Under review as a conference paper at ICLR 2025

ENHANCING NEURAL NETWORK INTERPRETABILITY
WITH FEATURE-ALIGNED SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Autoencoders (SAEs) have shown promise in improving the interpretability
of neural network activations, but can learn features that are not features of the input,
limiting their effectiveness. We propose MUTUAL FEATURE REGULARIZATION
(MFR), a regularization technique for improving feature learning by encouraging
SAE:s trained in parallel to learn similar features. We motivate MFR by showing
that features learned by multiple SAEs are more likely to correlate with features
of the input. By training on synthetic data with known features of the input, we
show that MFR can help SAEs learn those features, as we can directly compare
the features learned by the SAE with the input features for the synthetic data.
We then scale MFR to SAEs that are trained to denoise electroencephalography
(EEG) data and SAEs that are trained to reconstruct GPT-2 Small activations. We
show that MFR can improve the reconstruction loss of SAEs by up to 21.21%
on GPT-2 Small, and 6.67% on EEG data. Our results suggest that the similarity
between features learned by different SAEs can be leveraged to improve SAE
training, thereby enhancing performance and the usefulness of SAEs for model
interpretability.

1 INTRODUCTION

Interpretability aims to explain the relationship between neural network internals and neural network
outputs. Many interpretability techniques examine raw activations, equating proposed fundamental
units of neural networks such as neurons or polytopes to human understandable concepts (Erhan et al.,
2009; Nguyen et al., 2016; Bau et al., 2017; Olah et al., 2018; Black et al., 2022). These techniques
often benefit from a clean correspondence between those fundamental units and concepts, and may
fail if concepts are distributed over many units, or many concepts focused in a single unit, such as
in the case of feature superposition (Elhage et al., 2022). We describe features of the input as the
atomic, human-understandable concepts represented by input data.

To derive a representation of activations with a stronger one-to-one correspondence of features and
neurons, sparse autoencoders (SAEs) have been trained on neural network activations. The decoders
of SAEs trained on neural network activations have been shown to form dictionaries of features more
easily explained than the neurons themselves, making SAEs potentially useful for understanding the
internals of neural networks (Bricken et al., 2023; Cunningham et al., 2024; Gao et al., 2024).

Despite the recent popularity of SAEs, early results suggest they may learn features that are not
features of the input, reducing their usefulness for interpretability (Till, 2024; Huben, 2024; Anders
et al., 2024). One failure mode considers transformations on the space of inputs: features of the input
that are ‘split’ over multiple decoder weights, or multiple features ‘composed’ in one decoder weight.
Conceivably, the representation learned by the SAE could be so varied from the input as to contain
features entirely incompatible with the input space. These failures are alarming, as studying an SAE
would not be guaranteed to reveal information about the neural network that SAE was trained on
activations from. In the worst case, if features were commonly split and composed, it is not obvious
why studying SAEs would be more useful than studying the raw activations directly, although prior
work has given evidence against this.

We hypothesize that if a feature is learned by multiple SAEs, that feature is more likely to be a
feature of the input, and show that this is true for SAEs trained on synthetic data comprised of known
features. Based on this result, we encourage multiple SAEs trained on the same data to learn common

Under review as a conference paper at ICLR 2025

0
@ O|plo @)
® oo LB
O B|-|a (@)
O
Too many Make
inactive features? decoder
weights features
similar
a
O 0 O
® Ve N
@ (e _|(O zo (@]
O @@ 0
a
1. Train SAEs on Activations | | 2. Perform Mutual Feature Regularization

Figure 1: Our experimental pipeline for training SAEs with MFR. In step one, we extract activations
from a neural network, represented by the interconnected nodes on the left. These activations are the
inputs for our SAEs. In step two, we train multiple SAEs on the extracted activations. Each SAE
learns to reconstruct the input activations through a sparsity constraint on the hidden layer. MFR
involves several steps: We first check for inactive features in the SAE hidden state after applying the
TopK activation function. If too many inactive features are detected, we reinitialize the weights of the
affected SAE. We also include an auxiliary penalty to encourage the SAEs to learn similar features,
shown by the final text box.

features through conditionally reinitializing SAE weights, and an auxiliary penalty calculated using
the similarity of the SAE weights. We name this reinitialization technique and auxiliary penalty
MUTUAL FEATURE REGULARIZATION (MFR).

Using SAEs trained with MFR, we learn more features of the input than baseline SAEs when training
on synthetic data (Section 3). We then train SAEs with MFR on activations from GPT-2 Small
(Radford et al., 2019) and on electronencephalography (EEG) data, showing that MFR improves
SAE:s at scale, and on real-world data (Section 4). Our findings indicate that MFR helps avoid features
not in the input space and improves performance on key SAE evaluations, potentially increasing their
usefulness for interpretability.

