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Abstract

Recent advances in generative biology have enabled the design of novel
proteins, creating significant opportunities for drug discovery while also
introducing new risks, including the potential development of synthetic
bioweapons. Existing biosafety measures primarily rely on inference-
time filters such as sequence alignment and protein–protein interaction
(PPI) prediction to detect dangerous outputs. In this study, we evalu-
ate the performance of three leading PPI prediction tools: AlphaFold
3, AF3Complex, and SpatialPPIv2. These models were tested on well-
characterized viral–host interactions, such as those involving Hepatitis B
and SARS-CoV-2. Despite being trained on many of the same viruses,
the models fail to detect a substantial number of known interactions.
Strikingly, none of the tools successfully identify any of the four ex-
perimentally validated SARS-CoV-2 mutants with confirmed binding.
These findings suggest that current predictive filters are inadequate for
reliably flagging even known biological threats and are even more un-
likely to detect novel ones. We argue for a shift toward response-oriented
infrastructure, including rapid experimental validation, adaptable bioman-
ufacturing, and regulatory frameworks capable of operating at the speed
of AI-driven developments.

1 Introduction

In recent years, the convergence of generative AI and molecular biology has produced powerful new
systems capable of designing proteins with remarkable precision. Protein language models (PLMs),
along with structural predictors and design tools like RFdiffusion, are revolutionizing medicine by
enabling rapid therapeutic development—from novel enzymes and vaccines to antibody candidates
tailored for specific diseases [1–5]. These systems are accelerating biomedical innovation, shrinking
experimental timelines, and expanding the reach of drug design to previously intractable targets
[6, 7].

Yet this same capability introduces an unprecedented dual-use dilemma. The tools now used to craft
life-saving biologics can, in the wrong hands, be repurposed to generate pathogens with enhanced
infectivity, immune evasion, or toxicity [8]. PLMs can simulate the evolutionary trajectory of viral
proteins, suggesting mutations that make them more transmissible or harder to neutralize [9–11].
Structure-aware design tools can validate these outputs in silico and propose new scaffolds to support
them [6, 12]. This design-and-validation loop—which mirrors workflows already used in therapeutic
biotech—lowers the barrier to creating synthetic threats, some of which may be novel enough to
evade detection altogether [8].
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In response to this growing concern, the AI and biosecurity communities have proposed technical
countermeasures [13]. These include inference-time filtering to block dangerous outputs, red-teaming
to test models for misuse, and sequence screening to flag potentially pathogenic molecules [8, 13, 14].
However, these methods rest on a problematic assumption: that we can reliably identify harmful
proteins computationally.

This assumption breaks down under scrutiny. Whether a protein is benign or harmful depends on
factors that remain opaque to even the most advanced models—its tertiary structure, cellular context,
binding specificity, and immunogenicity [8, 14, 15]. Most of these properties cannot be inferred
from sequence alone. In fact, as we demonstrate in this paper’s technical section, existing models for
protein–protein interaction (PPI) prediction fail especially badly when applied to viral proteins. They
lack the data diversity, contextual understanding, and biological realism to generalize beyond narrow,
overrepresented domains. This limitation creates blind spots that could be exploited by malicious
actors or simply overlooked in good-faith deployments.

If computational filters are not fully reliable then only experiments can provide definitive safety
assurance. Yet experimental validation methods, such as binding assays, toxicity screens, and
infection models, are too slow, costly, and resource-intensive to scale with model outputs [16, 17].
In theory, flagged sequences could be tested in the lab. In practice, we lack the infrastructure to vet
more than a tiny fraction [8, 18]. That leaves us with a dangerous asymmetry: generative models can
produce threats at scale, but our ability to verify them lags far behind.

Worse, even dramatic advances in our ability to predict pathogenicity from sequence data will not
guarantee security. Open-source models, fine-tuned on public data, are available worldwide. The
barriers to misuse are falling: DNA synthesis services are increasingly accessible, foundational
laboratory tools are widely distributed, and the necessary expertise is no longer confined to state-
sponsored programs [8, 12, 19–21]. Nation-states and non-state actors with sufficient resources can
run models privately, circumvent safety mechanisms, and synthesize outputs with little oversight. In
this threat landscape, technical success in sequence classification does not guarantee security. We
cannot rely on preemptive filters alone.

