
Under review as a conference paper at ICLR 2023

SKTFORMER: A SKELETON TRANSFORMER
FOR LONG SEQUENCE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have become a preferred tool for modeling sequential data. Many
studies of using Transformers for long sequence modeling focus on reducing com-
putational complexity. They usually exploit the low-rank structure of data and
approximate a long sequence by a sub-sequence. One challenge with such ap-
proaches is how to make an appropriate balance between information preservation
and noise reduction: the longer the sub-sequence used to approximate the long
sequence, the better the information is preserved but at a price of introducing more
noise into the model and of course more computational costs. We propose skele-
ton transformer, SKTformer for short, an efficient transformer architecture that
improves upon the previous attempts to negotiate this tradeoff. It introduces two
mechanisms to effectively reduce the impact of noise while still keeping the com-
putation linear to the sequence length: a smoothing block to mix information over
long sequences and a matrix sketch method that simultaneously selects columns
and rows from the input matrix. We verify the effectiveness of SKTformer both the-
oretically and empirically. Extensive studies over both Long Range Arena (LRA)
datasets, and six time-series forecasting show that SKTformer significantly outper-
forms both vanilla Transformer and other state-of-the-art variants of Transformer.
Code is available at https://anonymous.4open.science/r/SKTFormer-B33B/

1 INTRODUCTION

Transformer type models (Vaswani et al., 2017) have achieved many breakthroughs in various artificial
intelligence areas, such as natural language processing (NLP) (Brown et al., 2020; Clark et al., 2020;
Devlin et al., 2018; Liu et al., 2019), computer vision (CV) (Dosovitskiy et al., 2020; Liu et al.,
2021; Touvron et al., 2021; Yuan et al., 2021; Zhou et al., 2021b), and time series forecasting (Xu
et al., 2021; Zhou et al., 2022). The self-attention scheme plays a key role in those transformer-based
models, which efficiently capture long-term global and short-term local correlations when the length
of the token sequence is relatively small. Due to the quadratic complexity of standard self-attention,
many approaches have been developed to reduce the computational complexity of Transformer for
long sequences (e.g., (Zhu et al., 2021)). Most of them try to exploit the special patterns of attention
matrix, such as low-rankness, locality, sparsity, or graph structures. One group of approaches is to
build a linear approximation for the softmax operator (e.g., (Chen et al., 2021; Choromanski et al.,
2020; Chowdhury et al., 2021; Qin et al., 2021)). Despite the efficiency of the linear approximation,
these approximation methods often perform worse than the original softmax based attention. More
discussion of efficient transformer for long sequence can be found in the section of related work.

In this work, we will focus on approaches that assume a low-rank structure of input matrix. They
approximate the global information in a long sequence by a sub-sequence (i.e., short sequence) of
landmarks, and only compute attention between queries and selected landmarks (e.g., (Ma et al.,
2021; Nguyen et al., 2021; Zhu et al., 2021; Zhu & Soricut, 2021)). Although those models enjoy
linear computational cost and often better performance than vanilla Transformer, they face one major
challenge, i.e., how to balance between information preserving and noise reduction. By choosing
a larger number of landmarks, we are able to preserve more global information but at the price of
introducing more noise into the sequential model and more computational cost.

In this work, we propose an efficient Transformer architecture, termed Skeleton Transformer, or
SKTformer for short, that introduces two mechanisms to explicitly address the balance. First,

1

Under review as a conference paper at ICLR 2023

we introduce a smoothing block into the Transformer architecture. It effectively mixes global
information over the long sequence by the Fourier analysis and local information over the sequence
by a convolution kernel. Through the information mixture, we are able to reduce the noise for
individual tokens over the sequence, and at the same time, improve their representativeness for the
entire sequence. Second, we introduce a matrix sketch technique to approximate the input matrix
by a smaller number of rows and columns. A standard self-attention can be seen as reweighing the
columns of the value matrix. Important columns are assigned high attention weights and remain
in the output matrix, while small attention weights eliminate insignificant columns. The self-
attention mechanism is equivalent to column selection if we replace the softmax operator with the
corresponding argmax operator. However, sampling only columns may not generate a good summary
of the matrix, and could be subjected to noises to individual columns. We address this problem
by exploiting CUR (Drineas et al., 2008) or Skeleton approximation technique (Chiu & Demanet,
2013) in the matrix approximation community. Theoretically, for a rank-r matrix X ∈ Rn×d, we
can take O(r log d) column samples and O(r log n) row samples to construct a so-called Skeleton
approximation X ≈ CUR, where C and R are matrices consisting of the columns and rows of X ,
respectively, and U is the pseudo-inverse of their intersection. By combing these mechanism, we
found, both theoretically and empirically, that SKTformer is able to preserve global information over
long sequence and reduce the impact of noise simultaneously, thus leading to better performance
than state-of-the-art variants of Transformer for long sequences, without having to sacrifice the linear
complexity w.r.t. sequence length.

