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ABSTRACT

Shallow graph neural networks (GNNs) are state-of-the-art models for relational
data. However, it is known that deep GNNs suffer from over-smoothing where,
as the number of layers increases, node representations become nearly indistin-
guishable and model performance on the downstream task degrades significantly.
Despite multiple approaches being proposed to address this problem, it is unclear
when any of these methods (or their combination) works best and how they per-
form when evaluated under exactly the same experimental setting. In this paper
we systematically and carefully evaluate different methods for addressing over-
smoothing in GNNs. Furthermore, inspired by standard deeply supervised nets,
we propose a general architecture that deals with over-smoothing based on the idea
of layer-wise supervision. We term this architecture deeply supervised GNNs (or
DSGNNs for short). Our experiments show that deeper GNNs can indeed provide
better performance when trained on a combination of different approaches and that
DSGNNs are robust under various conditions and can provide best performance
in missing features scenarios.

1 INTRODUCTION

Graph Neural Networks, first introduced by Scarselli et al. (2009), have emerged as the de facto
standard for representation learning on relational or graph-structured data. GNNs find many useful
applications in building predictive models in traffic speed prediction, product recommendation, and
drug discovery (Zhou et al., 2020a; Gaudelet et al., 2021). One of the most important applications
of GNNs is that of node property prediction, as in semi-supervised classification of papers (nodes)
in a citation network (see, e.g., Kipf & Welling, 2017). In this case, we are given labels for a subset
of the nodes and aim to learn an algorithm that can accurately predict the labels for the remaining
nodes using the network structure and (if available) node features.

Even though GNNs, and especially those based on the Graph Convolutional Network (GCN) formu-
lation (Kipf & Welling, 2017) and its extensions (Veličković et al., 2018; Hamilton et al., 2017; Wu
et al., 2019; Klicpera et al., 2018), have been shown to be a powerful tool for graph representation
learning, they are limited in depth, that is the number of graph convolutional layers. Indeed, deep
GNNs suffer from the problem of over-smoothing where, as the number of layers increases, the
node representations become nearly indistinguishable and model performance on the downstream
task deteriorates significantly. Increasing model depth is necessary in order to allow information
to travel between distant nodes in the graph where each graph convolutional layer corresponds to
propagating information from a node’s one-hop neighbourhood.

Previous work has analyzed and quantified the over-smoothing problem (Liu et al., 2020; Zhao
& Akoglu, 2020; Chen et al., 2020a) as well as proposed methodologies to address it explicitly
(Li et al., 2018; Zhao & Akoglu, 2020; Xu et al., 2018). Some of the most recent approaches
have focused on forcing diversity on latent node representations via residual connections (see, e.g,
Xu et al., 2018; Chen et al., 2020b), normalization (see, e.g, Zhou et al., 2020b; Zhao & Akoglu,
2020), and enforced sparsity (see, e.g, Rong et al., 2020). However, the proposed solutions have
mostly been shown to alleviate over-smoothing but do not completely eliminate it, with shallow
networks usually performing best. In this context, alleviating means that performance does not
catastrophically deteriorate as a function of network depth. One notable exception to this is the
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GCNII architecture (Chen et al., 2020b), which was shown to improve the performance of standard
GNNs on classification tasks when using deeper architectures.

One interesting scenario for the analysis of deep GNNs is when only a subset of the nodes have
features, which we will refer to as the missing-feature setting (Zhao & Akoglu, 2020). In this case,
most of the solutions mentioned above (with the exception of GCNII) have been shown superior to
the basic GCN architecture. Intuitively, as pointed out by Zhao & Akoglu (2020), a large number of
propagation steps (i.e., deeper GNNs) may be required to obtain useful feature node representations.

While acknowledging the significant advances towards making GNNs more robust to over-
smoothing, we have found important gaps in the literature that, we believe, need to be recognized
and addressed by the community. Firstly, and naturally, most previous work has focused on de-
veloping new algorithms and showing that they outperformed previous approaches. While there is
nothing inherently wrong with such approaches, this usually has come at the expense of empirical
results across different algorithms not using exactly the same settings (such as hyper-parameter op-
timization). Secondly, we have also found that, in fact, all proposed solutions are general enough
that can be combined together. However, these combinations and their performance have not been
studied in detail. Finally, another crucial gap in the GNN over-smoothing literature is that, previous
approaches that have tackled (seemingly different but) related problems in standard neural networks
have not been investigated. In particular, we refer to the work on deeply supervised nets Lee et al.
(2015) for learning discriminative and robust features and for dealing with vanishing/exploding gra-
dients.

Contributions: In this paper, (i) we address the above gaps by systematically and carefully eval-
uating several proposed GNN over-smoothing solutions and their combinations. We analyze their
performance in the transductive, semi-supervised node classification setting in both the standard
fully observed and missing-feature settings. Furthermore, inspired by the work of Lee et al. (2015),
(ii) we propose a new general architecture for tackling over-smoothing. Our architecture trains pre-
dictors using node representations from all layers, each contributing to the loss function equally,
therefore encouraging the GNN to learn discriminative features at all network depths. We name
our approach deeply-supervised graph neural networks (DSGNNs). (iii) We show that DSGNNs
are resilient to the over-smoothing problem in deep networks and can outperform competing meth-
ods on challenging datasets. Finally, (iv) we provide recommendations for the selection of a GNN
architecture for practical applications.

