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ABSTRACT

In eukaryotes, genes produce a variety of distinct RNA isoforms, each with unique
regulatory signals and resulting protein products. Assessing the metabolism of
RNA isoforms is essential for unraveling gene regulatory mechanisms. However,
this is impeded by current methods reliant on short-read sequencing, which are
inadequate for differentiating between individual isoforms. Additionally, these
methods cannot concurrently analyze RNA isoform metabolism and key regu-
latory elements of RNA stability, such as poly(A) tail and nucleotide modifica-
tions. Here, we metabolically label nascent RNA with 5-ethynyl uridine modi-
fication and employ direct RNA nanopore sequencing. We introduce RNAkinet,
a deep convolutional and recurrent neural network, tailored to directly process
electrical signals from nanopore sequencing for the detection of modified RNA
molecules. RNAkinet effectively distinguishes between nascent and pre-existing
RNA molecules and is generalizable to various cell types and organisms. By mod-
eling RNA decay rates, RNAkinet allows reproducible identification of the kinetic
parameters of individual RNA isoforms and facilitates efficient, integrated studies
of RNA isoform metabolism and the regulatory elements that influence it.

1 MAIN

Unraveling the kinetics of RNA metabolism is critical for understanding gene regulation and cellu-
lar response to environmental cues. Methods for measuring RNA dynamics in mammalian cells are
based on short-read RNA sequencing (RNA-Seq) following exposure of cells to nucleoside analogs
that get incorporated into newly synthesized RNAs that are subsequently physically or bioinformat-
ically separated (Baptista & Dölken, 2018; Boileau et al., 2021). However, established methods
cannot confidently assign alternatively spliced isoforms, or collect single-molecule level informa-
tion on transcription start site, poly(A) site usage and length, and post-transcriptional modifications,
all of which affect RNA stability (Schoenberg & Maquat, 2012). Nanopore sequencing can measure
these features through direct detection of RNA molecules (Garalde et al., 2018; Ibrahim et al., 2021;
Hendra et al., 2022; Thi et al., 2022; Mulroney et al., 2023). A recent work (nano-ID) has shown
the feasibility of combining nanopore sequencing and machine learning to identify metabolically
labeled RNAs in a single nanopore direct RNA-Seq (dRNA-Seq) experiment following metabolic
labeling (Maier et al., 2020). However, our results show that nano-ID does not generalize to other
experiments to be widely applicable.

We tested nano-ID by culturing HeLa cells with 5-Ethynyl-uridine (5EU) for 24 hours (h) to max-
imize 5EU-labeled RNA and sequenced directly on a MinION device as previously described by
Maier et al. (2020) (Table 1). Nano-ID has 2,590,493 parameters trained on fewer than 700,000
examples (Table 2, bottom). We found that Nano-ID did not generalize (Fig. 2A,B, Fig. 5A) and
additionally, had low efficiency requiring 7 days of runtime and 800 Gb of memory per sample.

To address this gap, we aimed to develop a prediction tool, RNAkinet, that would a) accurately
distinguish 5EU-labeled RNA, b) generalize to other datasets, c) minimize time/space requirements,
d) depend solely on the sequencer raw electrical signal avoiding dependencies on basecalling or
alignment, and e) quantify RNA kinetics. We used convolutional and recurrent layers to address
the shortcomings of fully connected NNs, to reduce the parameter space and integrate long- and
short-range interactions between electrical signals (Fig. 1A).
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Figure 1: Data preparation and neural network design. A) Schematic of training and prediction
workflow. Reads from chromosomes 1 and 20 were retained for testing and validation only. During
prediction RNAkinet uses only the raw signal. B) Schematic representation of the architecture of
RNAkinet.

We maintained dataset independence by allocating reads from chromosomes 1 and 20 exclusively
for testing and validation, thus eliminating confounding sequence biases during performance eval-
uation (Fig. 1A). To enhance the domain representation, we also included negative samples from
diverse dRNA-Seq experiments conducted by different experimenters on distinct cell lines (HeLa,
HEK293T, iPSC-Neurons) (Table 1, 2).

NNs typically use padding to handle varying input lengths like electrical signals. However, this is
infeasible in dRNA-Seq due to extremes in sequence size and possible alterations of the signal’s
true continuity (Fig. 5B). Segmentation in fixed length windows is also unsuitable because 5EU
incorporation efficiency is low (2-3%) (Maier et al., 2020) and windows without labeled nucleotides
would be common. To address this, we designed the NN to accept unpadded sequences of any
length and shares learned features across entire sequences. Finally, we limited the input to only raw
nanopore signal, thus maintaining independence of basecaller or alignment.