In short, we summarize our main contributions as follows:

1. We propose a Skeleton Transformer (SKTformer), an efficient model that integrates a
smoother, column attention and row attention components to unfold a randomized linear
matrix sketch algorithm.

2. By randomly selecting a fixed number of rows and columns, the proposed model achieves
near-linear computational complexity and memory cost. The effectiveness of this selection
method is verified both theoretically and empirically.

3. We conduct extensive experiments over Long-term sequence, long-term time series fore-
casting and GLUE tasks. In particular, the Long Range Arena benchmark (Tay et al., 2021),
achieves an average accuracy of 64% and 66% with fixed parameters (suggested setting in
Mathieu et al. (2014); Tay et al. (2021)) and fine-tuned parameters respectively. It improves
from 62% of the best transformer-type model. Moreover, it also has a comparable perfor-
mance with the recent state-of-art long-term time series forecasting models for long-term
time series forecasting and GLUE tasks

Organization. We structure the rest of this paper as follows: In Section 2, we briefly review the
relevant literature on efficient transformers and Skeleton approximations. Section 3 introduces the
model structure and performs a theoretical analysis to justify the proposed model. We empirically
verify the efficiency and accuracy of SKTformer in Section 4. we discuss limitations and future
directions in Section 5. Technical proofs and experimental details are provided in the appendix.

2 RELATED WORK

This section provides an overview of the literature focusing on efficient Transformer models. The
techniques include sparse or local attention, low-rankness, and kernel approximation. We refer the
reader interested in their details to the survey (Tay et al., 2020c).

Sparse Attention. The general idea of these methods is restricting the query token to perform
attention only within a specific small region, such as its local region or some global tokens. In
this setting, the attention matrix becomes sparse compared to the original one. (Qiu et al., 2019)
proposes BlockBert, which introduces sparse block structures into the attention matrix by multiplying
a masking matrix. (Parmar et al., 2018) applies self-attention within blocks for the image generation
task. (Liu et al., 2018) divides a sequence into blocks and uses a stride convolution to reduce the
model complexity. However, these block-type Transformers ignore the connections among blocks.
To address this issue, Transformer-XL (Dai et al., 2019) and Compressive Transformer (Rae et al.,
2019) propose a recurrence mechanism to connect multiple blocks. Transformer-LS (Zhu et al., 2021)
combines local attention with a dynamic projection to capture long-term dependence. (Tay et al.,

2

Under review as a conference paper at ICLR 2023

2020b) uses a meta-sorting network to permute over sequences and quasi-global attention with local
windows to improve memory efficiency.

Another approach in this category is based on stride attention. Longformer (Beltagy et al., 2020)
uses dilated sliding windows to obtain a sparse attention matrix. Sparse Transformers (Child et al.,
2019) consider approximating a dense attention matrix by several sparse factorization methods. In
addition, some methods reduce the complexity by clustering tokens. For example, Reformer (Kitaev
et al., 2020b) uses a hash similarity measure to cluster tokens, and Routing Transformer (Roy et al.,
2021) uses k-means to cluster tokens. BigBird (Zaheer et al., 2020) proposes a generalized attention
mechanism described by a directed graph to reduce attention complexity. (Lee-Thorp et al., 2021)
considers using 2D Fourier Transformation to mix the token matrix directly. (Tan et al., 2021) uses
max pooling scheme to reduce the computation costs.