2 GRAPH NEURAL NETWORKS

Let a graph be represented as the tuple G = (V,E) where V is the set of nodes and E the set of
edges. The graph has |V | = N nodes. We assume that each node v ∈ V is also associated with an
attribute vector xv ∈ Rd and let X ∈ RN×d represent the attribute vectors for all nodes in the graph.
Let A ∈ RN×N represent the graph adjacency matrix; here we assume that A is a symmetric and
binary matrix such that Aij ∈ {0, 1}, where Aij = 1 if there is an edge between nodes i and j, i.e.,
(vi, vj) ∈ E, and Aij = 0 otherwise. Also, let D represent the diagonal degree matrix such that
Dii =

∑N−1
j=0 Aij .

Typical GNNs learn node representations via a neighborhood aggregation function. Assuming a
GNN with K layers, we define such a neighborhood aggregation function centred on node v at layer
l as follows,

h(l)
v = h(l)

(
f
(
g
(
h(l−1)
v ,h(l−1)

u ∀u ∈ Nv

)))
, (1)

where Nv is the set of node v’s neighbors in the graph, g is an aggregation function, f is a linear
transformation that could be the identity function, and h(l) is a non-linear function applied element-
wise. Let H(l) ∈ RN×d(l)

the representations for all nodes at the l-th layer with output dimension
d(l); we set H(0) def

= X and d(0)
def
= d. A common aggregation function g that calculates the weighted

average of the node features where the weights are a deterministic function of the node degrees is
ÂH as proposed by Kipf & Welling (2017). Here Â represents the twice normalized adjacency
matrix with self loops given by Â = D̂−1/2(A+ I)D̂−1/2 where D̂ is the degree matrix for A+ I
and I ∈ RN×N is the identity matrix. Substituting this aggregation function in 1 and specifying
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Figure 1: GNN architectures for node classification. Left: the standard architecture using two graph
convolutional layers but also shown with optional jump connections (dashed lines). Right: the
proposed architecture with deep supervision.

f to be a linear projection with weights W , gives rise to the graph convolutional layer of Kipf &
Welling (2017),

H(l) = h(l)(ÂH(l−1)W(l)), (2)

where, as before, h(l) is a non-linear function, typically the element-wise rectified linear unit (ReLU)
activation (Nair & Hinton, 2010).

Many other aggregation functions have been proposed, most notably the sampled mean aggregator
in GraphSAGE (Hamilton et al., 2017) and the attention-based weighted mean aggregator in graph
attention networks (GAT, Veličković et al., 2018).

2.1 NODE PROPERTY PREDICTION

Equation 2 is a realization of 1 and constitutes the so-called spatial graph convolutional layer. More
than one such layers can be stacked together to define GNNs. When paired with a task-specific loss
function, these GNNs can be used to learn node representations in a semi-supervised setting using
full-batch gradient descent. For example, in semi-supervised node classification, it is customary to
use the row-wise softmax function at the output layer along with the cross-entropy loss over the
training (labeled) nodes.

Figure 1 (left) shows a diagram of the standard GNN architecture with optional jump connections
as proposed in Xu et al. (2018). Furthermore, the last hidden layer can be followed by a multi-layer
Perceptron (MLP) that functions as the classifier. The MLP is optional when using the standard
GCN architecture (Kipf & Welling, 2017) but necessary when employing jump connections. Given
a suitable loss function such as the cross-entropy for classification, we can train predictive models
in a semi-supervised setting for node-level tasks.

3 OVER-SMOOTHING IN GRAPH NEURAL NETWORKS

Intuitively, deeper networks should allow information to travel between distant nodes in the graph
and we would like to learn node representations that take into account a larger neighborhood of a
node. In other words, nodes further away in the graph should influence the node’s representation
and take advantage of the graph’s structure beyond the local neighborhoods. However, in practice,
this is not the case due to over-smoothing. As mentioned in section 1, over-smoothing in GNNs is
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the phenomenon where model performance on the downstream task deteriorates significantly as the
number of layers increases. This can be attributed to the repeated application of the neighborhood
aggregation operation and, therefore, node representations becoming nearly indistinguishable for
very deep architectures.

3.1 PREVIOUS APPROACHES

We briefly overview some of the techniques proposed in the literature to address smoothing in GNNs,
which we will use in our experimental evaluation.

Graph convolutional networks (GCNs): Kipf & Welling (2017) identified over-smoothing in deep
GNNs when using GCN layers, showing empirically that such architectures performed best with
only 2 or 3 layers, while performance degraded substantially for 7 or more layers. They associated
this problem with larger node-context sizes and overfitting, due to the significant increase in model
parameters. They proposed the addition of residual connections for each layer such that the input
node features where combined with the layer’s node output features. Residual connections alleviated
the over-smoothing problem but the best performance was still achieved using only 2 or 3 layers.