2 BACKGROUND

2.1 SPARSE AUTOENCODERS

Olshausen and Field (1996) introduced unsupervised learning of sparse representations, capturing
structure in data more efficiently than dense representations. Sparse autoencoders (SAEs) have since
found wide application in domains such as representation learning (Coates et al., 201 1; Henaff et al.,
2011), denoising (Vincent et al., 2010; Duan et al., 2014), and anomaly detection (Sakurada and Yairi,
2014; Xu et al., 2015).

SAEs reconstruct an input x € R? through a hidden representation h € R", minimizing the
reconstruction loss ||x — 5<||§ while maintaining sparsity in h, written as X = W'o(Wx + b), where
W € R"*? is the encoder weight matrix, W’ € R%*" is the decoder weight matrix, b € R" is the
encoder bias, and o is an activation function on h. Ideally columns of W’ correspond to features
comprising x.

Recent work has shown that the TopK activation function (Makhzani and Frey, 2013) better approxi-

mates the LO norm in training than alternative techniques such as L1 regularization (Gao et al., 2024),
allowing more precise control over the sparsity of h. The TopK activation function on h is defined as:

h);, =
or(h): {O otherwise

Under review as a conference paper at ICLR 2025

where 75 (h) is the kth largest activation in h. We focus exclusively on SAEs with a TopK activation
function, and use the transpose of the encoder weights as the decoder, halving the number of trainable
parameters with minimal performance impact as shown by Cunningham et al. (2024).

2.2 EVALUATING SPARSE AUTOENCODERS

Evaluating SAEs is challenging due to the lack of a ground truth for the input features represented
by large neural networks. Thus, SAE evaluations act as proxies the extent to which interpretable
representation of these input features have been learned in a way that does not require access to them.

The reconstruction loss, measured as the Euclidean distance between the SAE input and output, is
a widely used metric for the faithfulness of an SAE’s learned representations to the input features
represented by a neural network. Although reconstruction loss does not account for the interpretability
of the learned features, improved reconstruction loss has previously been accompanied by improved
performance on interpretability evaluations (Rajamanoharan et al., 2024a; Gao et al., 2024; Raja-
manoharan et al., 2024b). However, the reconstruction loss is not itself sufficient to evaluate SAEs,
as there may be solutions to optimizing reconstruction loss that do not preserve the structure of the
input features or convey information about them, such as learning the identity function.

The interpretability of SAE features has been evaluated by the ability of humans and language models
to accurately describe those features (Bricken et al., 2023; Cunningham et al., 2024; Rajamanoharan
et al., 2024b). In this evaluation, humans and language models generate feature descriptions based
on token sequences and their corresponding activations. The accuracy of these descriptions is then
evaluated by predicting feature activations on unseen tokens. The correlation between predicted and
true activations, typically quantified using the Pearson correlation coefficient, is used as a measure of
description accuracy. However, recent work has critiqued this method, suggesting that even highly
accurate feature descriptions may not faithfully represent the model being explained (Huang et al.,
2023).

Alternative SAE evaluations analyze the sparsity of SAE outputs through the LO norm, the presence of
consistently inactive features, and ’loss recovered’. Loss recovered refers to the discrepancy in model
loss between zero ablation of a layer and the insertion of an SAE output as if it were the activations
of that model. The motivation for loss recovered is that it more directly approximates the information
preserved by the SAE output, as this may not be accurately measured by the reconstruction loss.

2.3 SEMI-SUPERVISED LEARNING WITH MULTIPLE MODELS

Semi-supervised learning with multiple models involves training several models on both human-
labeled and model-labeled data. Co-training, a semi-supervised technique, uses two distinct and
conditionally independent views of the same data to iteratively improve the performance of two
classifiers (Blum and Mitchell, 1998; Zhou and Li, 2005). This approach aims to maximize agreement
between the classifiers and has been shown to improve their accuracy (Nigam et al., 2000). Similar
techniques have been applied in deep learning for tasks such as machine translation (Xia et al., 2016)
and image recognition (Qiao et al., 2018).

‘Mutual learning’ and ‘co-teaching’ have been used to describe techniques where student models
trained in parallel teach each other by minimizing the divergence between their predictions. These
methods have shown superior performance for the size of the student model compared to distillations
of larger models (Zhang et al., 2017; Tarvainen and Valpola, 2017; Han et al., 2018; Ke et al.,
2019; Wu and Xia, 2019). Related techniques include temporal ensembling, which improves model
robustness by averaging predictions over multiple training epochs (Laine and Aila, 2016), and
fraternal dropout, which encourages models trained in parallel to make similar predictions for the
same data points, serving as a method of regularization to prevent overfitting (Zoina et al., 2017).

