preserving model performance.

Cumulative Weight
° ° o ° °
° [S > 3
Cumulative Weight
° ° ° ° °
° o = > 3
Cumulative Weight
° ° ° °
[s > 3
Cumulative Weight
° o ° °
o = > ©

0.0

100 200 300 400 500 o 200 400 600 800 100 500 1500 200 1000 2000 3000 4001
Relative Position (Query - Key) Relative Position (Query - Key) Relative Position (Query - Key) Relative Position (Query - Key)

5
8
S

0.9 0.9

Cumulative Weight
° ° ° =
S 3 ® o
Cumulative Weight
© o o o o o ¢
5 0 o Y ® © o
Cumulative Weight
° ° ° I
> 3 © °
Cumulative Weight
o o o o o o =
5 0 o Y ®» © o

e
&

0.5

0.2 04 02
0 100 200 300 400 500 [200 400 600 800 1000 500 1000 1500 2000 4 1000 2000 3000 4000
Key Rank (sorted by weight) Key Rank (sorted by weight) Key Rank (sorted by weight) Key Rank (sorted by weight)

Figure 6: LLaMa2 cumulative attention weights in the last layer, visualized by both the relative distance between
the query and key tokens, and by the key token rank (sorted by attention weight), with query positions at 512, 1024,
2048, and 4096 tokens, respectively.

-
o
o
-
o

Cumulative Weight (Rescaled to 1)
° ° ° ° °
° o S > 3
Cumulative Weight (Rescaled to 1)
e o o 4
o s > 3
Cumulative Weight (Rescaled to 1)
° o o ° [
o = > 3
Cumulative Weight (Rescaled to 1)
° ° ° ° -
o s S 3 o

°
°

100 200 300 400 500 200 400 600 800 1000 500 1500 2000 1000 2000 3000 4000
Relative Position (Query - Key) Relative Position (Query - Key) Relative Position (Query - Key) Relative Position (Query - Key)

.4

°
N

Cumulative Weight (Rescaled to 1)
° ° ° -
= > 3 o
Cumulative Weight (Rescaled to 1)
° o ° I
o ® o
Cumulative Weight (Rescaled to 1)
o o o I3
ks > 3 o
Cumulative Weight (Rescaled to 1)
° ° ° =
b > ® o

°

0.0

0 500

°

200 400 600 800 1000 0 500 1000 1500 2000 0 1000 2000 3000 4000
Rank of Keys by Attention Weight Rank of Keys by Attention Weight Rank of Keys by Attention Weight

R::\‘:(of Ke;usoby Attz?\(;ion W:ﬁ;ht
Figure 7: Rescaled LLaMA?2 cumulative attention weights in the last layer, after removing the last 8 "attention
sink" tokens. The remaining attention weights are normalized to sum to 1, visualized by both the relative distance

between the query and key tokens, and by the key token rank, with query positions at 512, 1024, 2048, and 4096
tokens, respectively.

C Dataset Details

In the main experiments, we utilized a variety of
datasets to validate the effectiveness of SPARSE
MEMORY TRAINING, including PG19, arXiv,
SlimPajama, and 12 additional datasets from Long-
Bench.

PG19. PG19’ includes a set of books extracted
from the Project Gutenberg books library, that were
published before 1919. It is significantly larger
than previous benchmarks, with documents aver-
aging 20 times longer than those in WikiText. The
dataset includes training, validation, and test sets
with metadata, and is designed for long-range lan-
guage model training. It supports open-vocabulary
modeling and can be used for tasks requiring long-
range reasoning.

arXiv. arXiv® is a dataset of 1.7 million arXiv ar-
ticles for applications like trend analysis, paper rec-
ommender engines, category prediction, co-citation
networks, knowledge graph construction and se-
mantic search interfaces.

SlimPajama. The SlimPajama-627B° dataset,
hosted by Cerebras, is a cleaned and deduplicated
version of the RedPajama dataset. It includes 627
billion tokens sourced from Common Crawl, C4,
GitHub, and other datasets. The dataset is de-
signed for large-scale language model training and
includes train, validation, and test splits, with de-
tailed metadata for each text.