Analysis showed that RNAkinet robustly distinguished labeled RNAs (Fig. 6A). When testing on
non-trained reads in chromosome 1 the model achieved a high area under curve (AUC) (Fig. 2A-C,
Fig. 6B) indicating that a network involving convolution and recurrent characteristics with only
66,000 parameters can accurately capture 5EU signals in nanopore reads.

RNAkinet performed similarly across reads from all chromosomes indicating that it did not overfit
(Fig. 2D, Fig. 6C-E). Furthermore, the content of uridines (where 5EU would be incorporated) in a
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read had a negligible impact on performance (Fig. 2E). Shorter reads (0-1 kb) reached lower AUC
than longer ones (Fig. 2F), indicating that RNAkinet’s performance improves with longer reads.

Figure 2: RNAkinet accurately classifies RNA molecules labeled with 5EU. A-B) ROC (A) and PR
(B) on test data for RNAkinet and Nano-ID C) Balanced accuracy on test data for RNAkinet. D-F)
ROC plot stratified by train, validation, and test chromosomes (D), percent of uridines in transcript
(E) and read length (F).

Next, we tested if the model can generalize to independent datasets using data generated in K562
cells (Maier et al., 2020), another human cell line. We again isolated reads that aligned to chro-
mosome 1 to avoid transcripts present in the training data. RNAkinet successfully distinguished
labeled RNA molecules along all replicates of K562 cells (Fig. 7A) and had comparable perfor-
mance to HeLa cells (Fig. 3A, B, Fig. 7B). A minor drop in performance was expected given the
use of an earlier iteration of the sequencing kit (SQK-RNA001) for K562, not modeled during train-
ing (Maier et al., 2020). Again, stratification of reads by chromosome, U content or length resulted
in minimal performance differences (Fig. 3C-E).

As labeling for 24 h is rarely used in canonical experimental settings, we explored the performance
of RNAkinet on shorter labeling periods, where cells were subjected to heat shock for 60 min in the
presence of 5EU (Maier et al., 2020). We reasoned that stress response genes, upregulated upon heat
shock (Fig. 7C), should incorporate more 5EU. Indeed, the relative modification increase predicted
by RNAkinet significantly correlated with expression change (Fig. 3F), especially for transcripts
with high read support. Collectively, our results show that RNAkinet generalizes, identifies 5EU-
labeled RNA molecules from short labeling periods and captures the dynamics of RNA metabolism
across conditions.

We next interrogated the performance of RNAkinet in a different species. We cultured NIH/3T3
cells, a mouse fibroblast cell line, in the presence of 5EU for 2 h. Transcript half-lives were quan-
tified and normalized based on the ratio of modified reads (Fig. 4A) (Russo et al., 2017). Here we
assume that all reads at time 0 are non-modified. Reads that are predicted modified after two hours
are considered a replacement for reads that decayed during this time. RNAkinet-quantified half-lives
were reproducible (Fig. 4B) and significantly correlated with measured half-lives obtained from
azide-bearing biotin tag isolation (Eisen et al., 2020) (Fig. 4C, D). Higher read support resulted in
higher correlation indicating that deeper sequencing could further improve performance (Fig. 4E).
We obtained similar results, arguably with lower correlation, for HeLa cells compared with mea-
sured half-lives from Tani et al. (2012) (Fig. 6D). Our results show that RNAkinet generalizes and
can quantify RNA kinetics in diverse experimental settings.
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Figure 3: RNAkinet generalizes across cell lines and distinguishes nascent RNA molecules. A-B)
ROC (A) and PR (B) plot for reads in chromosome 1 for HeLa and K562 cells. Data for HeLa are
as in Fig. 2 and only shown here for comparison. C-E) ROC plot on K562 cells data stratified by
chromosome (C), percent of uridines in transcript (D) and read length (E). F) Pearson’s correlation
coefficients of gene expression change and predicted 5EU modification rate for K562 cells subjected
to heat shock for increasing levels of required read coverage per transcript.

Quantification of RNA dynamics is instrumental to understand cellular regulation. In this study, we
developed RNAkinet, a tool to detect 5EU-labeled RNA molecules using only raw nanopore signals
without dependencies on other software. Incorporation of convolutional layers dramatically reduced
the parameter space and achieved high efficiency (Fig. 8A). Notably, RNAkinet generalizes to
distinct experimental settings and quantifies isoform kinetics in alignment with established methods
that lack this capability. This enables the association of RNA kinetics with post-transcriptional
regulatory cues at single molecule resolution.

