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Abstract

Large language models (LLMs) have demon-001
strated remarkable progress in generating high-002
quality natural language through extensive pre-003
training over Transformer architectures. How-004
ever, the quadratic complexity of transformers005
in sequence computation greatly limits their ca-006
pability to efficiently train long sequences. To007
this end, we divide the input sequences of the008
Transformer network as two distinct compo-009
nents: the target part for next-token prediction,010
and the memory part that serves as the condi-011
tional context for the prediction of the target012
part. On the basis of this, we analyze the statis-013
tical law of attention patterns in modeling long014
context that demonstrates a highly positive cor-015
relation between the sparsity of the memory016
and target part with increasing sequence length.017
We encapsulate it as the Pareto Principle of018
Transformer. Therefore, in this paper, we in-019
troduce SPARSE MEMORY TRAINING, a sim-020
ple training technique to optimize the complex-021
ity of Transformer models in long-sequence022
generalization by sparsifying the memory part.023
Specifically, we apply a sparse sampling pol-024
icy over the memory part that decays with the025
distance from the target part, to obtain sparse026
memory and preserve their positions. With-027
out any architectural modifications, our method028
can extend existing Transformer-based LLMs029
to capture long-range dependencies within a030
fixed window size during the training. Ex-031
perimental results on multiple datasets also032
demonstrate the effectiveness and efficiency of033
SPARSE TRAINING to mitigate the complexity034
of the Transformer network in building long-035
sequence dependency. The code is provided in036
the supplementary materials.037

1 Introduction038

With the aid of large-scale pre-training tech-039

niques (Kaplan et al., 2020; Ouyang et al., 2022)040

on the Transformer models (Vaswani et al., 2017),041

large language models (LLMs) (OpenAI, 2023;042

Touvron et al., 2023a,b; Team, 2024a; Jiang et al., 043

2023; Team and Google, 2023; Team, 2024b) 044

have recently achieved incredible progress in solv- 045

ing massive natural language processing (NLP) 046

tasks. Despite these remarkable advancements, 047

the inherent issue of quadratic complexity in the 048

Transformer networks severely limits their capa- 049

bility to extend long-sequence modeling, draw- 050

ing enormous attention from both the industry and 051

academia to address this critical issue. 052

Many efforts have been devoted to generaliz- 053

ing the context windows of LLMs beyond their 054

pre-training settings. Among these works, some 055

attempted to develop sparse architectures (Child 056

et al., 2019; Beltagy et al., 2020; Zaheer et al., 057

2020; Choromanski et al., 2021; Tay et al., 2023; 058

Han et al., 2024; Xiao et al., 2024) to reduce the 059

quadratic complexity of Transformer network dur- 060

ing the training phase. However, these architectures 061

rely on sparse patterns and limit their scalability 062

to fall behind the original ones. Therefore, further 063

works continue to explore how to extend existing 064

LLMs to support long-sequence dependency. To 065

this end, some papers (e.g., RoPE (Su et al., 2024), 066

ALiBi (Press et al., 2022), LEX-Transformer (Sun 067

et al., 2023b)) point out that good positional infor- 068

mation plays an important role in enabling length 069

extrapolation. On the basis of these, some papers 070

(e.g., PI (Chen et al., 2023), Yarn (Peng et al., 071

2024)) extend positional information to enlarge 072

context windows via interpolation. Although these 073

works offer a solid initialization for modeling po- 074

sitional information in long sequences, they still 075

experience performance deterioration without any 076

fine-tuning. How to devise an efficient training 077

method to extend the context window of existing 078

LLMs still remains an ongoing challenge. 079

In this paper, inspired by previous experi- 080

ences (Child et al., 2019; Beltagy et al., 2020; Za- 081

heer et al., 2020; Choromanski et al., 2021; Tay 082

et al., 2023; Han et al., 2024; Xiao et al., 2024), 083
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Figure 1: The example of SPARSE MEMORY TRAINING. Assume the window size of this language model is 8. We expect to
sample 8 tokens from a document with 16 tokens to simulate training. Here, we divide the input document as the memory part
(x0−11) and the target part (x12−15). Then, we sample (x0, x4) from (x0−7) with a probability of 25%, and (x10, x11) from
(x8−11) with a probability of 50%. We concatenate the sampled tokens (x0, x4, x10, x11) with the target tokens, preserving their
positions for next-token prediction..

we observe and analyze the phenomenon of atten-084

tion sparsity, particularly in long-sequence mod-085

eling, and further attribute it as “Pareto Principle086

of Transformers”. That is, only a small subset087

of tokens dominates the attention distribution of088

the Transformer network empirically for model-089

ing long-sequence dependency. Based on these090

observations, we raise the following question: Is091

it possible to simulate attention sparsity without092

modifying the architecture during the training?093

Therefore, in this paper, we introduce SPARSE094

MEMORY TRAINING, which aims to extend the095

long-context capability of existing LLM frame-096

works by sampling sparse memory as the condi-097

tional information for pre-training. Specifically,098

we define the distant tokens as the memory tokens,099

and argue that they generally contribute less infor-100

mation to the token prediction compared to those101

are closer to the target. That means, most of com-102

putations (i.e., dot product) between distant tokens103

and the target tokens are redundant. Hence, the104

core idea behind our method is to sample tokens105

from the distant tokens and simultaneously keep106

their corresponding positions, and then adopt the107

standard next-token prediction for the target tokens.108

This process is illustrated in Figure 1. More specifi-109

cally, we divide the input sequences as the memory110

part and the target part. Based on the posterior dis-111

tribution of attention sparsity, we devise a sampling112

policy over the memory part with a decay factor113

across the distance to collect tokens. That implies114

tokens closer to the target part will be sampled at115

a higher probability while the farther tokens are116

sampled at a lower probability. This design en- 117

ables us to replicate the sparsity of long-sequence 118

dependencies at the input level, rather than archi- 119

tecture. Generally, it also offers us three key ben- 120

efits to model long-sequence dependency: 1) Effi- 121

cient Long-Sequence Training. By training on the 122

sampled sequence with length Lsample < L, our 123

method can reduce the space and time complexity 124

from O(L2) to O(L2
sample) when compared with 125

directly training long sequences (Fu et al., 2024) on 126

the Transformer network; 2) Sparsity Simulation. 127

By applying a decay sampling policy across the 128

length, our method also simulates the situation of 129

the attention sparsity in long-sequence modeling; 3) 130

Architecture Invariance. Compared with previous 131

sparse architectures, SPARSE MEMORY TRAINING 132

does not involve any modifications to the architec- 133

ture, making it adaptable to any LLM framework 134

for long-sequence dependency modeling. 135

To verify the effectiveness of SPARSE MEMORY 136

TRAINING, we conduct extensive experiments on 137

and public benchmark datasets. Experimental re- 138

sults demonstrate that by deploying SPARSE MEM- 139

ORY TRAINING over existing LLM frameworks, it 140

can effectively improve the capability of model to 141

infer over long contexts. Our contributions can be 142

summarized as follows: 143

• We conduct an in-depth analysis of the statistical 144

attention patterns in Transformers across differ- 145

ent LLMs, and summarize several laws regard- 146

ing attention distribution, including its sparsity, 147

weight allocation and decay over distance. 148
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• Based on our analysis, we propose SPARSE149