Jumping knowledge networks (JKNets): Xu et al. (2018)’s JKNets were specifically proposed as
a solution to over-smoothing and centered on the introduction of residual connections. JKNet intro-
duces residual connections from all hidden layers to the output layer. Node attributes are combined
using one of several schemes, e.g., concatenation and element-wise max-pooling, to generate node
representations adapted independently to different context sizes for each node. JKNet was shown
empirically to alleviate over-smoothing but best performance was limited to shallow networks.

Pair normalization (PN): Zhao & Akoglu (2020) provided a first attempt at quantifying over-
smoothing. They proposed 2 metrics that measure the pairwise similarity of latent node repre-
sentations, row-diff, and the variance of latent node features, col-dif, across all nodes in the graph.
The authors propose that the node representations output at each hidden layer should preserve the
total pairwise squared distance (TPSD) of the input node attributes. They propose a pair normal-
ization (PN) layer that aims at keeping the TPSD constant across each hidden layer in the GNN.
They demonstrate empirically that equipping a GNN with PN layers alleviates over-smoothing but
does not improve performance over shallow networks without layer normalization. In fact, adding
pair normalization layers to a shallow GNN is shown to decrease performance. However, they intro-
duce the missing-feature setting where layer normalization is shown to improve model accuracy as
a function of increased depth. In this setting, only the attributes for the nodes in the training set are
known whereas the attributes for the nodes in the test set are unknown. We note that, in this setting,
model performance is lower than fully-observed setting.

Group normalization (GN): Generalizing the pair normalization idea, differentiable group normal-
ization (Zhou et al., 2020b) introduces a constraint that attempts to force latent node representations
into groups such that nodes with similar labels cluster together whereas groups of nodes with differ-
ent labels are well separated. Such grouping of latent representations should benefit the performance
of a downstream classifier. GN alleviates over-smoothing as network depth increases but does not
help improve performance over shallow models. However, on the missing-feature setting, GN was
shown to outperform pair normalization and benefit from added network depth.

GCNII: The GCNII architecture, as proposed by Chen et al. (2020b), extends GCN in two ways.
First, it modifies the residual connections to carry information from the input features to each hidden
layer rather than the latent representations of the previous hidden layer. Second, it introduces an
identity mapping to the hidden layer weights as initially proposed by He et al. (2016). The latter
guarantees that GCNII will perform as well as an equivalent (in terms of number and size of hidden
layers) GCN model. GCNII is the only architecture shown empirically to benefit from network
depth. However, this architecture has not been evaluated in the missing-feature setting where it is
not clear if the lack of input features will limit its performance.

Unavoidably, there are other techniques for dealing with over-smoothing in GNNs that we do not
investigate here. Of notable mention is the work of Rong et al. (2020), who proposed DropEdge as
a general heuristic for alleviating over-smoothing by modifying the message passing mechanism in
GNNs. The core idea is to prevent some of the information from propagating through the graph by
randomly eliminating a subset of the graph’s edges. At each training epoch, a random subset of the

4



Under review as a conference paper at ICLR 2023

graph’s edges are removed preventing information flow through them; these edges are restored for
the next epoch before another subset of edges is removed. They show that DropEdge is effective at
alleviating over-smoothing and that a small performance boost is possible for shallow GCN models
augmented with DropEdge. However, they do not evaluate DropEdge in the low-label regime that is
the most common evaluation setting in the GNN literature.

3.2 POTENTIAL PITFALLS OF PREVIOUS APPROACHES

One common characteristic of all these previous approaches to over-smoothing in GNNs is that they
have not been evaluated using a common framework. For example, some methods are evaluated in
the fully-observed setting using random splits whereas others have been evaluated in the low label
regime using the node splits published by Yang et al. (2016). In addition, few of these works have
been evaluated on both the fully-observed and the missing-feature settings. Lastly, combinations
of the different methods have not been studied empirically and, for example, it is unclear if adding
layer normalization to GCNII will further improve or hinder downstream task performance.

It is certainly not our intention to focus on the potential flaws in previous approaches to over-
smoothing in GNNs. We recognize machine learning is heavily driven by practical performance
and that the methods mentioned above have provided significant advances to the field. However, it
is imperative that we evaluate our methods fairly and provide advice to practitioners and researchers
on best practices and what works best under different scenarios. In fact, the difficulty of consistently
evaluating GNNs has been considered previously in works such as Shchur et al. (2018) and Errica
et al. (2019).

Despite the issues about fairness in evaluating GNNs as raised in the latter works, inconsistency in
reporting GNN performance has persisted. For example, when Chen et al. (2020b) compares with
prior works the performance values as reported in Fey & Lenssen (2019) and Rong et al. (2020) are
re-used. As a second example, Zhao & Akoglu (2020) uses 32 hidden units for each layer, Zhou
et al. (2020b) uses 16 hidden units and Chen et al. (2020b) claims to tune the number of units as
a hyper-parameter but the range of values considered is not reported. For these reasons, and in
the spirit of fairness, we perform a careful empirical evaluation using the same framework com-
paring these methods, their combinations and our newly-proposed deeply-supervised graph neural
networks (DSGNNs) for both the fully-observed and the missing-feature settings. In the next sec-
tion we describe the intuition underlying DSGNNs and elaborate on the details on how to train these
architectures.