Our work builds on the semi-supervised learning literature. However, our motivation differs from
the motivation for most of these techniques, which often relates to a lack of training data rather than
learning features not in the input space.

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS WITH SYNTHETIC DATA

Following Sharkey et al. (2022), we generate a synthetic dataset of vectors that represent more
features than their dimensionality, allowing a direct measurement of how well an SAE learns the
features of inputs with superposition. This simplifies our analysis by mitigating the problem of
imperfect SAE evaluations (discussed in Section 2.2) as we can then directly compare the SAE and
input features, but is only applicable when the input features are known, which is not typical for
real-world data.

3.1 GENERATING SYNTHETIC DATA

We aim to create a synthetic dataset of vectors similar to activation vectors sampled from a neural
network, but where the features of the input represented by the network are known and can be
compared with the features learned by the SAE. These vectors should have similar properties to
neural network activations, such as representing superposed features, and having correlations in the
activation of features, but simultaneously be learnable by SAEs.

To do so, we generate a dataset D = {x(l)7 x@ . ,x(N)} of vectors x(¥ € R?. Each vector
represents the activation of G features in d dimensions, where G > d, is intended to mimic feature
superposition in neural networks. We define the feature matrix F € R?*, where each element is
sampled from a standard normal distribution:

F”N./\/'(O,l) ViEI,...,d,j€17...,G
We assign probabilities to each feature in F based on its index through exponential decay:
M\
Ye
PP

where A € (0, 1) is the decay rate hyperparameter, and is a specified constant. By raising \ to the
power of the index of the feature, we increase the decay for that feature such that the probability of a
feature’s activation decreases exponentially with its index.

Pj viel,...,G

To introduce correlations in the activations of features, we partition the features into £ groups of
equal size S = % Let G, be the set of indices for features in group e:

Ge={(e—1)S+1,...,eS} Veel,...,E

To construct each data point x(*), we randomly select an active group e; € 1,..., E and choose
K active features within that group according to the probability p; of a feature. We denote this set
A, ={f14,...,£,....fx;}, where A; C Ge,. Finally, we sample a sparse feature coefficients a;;
for each feature in each sample according to:

s — Ujj lf] S .Ai
* 0 otherwise

where w;; ~ U(0,1) are the non-zero coefficients. D is created by linearly combining the ground
truth features using the sparse feature coefficients:

G
x0=3 aif;
j=1

where f; is the j-th column of the ground truth feature matrix F'.

3.2 TRAINING SPARSE AUTOENCODERS WITH MUTUAL REGULARIZATION ON SYNTHETIC
DATA

We train SAEs with and without MFR on the synthetic dataset D, generated with the parameters
G = 512,d = 256, E = 12, K = 3 and A = 0.99 in accordance with Section 3.1 (Figure 7).
Samples in D are then comprised of 512 features represented in 256 dimensions with 36 active
features, imitating feature superposition in neural networks. We train on 100 million unique examples.

Under review as a conference paper at ICLR 2025

For the MFR SAEs, we train two SAEs in parallel. A complete description of MFR is given in
Section 3.3. All SAEs trained in this section have a hidden size of 512, equalling the input feature
count.

We train with a learning rate of 0.01 with AdamW, and a batch size of 10,000. On a 40GB A100
GPU, an SAE with these hyperparameters trains in approximately six minutes. ‘Baseline’ SAEs are
trained only to minimize reconstruction loss, with sparsity enforced through the TopK activation
function on the hidden state. When comparing baseline SAEs with MFR, we maintain an identical
architecture and hyperparameter selection, excluding details specific to MFR. We use the exact value
of total active features, 36, for the value of k in the TopK activation function for both

3.3 ANALYSIS

We hypothesize that features learned by multiple SAEs trained on the same data will tend to correlate
more strongly with a feature of the input than a feature learned by only one SAE. To test this
hypothesis, we analyze the decoder weight matrices of two baseline SAEs, and compare them with
the feature matrix F for their training dataset D.

)

%

Let W'Y and W’(? represent the decoder weight matrices from two SAEs. For each feature w
(

in WM we find the corresponding feature w jf) in W that maximizes cosine similarity:

j* = arg mjax cos (wgl),w§2)> .

Likewise, for each w§2) in W’ (2), we find the most similar feature ng) in W’ M using the same
cosine similarity maximization, resulting in pairs of features between the two SAEs that are most
similar. To ensure a one-to-one correspondence of features, we use the Hungarian algorithm to assign
the pairs.