MEMORY TRAINING, a novel training approach150

to extend context window size of LLMs by sam-151

pling sparse memory, without any modifications152

in the architectures.153

• Empirically, we demonstrate the effectiveness of154

SPARSE MEMORY TRAINING through extensive155

experiments on multiple state-of-the-art LLMs156

over public benchmarks.157

2 Statistical Laws of Attention Patterns158

To unveil the secrets of sparsity beneath the at-159

tention mechanism of Transformer networks, we160

first analyze several statistical patterns of attention161

across different samples in this section. Here, in the162

standard Transformer architecture (Vaswani et al.,163

2017), the token features are aggregated through164

the self-attention mechanism as follows:165

H̃ = H+
1

N

M∑
m=1

(VmH)×σ
(
(QmH)⊤(KmH)

)
(1)166

where H ∈ RD×N is the input sequence embed-167

ding and θa = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D168

denotes the parameters with M heads. N is the169

number of input tokens and D is the embedding170

dimension. σ denotes the attention mask and acti-171

vation, e.g., scaling by 1√
D

followed by softmax op-172

eration. Conventionally, “attention matrix" refers173

to the matrix σ
(
(QmH)⊤(KmH)

)
∈ RN×N with174

causal masking applied, i.e., each token attends to175

all preceding tokens.176

To better understand the attention patterns from177

a statistical point of view, we visualize the atten-178

tion matrix in different LLMs (e.g., GPT-2 (Rad-179

ford et al., 2019), LLama-2 (Touvron et al., 2023b)180

and Mistral (Jiang et al., 2023)) by calculating its181

average attention weights over each layer and sam-182

ple, shown in Figure 2. All results are tested in183

the WikiText-103 dataset (Merity et al., 2017) and184

measured by the maximum length of their context185

window. Let AM denote the average attention ma-186

trix for the language model M. We discuss several187

key insights in the following subsections.188

2.1 Pareto Principle of Transformers189

Generally, a common observation is that the at-190

tention distribution always exhibits sparsity when191

processing long sequences. From Figure 2, we can192

clearly observe that the tokens close to the query193

tokens (i.e., diagonal red pixels) usually receive194

more attention than distant tokens. To further an- 195

alyze the attention distribution, we also count the 196

cumulative sum Sk =
∑k

i=1 α(i) of the attention 197

weight sorting by their distance to the query token 198

or their ranked corresponding weight 1. Our results 199

are displayed in Figure 3. From Figure 3b, we can 200

find that approximately 25% of the tokens account 201

for the vast majority of the total attention, which 202

we refer to as the “Pareto Principle 2 of Transform- 203

ers". These observations also suggest that for long- 204

sequence modeling, attention patterns are usually 205

sparse and most of pair-wise computations in the at- 206

tention operations are redundant. Our studies raise 207

a question: is it possible to sample a few tokens 208

for long-sequence modeling while simultaneously 209

preserving such a sparsity? 210

2.2 Attention decay with distances 211

Figure 3c presents the sum of the attention weight 212

per 1024 tokens. From this figure, the first bin 213

contributes more than 50% percent of the total at- 214

tention weight. Furthermore, there is a clear down- 215

ward trend as the position increases, except the last 216

one 3. In contrast, standard Transformer networks 217

assume that each position contributes equally when 218

calculating the outputs of attention layers, ignor- 219

ing these evident statistical patterns. Therefore, we 220

deem it important to incorporate such an attention 221

decay to reduce the complexity of long-sequence 222

modeling. To handle it, previous works (Xiao et al., 223

2024; Han et al., 2024; Jiang et al., 2023) explore 224

applying some specific attention patterns to sam- 225

ple tokens for inference, like sliding window or 226

Λ-shape. The former only passes close tokens to 227

Transformers, while the latter considers the first 228

few tokens together with the close tokens critical 229

to making predictions. However, as shown in Fig- 230

ure 3(a), the middle tokens (approximately from 231

L/4 to the end) account for at least 30% of the 232

attention, indicating that these tokens may encode 233

crucial information for downstream tasks. Hence, it 234

remains to be addressed how to generalize existing 235

LLM frameworks to unseen length by training. 236

1We rank each token xi by their attention weight to guar-
antee its attention weight α(i) ≥ α(i+1).

2The original Pareto Principle from economics states that
a small proportion of factors often account for a large portion
of the effect. https://en.wikipedia.org/wiki/Pareto_
principle.

3Based on previous experiences, Transformer networks
suffer from “attention sink" (Xiao et al., 2024) that means the
first few tokens usually occupy a ratio of attention weight.
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(a) GPT-2 (b) LLaMA-2 (c) Mistral

Figure 2: Attention visualization on different LLMs. GPT-2 is over 1024 samples with a length of 1024, LLaMA-2
is over 4096 samples with a length of 4096, and Mistral-7B is over 2048 samples with a length of 8192. All results
are computed by averaging across samples, layers and heads.

(a) Cumulative Sum (distance). (b) Cumulative Sum (weight). (c) Attention Sums Per Bin.

Figure 3: Spatial distribution of Attention in the Transformer network. (a) The cumulative sum of attention weight
of each position; (b) The cumulative sum of attention weight sorted by the weight of each token in descending order;
(c) We count the distribution of attention weight and divide it into bins where each bin includes 1024 tokens.

3 Sparse Memory Training237

As mentioned previously, the backbone of most238

modern LLM frameworks is decoder-only Trans-239

former, whose quadratic complexity in computing240

(QmH)⊤(KmH) ∈ RN×N in equation 1 makes241

it inefficient when handling long sequences (large242

N ). To this end, we believe that an ideal solution243

to extend the capability of LLMs to generalize long244

sequences should meet these criteria: 1) It should245

not introduce any modification over architectures246

to preserve its architectural integrity; 2) It should247

be able to simulate the sparsity of the attention dis-248

tribution in sequence computations; 3) It should249

effectively reduce the time and space complexity,250

avoiding quadratic growth. Therefore, in this pa-251

per, we introduce SPARSE MEMORY TRAINING,252

a novel training strategy to extend existing LLMs253

to support long sequence generalization.254

3.1 Framework255

Assume the final part of a long sequence as X =256

{xm+1, . . . , xN}, where m starts from a large posi-257

tion (e.g., beyond 4096 in LLaMA-2). The conven-258

tional method to establish long-sequence training259

is to directly calculate the whole sequence from po- 260

sition 1 to N via attention operations (i.e., O(N2)), 261

while bringing massive and redundant computa- 262

tions. Therefore, we claim that the core challenge 263

to address the long-context issue is how to bridge 264

the connection between two distant tokens. How- 265

ever, considering the sparsity between the distant 266

and the target tokens, we argue that not all pairwise 267

computations in attention are essential, and some 268

distant tokens could be ignored for modeling long 269

contexts to simulate sparsity. 270

To this end, for an input sequence X = 271

{x1, . . . , xN}, we divide it into the memory 272

part Xmem = {x1, . . . , xm} and the target part 273

Xtarget = {xm+1, . . . , xN}, where m exceeds 274

the predefined context window L (e.g., 4096 in 275

LLaMA-2) of original LLMs. Here, we assume 276

|N−m| is equal to L/2. Therefore, we propose 277

SPARSE MEMORY TRAINING, which aims to sam- 278

ple a sub-sequence X̃mem = {x̃i1 , . . . , x̃iL/2
} from 279

the memory part Xmem, where the sampled indices 280

{i1, . . . , iL/2} are from [1,m]. Then, we concate- 281

nate the sampled X̃mem and the target part Xtarget 282

as the input sequence and thus employ the stan- 283
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dard next-token prediction for the target part. To284