The implication is stark: current defense strategies—focused on prediction, prevention, and perimeter
control—are structurally mismatched to the nature of the threat. No matter how refined our red-
teaming becomes, no matter how many inference-time filters we deploy, we cannot guarantee safety
when our core tools lack ground truth and when potential adversaries are unconstrained.

What is needed instead is a shift: from a paradigm of containment to one of resilience. Rather than
attempting to intercept every potentially dangerous output at generation time, we must build systems
capable of responding to threats after they emerge—faster than those threats can spread. This means
developing AI-native infrastructure for therapeutic response: models trained to design safe, stable,
and manufacturable countermeasures on demand; high-throughput simulation and validation tools
that can screen thousands of candidates in parallel; and a nationwide biomanufacturing pipeline that
can pivot from peacetime research to emergency deployment within days.

Crucially, this is not merely a technical aspiration—it is a national security imperative. We must
prepare for a world in which synthetic pathogens may be generated and released faster than traditional
public health systems can detect or contain them. In such a world, resilience is the only viable defense.
Speed—not restraint—becomes the battlefield.

This paper is structured as follows: In the next section, we show that current machine learning models
for predicting viral protein interactions, especially those relying on large-scale sequence and structure
modeling, fail to generalize well. This is particularly evident in low-data and high-divergence
scenarios. These shortcomings highlight the limitations of current safety frameworks and underscore
the urgent need to shift research focus towards response-driven capabilities. We then propose a
resilience-based framework that addresses gaps in existing biosecurity efforts. Ultimately, our goal is
not to eliminate generative biology, but to guide it—ensuring that the tools being developed today are
aligned with the future needs that will arise.

2 Limitations of Current Inference-Time Filtering Approaches

The task of identifying potentially pathogenic proteins, especially those that may be synthetically
engineered or genetically modified, for inference-time filtering requires robust, reliable tools. In the
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context of biosecurity, these tools must be able to predict whether a given protein sequence or structure
could be harmful to humans. Currently, the two primary methodologies used to predict pathogenicity
are sequence similarity comparisons and PPI prediction mechanisms [22, 14, 23, 24]. While these
tools have proven useful, both are fundamentally limited in their applicability and accuracy, especially
when it comes to detecting novel or engineered proteins.

Sequence similarity searches are arguably the most straightforward and effective tool for identifying
known pathogenic proteins. By comparing an input protein sequence against a large database of
known sequences, researchers can rapidly identify homologous proteins from established viral strains
[25]. This method is particularly useful for identifying pathogenic proteins that have undergone minor
mutations or are derivations of previously known viral proteins. Tools such as BLAST facilitate
the comparison of protein sequences to databases such as UniProt and NCBI Virus, which contain
thousands of viral sequences [26–28]. These comparisons allow for the determination of the degree
of homology between the input protein and known viral sequences, providing a relatively simple and
highly scalable means of detecting pathogenicity [26, 29]. When the degree of homology exceeds a
pre-defined threshold, the protein in question can be flagged as potentially pathogenic.

Despite its effectiveness, sequence similarity searches are fundamentally limited by their reliance on
existing databases. Since these databases are composed of known sequences, they inherently fail to
detect novel viral proteins that are sufficiently divergent from anything previously cataloged [14]. This
means that while sequence similarity searches can effectively identify variants of known pathogens,
they are incapable of detecting entirely novel proteins, such as those designed using advanced
computational techniques like RFdiffusion or ESM3, which generate novel protein sequences that are
not present in any existing databases [6, 12]. Therefore, while sequence similarity searches remain
a valuable tool for detecting known pathogens, they cannot be relied upon to identify entirely new
threats, especially those that have been deliberately engineered.

To address this limitation, researchers have turned to PPI prediction methodologies [30, 31]. PPIs
are central to the pathogenicity of many viruses, as viral proteins typically need to interact with
human cellular receptors to gain entry into the host [32–34]. While most viruses bind to standard
receptors, some also interact with glycoproteins and glycolipids on the surface of host cells [34]. PPI
prediction tools have been developed with the aim of identifying these interactions, thereby providing
a complementary approach to sequence similarity searches. In theory, PPI prediction tools could be
used to determine whether a viral protein is likely to bind to a receptor on a human cell, serving as a
reasonable proxy for pathogenicity. This would allow for the identification of proteins that might
be capable of interacting with human receptors, even if they are not closely related to any known
pathogen.