4 DEEPLY-SUPERVISED GRAPH NEURAL NETWORKS

Deeply-supervised nets (DSNs, Lee et al., 2015) were proposed as a solution to several problems
in training deep neural networks. By using companion objective functions attached to the output
of each hidden layer, DSNs tackle the issue of vanishing gradients. Furthermore, in standard neu-
ral networks with shallow architectures, deep supervision operates as a regularizer of the loss at
the last hidden layer. Lastly, and more importantly, for deep networks, it encourages the estima-
tion of discriminative features at all network layers (Lee et al., 2015). Therefore, inspired by this
work, we introduce deeply supervised graph neural networks (DSGNNs), i.e., graph neural network
architectures trained with deep supervision. Thus, we hypothesize that DSGNNs are resilient to
over-smoothing and test this hypothesis by evaluating and analyzing their performance in training
shallow and deep networks in section 5.

Figure 1 (right) shows a diagram of the proposed DSGNN architecture. We introduce jump con-
nections from each hidden layer where node-level representations, as described in section 2, are
estimated and given to an MLP that predicts the class probabilities for each node. We note that
we use one MLP for each hidden layer as in DSNs. Let Z(l) = h(l)(H(l)W(l)) denote the node
representations output by a one-layer MLP attached to the l-th hidden layer where h(l)(·) is the soft-
max function for a classification task. Finally, given a loss function, e.g., cross entropy, over our
true and predicted outputs, we formulate layer-dependent losses and learn all model parameters by
optimizing the average loss function across all layers.
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4.1 NODE CLASSIFICATION WITH A 2-LAYER NETWORK

As an illustrative example, here we consider a node classification problem with C classes using 2
GCN layers as shown in figure 1 (right). We are given a graph represented as the tuple G = (V,E)
where V is the set of nodes and E the set of edges, as described in section 2. A subset of M
nodes, Vl ⊂ V , has known labels. Each label represents one of C classes using a one-hot vector
representation such that Y ∈ RM×C . The node property prediction task is to learn a function
f : V → Y that maps node representations to class probabilities.

Consider the case of a 2-layer GNN with GCN (Kipf & Welling, 2017) layers. The node represen-
tations output by each of the 2 GCN layers are given by,

H(1) = ReLU(ÂXW(1)), (3)

H(2) = ReLU(ÂH(1)W(2)), (4)

where the ReLU activations are element-wise, Â are the edge weights given by equation 2, and
W(i) are trainable layer weights.

Let each GCN layer be followed by a linear layer with softmax activation calculating class proba-
bilities for all nodes in the graph such that,

Z(l) = softmax(H(l)Ŵ(l)), l = 1, 2, (5)

where Z(l) are the class probabilities for all nodes as predicted by the lth layer, and Ŵ(l) are the
layer’s trainable weights.

Now we can compute layer-dependent losses as:

L(l)
N = −

∑
v∈Vl

C−1∑
c=0

Yv,clog(Z
(l)
v,c), l = 1, 2. (6)

For a standard GNN, in order to estimate the weights {W(1),W(2),Ŵ(2)}, we optimize the cross-
entropy loss calculated over the set of nodes with known labels only using L(2)

N .

Deep supervision adds a linear layer corresponding to each GCN layer in the model such that, in
our example, the model makes two predictions for each node, Z(1) and Z(2). We now estimate the
weights {W(1),W(2),Ŵ(1),Ŵ(2)}, and optimize the mean loss given by,

LN =
1

L

L∑
k=1

L(k)
N , (7)

where, in our example, L = 2. We estimate the model parameters using gradient-based optimiza-
tion so as to minimize the total loss in equation 7. Unlike Lee et al. (2015), we do not decay the
contribution of the surrogate losses as a function of the training epoch. Consequently, at prediction
time we average the outputs from all classifiers and then apply the softmax function to make a single
prediction for each node.

4.2 ADVANTAGES OF DEEP SUPERVISION

As mentioned before, over-smoothing leads to node representations with low discriminative power
at the last GNN layer. This hinders the deep GNN’s ability to perform well on predictive tasks.
DSGNNs circumvent this issue as the learned node representations from all hidden layers inform
the final decision. The distributed loss encourages node representations learned at all hidden layers
to be discriminative such that network predictions do not rely only on the discriminative power of
the last layer’s representations.

Furthermore, deep supervision increases the number of model parameters linearly to the number of
MLP layers. Consider a classification model with K graph convolutional layers, dG dimensional
node representations, and a single layer MLP. If the number of classes is C, then a DSGNN model
requires K × dG × C parameters more than a standard GNN. This is in sharp contrast with other
architectures such as that of Liu et al. (2020), where the number of additional parameters grow
quadratically with the number of GNN layers.
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Table 1: Mean test accuracy ± one standard deviation for the fully observed setting. The notation
+PN and +GN indicates the addition of pair and group normalization layers respectively. In paren-
theses we indicate the architecture depth that achieved the highest test accuracy.