identify the long-range dependencies among se-285

quences, we also preserve the corresponding posi-286

tional indices of each token, as Transformer is a287

position-independent architecture 4. Here, we use288

cross-entropy loss to optimize our model, and the289

objective function of SPARSE MEMORY TRAIN-290

ING is defined as:291

− 1

|N −m|

N∑
i=m+1

log p(xi|xm+1≤t<i, X̃mem, θ),

(2)292

Here, we enable the target part to follow the stan-293

dard next-token prediction for modeling continuous294

sequences, and then we use the sampled memory295

part to establish the long-sequence dependencies296

between the target part and the distant tokens. Fig-297

ure 1 also illustrates the pipeline of our method. In298

Figure 1, we sample four tokens (x0, x4, x10, x11)299

from the memory part, and then auto-regressively300

predict tokens in the target part. So, in this case,301

we extend the window size of the language model302

to 16 tokens while its predefined window size is303

8. Therefore, in SPARSE MEMORY TRAINING, its304

complexity is independent of the input sequence305

length N , stated as follows:306

Lemma 3.1 Given length-N sequences and an307

LLM pretrained on length L < N , SPARSE MEM-308

ORY TRAINING reduces causal language modeling309

complexity from O(N2) to O(L2) for both space310

and time.311

We can find that this design enables us to conduct312

long-sequence training without any architectural313

modifications, and only requires O(L2) complexity314

during the training. In addition, we also design315

two techniques to enhance our model: 1) Sparse316

Sampling with decay over the distance to simulate317

attention sparsity in long-sequence dependency; 2)318

Mixed Training to guarantee the original capability319

of LLMs when i ≤ L.320

3.2 Sparse Memory Sampling with Decay321

SPARSE MEMORY TRAINING adopts a sampling322

policy to sample distant tokens and build their con-323

nections with the target part. Based on our analysis324

in section 2, the attention distribution also mani-325

fests sparsity with the increasing distance. There-326

fore, using uniform sampling from the memory327

parts is unsuitable as it cannot highlight this char-328

acteristic. Consequently, we expect to develop a329

4Transformer identifies the order of tokens via their posi-
tional embeddings.

sparse sampling policy that should satisfy these 330

two criteria: 1) Captures the sparsity of the atten- 331

tion distribution, ensuring sufficient allocation to 332

nearby tokens that are likely to be important; 2) Re- 333

flects the decay pattern of attention with increasing 334

relative distances. To this end, we design a sparse 335

sampling with a decay over the distance. Here, we 336

set up an initial window size W for sampling. If 337

the length of memory part is smaller than twice the 338

size of W, we employ a uniform sampling to ob- 339

tain N tokens from the position 1 to M. Otherwise, 340

we uniformly sample N
2 tokens from the position 341

M−W to M (i.e., the closest interval to the target 342

part), and another N
2 tokens are sampled from the 343

remaining memory part with a larger window. This 344

design enables us to sample more tokens within 345

the nearest window, but also guarantees that the 346

farthest tokens can also be accessed. More details 347

can refer to Appendix B.1. 348

3.3 Mixed Training 349

While our proposed SPARSE MEMORY TRAINING 350

can effectively help us capture long-range depen- 351

dencies of the distant tokens, it will also suffer 352

from another common issue: catastrophic forget- 353

ting (Luo et al., 2023; Wu et al., 2024; Kotha et al., 354

2024; Huang et al., 2024) in the original positions 355

(i.e., From 1 to L). To address this issue, we de- 356

vise mixed training that combines SPARSE MEM- 357

ORY TRAINING and standard next-token prediction 358

on the original window to preserve the capability 359

of LLMs in processing tokens within the position 360

from 1 to L. 361

L =E[
N∑

i=m+1

log p(xi|xm+1≤t<i, X̃mem, θ)]+

βE[
L∑
i=1

log p(xi|xt<i, θ)],

(3) 362

where β is a hyper-parameter to balance the Sparse 363

Memory Training and the original next-token pre- 364

diction, empirically set to 1. Specifically, we only 365

tune Q,K of each Transformer layer 5 to further 366

reduce computations and keep original knowledge. 367

3.4 Discussion 368

In this section, we also want to discuss why 369

SPARSE MEMORY TRAINING is effective at pro- 370

5For most of LLM frameworks, they apply RoPE (Su et al.,
2024) to query and key vectors.
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cessing long-context information. We attribute its371

effectiveness from two perspectives as follows:372

Positional Generalization The critical part of373

attention operation to capture dependency is374

(QmH)⊤(KmH), when Qm and Km have been375

applied with positional information. Therefore, the376

way to enable model to learn positional information377

beyond the original context window is important.378

During pre-training with window size L, the model379

only accessed the positional encoding of positions380

(1, . . . , L), and thus cannot be generalized to un-381

trained positional encoding. However, in SPARSE382

MEMORY TRAINING, we enable model to access383

more positions beyond L for optimization.384

Lemma 3.2 With the sampling strategy described385

in 3.2, each position n of the input sequence has386

a non-zero probability of being sampled, and such387

probability generally decays by distance.388

Training Mismatch Another issue of SPARSE389

MEMORY TRAINING is whether it can build next-390

token prediction based on the sampled memory to-391

kens. We deem that SPARSE MEMORY TRAINING392

can be considered as a kind of dropout (Srivastava393

et al., 2014) at the token level, compared with stan-394

dard training. That makes it compatible with other395

LLM training techniques and does not involve any396

modification at the architecture level.397

4 Experiment398

Table 1: Perplexity (↓) and Accuracy (↑) of LLaMA-
2-7B on several datasets. The performance of LLaMA-
2-7B after SPARSE MEMORY TRAINING is stable and
improves with longer contexts.

Model Length
PG19 arXiv SlimPajama

PPL (↓) Acc (↑) PPL (↓) Acc (↑) PPL (↓) Acc (↑)

Vanilla

4K 7.88 0.54 8.22 0.54 5.73 0.61
8K 151.83 0.31 140.32 0.32 130.07 0.34
16K 1052.86 0.15 1209.21 0.16 1269.29 0.17
32K 2638.58 0.08 3417.44 0.08 2584.39 0.1
64K 5438.16 0.05 7154.67 0.04 6172.95 0.05

Ours

8K 11.08 0.48 16.77 0.45 13.43 0.48
16K 9.59 0.51 13.76 0.48 10.69 0.51
32K 8.48 0.53 9.62 0.52 7.90 0.55
64K 8.02 0.54 9.15 0.53 7.39 0.57

We evaluate the effectiveness of SPARSE MEM-399

ORY TRAINING to extend the context window400

of Transformer networks via the continual train-401

ing. We conduct a series of experiments using402

the LLaMA-2-7B model 6 (Touvron et al., 2023b)403

6Model weights are available at https://huggingface.