We again use the same cosine similarity maximization, this time between W’ M and F, as well as
W' and F, finding pairs of features between a decoder and feature matrix that are most similar.
We plot these similarities for all features in W' 1) and W@ in Figure 2, illustrating the positive
relationship (correlation coefficient = 0.625) between feature similarity across SAEs, and feature
similarity with the input features.

Similarity with SAE Feature
A}

Similarity with SAE Feature

o SAE1
o SAE2

04 06
00, Similarity with Input Feature

o4 0%
Similarity with Input Feature

Figure 3: The relationship between feature sim-
ilarity across SAEs, and feature similarity with
the input features for two SAEs with condition-
ally reinitialized weights.

Figure 2: The relationship between feature simi-
larity across SAEs, and feature similarity with the
input features for two baseline SAEs.

This correlation is weakened by a cluster of features with high similarity across SAEs, but low
similarity with F, potentially harming SAE performance due to the lack of similar input features
for features in that cluster. We found that features in this cluster were significantly less likely to be
active after the TopK activation function (Figure 4). By avoiding learning this cluster of features, we
could improve SAE performance, as it comprises many of the features uncorrelated with those in F'.
Additionally, it could increase the correlation between feature similarity across SAEs and feature

Under review as a conference paper at ICLR 2025

similarity with features in F', potentially allowing for further improvements in SAE performance by
encouraging SAE:s to learn features present in both their decoder, and the decoders of other SAEs
trained on the same data.

SaE1
saE2

Activation Probability

. Figure 5: The relationship between feature sim-
Figure 4: The relationship between feature simi- ilarity across SAEs, feature similarity with the
larity across SAES, feature similarity with the in- 35\ features and the likelihood a feature is ac-
put features and the likelihood a feature is active ive after the TopK activation function on the

after the TopK activation function on the hidden ;44ep representation for two SAEs trained with
representation for two baseline SAEs. MFR.

Across multiple training runs, a subset would have a reduction in the size of this cluster, resulting
in SAEs learning features that correlate more strongly with features in F' (Figure 8). This variation
was binary: either the cluster would be larger, at approximately 15 features per SAE, or smaller, at
approximately 5. We did not observe other variations. As no hyperparameters were modified, we
hypothesize that this is caused by differences in the random weight initializations, and found that we
could reliably detect these superior weight initializations by the presence of features consistently not
active after the TopK activation function, often in the first 100 training steps (Figure 6).

By reinitializing the SAE weights if a measure of these inactive features exceeded a threshold, we
consistently find initializations that do not result in that cluster of features being learned. Doing so
strengthens the correlation between the similarity of features learned across SAEs, and the similarity
of features learned by the SAEs with F (correlation coefficient = 0.625 increased to 0.668) (Figure 3).

We found that the particular metric used to decide whether to reinitialization the SAE weights did
not effect performance, as the behavior of initializations with smaller clusters of these features
uncorrelated with features in the input feature matrix were easily identified by all metrics tested
that measure feature inactivity after the TopK activation function. We give an example in Figure 6,
plotting the deviation of features from the mean activation probability of a feature, calculated as the
value of k used for the TopK activation function divided by the decoder size.

Finally, to incentivize features present in the decoders of other SAEs trained on the same data, we
add an auxiliary penalty to the SAE loss function. We define this auxiliary penalty as

N-1 N
e i -
Gl >) (1 -MMcs(WO, why)
2) =1 j=i+1
where « is a constant that weights the penalty, N is the number of SAEs, and MMCS is a function

that returns the mean of the max cosine similarity pairs across the weight matrices W) and W),
We calculate MMCS as
1

MMCS(W® W) = Wl Z w;gg\)/{(j)CosineSim(wi,wj).
wiEW(“ ’

We name the combined use of our reinitialization method and auxiliary penalty MFR. We find that
MFR results in SAEs recovering more of F' (Figure 8), and that SAEs trained with MFR did not
have the cluster of features with high similarity across SAEs, but low similarity with F ‘(Figure 5).

Under review as a conference paper at ICLR 2025

Dead Features.