LongBench. LongBench!? is the first benchmark
for bilingual, multi-task, and comprehensive as-
sessment of long context understanding capabili-
ties of large language models. It consists of various
natural language processing tasks, including ques-
tion answering, summarization, and text generation,
with both English and Chinese language support.
The dataset contains multiple subsets specifically
designed to test models’ abilities to handle long-
range dependencies in text, making it suitable for
evaluating models on tasks requiring extended con-
text comprehension. In the following, we describe
the datasets we used from LongBench.

"https://huggingface.co/datasets/deepmind/pg19

8https://huggingface.co/datasets/
arxiv-community/arxiv_dataset

9https://huggingface.co/datasets/cerebras/
SlimPajama-627B

10https://huggingface.co/datasets/THUDM/
LongBench

17

Qasper. QASPER'! is a dataset for question an-
swering on scientific research papers. It consists
of 5,049 questions over 1,585 Natural Language
Processing papers. The dataset supports a range of
question types, including factual, comparison, and
clarification queries, making it suitable for training
and evaluating models that need to comprehend
scientific texts.

MultiFieldQA. The MultiFieldQA dataset is a
part of the LongBench benchmark, designed to test
models’ ability to answer questions based on long
articles from diverse fields. These articles include
sources like research papers, legal documents, gov-
ernment reports, and more. The dataset includes
two versions: MultiFieldQA-en (in English) and
MultiFieldQA-zh (in Chinese). Questions in this
dataset are manually annotated by experts, making
it suitable for evaluating models on long-context
question-answering tasks, where the goal is to com-
prehend and extract relevant information from ex-
tended texts.

HotPotQA. HotPotQA'? is a question-answering
dataset with 113,000 Wikipedia-based question-
answer pairs. It emphasizes multi-hop reason-
ing, requiring models to extract information from
multiple documents to answer a single question.
The dataset also includes sentence-level supporting
facts, enabling explainable reasoning, and contains
comparison questions to assess the ability to com-
pare facts across documents. It is designed for
diverse, challenging QA tasks that involve complex
reasoning over long text passages.

2WikiMultihopQA. 2WikiMultiHopQA is a
question-answering dataset designed to test multi-
hop reasoning, where answering a question
requires gathering information from multiple
Wikipedia articles.

GovReport. GovReport'? is a large-scale collec-
tion of detailed reports from the U.S. Government
Accountability Office and Congressional Research
Service, each accompanied by a human-written
summary, spanning a wide variety of national pol-
icy issues.

"https://huggingface.co/datasets/allenai/
gasper

12https://huggingface.co/datasets/hotpotqa/
hotpot_ga

13https://huggingface.co/datasets/ccdv/
govreport-summarization

https://huggingface.co/datasets/deepmind/pg19
https://huggingface.co/datasets/arxiv-community/arxiv_dataset
https://huggingface.co/datasets/arxiv-community/arxiv_dataset
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/allenai/qasper
https://huggingface.co/datasets/allenai/qasper
https://huggingface.co/datasets/hotpotqa/hotpot_qa
https://huggingface.co/datasets/hotpotqa/hotpot_qa
https://huggingface.co/datasets/ccdv/govreport-summarization
https://huggingface.co/datasets/ccdv/govreport-summarization

MultiNews. MultiNews!* is a large-scale dataset
for multi-document summarization, containing
news articles and their human-written summaries.
Each summary in the dataset is generated from mul-
tiple news articles, making it ideal for tasks involv-
ing synthesizing information from diverse sources
into a cohesive summary. The dataset helps evalu-
ate the ability of models to handle multi-document
summarization, a more complex form of text sum-
marization than single-document approaches.

TREC. TREC (Text REtrieval Conference) ! is
a question classification dataset used to train mod-
els for question type prediction. The dataset is valu-
able for evaluating few-shot question answering
systems by testing their ability to classify questions
into the correct type for further processing.