with a pre-trained context window of 4096. All 404

experiments are conducted on an Ubuntu server 405

with 8 Nvidia H100 GPUs. In particular, we aim 406

to study the following research questions: RQ1: 407

How effective is our SPARSE MEMORY TRAIN- 408

ING at extending the context window of a given 409

large language model? RQ2: As a training tech- 410

nique, will SPARSE MEMORY TRAINING preserve 411

the language ability acquired during pre-training? 412

RQ3: Can SPARSE MEMORY TRAINING reduce 413

the computational complexity when modeling long 414

contexts, as stated in Lemma 3.1? Additionally, 415

we study the training curves and the orthogonality 416

of SPARSE MEMORY TRAINING with zero-shot 417

generalization models in Appendix D.3 and D.4. 418

Training. We use the LLaMA-2-7B model as the 419

backbone network and continue to train it on the 420

PG19 (Rae et al., 2020) dataset. We adopt the train- 421

ing techniques described in Section 3.3 to prevent 422

catastrophic forgetting. This results in approxi- 423

mately one billion trainable parameters (∼ 13% 424

of all parameters). To further optimize the GPU 425

memory usage, we leverage Huggingface Acceler- 426

ate (Gugger et al., 2022) plus Deepspeed (Rajbhan- 427

dari et al., 2020), speed up with Zero-stage 2 by 428

using BFloat16. For every 1,000 steps, we extend 429

the context window by 2K, allowing us to gradu- 430

ally increase LLaMA-2-7B’s context window from 431

4K to 64K. Because the complexity of SPARSE 432

MEMORY TRAINING does not depend on the input 433

sequence length (Lemma 3.1), each 1000 steps take 434

approximately 30 minutes and the whole training 435

can be done in less than 16 hours. More details can 436

be found in Appendix D. 437

Evaluation. We choose PG19 (Rae et al., 438

2020), arXiv (Clement et al., 2019) and Slimpa- 439

jama (Soboleva et al., 2023) to measure the long- 440

context capability of our trained model. Here, we 441

mainly report results by perplexity and accuracy. 442

Then, we also adopt LongBench (Bai et al., 2024), a 443

multi-task long-context benchmark, to evaluate per- 444

formance over 12 datasets of 6 downstream tasks. 445

The details of datasets can be found in Appendix C. 446

4.1 Extending Context Window with SPARSE 447

MEMORY TRAINING (RQ1) 448

In this subsection, we investigate the effectiveness 449

of SPARSE MEMORY TRAINING to extend the 450

context window of a given large language model. 451

Here, we evaluate our method on the PG19, arXiv 452

co/meta-llama/Llama-2-7b-hf.
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Table 2: Accuracy (↑) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B after SPARSE
MEMORY TRAINING is stable and slightly improves with longer contexts.

Model Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla

8K 0.28 0.37 0.34 0.33 0.35 0.34
16K 0.14 0.17 0.17 0.17 0.18 0.18
32K 0.08 0.09 0.09 0.09 0.09 0.09
64K 0.04 0.05 0.04 0.05 0.04 0.05

Ours

8K 0.47 0.49 0.51 0.50 0.51 0.53
16K 0.49 0.53 0.54 0.54 0.53 0.54
32K 0.52 0.59 0.58 0.58 0.55 0.57
64K 0.54 0.61 0.60 0.59 0.56 0.56

Model Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla

8K 0.40 0.54 0.47 0.46 0.51 0.50
16K 0.28 0.32 0.32 0.31 0.34 0.34
32K 0.15 0.16 0.17 0.16 0.17 0.17
64K 0.05 0.05 0.05 0.04 0.06 0.07

Ours

8K 0.61 0.50 0.52 0.46 0.66 0.65
16K 0.63 0.54 0.55 0.47 0.67 0.65
32K 0.67 0.58 0.56 0.50 0.78 0.79
64K 0.68 0.59 0.58 0.52 0.81 0.81

(a) Raw LLaMA-2 (b) LLaMA-2 using Mixed
Training

Figure 4: Attention visualization on LLaMA 2 after
SPARSE MEMORY TRAINING Qasper Task from Long-
bench. The results are computed by averaging across
different samples, heads, and layers.

and SlimPajama, using LLaMA-2-7B model with453

SPARSE MEMORY TRAINING. Besides, we also454

evaluate the vanilla LLaMA-2-7B model for com-455

parison. The results are reported in Table 1. The456

results show that while the vanilla model has lim-457

ited performance on sequences beyond its origi-458

nal context window, SPARSE MEMORY TRAINING459

can significantly improve long-context capability460

of LLMs, demonstrated by stable perplexity and461

accuracy close to vanilla LLaMA-2-7B on 4K se-462

quences. Moreover, as context length increases and463

perplexity decreases, SPARSE MEMORY TRAIN-464

ING can also enable the model to achieve the ca-465

pability of learning long context in a right way.466

Besides, we can also observe significant improve- 467

ment not only on PG19, but also on out-of-domain 468

datasets (e.g., Arxiv and Slimpajama), proving that 469

SPARSE MEMORY TRAINING enhances robust gen- 470

eralization across varying sequence lengths. To 471

further validate the generalization of our proposed 472

method in processing long-sequence dependency, 473

we conduct experiments on LongBench datasets, 474

and the results are reported in Table 2. We find 475

SPARSE MEMORY TRAINING significantly im- 476

proves the performance across all datasets under 477

each downstream category, which shares a similar 478

conclusion above. Besides, we measure the per- 479

plexity on LongBench, reported in Appendix D.5. 480

To further understand the mechanism of our 481

method in learning long context, we visualize 482

the average attention weights on the LongBench 483

dataset, to compare our method with vanilla model. 484

As shown in Figure 4, we find that the attention 485

distribution of the vanilla model is highly concen- 486

trated on the initial few tokens and some specific 487

positions beyond the context window, leading to 488

failure in handling long sequences. In contrast, our 489

method demonstrate a smooth attention distribu- 490

tion over a longer context window, which indicates 491

our method can better capture long-sequence de- 492

pendencies. 493
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Table 3: Performance on LongBench datasets with 4K input length. The performance of LLaMA-2-7B after SPARSE
MEMORY TRAINING on 4K (pre-train window length) is close to the vanilla model.

Model Metric
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla
PPL (↓) 6.99 5.17 4.98 5.27 4.71 4.47
Acc (↑) 0.56 0.62 0.63 0.61 0.63 0.65

Ours
PPL (↓) 7.12 5.51 5.27 5.50 4.83 4.57
Acc (↑) 0.56 0.61 0.62 0.61 0.62 0.65

Model Metric
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla
PPL (↓) 4.97 5.18 4.12 7.39 2.09 2.05
Acc (↑) 0.69 0.62 0.69 0.56 0.83 0.83

Ours
PPL (↓) 5.14 6.21 4.65 7.86 2.13 2.07
Acc (↑) 0.68 0.60 0.66 0.55 0.83 0.83

Table 4: Perplexity (↓) and Accuracy (↑) on several
datasets with 4K input length.

Model Metric PG19 arXiv SlimPajama

Vanilla
PPL (↓) 7.88 8.22 5.73
Acc (↑) 0.54 0.54 0.61

Sparse Memory Training
PPL (↓) 7.90 8.36 5.89
Acc (↑) 0.54 0.54 0.6

Table 5: Time consumption (seconds per step) training
LLaMA-2-7B on PG19. OOM: out of GPU memory.