Reconstruction Loss (Log Scale)

0 200 400 600 800 1000 0 2000 4000 6000 8000 10000
Steps Training Steps

Figure 6: We plot L ZN (IWxi—(k/N)\) Figure 7: The reconstruction loss of baseline and
N =l k/N ’ MFR SAEs. The reconstruction loss scale is log-

arithmic to better display the separation of recon-
struction losses. The relative difference in the

where N is the neuron count of W and k is the
number of active neurons in the hidden layer after

ok. k/N is then the frequency each feature would «geipitialization’ and ‘Penalty + Reinitialization’

be active if all features were equally likely to acti- 1ocongtruction losses at the final training step is
vate. Hyperparameters were identical across runs. 5 40,

0.9

o
o

°
S

MMCS with Input Features

0.3
Runs

—— Baseline (inferior initialization)
Baseline (superior initialization)
—-= MFR

0.2

0 2000 4000 6000 8000 10000
Steps

Figure 8: MMCS of the decoder weights with the input feature matrix of a baseline SAE, and
two SAEs trained with MFR. The MFR and ’superior initialization” SAEs are reinitialized if

% Zfil (W) = 1, which serves as a threshold of feature inactivity. For the MFR SAE,

the constant « that weights the auxiliary penalty is set to 3.

4 SCALING MUTUAL REGULARIZATION

In this section we scale MFR to larger models and real-world data. We train SAEs with MFR to
reconstruction activations sampled from GPT-2 Small, or to reconstruct EEG data, showing improved
performance compared to baselines. We choose these tasks because they demonstrate the results
in Section 3 generalize to natural data from a neural network, and to a non-interpretability task:
denoising.

4.1 GPT-2 SMALL

We train five baseline and five MFR SAEs for 2,000,000 tokens on the first layer MLP outputs of
GPT-2 Small, constraining the active neurons in a hidden layer of size 3072 to 6, 12, 18, 24 and 30
respectively. We use a batch size of 500, and a learning rate of 0.001 with AdamW. On a single V100,
this takes approximately 2 hours to train both baseline and MFR SAEs.

Under review as a conference paper at ICLR 2025

For the MFR SAEs, we set the coefficient that weights the auxiliary penalty « such that the initial
reconstruction loss and auxiliary penalty are equivalent, and use a 100 training step cosine warmup
for the penalty. The penalty is applied to all five SAEs trained with MFR, such that they are all
encouraged to learn similar features in training. We found that the warmup could prevent features
becoming too similar early in training, and would allow setting o large enough to cause convergence
later in training without increasing the reconstruction loss.

The three SAEs with the smallest values of k (6, 12, 18) achieved superior reconstruction loss using
MEFR (Figure 9). For the two remaining SAEs (k = 24 and k = 32), we found equivalent or inferior
reconstruction loss. Over the five SAEs, we found a mean reduction in the reconstruction loss of
5.66%. The most significant improvement was in the k = 6 SAE, with a reduction of 21.21%, and
the most significant degredation was in the £ = 30 SAE, with an increase of 7.89% (Table 1).

k MFR Baseline Relative Difference
6 0.00132 0.00160 21.21%

12 0.00121 0.00135 -11.57%

18 0.00116 0.00122 -5.17%

24 0.00114 0.00112 1.75%

30 0.00114 0.00105 7.89%

Table 1: Comparison of the final reconstruction accuracy of SAEs trained with and without MFR.

MEFR consistently results in superior loss recovered compared to baselines (Figure 9). For this metric
we extract the layer 0 MLP outputs of GPT-2 Small and reconstruct them using SAEs. We then insert
the SAE outputs as though they were the MLP layer outputs, and measure the cross-entropy loss of
the model on 10,000 randomly selected sequences from OpenWebText (Gao et al., 2020). We find a
mean improvement of 5.45% in the MFR SAEs, a maximum improvement of 8.58%, and a minimum
improvement of 3.51% (Table 2). With no modifications, GPT-2 Small’s cross-entropy loss on this
dataset is 3.12, and 132.27 with the first MLP layer zero ablated.

k MFR Baseline Relative Difference
6 10.121 10.798 -6.27%
12 9.782 10.300 -5.03%
18 9.367 9.742 -3.85%
24 10.136 10.505 -3.51%
30 9.624 10.527 -8.58%

Table 2: The cross-entropy loss of GPT-2 Small on a subset of OpenWebText2 with SAE outputs
inserted as MLP outputs.

We believe these results suggest MFR causes SAEs to learn more information about the features that
underly their training dataset. Specifically, the reduced loss recovered indicates the SAEs preserve
more information about their inputs, and the improvements in reconstruction loss show more accurate
reconstructions in terms of Euclidean distance to the input, but that this depends on the value of k in
the TopK activation function relative to the other SAEs being trained.