Low-rank and Kernel Methods. Inducing low-rankness into the attention matrix can quickly reduce
the complexity and the kernel approximation is widely applied in efficient low-rank approximation.
Linformer (Wang et al., 2020) and Luna (Ma et al., 2021) approximate softmax with linear functions,
which yield a linear time and space complexity. (Choromanski et al., 2020) and (Peng et al., 2021) use
random features tricks and reach promising numerical performance. (Winata et al., 2020) proposes
Low-Rank Transformer based on matrix factorization. FMMformer (Nguyen et al., 2021) combines
the fast multipole method with the kernel method. Synthesizer (Tay et al., 2020a) uses a random
low-rank matrix to replace the attention matrix. Nyströmformer (Xiong et al., 2021) adopts the
Nyström method to approximate standard self-attention. Linear Transformer (Katharopoulos et al.,
2020) expresses self-attention as a linear dot-product of kernel feature maps. (Zhu & Soricut, 2021)
applies the Multigrid method to efficiently compute the attention matrix recursively. Cosformer (Qin
et al., 2021) develops a cosine-based re-weighting mechanism to linearize the softmax function.
(Chen et al., 2021) proposes the Scatterbrain, which unifies locality-sensitive hashing and the kernel
method into attention for accurate and efficient approximation.

3 SKTFORMER

We start by going over the vanilla attention. For a sequence of length n, the vanilla self-attention in
the transformer is dot-product type (Vaswani et al., 2017). Following standard notation, the attention
matrix A ∈ Rn×n is defined as:

A = softmax

(
1√
d
QK⊤

)
, (1)

where Q ∈ Rn×d denotes the queries while K ∈ Rn×d denotes the keys, and d represents the hidden
dimension. By multiplying the attention weights A with the values V ∈ Rn×d, we can calculate the
new values as V̂ = AV .

Intuitively, the attention is the weighted average over the old ones, where the weights are defined by
the attention matrix A. In this paper, we consider generating Q, K and V via the linear projection
of the input token matrix X:

Q = XWQ, K = XWK , V = XWV ,

where X ∈ Rn×d and WQ,WK ,WV ∈ Rd×d.

The vanilla procedure has two drawbacks in concentrating the information from V . First, when
computing the QK⊤ part, full dense matrix multiplication is involved at a cost of O(n2) vector
multiplications. It can be prohibitive for long sequence problems. On the other hand, if we view the
softmax operator as an approximation of the argmax counterpart, V̂ becomes a row selection from
V . This column-wise information concentration is ignored.

3.1 SKELETON ATTENTION

We propose a Skeleton self-attention structure motivated by the Skeleton approximation to address
those issues. First, we modify the original self-attention to build the column self-attention as follows:

V̂1 = softmax

(
1√
d
QK⊤P⊤

1

)
P1V ,

3

Under review as a conference paper at ICLR 2023

where P1 ∈ Rs1×n denotes the sampling matrix and s1 is the number of columns sampled. Let
i1 < i2 < ... < is1 be the indices of the randomly sampled columns. Let P1,ab denote the element
located at the a-th column and b-th row and we have P1,ab = 1 if ia = b and 0 otherwise. By these
constructions, we can reduce the computational cost to O(ns1d

2 + ns21d).

Similarly, we build the row sampling matrix P2 ∈ Rd×s2 indicating the locations of the s2 sample
rows. Compute the row self-attention as:

V̂2 = V P2 softmax

(
1√
n
P⊤

2 K⊤Q

)
.

Finally, we apply the layer-norm on V̂1 and V̂2 and then them together to generate the final output:

V̂ = layernorm1(V̂1) + layernorm2(V̂2). (2)

The usage of layer norm is to balance the output scales of column and row self-attentions. A similar
trick has been used in (Zhu et al., 2021), where the layer norm is applied to resolve scale mismatches
between the different attention mechanisms.

Before going to the detailed analysis, we first introduce incoherence parameter of a matrix, which is
commonly used in many low-rank matrix applications.

Definition 1 (µ-incoherence). Given a rank-r matrix X ∈ Rn×d. Let X = WΣV ⊤ be its compact
singular value decomposition. X is µ-incoherent if there exists a constant µ such that

max
i

∥e⊤i W ∥ ≤
√

µr

n
and max

i
∥e⊤i V ∥ ≤

√
µr

d
,

where ei denotes the i-th canonical basis vector.

The µ-incoherence describes the correlation between the column/row spaces and the canonical
basis vectors. The larger µ value implies a higher overlapping, which leads to a better chance of
successful reconstruction from sparse row/column samples. We next use the following proposition to
characterize the efficiency of sampling in both columns and rows.