However, in practice, PPI prediction tools—especially those based on artificial intelligence—often
fail to deliver the accuracy required for high-stakes applications such as biosecurity [35]. The inherent
limitations of these models are particularly concerning when one considers the potential consequences
of inaccuracies. A false negative, in which a dangerous pathogenic protein goes undetected, could
have dire consequences for public health. For these reasons, the accuracy of PPI prediction models is
a critical issue that must be addressed before these tools can be used reliably for biosecurity purposes.

In order to evaluate the performance of state-of-the-art PPI prediction models, we conducted a
benchmarking study using thirteen well-characterized viral protein–human receptor interactions.
These interactions were selected from viruses that have fully or partially resolved structures available
in the Protein Data Bank (PDB), such as HIV, Measles, and SARS-CoV-2 [36]. Three widely used PPI
prediction tools were selected for testing: AlphaFold 3, AF3Complex, and SpatialPPIv2. AlphaFold
3, developed by Google DeepMind, is a deep learning-based model that is widely regarded as the
best available tool for predicting protein structures [37]. AF3Complex is a derivative of AlphaFold
3 that has been specifically designed to improve PPI predictions by modeling those interactions
more accurately [38]. SpatialPPIv2 is a graph neural network-based model that represents the latest
advancement in PPI prediction methodologies [23].

Each of the models was provided with the protein sequences of the viral binding protein and
its corresponding human receptor. AlphaFold 3 and AF3Complex used sequence-based inputs
to predict the structures of the individual proteins, while SpatialPPIv2 was provided with pre-
computed structures generated by AlphaFold 3 [23, 37, 38].SpatialPPIv2 differs from AlphaFold
3 and AF3Complex in that it is explicitly trained to predict PPIs using structural inputs rather
than sequence information [23]. AlphaFold 3 relies on its internally generated interface predicted
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TM-score (ipTM) to evaluate the confidence of predicted protein complex structures; prior studies
have used an ipTM score of 0.6 or higher as a proxy for a meaningful PPI [37, 39]. In contrast,
AF3Complex uses a separate internal metric, the predicted Interface-Similarity score (pIS), with
scores of 0.38 or above indicating a likely PPI [38, 40, 41]. SpatialPPIv2 instead outputs a probability
that a meaningful interaction exists between the input proteins, with a threshold of 0.5 or higher used
to indicate a predicted PPI.

Virus SpatialPPIv2 AlphaFold3 AF3Complex
Adenovirus ✓ ✓ ✓

Chikungunya × × ×
Ebola ✓ × ✓

Epstein-Barr ✓ ✓ ✓

Hepatitis B × × ×
HIV ✓ ✓ ✓

HSV (HVEM Receptor) ✓ × ×
HSV (Nectin-1 Receptor) ✓ ✓ ✓

Measles × × ×
Measles (Edmonston strain) × ✓ ✓

MERS ✓ ✓ ✓

Nipah ✓ ✓ ✓

SARS-CoV-2 × × ✓

Table 1: Virus-host protein–protein interaction prediction performance across three computational
models. Each row represents a different virus strain or receptor variant, with checkmarks (✓)
indicating successful PPI identification and crosses (×) indicating failed predictions. Confidence
thresholds differ by model: SpatialPPIv2 (0.5), AlphaFold3 (0.6), and AF3Complex (0.38).

The results of the benchmarking study, summarized in Table 1, reveal a significant failure of all three
PPI prediction models to consistently identify well-documented viral–host interactions. Notably, both
AlphaFold 3 and SpatialPPIv2 failed to correctly identify the interaction between the SARS-CoV-2
spike protein and the human ACE2 receptor—an interaction that is critical to the virus’s ability to
infect human cells and that was at the heart of the COVID-19 pandemic [9, 42]. In total, SpatialPPIv2
misidentified approximately 40% of the PPIs, while AlphaFold 3 misidentified about 50% and
AF3Complex misidentified about 30%. These results indicate that even state-of-the-art models are
far from reliable when it comes to predicting viral–host interactions, which undermines the utility of
these models for identifying computationally designed pathogenic proteins. Moreover, many of the
PPIs included in the benchmarking study were present in the training datasets of all three models
[37, 38, 43]. This means that these models had already been exposed to these interactions during
training, yet they still failed to accurately predict them in the testing phase. This is a particularly
troubling finding, as it suggests that the models are not generalizing well to real-world PPI predictions,
even when the interactions are well-known and well-characterized. If these models cannot even
accurately predict the most established viral PPIs, the possibility of them detecting novel or engineered
viral–host interactions becomes even more unlikely.