Method Cora Citeseer Amazon Photo Pubmed

GCN 82.3±0.5 (3) 70.4±0.7 (2) 90.7±0.5 (2) 79.8±0.5 (2)
JKNet 81.6±0.6 (2) 69.2±1.4 (2) 90.3±0.4 (8) 79.6±0.6 (2)
DSGNN 82.6±0.6 (3) 69.9±0.7 (2) 90.6±0.6 (3) 78.8±0.6 (4)
GCNII 83.1±0.6 (32) 72.1± 0.4(32) 92.0± 0.3(4) 80.1±0.5 (16)

GCN+PN 78.4±0.7 (2) 62.3±1.2 (2) 90.0±0.4 (2) 77.2±0.6 (2)
DSGNN+PN 77.7±1.0 (16) 63.1±1.3 (2) 90.6±0.4 (3) 76.9±1.4 (32)
GCNII+PN 80.9±1.0 (16) 62.7±2.2 (16) 89.4±0.6 (32) 76.0±1.0 (3)

GCN+GN 83.1±0.7 (2) 69.3±0.6 (2) 90.7±0.5 (2) 79.6±0.7 (3)
DSGNN+GN 82.6±0.6 (3) 70.4±0.7 (2) 90.6±0.5 (4) 79.4±0.6 (4)
GCNII+GN 83.6± 0.7(32) 71.9±0.5 (32) 92.0± 0.4(8) 80.2± 0.3(8)

Table 2: Mean test accuracy ± one standard deviation for the missing features setting. The no-
tation +PN and +GN indicates the addition of pair and group normalization layers respectively. In
parentheses we indicate the architecture depth that achieved the highest test accuracy.

Method Cora Citeseer Amazon Photo Pubmed

GCN 68.2±1.2 (4) 38.8±4.8 (4) 84.6±1.0 (4) 49.7±2.0 (4)
JKNet 66.1±1.7 (8) 36.7±3.0 (4) 65.4±3.6 (8) 48.0±2.7 (8)
DSGNN 72.6±1.2 (8) 38.2±2.8 (8) 85.8±0.8 (8) 56.6±9.2 (32)
GCNII 75.7±1.2 (32) 46.1±3.2 (32) 60.1±2.8 (4) 62.3±4.2 (16)

GCN+PN 69.8±4.3 (8) 39.4±2.8 (8) 85.3±1.2 (8) 64.9±4.3 (32)
DSGNN+PN 77.4±0.9 (16) 50.0±2.3 (32) 87.9± 1.2(16) 73.8± 1.2(32)
GCNII+PN 71.0±3.4 (16) 40.6±2.7 (32) 48.6±3.4 (3) 67.5±2.3 (32)

GCN+GN 70.8±1.3 (4) 42.5±4.2 (4) 84.4±0.8 (4) 66.2±3.6 (32)
DSGNN+GN 76.2±2.0 (64) 48.8±5.0 (64) 86.5±1.4 (16) 69.3±2.4 (32)
GCNII+GN 78.3± 1.6(32) 52.7± 2.3(64) 85.7±1.0 (8) 71.9±1.3 (32)

5 EXPERIMENTS

We implemented1 all architectures using PyTorch and the Deep Graph Library (DGL, Wang et al.,
2019). The version of the datasets we use is that available via DGL2. All experiments were run on
workstations with 32GB of RAM, Nvidia Telsa P100 GPU, and Intel Xeon processor.

We evaluate the performance of all architectures under two settings that we call (a) fully observed,
and (b) missing features. In the fully observed setting, the node features for all nodes are available
during training. In the missing-feature setting, only the node features for those nodes in the training
set are available. For all other nodes, we follow Zhao & Akoglu (2020) and set the node attributes
to zero vectors. The missing-feature setting reflects a scenario common in real-world applications
where obtaining node attribute data can be challenging.

Datasets: We use 4 benchmark datasets common in the GNN literature. These are the cita-
tion networks Cora, Citeseer, Pubmed and the co-purchase network Amazon Photo. The splits
for the citation networks are from Yang et al. (2016). For Amazon Photo, we split nodes into
train/validation/test following Shchur et al. (2018); we use 20 examples per class for training, 30
examples per class for validation, and all remaining nodes as test. See appendix A.1 for details.

Experimental Setup: We consider architecture depths in {2, 3, 4, 8, 16, 32, 64} except for Pubmed
and Amazon Photo where we used a maximum 32 layers to limit total training time. All architectures

1We will release the source code upon publication acceptance.
2Available at https://github.com/dmlc/dgl.
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use the graph convolutional layers from Kipf & Welling (2017). For JKNet, DSGNN, and GCNII
the last layer is dense with softmax activation. GCNII also has a dense layer at the input in order
to map the input node attributes to the same dimension as the hidden layer representations which
are combined via addition. For JKNet we used element-wise max pooling before the final dense
layer to combine the node representations from all convolutional layers. For all architectures, we
set the number of hidden units to 64, 256, 256, 64 for Cora, Citeseer, Pubmed, and Amazon Photo
respectively. Optimization and hyper-parameter tuning details can be found in appendix A.3.