TriviaQA. TriviaQA '° is a large-scale question-
answering dataset that includes over 650K question-
answer pairs. The questions are sourced from trivia
competitions, and the dataset contains evidence
documents from Wikipedia and the web to support
the answers. TriviaQA is designed to evaluate mod-
els’ ability to perform reading comprehension and
answer questions based on long, multi-sentence
documents. It includes both unfiltered and web-
filtered versions, supporting various QA tasks.

PassageCount. PassageCount seeks to create a
more demanding situation where the model is re-
quired to utilize the full context to resolve the task.
Each piece of data was generated by randomly se-
lecting several passages from English Wikipedia,
repeating each paragraph at random several times,
and finally shuffling the paragraphs.

PassageRetrieval. The PassageRetrieval dataset
in LongBench is a synthetic task designed to evalu-
ate a model’s ability to retrieve specific passages.
For each entry, 30 passages are sampled, and one
is summarized using GPT-3.5-Turbo. The task
challenges models to identify the original passage
that matches the generated summary, testing long-
context understanding and passage retrieval capa-
bilities.

14https://huggingface.co/datasets/alexfabbri/
multi_news

Bhttps://huggingface.co/datasets/CogComp/tre

16https://huggingface.co/datasets/mandarjoshi/
trivia_ga

18

LCC. The Microsoft LCC (Long Code Comple-
tion)!” dataset is designed for code completion
tasks and is available in multiple programming lan-
guages, including Python, Java, and C#. It is part
of a series of datasets aimed at evaluating the abil-
ity of machine learning models to predict the next
line of code in long programming contexts. The
dataset is split into training and test sets, making
it useful for training models like transformers for
code generation or code completion tasks.

RepoBench-P. RepoBench-P (Pipeline)!® is a
part of the RepoBench dataset, which is designed
to evaluate repository-level code auto-completion
systems. It combines two tasks: code retrieval and
code completion. First, the model retrieves the
most relevant code snippet from another file (cross-
file context), and then it predicts the next line of
code based on that retrieved context. RepoBench-P
is particularly useful for assessing the performance
of models in real-world multifile programming sce-
narios, where code dependencies span multiple
files. The dataset is available for Python and Java.

D Experiment Details

D.1 Reproducibility

Code. The code for the experiments is provided
in the supplementary material. We also provide
the commands and instructions to run the code and
instructions on downloading and pre-processing
datasets to convert them to binary files for acceler-
ated computation.

Environment. We conducted all our experiments
on an Ubuntu 22.04 machine with 640GB RAM
and 8 NVIDIA H100 GPUs, each equipped with
80GB of graphic memory, connected via HBM3.
The code for our algorithms is written in Python
(version 3.11.9). To run the code, several addi-
tional libraries are required, including PyTorch,
Huggingface Transformers, Accelerate, and Deep-
Speed. For detailed instructions, please refer to our
README and setup.py in the code directory.

We have optimized our code and tested that the
space cost of the GPU memory is less than 80
GB during SPARSE MEMORY TRAINING. The
execution time to run a post-training experiment is
less than 16 hours on our machine.

"https://huggingface.co/datasets/microsoft/
LCC_python
Bhttps://huggingface.co/papers/2306.03091

https://huggingface.co/datasets/alexfabbri/multi_news
https://huggingface.co/datasets/alexfabbri/multi_news
https://huggingface.co/datasets/CogComp/tre
https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://huggingface.co/datasets/microsoft/LCC_python
https://huggingface.co/datasets/microsoft/LCC_python
https://huggingface.co/papers/2306.03091

Table 8: Default hyperparameters for the SPARSE MEMORY TRAINING

Hyperparameter Meaning Value
batch_size The batch size for training 1
criterion The criterion for calculating loss “cross_entropy"
learning_rate The learning rate for optimizer 0.00001

B Ratio of mixed training 1

allgather_partitions
allgather_bucket_size
gradient_accumulation_steps

whether to use allgather
Size of allgather communication chunks
Gradients to combine before updating weights

“true"
2e8
1

D.2 Implementation Details and
Hyperparameters

We use AdamW optimizer with warmup_min_Ir,
warmup_max_lr, warmup_num_steps, and to-
tal_num_steps set to “auto” in deepspeed. The
default choices of hyperparameters in our code are
provided in Table 8. For initializing LLaMA-2-7B,
we use the default LLaMA config'®.