Training Scheme 4K 8K 16K 32K 64K

Standard 1.56 3.63 OOM OOM OOM

Sparse Memory Training - 1.57 1.57 1.58 1.58

4.2 Maintaining Pre-trained Language494

Modeling Ability (RQ2)495

As aforementioned in Section 3.3, we also need to496

ensure the capability of language models to pro-497

cess tokens within the original context window.498

Therefore, in this part, we conduct experiments to499

validate our method and vanilla model in evaluat-500

ing the context window with 4K tokens. We report501

our results on PG19, arXiv, SlimPajama in Table 4,502

and LongBench in Table 3. From the results, we503

can find that SPARSE MEMORY TRAINING con-504

figured with mixed training can achieve similar505

performance when compared to the vanilla model506

in different settings, which also demonstrates the507

effectiveness of our design in preserving the origi-508

nal knowledge of language models.509

4.3 Reducing Long-context Training510

Complexity (RQ3)511

As mentioned above, by sampling a ratio of the512

memory part, we can extend long-sequence train-513

ing with quadratic complexity for a fixed length, 514

and thus reduce both space and time complexity. 515

Here, we respectively extend the context window 516

from 4K to 64K, and then report the time consump- 517

tion per step in Table 5. From Table 5, we observe 518

that SPARSE MEMORY TRAINING can achieve sim- 519

ilar time cost compared to standard training under 520

4K contexts. When we scale up the context length, 521

our method can still guarantee that our time con- 522

sumption is independent of the fixed input length. 523

5 Conclusion 524

In this paper, we present a novel training frame- 525

work that can efficiently extend the context win- 526

dow of LLM frameworks based on the Trans- 527

former architecture, named SPARSE MEMORY 528

TRAINING. Specifically, we first analyze statis- 529

tical laws of existing attention patterns and iden- 530

tify the phenomenon of “Pareto Principle of Trans- 531

former”. Based on these observations, we introduce 532

SPARSE MEMORY TRAINING, which employs a 533

sampling policy with a decay factor across the dis- 534

tance to gather tokens as the conditional part for 535

long-sequence prediction. Based on the sampled 536

tokens with their corresponding positions, we can 537

directly adopt the standard next-token prediction 538

for the long sequences. Our method can effectively 539

extend the context window of LLM frameworks 540

within a fixed window training, without any modi- 541

fication over the architecture. Experimental results 542

also demonstrate the effectiveness of our proposed 543

method in processing long-sequence dependency. 544
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6 Limitations545

SPARSE MEMORY TRAINING still has some lim-546

itations, which can be summarized as follows: 1)547

SPARSE MEMORY TRAINING focuses solely on re-548

ducing the quadratic complexity of the Transformer549

network during training, while it still suffers from550

quadratic complexity during the inference stage.551

Therefore, we may need to combine other inference552

tricks to address this inherent issue of Transformer;553

2) Specifically, SPARSE MEMORY TRAINING en-554

ables models to learn more semantic information555

from unseen positional information, rather than556

context information from long sequences. How-557

ever, we think that this problem can be alleviated558

if we can determine which memory part is more559

important to the target part, and leave this part as560

future work.561
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A Related Work921

With the rise of advanced LLMs, how to extend the922

capability of Transformer-based LLMs to general-923

ize across long sequences has become an ongoing924

challenge. Generally, the current approaches to925

generalize the context window of LLMs can be926

grouped into two categories, which are as follows:927

Efficient Training with Sparse Architectures928

The standard complexity of Transformer networks929

is known to scale as O(L2). To alleviate the burden930

of quadratic complexity, many research efforts (Tay931

et al., 2023) have focused on developing advanced932

or sparse architectures to effectively approximate933

the attention mechanism. Specifically, some works934

like Sparse Transformer (Child et al., 2019) ap-935

ply sparse factorization to the attention matrix,936

thus reduce the complexity to O(L
√
L). Some937

other works (e.g., Linformer (Wang et al., 2020)938

and Performer (Choromanski et al., 2021)) attempt939

to approximate the self-attention matrix via low-940

rank decomposition. Besides, some works (e.g.,941

Reformer (Kitaev et al., 2020), Block-wise Self-942

Attention (Qiu et al., 2020), LongFormer (Belt-943

agy et al., 2020), Big Bird (Zaheer et al., 2020),944

LongNet (Ding et al., 2023), Dynamic Context945

Pruning (Anagnostidis et al., 2023), PoSE (Zhu946

et al., 2024)) propose some sparse attention pat-947

terns to reduce time complexity. Recently, some948

papers have attempted to develop parallelized RNN949

to address this problem, like Mamba (Gu and Dao,950

2023), RWKV (Peng et al., 2023) and RetNet (Sun951

et al., 2023a). In order to extend the context win-952

dow of Transformer, several methods explore the953

use of hybrid window-full attention for training,954

that means some layers adopt full attention while955

other use sparse attention patterns. For example,956

Long Llama (Tworkowski et al., 2023) uses the957

bottom layers to retrieve the most relevant top-k958

tokens, then performs attention operations on these959

tokens to reduce computational complexity. How-960

ever, the scalability and capability of these works961

are still beneath fully attention architectures, and962

thus most mainstream LLM frameworks still adopt963

standard Transformer architecture (i.e., full atten-964

tion) as the backbone network. Compared with965

these works, SPARSE MEMORY TRAINING does966

not involve any modifications over architectures but967

simulates sparsity at the input-level. Therefore, it968

can also be considered as a post-training technique969

that can be adopted to existing LLM frameworks,970

and maintain the complexity within a fixed window971

size. 972

Extend Context Window with Length Extrapola- 973

tion Instead of directly using sparse architecture, 974

a large amount of research focuses on inferring un- 975

seen length beyond the pre-training window size 976

based on the original Transformer network. These 977

works can be considered as a kind of position en- 978

gineering (Zhao et al., 2023). Among these works, 979

RoPE (Su et al., 2024) and Alibi (Press et al., 2022) 980

are the most representative ones. These works 981

can effectively encode relative positional informa- 982

tion without any learnable parameters, allowing for 983

length extrapolation. Building on this, some other 984

works (CAPE (Likhomanenko et al., 2021), SAND- 985

WICH (Chi et al., 2023), xPOS (Sun et al., 2023b), 986

LongRoPE (Ding et al., 2024), NoPE (Kazemne- 987

jad et al., 2023), Reasonance RoPE (Wang et al., 988

2024), FIRE (Li et al., 2024), and CLEX (Chen 989

et al., 2024a)) also extend different positional en- 990

coding. However, as models have not been gener- 991

alized to unseen positions through training, these 992

works still suffer from performance degradation. 993

Therefore, some works propose position interpola- 994

tion, that re-scales the out-of-distribution positional 995

encoding within the pre-trained window size (Chen 996

et al., 2023, 2024b; Yang, 2023). YaRN (Peng 997

et al., 2024) leverages neural tangent kernel (NTK) 998

to interpolate RoPE and generalize LLaMA-2 to 999

support 128K tokens. Besides, a similar work (Ru- 1000

oss et al., 2023) introduces to randomly sample 1001

some tokens to extend length generalization but 1002

ignores the sparsity when modeling long-sequence 1003

dependency. Generally, our method is orthogo- 1004

nal to these method as we aim to generalize the 1005

long-sequence capability of LLMs from the train- 1006

ing level. SPARSE MEMORY TRAINING can also 1007

use these advanced positional embeddings to en- 1008

code long sequences, while in this paper, we mainly 1009

use RoPE as the backbone for experiments. 1010

B Technical Details and Analysis 1011

B.1 Example of Sparse Sampling with decay 1012

In this part, we will present example of our design 1013

sparse sampling strategy with decay. We assume 1014

the window size as W, and then illustrate how our 1015

method allocates sampled tokens based on different 1016

length M of the memory part. The examples are 1017

presented in Table 6. We can find that when the 1018

length M of the memory part is just M, we will 1019

directly sample all tokens from this nearest window. 1020

When M ∈ (W, 4W], we will sample N
2 tokens 1021
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Algorithm 1: Sparse Sampling with Decay
Require: uniform(l, r, n) means uniformly

sample n distinct tokens from
position l to r.