2 ONLINE METHODS

2.1 CELL CULTURE AND METABOLIC LABELING

NIH3T3 cells (ATCC CRL-1658) were cultured at 37°C, 5% CO2, 90% humidity in Dulbecco’s
Modified Eagle Medium (Thermo Fisher Scientific) supplemented with 10% bovine calf serum
(GeminiBio), 1% MEM-nonessential amino acids (Invitrogen), 2 mM L-Glutamine. Cells were
passed weekly by gentle dissociation with trypsin-EDTA 0.25%. HeLa cells (ATCC CCL-2) and
HEK-293T (ATCC CRL-3216™) were cultured at 37°C, 5% CO2, 90% humidity in Dulbecco’s
Modified Eagle Medium (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum
(GeminiBio), 1% MEM-nonessential amino acids (Invitrogen), 2 mM L-Glutamine. iPSC-derived
i3Neurons were cultured and differentiated as previously described by Brown et al. (2022). For
metabolic labeling, cells were cultured in media containing 400 or 500 µM 5-Ethynyl-uridine (Ther-
moFisher) for 2 to 24 hours as indicated. Total RNA was extracted using TRIzol reagent (Invitro-
gen) according to manufacturer’s instructions followed by DNase I treatment (MilliporeSigma).
RNA concentration and integrity were determined using a Nanodrop ND-1000 (ThermoFisher)
and Qubit™ RNA IQ assay (ThermoFisher), respectively. Library preparation for direct RNA se-
quencing was performed as previously described (Ibrahim et al., 2021) with modifications. Briefly,
poly(A) RNAs were purified from 50 µg of total RNA using Oligo d(T)25 Magnetic Beads (New
England Biolabs). 500 ng of poly(A) mRNA was used for library preparation using SQK-RNA002
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Figure 4: RNAkinet predicts RNA isoform kinetics across species. A) Schematic of RNAkinet
pipeline to quantify transcript half-lives. B) Scatter plot and correlation coefficients of predicted
half-lives for 2 independent biological replicates of 3T3 cells. C-D) Scatter plot and correlation co-
efficients of predicted of half-lives quantified in mouse 3T3 cells by Eisen et al. (2020) and RNAkinet
for two biological replicates. E) Pearson’s correlation coefficient between Eisen et al. (2020) and
RNAkinet quantified half-lives for increasing levels of required read coverage per transcript.

sequencing kit (Oxford Nanopore Technologies). The final library was quantified using Qubit ds-
DNA High Sensitivity assay kit (ThermoFisher) and sequenced on a MinION device using FLO-
MIN106 flow cells (Oxford Nanopore Technologies).

2.2 DATA PREPARATION FOR TRAINING, VALIDATION, AND TESTING

In order to prevent data leakage and overoptimistic results that could emerge from using k-fold cross-
validation with random shuffling, the reads were split into training, validation, and testing sets based
on a chromosome they originated from. For evaluating precision, recall, and F1 metrics, which are
sensitive to imbalanced data, the splits were up-sampled to have a balanced ratio of positives and
negatives. The reads were basecalled with Guppy 6.4.8 , aligned to the Ensembl human genome
(GRCh38) and transcriptome with Minimap2 (Li, 2018), and then separated into splits based on
their mapped chromosome. All reads that did not map to any chromosome and secondary reads were
discarded. Chromosome 1 was used for testing, chromosome 20 was used for validation (utilized
for early stopping), and the rest were used for training. The first 5000 raw signal values from each
read were cropped to avoid sequencing artifacts and any reads shorter than 5000 raw signal values
or longer than 400000 raw signal values were discarded. The filtered reads were then normalized by
median absolute deviation before being passed through the neural network.

2.3 NEURAL NETWORK DESIGN AND TRAINING

To create a detection tool for 5EU modification, a convolutional neural network classifier was de-
signed. It was trained with data from the training split described above and was optimized to perform
a binary classification of raw nanopore signals into either modified or unmodified categories. The
network was made up of multiple convolutional blocks extracting local patterns from the input sig-
nal, followed by a bidirectional recurrent layer with GRU units that aggregated the extracted infor-
mation across the whole length of the sequence in both directions. These features were then pooled
with max pooling, average pooling, and concatenated with hidden states from the last hidden states
of the recurrent layers. To allow the network to accept signals of varying lengths without padding as
an input, this pooling layer at the end of the network was utilized to aggregate information across the
length dimension into a fixed-size vector. This vector was then fed into a small dense feed-forward
network to predict the final 5EU modification score.

For training the network on sequences of variable length, a batch size of size 1 was used. Addition-
ally, to simulate minibatch learning, gradients were accumulated over 64 sequences. The network
was trained with a learning rate of 0.001 and weight decay of 0.01 using the AdamW optimizer.
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The model was trained for 1000 epochs with early stopping on the validation set AUROC metric
with threshold 0 and patience of 50 evaluation steps. The first 1000 learning steps were used as
warm up steps where the learning rate was scheduled to linearly increase from 0 to the final learning
rate of 0.001. To accelerate the network training, a single A100 Nvidia GPU was utilized. The
implementation and training of the network were done using PyTorch (Paszke et al., 2019) and Py-
Torch Lightning frameworks. Snakemake (Mölder et al., 2021) workflows were developed for the
entire process of data splitting, model creation, and evaluation to be reproducible, scalable to large
computational clusters, and adaptable to be used on newly sequenced datasets.