As an ancillary experiment, we evaluated four mutated variants of the SARS-CoV-2 spike receptor-
binding domain, the viral protein responsible for mediating COVID-19 infections. These mutations
were sourced from a prior study [44], which experimentally quantified their effects on binding affinity
between the spike RBD and the human ACE2 receptor, a key determinant of protein–protein interac-
tion strength. Among the selected variants, two exhibited the greatest enhancement in ACE2 binding
affinity, with more than tenfold increases, while the remaining two showed the most substantial
reductions in affinity that still preserved a functional interaction.
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We assessed these four spike mutants using the same three structure-based models evaluated previ-
ously—SpatialPPIv2, AlphaFold3, and AF3Complex—to determine whether any PPIs between spike
and ACE2 were computationally predicted. The results are shown in Table 2.

Strikingly, all three models failed to detect meaningful interactions for any of the variants, including
those with experimentally confirmed high-affinity binding. This reveals a strong insensitivity to
combinatorial mutational effects, highlighting a significant blind spot: in the absence of sequence
similarity searches, these models may be unable to identify pathogenic viral variants. This raises
serious concerns about their utility in validating viral pathogenicity.

Even more concerning is the direction of the models’ confidence shifts. For both beneficial and
detrimental mutations, SpatialPPIv2 and AlphaFold3 increased their predictive confidence, while
AF3Complex decreased its own, regardless of the true biological impact. This erratic behavior
underscores the models’ limitations when faced with mutationally altered viral proteins—a critical
vector through which more virulent or evasive pathogens could emerge [8].

A major contributor to these failures is a fundamental data deficiency, a lack of high-quality, well-
annotated examples of viral–host protein interactions in existing training datasets [45, 46]. Although
resources like the PDB contain hundreds of thousands of protein structures, the vast majority of
these represent non-viral proteins, with viral proteins, especially those relevant to host interactions,
comprising only a small fraction [36, 46]. This lack of targeted data limits the models’ ability to learn
interaction-relevant features specific to viral proteins.

However, this data imbalance is only part of the challenge. Generalizing to novel or engineered
proteins remains inherently difficult because of the complex biophysical nature of protein–protein
interactions [45]. Even with improved viral datasets, predicting interactions involving synthetic or
previously unseen proteins, such as those generated by modern protein design tools, presents a major
obstacle. These artificial proteins may not resemble known viral proteins and may interact with host
receptors in unconventional ways, making them especially difficult for models trained on natural
proteins to detect [6, 12].

Affinity Change (∆ log10 KD) SpatialPPIv2 AlphaFold3 AF3Complex
−1.04 0.27 (+0.08) 0.16 (+0.03) 0.11 (–0.47)

+2.14 0.19 (+0.00) 0.24 (+0.11) 0.06 (–0.52)

−1.03 0.26 (+0.07) 0.14 (+0.01) 0.06 (–0.52)

+2.11 0.24 (+0.05) 0.15 (+0.02) 0.05 (–0.53)

Table 2: Performance comparison of PPI prediction models on SARS-CoV-2 spike protein mutants.
Each row represents a different mutational variant with its corresponding change in binding affinity
(∆ log10 KD). Negative values indicate an increase in binding affinity, while positive values indicate
the opposite. Parentheses show the difference from the baseline confidence score for the wildtype
SARS-CoV-2 spike protein and human ACE2 PPI. SpatialPPIv2’s PPI threshold is 0.5, AlphaFold3’s
is 0.6, and AF3Complex’s is 0.38. None of the models correctly predicted a single PPI.

This gap underscores a broader limitation in current PPI prediction approaches. While models can
perform reasonably well when applied to familiar protein types, they falter in high-stakes scenarios
where generalization is critical, such as detecting engineered proteins with potential for harm. As
generative tools become more accessible and capable, the inability to reliably assess the risk of novel
proteins presents a serious and growing biosecurity concern.

3 Reorienting Research Toward Infrastructure Readiness and Rapid
Response

Current inference-time filters and protein–protein interaction predictors aren’t enough to catch danger-
ous synthetic proteins. As generative biological models improve and spread, it is increasingly clear
that biosecurity cannot rely on static safeguards alone. Instead, the focus must shift toward building a
resilient infrastructure that is capable of designing, validating, manufacturing, and deploying medical
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countermeasures at machine timescales. That means leadership from federal agencies but also a
broad realignment of research priorities across universities, research labs, and industry.