Input: The Length of Memory Part M, The
Number of Sample Tokens N, The
Initial Sample Window W (default
as N), The number of decay
iterations T

1 def SparseSampling(M, N, W, T):
2 if M < 2W or T == 1 then
3 ids = uniform(1, M, N)
4 else
5 ids = uniform(M - W, M, N

2 )
6 ids = concat(ids,

SparseSampling(M−W, N
2 ,

2W, T− 1))
7 return ids

Length
Settings W W W W W W W

M = W N

M = 2W N
2

N
2

M = 3W N
2

N
2

M = 4W N
2

N
2

M = 5W N
2

N
4

N
4

M = 6W N
2

N
4

N
4

M = 7W N
2

N
4

N
4

Table 6: Example of Sparse Sampling with decay.

and the remaining N
2 tokens will be gather from1022

the remaining windows, and so on. During our1023

sampling, we also introduce the maximum number1024

of decay iteration T as when the sampling window1025

is too distant, the influence of tokens within this1026

range can be regarded as insignificant.1027

B.2 Ablation Study1028

Mixed Training We validate the effectiveness of1029

mixed training in our design. Here, we train an-1030

other LLaMA-2 model by using SPARSE MEMORY1031

TRAINING, but without the mixed training. We1032

evaluate the model on LongBench, and the results1033

are reported in Table 7. We observe that the results1034

are worse than using our proposed SPARSE MEM-1035

ORY TRAINING with mixed training from 16K to1036

64K, especially in 16K and 32K. We claim that this 1037

performance degradation is caused by catastrophic 1038

forgetting. Overall, these results also demonstrate 1039

the necessity of mixed training in our method. 1040

B.3 Use Top-K attention in GPT2 inference 1041

step 1042

We have visualized the trend between the num- 1043

ber of Top-K highest attention value used during 1044

the inference step of GPT2 and the value of two 1045

key performance metric, perplexity and accuracy, 1046

across multiple datasets from LongBench dataset 1047

(Bai et al., 2024). The results are illustrated in Fig- 1048

ure 5. Despite the difference in values of perplexity 1049

and accuracy across different datasets, these figures 1050

still reveal a very clear and consistent trend: as the 1051

Top-K value increases, perplexity initially drops 1052

quickly, while accuracy sharply rises, before both 1053

metrics stabilize at higher K values. For all datasets, 1054

at very low K values (under 50), perplexity is high 1055

and accuracy is low, indicating that the model per- 1056

forms poorly due to limited access to relevant in- 1057

formation. However, as K increases, perplexity 1058

undergoes a rapid decline, and accuracy improves 1059

sharply. In fact, the most significant changes in 1060

both metrics occur within the first few hundred K 1061

values. This trend suggests that a relatively small 1062

number of key-value pairs provide the majority of 1063

useful context for the model’s predictions. Once 1064

K reaches around 500, the accuracy curve flattens 1065

and the perplexity plateaus, indicating that further 1066

increases in K yield limited improvement in the per- 1067

formance. The stabilization of both perplexity and 1068

accuracy across datasets highlights an underlying 1069

pattern of attention mechanisms: a limited num- 1070

ber of Top-K weights is sufficient to capture most 1071

relevant information, making larger Top-K values 1072

computationally unnecessary beyond a threshold 1073

of approximately 500. A modest number of high- 1074

scoring key-value pairs capture the majority of rel- 1075

evant information needed for effective language 1076

modeling. After this optimal range is reached, fur- 1077

ther increases in K yield no significant improve- 1078

ments in either perplexity or accuracy, implying 1079

that the model has already captured the essential 1080

context. 1081

B.4 Attention Visualization of LLaMA2 1082

model 1083

In this section, we present a visualization of atten- 1084

tion weight distributions for the LLaMA2 models n 1085

the LongBench dataset, since understanding how at- 1086
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Table 7: PPL (↓) of our method without mixed training on LongBench.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Sparse Memory Training
w/o Mixed Training

16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19
32K 1471.31 1269.43 2870.13 4162.76 5829.82 5470.50
64K 310.02 368.17 433.99 418.16 608.48 1135.98

(a) 2WikiMQA (b) Dureader (c) GovReport (d) HotpotQA

(e) LSH (f) MultiNews (g) MultiFieldQA EN (h) MultiFieldQA ZH

(i) Musique (j) NarrativeQA (k) Passage Count (l) Passage Retrieval EN

(m) Passage Retrieval ZH (n) QASPER (o) QMSum (p) RepoBench-P

Figure 5: Top-k Perplexity and Accuracy Results for Various Datasets in Longbench

tention weights are distributed across tokens in long1087

sequences provides insights into the models’ behav-1088

ior when dealing with large inputs. The model is1089

evaluated in terms of cumulative attention weights1090

across different query token positions in the last1091

layer of each model. The results are illustrated in1092

Figure 6 and Figure 7 .1093

One of the interesting phenomena that can be1094

observed in the attention visualizations is "Pareto1095

Principle of Transformers." This principle is an1096

adaptation of the well-known Pareto distribution,1097

which states that a small proportion of the causes1098

is responsible for the majority of the effects. In the1099

context of Transformer and attention mechanisms,1100

the inherent sparsity of Transformer suggests that1101

a large portion of attention weights is concentrated1102

on a small fraction of key tokens when the sequence1103

is long, while the majority of key tokens receive1104

very little attention.1105

In long sequence modeling, such as the Long-1106

Bench dataset, the Pareto Principle becomes evi- 1107

dent. As demonstrated in the figures, a high per- 1108

centage of attention weights tends to accumulate 1109

among a small subset of the highest-ranked key 1110

tokens. Notably, this phenomenon persists even 1111

after removing the tokens responsible for the "at- 1112

tention sink". In each subfigure, a larger number of 1113

key tokens contribute to the cumulative attention in 1114

the rescaled version, as the attention sink has been 1115

eliminated and fewer keys hold significant atten- 1116

tion weights. This observation supports the notion 1117

that Transformers could benefit from our method 1118

by focusing on sparse key tokens. For sequences 1119

longer than 2000 tokens, the concentration of at- 1120

tention on a small set of tokens suggests the it is 1121

possible to employ methods like SparseTraining 1122

to significantly reduce computational complexity 1123

while preserving model performance. 1124
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Figure 6: LLaMa2 cumulative attention weights in the last layer, visualized by both the relative distance between
the query and key tokens, and by the key token rank (sorted by attention weight), with query positions at 512, 1024,
2048, and 4096 tokens, respectively.

Figure 7: Rescaled LLaMA2 cumulative attention weights in the last layer, after removing the last 8 "attention
sink" tokens. The remaining attention weights are normalized to sum to 1, visualized by both the relative distance
between the query and key tokens, and by the key token rank, with query positions at 512, 1024, 2048, and 4096
tokens, respectively.
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C Dataset Details1125