Proposition 1. Let X ∈ Rn×d be a rank-r matrix with µ-incoherence. Without loss of generality,
we assume n ≥ d. Let E ∈ Rn×d be a noise matrix. By uniformly sampling O(µr log n) columns
and rows from the noisy X +E, Skeleton approximation can construct a matrix X̂ such that, with
probability at least 1−O(n−2),

∥X − X̂∥ ≤ O

(
∥E∥

√
nd

µr log n

)
. (3)

Several works (e.g., (Chiu & Demanet, 2013; Drineas et al., 2008)) have proposed explicit methods
to construct X̂ . Those methods require computing the pseudo-inverse, generally inefficient in deep
learning settings. (Xiong et al., 2021) uses an approximation of the pseudo-inverse in the symmetric
matrix setting. It is still an open question whether the approximated pseudo-inverse also works for
the general matrix in deep learning settings. On the other hand, in the transformer model, a good
matrix approximation is not our primary goal, and we thus pursue a different way that only maintains
sufficient information to pass through the network via (2).

3.2 SMOOTHER COMPONENT

Based on the analysis of Skeleton approximation, the matrix incoherence parameter µ plays a crucial
role in determining the number of rows and columns to sample. Decreasing in µ leads to a smaller
sampling size. Furthermore, the µ-incoherence condition implies that the “energy” of the matrix
is evenly distributed over its entries, i.e., the matrix is “smooth” (Candès & Recht, 2009). In this
subsection, we propose a novel smoother component to reduce the incoherence parameter without
introducing excessive information loss.

4

Under review as a conference paper at ICLR 2023

(a) Vanilla Transformer (b) SKTformer

Figure 1: Illustration of the architecture of Vanilla Transformer versus SKTformer

3.2.1 FOURIER CONVOLUTION

The incoherence parameter can be viewed as a measure of the smoothness of a matrix. A “smoother”
matrix tends to have a smaller incoherence parameter. Intuitively, the adjacent columns or rows have
similar values for a smooth matrix. Thus a few landmark columns or rows can represent the matrix
with little error. On the other hand, if the matrix is harsh (e.g., containing spiky columns or rows),
more landmarks are required. A common way to smooth a matrix is to convolute it with a smoothing
kernel, such as a Gaussian kernel. However, directly using a fixed smoothing kernel can potentially
remove too much details and harm the final performance. In the recent literature (e.g., Guo et al.
2022), large convolution kernel-based attentions show a supreme performance in vision Transformers.
In this paper, we propose to use a data-driven convolution layer along the sequence dimension with
a kernel size equal to the sequence length. In this setting, the information of a given row could be
decentralized among the rows. As the input token matrix is computed through a FeedForward layer,
the information among different rows is already adaptive allocated. Hence, we do not perform the
convolution along the hidden dimension.

We use the Fast Fourier Transformation (FFT) to implement the convolution. Let L0 ∈ Rn×d be
the convolution kernel matrix. Via the convolution theorem, the circular convolutions in the spatial
domain are equivalent to pointwise products in the Fourier domain, and we then have:

Xsmooth = X ∗L0 = F−1 [F(X) · F(L0)] , (4)

where F , ∗, and · denote FFT operator, convolution operator, and point-wise product, respectively.

Equation (4) requires 3d times faster Fourier operations which could be prohibited when facing large
d. In order to save the computational cost, we use the learnable matrix L ∈ Cn×d1 in the frequency
domain instead and apply segment-average (averaging segments of hidden dimension) to X . To
simplify the notation, we assume there are integers s and r with d = sr. Instead of using (4), we
apply the following (5) to smooth the token matrix.

Xsmooth = F−1 [F(XS) ·L] , (5)

1In practice, we use the rFFT/irFFT, the fast (inverse) Fourier Transformation of real input instead of the
general FFT/IFFT, and the size of the matrix L is reduced to L ∈ C⌊n/2⌋+1)×d.

5

Under review as a conference paper at ICLR 2023

where

S =


1
s1 0 ... 0
0 1

s1 ... 0
...

...
. . .

...
0 0 · · · 1

s1

 ∈ Rd×d (6)

and 1 denotes the s× s matrix with all elements equal 1. As XS contains repeated rows, in (5), we
can reduce the usage of faster Fourier operations to r + d times.