To date, most investment in generative AI for therapeutic design has been concentrated in the
pharmaceutical industry and biotechnology startups [47, 48]. These efforts naturally focus on
common diseases with strong commercial incentives and well-known biological targets. But that
leaves a gap: there’s little work on the rare, fast-evolving, or engineered pathogens most relevant
to biodefense [8, 49, 50]. Academic research must fill this gap. Universities and consortia are well
suited to study the edge cases that industry R&D tends to overlook. By targeting novel viruses,
unknown protein structures, and synthetic sequences outside today’s biological data, they can help
build tools that matter for alignment and security.

These efforts will fail without addressing a deeper problem: the critical data needed to train and
evaluate countermeasure models is scattered and siloed. Information on pathogen evolution, immune
response, failed therapeutics, and synthetic constructs sits across disconnected academic, corporate,
and government systems [51]. Integrating that data is essential—but so is access control. In a national
security context, broad sharing is risky. Access should be limited to certified research labs and trusted
partners operating under clear safeguards. We need sustained investment in shared infrastructure
to support this: repositories of known and hypothetical viral strains, standardized measurements of
immunogenicity and toxicity, and transparent clinical performance data. Funding agencies should
prioritize these efforts, and academic institutions must be willing to build and maintain secure
platforms that enable collaboration without compromising biosecurity. The COVID-19 response
showed what rapid, coordinated data sharing can unlock [52]; biodefense now requires a version built
for both speed and control.

Beyond data and modeling, the academic community has a responsibility to reframe how generative
protein design is conceptualized. Much of the discourse surrounding PLMs and other generative tools
has focused on speculative risks, particularly their potential misuse for creating harmful biological
agents [8, 13, 49, 50]. But the risks posed by generative protein models are no longer theoretical,
and the research community needs to treat them accordingly. As these systems grow more capable,
especially in designing novel or engineered proteins, their potential for misuse becomes a concrete
concern. Addressing this requires more than superficial safeguards or ad hoc filtering. It demands
structural solutions. Treating biosecurity as a secondary or post hoc issue is no longer tenable.
These challenges sit at the center of responsible model development and must be integrated into core
research agendas.

Still, while academia can help define the technical foundations of preparedness, the responsibility for
real-world deployment rests firmly with the federal government. Wet-lab validation, clinical testing,
and large-scale manufacturing of AI-generated therapeutics will require coordination, supply chains
resilience, and emergency infrastructure that are beyond the capacity of any individual lab or institu-
tion. Agencies such as the Biomedical Advanced Research and Development Authority (BARDA),
the Food and Drug Administration (FDA), and the Administration for Strategic Preparedness and
Response (ASPR) must take the lead in establishing national infrastructure that translates model
output into deployable countermeasures.

This includes building experimental screening platforms that can test thousands of protein designs in
parallel for binding, toxicity, manufacturability, and immune response. These systems should be fast,
modular, and automated to keep pace with rapid model outputs. But screening alone isn’t enough.
The federal government should also support a distributed network of biomanufacturing sites, ready to
produce countermeasures in a crisis. These facilities should be maintained on standby, stocked with
key materials, and able to shift quickly from routine work to emergency response. Redundancy and
geographic spread will be critical for avoiding supply chain failures and ensuring resilience.

Modernizing the regulatory infrastructure is no less important. Existing approval processes, partic-
ularly within the FDA, are not calibrated for the compressed timelines required during biological
emergencies [53? ]. Regulatory pathways must be adapted to accommodate AI-generated ther-
apeutics by establishing pre-authorized fast-track mechanisms, conditional emergency approvals
with post-deployment monitoring, and adaptive clinical trials that integrate real-time safety data.
These systems must be decisively faster than those designed for conventional drug development.
Moreover, regulatory reform must be accompanied by operational flexibility. Pre-determined decision
authorities within public health agencies must be empowered to act swiftly during emergencies,
avoiding bureaucratic delays that can be fatal when threats emerge at digital speed.
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To ensure the system works in practice and not just in principle, the entire countermeasure pipeline
must undergo regular stress testing. Inter-agency simulations—coordinated by the National Security
Council, BARDA, ASPR, the Department of Defense, and other relevant bodies—should rehearse the
full sequence from biothreat sequence detection to therapeutic deployment. These simulations should
include live exercises as well as tabletop models, and must evaluate not only technical performance
but also institutional responsiveness. Academic institutions and research hospitals can participate in
these simulations by contributing experimental capabilities, validation tools, and scenario modeling.