4.2 ELECTROENCEPHALOGRAPHY DATA

We train five baseline and five MFR SAEs for 3,500,000 tokens at a learning rate of 0.001 with
AdamW on vectorized EEG data from the TUH EEG Corpus (Obeid and Picone, 2016). We use
a hidden size of 4096 and values of 12, 24, 36, 48 and 60 for the TopK activation function. We
preprocess the EEG data with a low-cut frequency of 0.5Hz, a high-cut frequency of 45Hz and a filter
order of 5. « is set to equal the initial reconstruction loss, and we use a cosine warmup of 100 steps.
The auxiliary MFR penalty considers all five MFR SAEs. On a single V100 GPU, with the above
hyperparameters, the five baseline and MFR SAEs train in one hour with a training batch size of
1024.

We train on EEG data to show that MFR can be applied to SAEs trained on non-neural network
data. SAEs have been applied to EEG denoising in the past (Qiu et al., 2018; Li et al., 2022), and in

Under review as a conference paper at ICLR 2025

Runs
— MFR
-~ Baseline

o 000w a0 2000 o0 a0 w0 20 00 20 w00 w0z 00

108 W Runs
N —o— MFR
\, ~# - Baseline
106 <
\ | -
\ I
104 L /
N i
102
100 N 7
e o/
96 Y
0a

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 5 10 15 20 25 E
Kin Topk

Loss
Loss
Loss

Loss

Loss
Loss Recovered

Figure 9: The reconstruction loss and loss recovered of various SAEs trained on activations from the
first MLP layer of GPT-2 Small. We plot the reconstruction loss on a logarithmic scale.

L_L_

o 00 a0 o200 I o0 a0 0 a0 s
s

Loss
Loss
Loss

1
Runs

- MFR
-m- Baseline
u
”
[} 4
oo L
_a”
& e
.-

I e 125 150 175 200 225 250 275 300
Kin Topk

6 Decoder

m K=

Loss
Loss

Figure 10: The reconstruction accuracy and loss recovered of various SAEs trained on vectorized
EEG data from the TUH EEG Corpus.

both finding more interpretable representations of neural network activations and denoising accurate
feature learning is beneficial, so plausibly MFR is useful for denoising EEG data.

For the reconstruction loss, we find a mean improvement of 1.8%, a maximum improvement of
6.67%, and a maximum degradation of 4.04% (Figure 10). The benefits of MFR on this dataset
are reduced significantly from Section 4.1. We hypothesize that this is because MFR is designed to
encourage SAEs to learn accurate representations of input features in which features are represented
with superposition in the training data. Although there is evidence that features are superposed in
neural network activations (Elhage et al., 2022; Jermyn et al., 2022), the same evidence is not present
for EEG data.

Under review as a conference paper at ICLR 2025

k MFR Baseline Relative Difference
12 0.42 0.44 -4.76%
24 0.30 0.32 -6.67%
36 0.26 0.27 -3.85%
48 0.23 0.23 1.80%
60 0.21 0.20 4.04%

Table 3: The reconstruction loss of SAEs trained with and without MFR on vectorized EEG data
from the TUH EEG Corpus, and the L2 distance of the decoder weights of those SAEs from the
decoder weights of the k=6 SAE. We plot of the reconstruction loss on a logarithmic scale.

4.3 WEIGHT ANALYSIS

One concern with MFR may be that in encouraging the SAE decoder features to be similar, the
decoder weight matrices end up more similar than without MFR. This could be problematic, as SAEs
with lower values of & for the TopK activation that were trained with MFR alongside SAEs with
higher values of k£ could end up less sparse by becoming more similar to the SAEs with higher values
of k. To test this, we measure the L2 distance of the decoder weight matrices for the baseline and
MFR SAEs trained in Section 10.

We find that SAEs trained with MFR tend to be more different in terms of the L2 distance, but that as
k increases they trend toward lower L2 distances (Figure 10). This is in contrast to the baseline SAEs,
which are more similar at smaller values of k, but trend towards larger L2 distances as k increases.
At the values of k we train at, we do not consider this problematic, as the L2 distances suggest the
decoder weight matrices are more different on average rather than less.

5 CONCLUSION

We proposed a method for training SAEs designed to recover more features of the input. We first
establish a motivating hypothesis for MFR, that feature similarity across SAEs is correlated with
feature similarity to the input features, showing that this hypothesis is true for SAEs trained on
synthetic data, and that MFR improves the fraction of features of the input recovered (Section 3). We
then scale MFR to both language model activations and a realistic denoising task, and show that it
improves SAE performance on key metrics at scale (Section 4). We believe our method encourages
SAE:s to learn more features of the input, increasing their usefulness for interpretability.