In the following proposition, we show the smooth ability of the Fourier convolution.
Proposition 2. Let {x1,, xn} be a sequence with maxt |xt| ≤ amax and maxt |xt−xt−1| ≤ bmax.
Let {l1, ..., ln} be a sequence of i.i.d. 1

n2σ
2-subgaussian variables. Let f(t) be the convolution of

{xt} and {lt}, i.e., f(t) =
∑t

i=1 lt+1−ixi. With probability at least 1− δ, we have:

|f(t)− f(t− 1)| ≤ bmaxσ

√
1

2n
log

(
2n

δ

)
+ amaxσ

√
1

2n2
log

(
2

δ

)
. (7)

The Proposition 2 can be used to describe the Fourier convolution layer’s behavior in the early training
stage. Via some standard initialization methods (e.g., Kaiming initialization or Xavier initialization),
the variance of elements in learnable matrix L is O(n−1) and the scale of elements is O(n−1/2).2
To simplify our discussion, let us assume we use Kaiming normal initialization and L becomes a
random complex Gaussian matrix with zero mean and variance n−1σ2. Using the fact that the FFT of
a Gaussian sequence remains Gaussian with 2n times larger variance, the n−1σ2 variance Gaussian
sequence through inverse FFT (IFFT) would result in a Gaussian sequence with 1

2n2σ
2 variance. By

Proposition 2, the maximum difference between adjacent elements after the convolution is scaled on
bmaxσn

−1/2 + amaxσn
−1 ≈ bmaxσn

−1/2 when sequence length n is large enough. Thus as long as
σ < O(

√
n), the sequence is smoothed by the Fourier convolution.

During the training process, the elements in learnable matrix L go away from the independent random
variables and help generate a better representation of segment-averaged token matrix XS. We use
the following Proposition 3 to describe the potential representation ability of the proposed Fourier
convolution component.
Proposition 3. Let X ∈ Rn×d be a bounded matrix and S ∈ Rd×d constructed by (6). There exist
matrices G,L ∈ Rn×d such that∥∥(XS)1:t −Xsmooth

t G1:t

∥∥ ≤ O
(
r3/2t log(n)d−1/2

)
, (8)

where (·)1:t is the submatrix of the first t rows of a given matrix, Xsmooth
t is the t-th row of

Xsmooth = F−1 [F(XS) ·L], and G satisfies Gi,j = Gi+s,j = = Gi+r(s−1),j = gi(j). Here
{g1(·), ..., gs(·)} is an orthogonal polynomial basis.

The Proposition 3 states that if we properly train the matrix L, the information in XS up to row t can
be compressed into t-th row of Xsmooth with a moderate tolerance. Therefore, when we sample in
rows Xsmooth, they will contain more information than the same number of rows in the original XS.
Similar results are also discussed in FNet (Lee-Thorp et al., 2021) and several RRN literature, such as
(Gu et al., 2020) and (Voelker et al., 2019). In (Gu et al., 2020), several specific types of polynomials
(e.g., Legendre or Chebyshev) are explored, and the corresponding matrix L is predefined instead of
data-driven. Recently, (Gu et al., 2021b) propose a sophisticated method that can be used to compute
Xsmooth. We leave it for future work.

3.2.2 CONVOLUTION STEM

The Xsmooth may encounter an over-smoothing situation that local details can be wiped out. We use
a convolution stem (CNNs + BN + ReLU) to tackle this problem. We first concatenate Xsmooth with
the original token matrix X into a n× 2d matrix and then apply a 1D convolution with kernel size 3
to transform it back to n× d dimensions. At last, the output is normalized with the Batchnorm layer
and truncated by the ReLU activation function to stabilize the training procedure. (Wang et al., 2021)
report the ReLU activation coupled with the normalization layer plays an important role in various
vision transformers and analyzes this phenomenon theoretically.

2Here we omit the dependence in d for brevity.

6

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

In this section, we test our SKTformer on Long Range Arena (LRA) datasets (Tay et al., 2021)
and six real-world time series benchmark dataset for long term forecasting. We also evaluate the
transfer learning ability of SKTformer on GLUE tasks. We implement the SKTformer based on the
official codes of (Zhu et al., 2021) and (Zhou et al., 2022) for LRA and time-series forecasting tasks
respectively. The implementation detail (source code) for SKTformer is provided in Appendix A.

4.1 LONG-RANGE ARENA

The open-source Long-Range Arena (LRA) benchmark (Tay et al., 2021) is proposed as a standard
way to test the capabilities of transformer variants architectures on long sequence tasks.