In parallel, the federal government must create long-term funding mechanisms to sustain this in-
frastructure. The private sector is unlikely to build and maintain readiness platforms that may be
activated infrequently, and commercial incentives are poorly aligned with public health preparedness.
Agencies such as NIH, NSF, and DARPA must provide stable support for AI therapeutic design
systems, screening platforms, and biomanufacturing capacity, with a mandate for dual-use deploy-
ment—available in peacetime for research and ready in crisis for defense. Incentive-compatible
public–private partnerships will be crucial. Eligibility for research grants, fast-track regulatory
pathways, and procurement contracts should be conditioned on compliance with biosafety, cyberse-
curity, and auditability standards. Limited liability protections for emergency deployments may be
appropriate in high-consequence scenarios, provided transparency and safety are preserved.

In total, the shift from prevention to resilience demands contributions from every level of the scientific
ecosystem. Federal agencies must lead on infrastructure, manufacturing, validation, and regulation.
Academic institutions must advance the technical foundations, build data infrastructure, and push for
therapeutic alignment. The private sector must be incentivized to integrate safety and readiness into
commercial innovation. The risks posed by generative biology are real, but so are the opportunities.
If we move quickly, the very systems that could accelerate biological threats can also become our
most powerful tools for stopping them.

4 Conclusion

The rapid emergence of generative AI tools capable of designing novel biological sequences has
introduced both new opportunities for biomedical discovery and new vectors for misuse. These models
can produce protein candidates with no clear evolutionary antecedents, obscuring their potential
function and complicating downstream risk assessment. As our case study illustrates, relying on post
hoc filters—such as sequence similarity searches or PPI prediction—to assess the safety of generated
sequences is insufficient. Sequence-based heuristics often fail to capture functional novelty, while PPI
predictors remain too inaccurate and poorly calibrated to reliably distinguish benign from hazardous
outputs.

These limitations expose a broader structural issue: inference-time interventions are fundamentally
reactive and speculative. In the absence of reliable, scalable experimental verification, filtering alone
cannot guarantee safety. Worse still, an overreliance on these techniques may create a false sense of
security, delaying investment in more substantive safeguards.

To address these challenges, we propose a reorientation of biosecurity policy from prevention through
prediction toward resilience through response. This includes investment in infrastructure for rapid
therapeutic design, high-throughput screening, scalable biomanufacturing, and agile regulatory
oversight. The goal is not to eliminate all risk at the point of generation but to ensure that emerging
threats can be identified and mitigated in real time.

Generative models will undoubtedly play an increasing role in shaping the future of biology. Ensuring
that their benefits are realized without compromising safety requires a realistic appraisal of current
technical limitations and a policy framework grounded in robustness rather than prediction alone. As
these technologies advance, it is incumbent upon both researchers and policymakers to build systems
capable not just of anticipating threats, but of responding swiftly and effectively when they arise.

5 Data and Model Availability

The SpatialPPIv2 model used for the analyses in this manuscript can be accessed at this GitHub
repository. Likewise, the AF3Complex model used can be accessed at this GitHub repository. The
AlphaFold 3 model used is hosted by Google DeepMind on this web server.
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The PDB reference structures, which include both the resolved protein interactions and associated
sequences, for the thirteen viral–receptor interaction case studies are as follows. For SARS-CoV-2,
the reference structure is 6M0J. For MERS-CoV, the structure is 4L72. The HIV interaction is
represented by 1GC1, and the adenovirus interaction is captured by 1F5W. Herpes Simplex Virus
interactions are represented by two structures: 1JMA for the HVEM receptor and 3SKU for the
Nectin-1 receptor. The Hepatitis B Virus is represented by 8HRX. The Epstein-Barr Virus interaction
is described by structure 8SM0. Two distinct measles virus structures are included: 3INB for the
Edmonston strain and 4GJT for an alternate strain. Ebola virus is represented by structure 5F1B,
Nipah virus by 2VSM, and Chikungunya virus by 6JO8. The sequences for the experimentally
validated SARS-CoV-2 mutants, referenced from a previous study [44], are publicly available at this
GitHub repository.
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