2.4 CALCULATION OF RELATIVE MODIFICATION CHANGE

To accurately capture the change in gene expression between control and condition experiments
using 5EU detection, a metric called relative modification increase was introduced. This metric
used the percentage of modified reads of a given transcript from both the condition and control
experiments and calculated a relative increase in the condition experiment compared to the control.
A positive relative modification increase indicated a higher prevalence of modified reads under the
experimental condition, while a negative value indicated a decrease.

Rel.mod.increase =

((
mod perccondition

mod perccontrol
− 1

)
× 100

)
where mod perccondition and mod perccontrol denote the percentage of reads of a given transcript
predicted to be modified in the condition and control experiments. These are then divided and 1 is
subtracted to represent increase, and result is multiplied by 100 to normalize it to a percentage.

3 DATA AVAILABILITY

Sequencing data have been deposited in the Sequence Read Archive (SRA) under Bioproject acces-
sion: PRJNA1030003. The code for the analysis included in the manuscript has been deposited on
Zenodo DOI: 10.5281/zenodo.10070389. The code for RNAkinet has been deposited on GitHub
and will be available after double-blind review.
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A APPENDIX

Figure 5: A) ROC plot of Nano-ID (Maier et al., 2020) on HeLa cells labeled with 5EU for 24 h.
Reads are stratified by chromosome. B) Read length distribution for libraries used in training and
testing.

Figure 6: A) Predicted probability distribution for positive and negative samples used in training for
RNAkinet B) Bar plot of F1 score on train, test, and validation data for RNAkinet. C-E) ROC (C),
PR (D) and BA (E) plot for training data for RNAkinet.

Table 1: Description of dRNA-Seq datasets used in this work.
Dataset Use case in this work Organism Generated

in
Cell line

In-house HeLa Positive and negative reads for
training, validation, and testing

Homo Sapiens This work HeLa

In-house Neurons Negative reads for training Homo Sapiens This work iPSC-derived
neurons

In-house
HEK293T

Negative reads for training Homo Sapiens This work HEK293T

In-house 3T3
5EU

Testing if model captures RNA
decay rates in 3T3 cells

Mus Musculus This work 3T3

In-house HeLa 2h
5EU

Testing if model captures
mRNA decay rates in HeLa
cells

Homo Sapiens This work HeLa

Maier K562 clas-
sification

Positive (24 hr labeled) reads for
testing classification

Homo Sapiens Maier
et al.
(2020)

K562

Maier K562 clas-
sification

Negative (non labeled) reads for
testing classification

Homo Sapiens Maier
et al.
(2020)

K562

Maier K562 heat
shock

Test if RNAkinet captures
differential expression during
stress

Homo Sapiens Maier
et al.
(2020)

K562
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Figure 7: A) Predicted probability distribution on reads from chromosome 1 for K562 cells B) BA
on reads from chromosome 1 of HeLa and K562 cells. Data for HeLa cells are the same as Fig. 2
and are only included here for comparison. The threshold used for inference is marked with a gray
line. C) Volcano plot of isoform differential expression for heat shock against control cells.

Figure 8: A) Scatter plot of RNAkinet runtime for inference and number of reads processed.
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Table 2: Raw read counts per dataset
Experiment name Number of reads
hsa dRNA HeLa labeled 1 982840
hsa dRNA HeLa nonlabeled 1 1878222
mmu dRNA 3T3 labeled 1 620796
mmu dRNA 3T3 labeled 2 1306329
hsa dRNA Hek293T nonlabeled 1 1257185
hsa dRNA Neuron nonlabeled ctr1 1 517551
hsa dRNA Neuron nonlabeled TDP43KD 1 487902
hsa dRNA HeLa 5EU 2hr 1 1191933
hsa dRNA HeLa 5EU 2hr 2 1174797
hsa dRNA HeLa 5EU 2hr 3 1364193
20180514 1054 K562 5EU 1440 labeled run 45461
20180514 1541 K562 5EU 1440 labeled II run 198289
20180516 1108 K562 5EU 1440 labeled III run 24821
20180327 1102 K562 5EU 0 unlabeled run 144305
20180403 1102 K562 5EU 0 unlabeled II run 161941
20180403 1208 K562 5EU 0 unlabeled III run 109778

10


	Main
	Online Methods
	Cell culture and metabolic labeling
	Data preparation for training, validation, and testing
	Neural network design and training
	Calculation of relative modification change

	Data availability
	Appendix