In the main experiments, we utilized a variety of1126

datasets to validate the effectiveness of SPARSE1127

MEMORY TRAINING, including PG19, arXiv,1128

SlimPajama, and 12 additional datasets from Long-1129

Bench.1130

PG19. PG197 includes a set of books extracted1131

from the Project Gutenberg books library, that were1132

published before 1919. It is significantly larger1133

than previous benchmarks, with documents aver-1134

aging 20 times longer than those in WikiText. The1135

dataset includes training, validation, and test sets1136

with metadata, and is designed for long-range lan-1137

guage model training. It supports open-vocabulary1138

modeling and can be used for tasks requiring long-1139

range reasoning.1140

arXiv. arXiv8 is a dataset of 1.7 million arXiv ar-1141

ticles for applications like trend analysis, paper rec-1142

ommender engines, category prediction, co-citation1143

networks, knowledge graph construction and se-1144

mantic search interfaces.1145

SlimPajama. The SlimPajama-627B9 dataset,1146

hosted by Cerebras, is a cleaned and deduplicated1147

version of the RedPajama dataset. It includes 6271148

billion tokens sourced from Common Crawl, C4,1149

GitHub, and other datasets. The dataset is de-1150

signed for large-scale language model training and1151

includes train, validation, and test splits, with de-1152

tailed metadata for each text.1153

LongBench. LongBench10 is the first benchmark1154

for bilingual, multi-task, and comprehensive as-1155

sessment of long context understanding capabili-1156

ties of large language models. It consists of various1157

natural language processing tasks, including ques-1158

tion answering, summarization, and text generation,1159

with both English and Chinese language support.1160

The dataset contains multiple subsets specifically1161

designed to test models’ abilities to handle long-1162

range dependencies in text, making it suitable for1163

evaluating models on tasks requiring extended con-1164

text comprehension. In the following, we describe1165

the datasets we used from LongBench.1166

7https://huggingface.co/datasets/deepmind/pg19
8https://huggingface.co/datasets/

arxiv-community/arxiv_dataset
9https://huggingface.co/datasets/cerebras/

SlimPajama-627B
10https://huggingface.co/datasets/THUDM/

LongBench

Qasper. QASPER11 is a dataset for question an- 1167

swering on scientific research papers. It consists 1168

of 5,049 questions over 1,585 Natural Language 1169

Processing papers. The dataset supports a range of 1170

question types, including factual, comparison, and 1171

clarification queries, making it suitable for training 1172

and evaluating models that need to comprehend 1173

scientific texts. 1174

MultiFieldQA. The MultiFieldQA dataset is a 1175

part of the LongBench benchmark, designed to test 1176

models’ ability to answer questions based on long 1177

articles from diverse fields. These articles include 1178

sources like research papers, legal documents, gov- 1179

ernment reports, and more. The dataset includes 1180

two versions: MultiFieldQA-en (in English) and 1181

MultiFieldQA-zh (in Chinese). Questions in this 1182

dataset are manually annotated by experts, making 1183

it suitable for evaluating models on long-context 1184

question-answering tasks, where the goal is to com- 1185

prehend and extract relevant information from ex- 1186

tended texts. 1187

HotPotQA. HotPotQA12 is a question-answering 1188

dataset with 113,000 Wikipedia-based question- 1189

answer pairs. It emphasizes multi-hop reason- 1190

ing, requiring models to extract information from 1191

multiple documents to answer a single question. 1192

The dataset also includes sentence-level supporting 1193

facts, enabling explainable reasoning, and contains 1194

comparison questions to assess the ability to com- 1195

pare facts across documents. It is designed for 1196

diverse, challenging QA tasks that involve complex 1197

reasoning over long text passages. 1198

2WikiMultihopQA. 2WikiMultiHopQA is a 1199

question-answering dataset designed to test multi- 1200

hop reasoning, where answering a question 1201

requires gathering information from multiple 1202

Wikipedia articles. 1203

GovReport. GovReport13 is a large-scale collec- 1204

tion of detailed reports from the U.S. Government 1205

Accountability Office and Congressional Research 1206

Service, each accompanied by a human-written 1207

summary, spanning a wide variety of national pol- 1208

icy issues. 1209

11https://huggingface.co/datasets/allenai/
qasper

12https://huggingface.co/datasets/hotpotqa/
hotpot_qa

13https://huggingface.co/datasets/ccdv/
govreport-summarization
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MultiNews. MultiNews14 is a large-scale dataset1210

for multi-document summarization, containing1211

news articles and their human-written summaries.1212

Each summary in the dataset is generated from mul-1213

tiple news articles, making it ideal for tasks involv-1214

ing synthesizing information from diverse sources1215

into a cohesive summary. The dataset helps evalu-1216

ate the ability of models to handle multi-document1217

summarization, a more complex form of text sum-1218

marization than single-document approaches.1219

TREC. TREC (Text REtrieval Conference) 15 is1220

a question classification dataset used to train mod-1221

els for question type prediction. The dataset is valu-1222

able for evaluating few-shot question answering1223

systems by testing their ability to classify questions1224

into the correct type for further processing.1225

TriviaQA. TriviaQA 16 is a large-scale question-1226

answering dataset that includes over 650K question-1227

answer pairs. The questions are sourced from trivia1228

competitions, and the dataset contains evidence1229

documents from Wikipedia and the web to support1230

the answers. TriviaQA is designed to evaluate mod-1231

els’ ability to perform reading comprehension and1232

answer questions based on long, multi-sentence1233

documents. It includes both unfiltered and web-1234

filtered versions, supporting various QA tasks.1235

PassageCount. PassageCount seeks to create a1236

more demanding situation where the model is re-1237

quired to utilize the full context to resolve the task.1238

Each piece of data was generated by randomly se-1239

lecting several passages from English Wikipedia,1240

repeating each paragraph at random several times,1241

and finally shuffling the paragraphs.1242

PassageRetrieval. The PassageRetrieval dataset1243

in LongBench is a synthetic task designed to evalu-1244

ate a model’s ability to retrieve specific passages.1245

For each entry, 30 passages are sampled, and one1246

is summarized using GPT-3.5-Turbo. The task1247

challenges models to identify the original passage1248

that matches the generated summary, testing long-1249

context understanding and passage retrieval capa-1250

bilities.1251

14https://huggingface.co/datasets/alexfabbri/
multi_news

15https://huggingface.co/datasets/CogComp/tre
16https://huggingface.co/datasets/mandarjoshi/

trivia_qa

LCC. The Microsoft LCC (Long Code Comple- 1252

tion)17 dataset is designed for code completion 1253

tasks and is available in multiple programming lan- 1254

guages, including Python, Java, and C#. It is part 1255

of a series of datasets aimed at evaluating the abil- 1256

ity of machine learning models to predict the next 1257

line of code in long programming contexts. The 1258

dataset is split into training and test sets, making 1259

it useful for training models like transformers for 1260

code generation or code completion tasks. 1261

RepoBench-P. RepoBench-P (Pipeline)18 is a 1262

part of the RepoBench dataset, which is designed 1263

to evaluate repository-level code auto-completion 1264

systems. It combines two tasks: code retrieval and 1265

code completion. First, the model retrieves the 1266

most relevant code snippet from another file (cross- 1267

file context), and then it predicts the next line of 1268

code based on that retrieved context. RepoBench-P 1269

is particularly useful for assessing the performance 1270

of models in real-world multifile programming sce- 1271

narios, where code dependencies span multiple 1272

files. The dataset is available for Python and Java. 1273

D Experiment Details 1274

D.1 Reproducibility 1275

Code. The code for the experiments is provided 1276

in the supplementary material. We also provide 1277

the commands and instructions to run the code and 1278

instructions on downloading and pre-processing 1279

datasets to convert them to binary files for acceler- 1280

ated computation. 1281

Environment. We conducted all our experiments 1282

on an Ubuntu 22.04 machine with 640GB RAM 1283

and 8 NVIDIA H100 GPUs, each equipped with 1284

80GB of graphic memory, connected via HBM3. 1285

The code for our algorithms is written in Python 1286

(version 3.11.9). To run the code, several addi- 1287

tional libraries are required, including PyTorch, 1288

Huggingface Transformers, Accelerate, and Deep- 1289

Speed. For detailed instructions, please refer to our 1290

README and setup.py in the code directory. 1291

We have optimized our code and tested that the 1292

space cost of the GPU memory is less than 80 1293

GB during SPARSE MEMORY TRAINING. The 1294

execution time to run a post-training experiment is 1295

less than 16 hours on our machine. 1296

17https://huggingface.co/datasets/microsoft/
LCC_python

18https://huggingface.co/papers/2306.03091
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Table 8: Default hyperparameters for the SPARSE MEMORY TRAINING