D.3 Training Curves

We record and report the training curves in Figure 8,
Figure 9 and Figure 10. Figure 8 shows the perplex-
ity while extending the context window to 8192.
Due to space limitations, we only plot the first 100
steps. First, the training perplexity (loss) decreases
in general and seems to be more converged as the
training goes on. Second, by only ten training steps,
SPARSE MEMORY TRAINING is able to efficiently
decrease the training perplexity from over 100 to
nearly 11. Figure 9 shows the training perplex-
ity while extending the context window from 8192
(8K) to 10240 (10K). Similar properties can also be
identified. Figure 10 shows the training perplexity
(loss) of the whole post-training progress. A scatter
of extending window size K and training perplexity
p means that, the training perplexity at the last step
among the 1000 steps that extend the context win-
dow to K is p. Although the training is continuous,
the model must adapt to the new context window
size each time it is extended. As a result, perplex-
ity does not decrease monotonically. However, the
overall training perplexity gradually decreases over
the course of post-training, without the spikes in
perplexity seen in the vanilla LLaMA-2-7B model
as context window length increases, demonstrating
the effectiveness of our SPARSE MEMORY TRAIN-
ING.

19https ://huggingface.co/docs/transformers/
main/model_doc/1lama?2

19

D.4 Orthogonality with Zero-shot Length
Generalization Methods

Our SPARSE MEMORY TRAINING extends the con-
text window of LLMs during the post-training stage
without requiring architectural modifications. This
makes it feasible to integrate other zero-shot length
generalization methods into the post-trained lan-
guage model. We evaluate this compatibility by ap-
plying two state-of-the-art zero-shot length gener-
alization approaches—StreamingLLM (Xiao et al.,
2024) and LM-Infinite (Han et al., 2024)—to our
post-trained model. Table 9 presents the perplexity
and accuracy results. The findings demonstrate that
combining zero-shot length generalization methods
with SPARSE MEMORY TRAINING on LLaMA-
2-7B yields further performance improvements.
These results highlight the orthogonality and com-
patibility of SPARSE MEMORY TRAINING with
existing zero-shot length generalization techniques.

Table 9: Perplexity (]) and Accuracy (1) of our post-
trained LLaMA Model with Streamingl.LM (Xiao et al.,
2024) and LM-Infinite (Han et al., 2024). Adopting
zero-shot length generalization methods on LLaMA-2-
7B after SPARSE MEMORY TRAINING leads to further
performance improvement.

Model Length PGI9 arXiv
PPL(1) Acc(f) PPL(}) Acc(l)
8K 1108 048 1677 045
Ours 16K 959 051 1376 048
; 32K 848 053 962 052
64K 802 054 9.15 053
8K 1053 050 1656 045
) 16K 904 052 1351 048
Ours + StreamingLLM 5, 5 o7 0.55 9.41 0.52
64K 7.65 0.56 886 0.54
8K 1068 049 1654 045
) 16K 912 051 1346 048
Ours + LM-Infinite 31 506 054 935 0.53
64K 772 056 884 054

https://huggingface.co/docs/transformers/main/model_doc/llama2
https://huggingface.co/docs/transformers/main/model_doc/llama2

N
o

w
u

w
o

N
w

=
w

Training Perplexity
N
o

=
o

U

0 10 20 30 40 50 60 70 80 90 100
Training Step

Figure 8: Training perplexity (e!°**) when extending LLaMA-2-7B to 8192 context window using SPARSE MEMORY
TRAINING. The perplexity converges quickly from ~ 130 to ~ 11.

40

w W
o u;

Training Perplexity
N
A A
3
3

N
u

15 : ! - — i
10

5 |

% 10 20 30 40 50

Training Step

Figure 9: Training perplexity (¢/°**) when extending LLaMA-2-7B from 8192 to 10240 context window using
SPARSE MEMORY TRAINING. The perplexity decreases from ~ 22 to ~ 15 in only 50 steps.