5.1 RESULTS AND ANALYSIS

Fully observed setting: We see in table 1 that, in this setting, the best method is GCNII for Citeseer
and Amazon Photo and only marginally improved from the addition of group normalization for
Cora and Pubmed. For Citeseer and Amazon Photo, GCNII outperforms the other architectures
by a margin of approximately 0.2% and 1.3% using 32 and 4 layers respectively as compared to
GCNII+GN and GCN with 8 and 2 layers. GCNII is the only method to benefit from added depth in
the fully observed setting where, with the exception of Amazon Photo, performance was maximized
for 8 or more layers. Augmenting any of the architectures with pair normalization caused a reduction
in test accuracy. On the other hand, the addition of group normalization resulted in a marginal
improvement for some combinations of dataset and architecture such as, DSGNN vs DSGNN+GN
on Pubmed and GCN vs GCN+GN on Cora. These marginal improvements, if any, offered by
group normalization come at the cost of longer training times due to an increase in the number of
hyper-parameter sets that must be evaluated during grid-based cross-validation (see appendix A.3 for
details and discussion). Thus, the increased computation time coupled with marginal improvements
suggests that there is no justification for using group normalization in the fully observed setting.

Missing-feature setting: Table 2 shows that all architectures benefited from increased network
depth in the missing-feature setting. We note that test accuracy is lower than in the fully observed
setting which indicates that input node attributes contain useful information that GNNs exploit to
improve prediction accuracy. In some cases, such as Citeseer, the gap in test accuracy between the
fully observed and missing-feature settings is as much as 20% (GCNII+GN). Generally, all archi-
tectures except GCN achieve the highest test accuracy at a larger network depth. This is expected
since information from nodes with features must propagate further in the graph to inform the repre-
sentations for the nodes with missing features.

Additionally, we observe that DSGNN’s ability to learn discriminative representations across all hid-
den layers yields benefits especially in combination with pair normalization. DSGNN enhanced with
pair normalization (DSGNN+PN) was best for Amazon Photo and Pubmed by margins 2.2% and
1.9% from the second best architecture (GCNII+GN) respectively. DSGNN+PN was second best
on Cora and Citeseer lagging by margins of 0.9% and 2.7% respectively from the best architecture
GCNII+GN. However, as we can see in Figure 2 (right, see also appendix A.3) GCNII+GN requires
approximately a factor of approximately 3 times longer to train as compared to DSGNN+PN; for
practical applications with a constrained computational budget, the trade-off between a small loss
in test accuracy and a large gain in training speed suggests a preference for DSGNN+PN as the
architecture of choice.

Over-smoothing resilience: In order to examine the architectures’ resilience to over-smoothing, we
plot test accuracy vs network depth for a subset of the methods in fig. 2 (left) on Amazon Photo under
the missing-feature setting. Here we have selected vanilla GCN as a baseline; the top performing
method (DSGNN+PN) and the top performing methods in the fully observed setting (GCNII and
GCNII+GN). A comprehensive set of results is given in the appendix (fig. 3 and fig. 4). We see
in fig. 2 that all architectures achieve an increase in performance in step with a larger number of
layers up to a point. However, we note that GCNII (which performed best on this dataset in the
fully observed case), does very poorly in comparison with the other methods when using eight
or more layers. This behavior is significantly improved when using it in conjunction with group
normalization (GCNII+GN). In contrast with GCNII and similarly to GCNII+GN, DSGNN+PN
monotonically increases performance up to sixteen layers and only slightly worsens after that.

Additional results in appendix: Analyzing figs. 3 and 4, we can see that all architectures with the
exception of vanilla GCN alleviate over-smoothing. Generally, adding residual connections and/or
some form of layer normalization is beneficial even though it does not always increase test accuracy,
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Figure 2: (Left) Plot of test accuracy vs GNN depth for a subset of the models in table 2. (Right) Plot
of test accuracy vs total training time (including hyper-parameter tuning, see appendix A.3) relative
to GCN. For each model, we plot the training time and accuracy for the depth where test accuracy
was highest as listed in table 2. Both plots are for Amazon Photo and the missing-feature setting.

as can be seen in the fully observed setting. Similarly to the Amazon Photo dataset, in the missing-
feature setting, for all architectures except vanilla GCN, there is an increase in performance in step
with the increase in the number of network layers up to a point depending on the dataset. We
further illustrate how all architectures except vanilla GCN are resilient to over-smoothing in figure 5
where we plot the instance information gain metric proposed by Zhou et al. (2020a) vs the number
of network layers for models trained on Amazon Photo. Instance information gain measures the
amount of information in the input node features that is carried through to the network’s output.
For architectures such as vanilla GCN that suffer from over-smoothing, this metric tends to zero as
network depth increases. As we can see in Figure fig. 5, all architectures with some form of residual
connections and/or normalization layers propagate information in the input node features through to
the output layer as information gain is constant as a function of depth.

Deep supervision: Our proposed DSGNN alleviates but does not eliminate over-smoothing simi-
larly to JKNet. This can be seen in the top row of Figure 3 where, for 3 of the 4 datasets DSGNN
exhibits only a small reduction in test accuracy as a function of network depth. Furthermore, as
shown in table 1, DSGNN performs competitively with the other architectures. In the missing-
feature setting (see table 2), DSGNN in combination with pair normalization achieves the highest
test accuracy for 2 of the 4 datasets while it is second highest for the other 2.