Hyperparameter Meaning Value

batch_size The batch size for training 1
criterion The criterion for calculating loss “cross_entropy"
learning_rate The learning rate for optimizer 0.00001
β Ratio of mixed training 1
allgather_partitions whether to use allgather “true"
allgather_bucket_size Size of allgather communication chunks 2e8
gradient_accumulation_steps # Gradients to combine before updating weights 1

D.2 Implementation Details and1297

Hyperparameters1298

We use AdamW optimizer with warmup_min_lr,1299

warmup_max_lr, warmup_num_steps, and to-1300

tal_num_steps set to “auto" in deepspeed. The1301

default choices of hyperparameters in our code are1302

provided in Table 8. For initializing LLaMA-2-7B,1303

we use the default LLaMA config19.1304

D.3 Training Curves1305

We record and report the training curves in Figure 8,1306

Figure 9 and Figure 10. Figure 8 shows the perplex-1307

ity while extending the context window to 8192.1308

Due to space limitations, we only plot the first 1001309

steps. First, the training perplexity (loss) decreases1310

in general and seems to be more converged as the1311

training goes on. Second, by only ten training steps,1312

SPARSE MEMORY TRAINING is able to efficiently1313

decrease the training perplexity from over 100 to1314

nearly 11. Figure 9 shows the training perplex-1315

ity while extending the context window from 81921316

(8K) to 10240 (10K). Similar properties can also be1317

identified. Figure 10 shows the training perplexity1318

(loss) of the whole post-training progress. A scatter1319

of extending window size K and training perplexity1320

p means that, the training perplexity at the last step1321

among the 1000 steps that extend the context win-1322

dow to K is p. Although the training is continuous,1323

the model must adapt to the new context window1324

size each time it is extended. As a result, perplex-1325

ity does not decrease monotonically. However, the1326

overall training perplexity gradually decreases over1327

the course of post-training, without the spikes in1328

perplexity seen in the vanilla LLaMA-2-7B model1329

as context window length increases, demonstrating1330

the effectiveness of our SPARSE MEMORY TRAIN-1331

ING.1332

19https://huggingface.co/docs/transformers/
main/model_doc/llama2

D.4 Orthogonality with Zero-shot Length 1333

Generalization Methods 1334

Our SPARSE MEMORY TRAINING extends the con- 1335

text window of LLMs during the post-training stage 1336

without requiring architectural modifications. This 1337

makes it feasible to integrate other zero-shot length 1338

generalization methods into the post-trained lan- 1339

guage model. We evaluate this compatibility by ap- 1340

plying two state-of-the-art zero-shot length gener- 1341

alization approaches—StreamingLLM (Xiao et al., 1342

2024) and LM-Infinite (Han et al., 2024)—to our 1343

post-trained model. Table 9 presents the perplexity 1344

and accuracy results. The findings demonstrate that 1345

combining zero-shot length generalization methods 1346

with SPARSE MEMORY TRAINING on LLaMA- 1347

2-7B yields further performance improvements. 1348

These results highlight the orthogonality and com- 1349

patibility of SPARSE MEMORY TRAINING with 1350

existing zero-shot length generalization techniques. 1351

Table 9: Perplexity (↓) and Accuracy (↑) of our post-
trained LLaMA Model with StreamingLLM (Xiao et al.,
2024) and LM-Infinite (Han et al., 2024). Adopting
zero-shot length generalization methods on LLaMA-2-
7B after SPARSE MEMORY TRAINING leads to further
performance improvement.

Model Length
PG19 arXiv

PPL (↓) Acc (↑) PPL (↓) Acc (↑)

Ours

8K 11.08 0.48 16.77 0.45
16K 9.59 0.51 13.76 0.48
32K 8.48 0.53 9.62 0.52
64K 8.02 0.54 9.15 0.53

Ours + StreamingLLM

8K 10.53 0.50 16.56 0.45
16K 9.04 0.52 13.51 0.48
32K 7.97 0.55 9.41 0.52
64K 7.65 0.56 8.86 0.54

Ours + LM-Infinite

8K 10.68 0.49 16.54 0.45
16K 9.12 0.51 13.46 0.48
32K 8.06 0.54 9.35 0.53
64K 7.72 0.56 8.84 0.54

19
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Figure 8: Training perplexity (eloss) when extending LLaMA-2-7B to 8192 context window using SPARSE MEMORY
TRAINING. The perplexity converges quickly from ∼ 130 to ∼ 11.

Figure 9: Training perplexity (eloss) when extending LLaMA-2-7B from 8192 to 10240 context window using
SPARSE MEMORY TRAINING. The perplexity decreases from ∼ 22 to ∼ 15 in only 50 steps.

Figure 10: Converged training perplexity (eloss) when extending LLaMA-2-7B context window using SPARSE
MEMORY TRAINING. While the perplexity of vanilla LLaMA-2-7B would explode over window size, the converged
perplexity of each extending keeps decreasing with the context window.
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D.5 Perplexity on Longbench Datasets1352

We also report results of LongBench at Table 10.1353

D.6 Full results of Ablation Study1354

The full results of ablation study are reported in1355

Table 11.1356
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Table 10: Perplexity (↓) of LLaMA-2-7B on LongBench datasets. The performance of LLaMA-2-7B after SPARSE
MEMORY TRAINING is stable and improves with longer contexts.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Vanilla

8K 186.86 114.16 107.63 122.47 90.22 116.24
16K 1430.46 1014.01 948.14 991.11 949.16 1045.72
32K 3274.92 3207.46 3082.40 3300.21 5355.33 2983.43
64K 8048.33 4306.92 6096.41 6253.19 15710.44 5334.57

Sparse Memory Training

8K 13.23 11.47 9.87 10.48 9.46 9.71
16K 11.66 9.37 8.14 8.43 8.67 9.26
32K 9.56 6.93 6.6 6.63 8.13 7.93
64K 7.98 5.57 5.72 6.19 7.7 8.9

Model Context Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Vanilla

8K 102.56 142.23 115.59 153.44 69.78 84.12
16K 1055.62 1121.32 839.71 1146.01 1051.47 1164.55
32K 3786.72 2895.37 2613.10 2977.54 2973.48 3050.69
64K 7541.48 5640.73 6844.86 7631.39 4820.02 5122.14

Sparse Memory Training

8K 7.87 11.15 10.51 16.86 4.98 5.13
16K 6.90 9.28 9.12 13.56 4.73 5.26
32K 5.43 7.24 8.39 11.24 2.56 2.48
64K 5.30 7.31 7.60 10.04 2.28 2.26

Table 11: PPL (↓) of SPARSE MEMORY TRAINING without mixed training (regularization) on LongBench.

Model Context Length
Single-Doc QA Multi-Doc QA Summarization

Qasper MultiFieldQA HotPotQA WikiMQA GovReport MultiNews

Sparse Memory Training
w/o Mixed Training

16K 1332.19 1134.13 1806.22 1933.51 751.38 1005.19
32K 1471.31 1269.43 2870.13 4162.76 5829.82 5470.50
64K 310.02 368.17 433.99 418.16 608.48 1135.98

Model Context Length
Few-shot Learning Synthetic Task Code Completion

TREC TriviaQA PassageCount PassageRetrieval LCC RepoBench-P

Sparse Memory Training
w/o Mixed Training

16K 130.55 1868.78 1859.02 2073.48 1247.91 1058.37
32K 121.05 1295.00 3274.54 3270.87 1507.53 1498.12
64K 654.35 570.09 457.65 451.15 302.14 292.75
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