14+

=
N

=
o

Training Perplexity
)
%
J

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Extending Window Size (K)

Figure 10: Converged training perplexity (¢/°**) when extending LLaMA-2-7B context window using SPARSE

MEMORY TRAINING. While the perplexity of vanilla LLaMA-2-7B would explode over window size, the converged
perplexity of each extending keeps decreasing with the context window.

20

D.5 Perplexity on Longbench Datasets
We also report results of LongBench at Table 10.

D.6 Full results of Ablation Study

The full results of ablation study are reported in
Table 11.

21

Table 10: Perplexity (J) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B after SPARSE
MEMORY TRAINING is stable and improves with longer contexts.

Model Context Length Single-Doc QA Multi-Doc QA Summarization
Qasper MultiFieldQA HotPotQA WikiMQA GovReport ~ MultiNews

8K 186.86 114.16 107.63 122.47 90.22 116.24

Vanilla 16K 1430.46 1014.01 948.14 991.11 949.16 1045.72

32K 3274.92 3207.46 3082.40 3300.21 5355.33 2983.43

64K 8048.33 4306.92 6096.41 6253.19 15710.44 5334.57
8K 13.23 11.47 9.87 10.48 9.46 9.71
Sparse Memory Trainin 16K 11.66 9.37 8.14 8.43 8.67 9.26
P Y ¢ 32K 9.56 6.93 6.6 6.63 8.13 7.93
64K 7.98 5.57 5.72 6.19 7.7 8.9
Model Context Length Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

8K 102.56 142.23 115.59 153.44 69.78 84.12

Vanilla 16K 1055.62 1121.32 839.71 1146.01 1051.47 1164.55

32K 3786.72 2895.37 2613.10 2977.54 2973.48 3050.69

64K 7541.48 5640.73 6844.86 7631.39 4820.02 5122.14
8K 7.87 11.15 10.51 16.86 4.98 5.13
Sparse Memory Trainin 16K 6.90 9.28 9.12 13.56 4.73 5.26
P Y ¢ 32K 543 7.4 8.39 11.24 2.56 248
64K 5.30 7.31 7.60 10.04 2.28 2.26

Table 11: PPL () of SPARSE MEMORY TRAINING without mixed training (regularization) on LongBench.

Model Context Length Single-Doc QA Multi-Doc QA Summarization
Qasper MultiFieldQA HotPotQA WikiMQA GovReport ~ MultiNews
Sparse Memory Trainin 16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19
pw/o Mixed ,lyminin € 32K 1471.31 1269.43 2870.13 4162.76 5829.82 5470.50
& 64K 310.02 368.17 433.99 418.16 608.48 1135.98
Model Context Length Few-shot Learning Synthetic Task Code Completion
TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P
Sparse Memory Trainin 16K 130.55 1868.78 1859.02 2073.48 124791 1058.37
pw o Mivod rTyminin ¢ 32K 121.05 1295.00 3274.54 3270.87 1507.53 1498.12
€ 64K 654.35 570.09 457.65 451.15 302.14 292.75

22

	Introduction
	Statistical Laws of Attention Patterns
	Pareto Principle of Transformers
	Attention decay with distances

	Sparse Memory Training
	Framework
	Sparse Memory Sampling with Decay
	Mixed Training
	Discussion

	Experiment
	Extending Context Window with Sparse Memory Training (RQ1)
	Maintaining Pre-trained Language Modeling Ability (RQ2)
	Reducing Long-context Training Complexity (RQ3)

	Conclusion
	Limitations
	Related Work
	Technical Details and Analysis
	Example of Sparse Sampling with decay
	Ablation Study
	Use Top-K attention in GPT2 inference step
	Attention Visualization of LLaMA2 model

	Dataset Details
	Experiment Details
	Reproducibility
	Implementation Details and Hyperparameters
	Training Curves
	Orthogonality with Zero-shot Length Generalization Methods
	Perplexity on Longbench Datasets
	Full results of Ablation Study