6 CONCLUSIONS & RECOMMENDATIONS

We have revisited the over-smoothing problem in deep GNNs, carrying out a systematic evaluation
of several state-of-the-art solutions and their combination in the fully observed and missing-feature
settings on several benchmark datasets. Additionally, we have proposed DSGNN, a new architecture
based on deep supervision as a possible solution.

Recommendations: Based on experiments and analysis of results, we can make the following rec-
ommendations for training deep GNNs resilient to over-smoothing: (a) residual connections in any
of the many forms as present in JKNet, DSGNN, and GCNII, are essential to alleviating over-
smoothing in deep GNNs. Residual connections alone do not guarantee improved generalization
accuracy in the fully observed setting but are essential in the missing-feature setting. (b) In the fully
observed setting GCNII achieves highest test set performance and it is the only architecture that
can exploit model depth. Since GCNII has the same number of trainable parameters as GCN and
fewer than DSGNN and JKNet (see appendix A.3) it should be the preferred architecture. (c) In the
fully observed setting, pair normalization negatively impacts performance for all architectures and
its use should be avoided. (d) In the missing-feature setting, DSGNN with pair normalization and/or
GCNII with group normalization should be preferred. Since GCNII and group normalization have
a large number of hyper-parameters that require tuning, DSGNN with pair normalization should
be preferred when computation budget is limited. We hope our analysis helps guide practitioners
and researchers in their application of deep GNNs to real-world problems and promotes a more
systematic and careful evaluation of existing and new GNN methods.
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A APPENDIX

A.1 DATASETS

Table 3: Dataset statistics.
Name Nodes Classes # Node # Edges Avg. Median # train/val/test

features Node Node
features degree degree

Cora 2708 7 1433 10556 3.9 3 140/500/1000
Citeseer 3327 6 3703 9228 2.7 2 120/500/1000
Amazon Photo 7650 8 745 238,163 31.1 22 160/240/7250
Pubmed 19717 3 500 88651 4.5 2 60/500/1000

Cora, Citeseer, and Pubmed are citation networks where the goal is to predict the subject of a paper.
Edges represent citation relationships. The datasets have known train/val/test splits from Yang et al.
(2016). Training sets are small with the number of labeled nodes equal to 140 (20 for each of 7
classes), 120 (20 for each of 6 classes), and 60 (20 for each of 3 classes) for Cora, Citeseer, and
Pubmed respectively.

Amazon Photo is a subset of the Amazon Co-purchase product dataset. Nodes represent items and
edges connect items that are bought together. Node attributes are bag-of-words features derived
from product reviews. The goal is to predict the product category.

We treat all graphs as undirected as it is common in the GNN literature.

A.2 ADDITIONAL RESULTS

We demonstrate the architectures’ resilience to over-smoothing in the fully observed and missing-
feature settings by plotting test accuracy vs network depth in Figures 3 and 4.

In the fully observed setting, the performance of GCN drops sharply for all datasets for deep models.
The combination of GCN with pair (GCN+PN) or group (GCN+GN) normalization alleviates the
problem to some degree but performance still degrades rapidly with depth (middle and bottom rows
of Figure 3). GCN+GN is more resilient to over-smoothing than GCN+PN. GCNII and JKNet
both alleviate over-smoothing. DSGNN is better than GCN, GCN+PN, and GCN+GN but still only
reduces the rate of over-smoothing.

In the missing-feature setting, all architectures initially benefit from increased depth as more graph
convolutional layers are necessary to allow for information to propagate through the graph given
that the majority of nodes do not have associated input node attributes (which have been set to zero
vectors). However, GCN still suffers from over-smoothing as network depth increases while the
other architectures are more resilient. Some combinations such as DSGNN+PN, DSGNN+GN, and
GCNII+GN on Pubmed continue to see an increase on test accuracy for up to 32 layers.

A.3 TRAINING DETAILS

We used the Adam optimizer with learning rate set to 0.01. We trained all models for a maximum
2500 epochs and used early stopping with patience 250 epochs monitoring validation set accuracy.
We run each experiment 20 times and report the mean performance and standard deviation of test
accuracy.

The training time for each architecture depends on two main factors. One is the total number of
trainable parameters and the other is the number of hyper-parameters that require tuning. In table
4, we report for each architecture the total number of hyper-parameters, hyper-parameter settings
considered using grid search and the total number of trainable parameters.

For all architectures we tune dropout (4 values from {0.2, 0.5, 0.6, 0.7}) and weight decay (5 values
from {0.01, 0.001, 0.0001, 0.0005, 0.00001}). Weight decay for the dense layers in GCNII was
fixed to 0.0005 as suggested by Chen et al. (2020b). GCNII requires selection of one additional