LIMITATIONS

Although we show improved performance of SAEs with MFR, this comes at a relative increase in
computational cost, as the auxiliary penalty used in MFR requires training additional SAEs. As
all of our experiments are easily completed on a single GPU, this is not problematic in our work.
However, larger models can require SAEs with very large hidden dimensions, making this cost
unmanageable if SAEs need to be trained for many layers. Training a multiple of the SAEs that
would need to be trained without the auxiliary penalty may not be justifiable depending on the scale
of the experimentation.

Despite the increased computational requirements, we believe that the auxiliary penalty is still
valuable due to the small computational budget for SAEs relative to the models they are trained on.
For smaller models (where the cost of training SAEs is less significant), it may be worth the increase
in training compute for more accurate SAEs. For example, in the case of GPT-2 Small, the additional
compute may not be of concern, as training is manageable on a single GPU or a small cluster making
the additional information about the input features worth the additional compute.

We hope that future work will investigate efficient mutual learning-based approaches for SAEs
that can benefit from the positive relationship between feature similarity across SAEs, and feature
similarity with the input features without requiring more compute.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Evan Anders, Clement Neo, Jason Hoelscher-Obermaier, and Jessica Howard.
Sparse autoencoders find composed features in small toy models. 2024.
URL https://www.lesswrong.com/posts/abwwgza2cY3W7L9cj/

sparse—autoencoders-find-composed-features—-in-small-toy.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6541-6549, 2017. doi: 10.1109/CVPR.2017.
354,

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramén Guevara, Beren Millidge, Gabriel Alfour, and Connor Leahy. Interpreting neural
networks through the polytope lens. 2022. URL https://arxiv.org/abs/2211.12312.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceed-

ings of the eleventh annual conference on Computational learning theory, pages 92—100. ACM,
1998.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom
Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language models
with dictionary learning. 2023. URL https://transformer-circuits.pub/2023/
monosemantic—features/index.html.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 215-223, 2011.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse au-
toencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024.

Yanjie Duan, Yisheng Lv, Wenwen Kang, and Yulong Zhao. A deep learning based approach for
traffic data imputation. In 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 912-917. IEEE, 2014.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition. 2022.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-
layer features of a deep network. Technical Report 1341, University of Montreal,
2009. URL http://www.iro.umontreal.ca/~lisa/publications2/index.
php/publications/show/247.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi

Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
arXiv preprint arXiv:1804.06872,2018. URL https://arxiv.org/pdf/1804.06872.

11

https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://arxiv.org/abs/2211.12312
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/247
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/247
https://arxiv.org/pdf/1804.06872

Under review as a conference paper at ICLR 2025

Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. Unsupervised learning of sparse
features for scalable audio classification. In Proceedings of the 12th International Society for
Music Information Retrieval Conference (ISMIR 2011), pages 681-686, 2011.

Jing Huang, Atticus Geiger, Karel D’ Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rigorously
assessing natural language explanations of neurons. In Proceedings of the 6th BlackboxNLP Work-
shop: Analyzing and Interpreting Neural Networks for NLP. Association for Computational Lin-
guistics, 2023. URL https://aclanthology.org/2023.blackboxnlp-1.24 . pdf.

Robert Huben. Research report: Sparse autoencoders find only 9/180 board state features in oth-
ellogpt. 2024. URL https://www.lesswrong.com/posts/BduCMgmijJnCtc7jKe/
research-report-sparse—-autoencoders—-find-only-9-180-board.

Adam S. Jermyn, Nicholas Schiefer, and Evan Hubinger. Engineering monosemanticity in toy models.
2022. URL https://arxiv.org/abs/2211.091609.

Zehao Ke, Di Qiu, Yihong Gong, and Dacheng Tao. Dual student: Breaking the limits of the teacher in
semi-supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 6728-6736, 2019. URL https://openaccess.thecvf.com/
content_ICCV_2019/papers/Ke_Dual_Student_Breaking_the_Limits_of_
the_Teacher_in_Semi-Supervised_ ICCV_2019_paper.pdf.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242,2016. URL https://arxiv.org/pdf/1610.02242.

Qi Li, Yunqging Liu, Yujie Shang, Qiong Zhang, and Fei Yan. Deep sparse autoencoder and recursive
neural network for eeg emotion recognition. Entropy, 24(9):1187, 2022. doi: 10.3390/e24091187.

Alireza Makhzani and Brendan Frey. k-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncovering
the different types of features learned by each neuron in deep neural networks. arXiv preprint

arXiv:1602.03616, 2016.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. Analyzing the effectiveness
and applicability of co-training. In Proceedings of the 2000 conference on Empirical methods in
natural language processing, pages 86-93. ACL, 2000.

Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers in
Neuroscience, 10:196, 2016. doi: 10.3389/fnins.2016.00196.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 3(3):e10, 2018. doi:
10.23915/distill.00010.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607-609, 1996.

Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training for semi-
supervised image recognition. arXiv preprint arXiv:1803.05984,2018. URL https://arxiv.
org/pdf/1803.05984.

Yang Qiu, Weidong Zhou, Nana Yu, and Peidong Du. Denoising sparse autoencoder-
based ictal eeg classification. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, September 2018. URL https://read.gxmd.com/read/30106681/
denoising-sparse—autoencoder—based-ictal-eeg-classification.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019. URL
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

12

https://aclanthology.org/2023.blackboxnlp-1.24.pdf
https://www.lesswrong.com/posts/BduCMgmjJnCtc7jKc/research-report-sparse-autoencoders-find-only-9-180-board
https://www.lesswrong.com/posts/BduCMgmjJnCtc7jKc/research-report-sparse-autoencoders-find-only-9-180-board
https://arxiv.org/abs/2211.09169
https://openaccess.thecvf.com/content_ICCV_2019/papers/Ke_Dual_Student_Breaking_the_Limits_of_the_Teacher_in_Semi-Supervised_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Ke_Dual_Student_Breaking_the_Limits_of_the_Teacher_in_Semi-Supervised_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Ke_Dual_Student_Breaking_the_Limits_of_the_Teacher_in_Semi-Supervised_ICCV_2019_paper.pdf
https://arxiv.org/pdf/1610.02242
https://arxiv.org/pdf/1803.05984
https://arxiv.org/pdf/1803.05984
https://read.qxmd.com/read/30106681/denoising-sparse-autoencoder-based-ictal-eeg-classification
https://read.qxmd.com/read/30106681/denoising-sparse-autoencoder-based-ictal-eeg-classification
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Under review as a conference paper at ICLR 2025

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos
Kramar, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024b.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis, pages 4-11, 2014.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out
of superposition with sparse autoencoders. 2022. URL https:
//www.alignment forum.org/posts/z6QQJbtpkEAX3A0]]/
interim-research-report-taking-features—-out-of-superposition.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780, 2017.
URL https://arxiv.org/pdf/1703.01780.

Demian Till. Do sparse autoencoders find "true features"? 2024.
URL https://www.lesswrong.com/posts/QoR8noABR3Mp2KBA4RB/
do-sparse—autoencoders—-find-true-features.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of machine learning research, 11(12), 2010.

Shu Wu and Shu-Tao Xia. Mutual learning of complementary networks via residual cor-
rection for improving semi-supervised learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 6500-6509, 2019.
URL https://openaccess.thecvf.com/content_CVPR_2019/papers/
Wu_Mutual_ Learning of_Complementary_ Networks_via_Residual_
Correction_for_Improving_ CVPR_2019_paper.pdf.

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learning
for machine translation. arXiv preprint arXiv:1611.00179, 2016. URL https://arxiv.org/
pdf/1611.00179.

Dan Xu, Yan Yan, Elisa Ricci, and Nicu Sebe. Detecting anomalous events in videos by learning
deep representations of appearance and motion. Computer Vision and Image Understanding, 156:
117-127, 2015.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. arXiv
preprint arXiv:1706.00384,2017. URL https://arxiv.org/pdf/1706.00384.

Zhi-Hua Zhou and Ming Li. Semi-supervised learning by disagreement. Knowledge and Information
Systems, 8(1):53-70, 2005.

Konrad Zotna, Devansh Arpit, Dendi Suhubdy, and Yoshua Bengio. Fraternal dropout. arXiv preprint
arXiv:1711.00066,2017. URL https://arxiv.org/pdf/1711.00066.

13

https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://arxiv.org/pdf/1703.01780
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_Mutual_Learning_of_Complementary_Networks_via_Residual_Correction_for_Improving_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_Mutual_Learning_of_Complementary_Networks_via_Residual_Correction_for_Improving_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_Mutual_Learning_of_Complementary_Networks_via_Residual_Correction_for_Improving_CVPR_2019_paper.pdf
https://arxiv.org/pdf/1611.00179
https://arxiv.org/pdf/1611.00179
https://arxiv.org/pdf/1706.00384
https://arxiv.org/pdf/1711.00066

	Introduction
	Background
	Sparse autoencoders
	Evaluating Sparse autoencoders
	Semi-supervised learning with multiple models

	Experiments with synthetic data
	Generating synthetic data
	Training sparse autoencoders with mutual regularization on synthetic data
	Analysis

	Scaling mutual regularization
	GPT-2 Small
	Electroencephalography Data
	Weight analysis

	Conclusion