12



Under review as a conference paper at ICLR 2023

2 8 16 32 64
30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y

Cora

GCN
DSGNN
GCNII
JKNet

2 8 16 32 64

30

40

50

60

70
Citeseer

2 8 16 32

75

80

85

90

Amazon Photo

2 8 16 32

50

60

70

80
Pubmed

2 8 16 32 64
50

60

70

80

Te
st

 A
cc

ur
ac

y

GCN+PN
DSGNN+PN
GCNII+PN

2 8 16 32 64

30

40

50

60

2 8 16 3284

86

88

90

2 8 16 32
73

74

75

76

77

2 8 16 32 64
# Layers

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

GCN+GN
DSGNN+GN
GCNII+GN

2 8 16 32 64
# Layers

40

50

60

70

2 8 16 32
# Layers

82

84

86

88

90

92

2 8 16 32
# Layers

72

74

76

78

80

Figure 3: Test accuracy vs architecture depth for the fully observed setting. Top row: vanilla
architectures. Middle row: architectures with pair normalization (+PN). Bottom row: architectures
with group normalization (+GN). Note that the y-axis for the different plots have different range.
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Figure 4: Test accuracy vs architecture depth for the missing-feature setting. Top row: vanilla
architectures. Middle row: architectures with pair normalization (+PN). Bottom row: architectures
with group normalization (+GN). Note that the y-axis for the different plots have different range.

hyper-parameter, the identity mapping weight, (3 values from {0.4, 0.5, 0.6}). For GCNII, we fixed
the value indicating the fraction of input features retained at each layer to 0.1 as in Chen et al.
(2020b). Pair normalization layers do not add any hyper-parameters. Group normalization layers
require selection of an additional hyper-parameter, the group normalization balancing factor, (9
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Table 4: Number of hyper-parameter sets and number of trainable parameters for each architecture.
Architecture # hyper-parameters # hyper-parameter # of trainable parameters

settings

GCN 2 20 (K − 1)× d2 + d× C
JKNet 2 20 K × d2 + d× C
DSGNN 2 20 K × d× (d+ C)
GCNII 3 60 (K + 1)× d2 + d× C

GCN+PN 2 20 (K − 1)× d2 + d× C
DSGNN+PN 2 20 K × d× (d+ C)
GCNII+PN 3 60 (K + 1)× d2 + d× C

GCN+GN 3 180 (K − 1)× d2 + d× (C +K ×G)
DSGNN+GN 3 180 K × d× (d+ C +G)
GCNII+GN 4 540 (K + 1)× d2 + d× (C +K ×G)

values from {0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.03, 0.05}). For group normalization
we set the number of groups to 10, 10, 5 for Cora, Citeseer, and Pubmed respectively as suggested
by Zhou et al. (2020b). For Amazon Photo, we set the number of groups to 10 since Zhou et al.
(2020b) recommends that the number of groups should be close to the number of classes to predict.

The total number of hyper-parameters that require tuning varies based on the architecture. For
example, the vanilla GCN architecture only requires tuning over a set of 4×5 = 20 hyper-parameter
settings whereas GCNII+GN requires tuning over a set of 4 × 5 × 3 × 9 = 540 hyper-parameter
settings.

We estimate the total number of trainable parameters for each architecture and report them in table
4. Let K be the number of GNN layers, C the number of classes, G the number of node clusters,
and d the dimensionality of latent node representations. For clarity, we assume that nodes have input
attributes also with d dimensions.

In our experimental setup, a K-layer GCN model comprises of K graph convolutional layers where
the last layer is considered the output layer predicting class probabilities for each node. For JKNet
and GCNII, a K-layer model comprises of K graph convolutional layers followed by a dense layer
for classification. Figure 1 (left) shows an example of JKNet with K = 2 layers where 2 are graph
convolutional. For DSGNN, a K-layer model comprises of K graph convolutional layers and K
dense layers attached to each hidden layer. Figure 1 (right) shows an example of DSGNN with
K = 2 layers where 2 are graph convolutional and 2 are dense with softmax activation.

The number of trainable parameters for GCN are (K − 1) × d2 + d × C. Here we consider the
last graph convolutional layer as the output layer. JKNet has K graph convolutional layers followed
by a dense layer. The total number of trainable parameters is K × d2 + d × C. DSGNN adds a
dense layer for each graph convolutional layer so the number of trainable parameters is K × d2 +
K × d× C. GCNII adds a dense layer at the input followed by K graph convolutional layers and a
dense layer for classification. Hence, the total number of trainable parameters is (K+1)×d2+d×
C. Group normalization adds a dense layer with softmax activation for each graph convolutional
layer; the dense layer calculates a soft assignment of nodes to clusters. For a model with K graph
convolutional layers, group normalization adds K × d×G trainable parameters.

A.4 QUANTIFYING OVER-SMOOTHING

We can quantify the propensity of an architecture to over-smooth by considering the amount of
information in the input node features that is not preserved at the output as proposed by Zhou et al.
(2020b). Instance information gain measures the amount of information in the input node features
that is preserved in the output of a GNN layer. Zhou et al. (2020b) propose instance information gain
goes to zero as a function of GNN depth indicating over-smoothing. In Figure 5, we plot instance
information gain as a function of architecture depth for Amazon Photo in the fully observed setting.
We see that information gain for GCN decreases as network depth increases. This is not the case for
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Figure 5: Instance Information Gain as a function of GNN depth. All results are for the Amazon
Photo dataset in the fully observed setting.

all other architectures. Notably, just the addition of pair normalization to GCN, GCN+PN, alleviates
information loss. This results correlates with the test accuracy vs GNN depth curves in Figure 3.
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