Table 1: Experimental results on Long-Range Arena benchmark. Best model is in boldface and
second best is underlined. The standard deviation of the SKTformer are reported in parenthesis.

Model ListOps Text Retrieval Image Pathfinder Average

Transformer 15.82 52.98 53.39 41.46 66.63 46.06
Local Attention 15.82 52.98 53.39 41.46 66.63 46.06
Sparse Transformer 17.07 63.58 59.59 44.24 71.71 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 53.46
Linformer 35.70 53.94 52.27 38.56 76.34 51.36
Reformer 37.27 56.10 53.40 38.07 68.50 50.67
Sinkhorn Transformer 33.67 61.20 53.83 41.23 67.45 51.39
Synthesizer 36.99 61.68 54.67 41.61 69.45 52.88
BigBird 36.05 64.02 59.29 40.83 74.87 55.01
Linear Transformer 16.13 65.90 53.09 42.34 75.30 50.55
Performer 18.01 65.40 53.82 42.77 77.05 51.41
Nystromformer 37.34 65.75 81.29 41.58 70.94 59.38
H-Transformer-1D 49.53 78.69 63.99 46.05 68.78 61.41
Transformer-LS 38.36 68.40 81.85 45.05 76.48 62.03
FNet 35.33 65.11 59.61 38.67 77.08 54.42
Luna 38.01 65.78 79.56 47.86 78.89 62.02
FMMformer 36.74 67.84 81.88 45.10 72.12 60.74
PoNet 38.80 69.82 80.35 46.88 70.39 61.05
Cosformer 37.9 63.41 61.36 43.17 70.33 55.23
Scatterbrain 38.6 64.55 80.22 43.65 69.91 59.38

SKTformer (r, s1, s2 = 8) 38.30(0.40) 69.27(0.83) 83.26(0.45) 53.90(1.54) 75.82(0.97) 64.11(2.07)
SKTformer (best) 39.15(0.48) 71.58(0.95) 83.73(0.61) 57.73(1.83) 78.20(1.32) 66.08(2.56)

We benchmark our model with several recent state-of-art efficient transformers, including Sparse
Transformer, Longformer , Linformer, Reformers, Sinkhorn Transformer, Synthesizer, BigBird,
Linear Transformers, Performer , Nyströmformer , H-Transformer-1D, Transformer-LS, FNet, Luna,
FMMformer, Cosformer and Scatterbrain. SKTformer achieves the highest 66.08% average accuracy
with tuned parameters and second best 64.11% result with fixed parameters as shown in Table 1.

In particular, SKTformer significantly outperforms the benchmarks on Image tasks by relatively large
margins (12.6% and 20.6%, respectively), which support SKTformer’s smoothness effect on the
low-level features and will benefit the high-level image classification tasks.

Moreover, we want to highlight the sampling efficiency of SKTformer. The sequence length of LRA
tasks is over one thousand. The efficient Transformers in literature usually can not project the token
matrix to a very small size while maintaining comparable numerical performance, by only sampling
8 rows and columns from the token matrix, SKTformer has already obtained 64.11% average score
improving the previous best 62.03% score of Transformer-LS.

4.2 LONG-TERM FORECASTING TASKS FOR TIME SERIES

To further evaluate the proposed SKTformer, we also conduct extensive experiments on six popu-
lar real-world benchmark datasets for long-term time series forecasting, including traffic, energy,
economics, weather, and disease as shown in table 2

To highlight the relevant comparison, we mainly include five state-of-the-art (SOTA) Transformer-
based models, i.e., FEDformer(Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer (Zhou
et al., 2021a), LogTrans (Li et al., 2019), Reformer (Kitaev et al., 2020a), and one recent state-space

7

Under review as a conference paper at ICLR 2023

model with recursive memory S4 (Gu et al., 2021a), for comparison. FEDformer is selected as the
main baseline as it achieves SOTA results in most settings. More details about baseline models,
datasets, and implementations are described in Appendix.

Compared with SOTA work (FEDformer), our proposed SKTformer yields a comparable performance
in those tasks, with 4/6 datasets having relative MSE reductions. It is worth noting that the improve-
ment is even more significant on certain datasets, e.g., Exchange (> 30%). Although Exchange does
not exhibit an apparent periodicity pattern, SKTformer still achieves superior performance.
Table 2: multivariate long-term series forecasting results on six datasets with input length of 96
and prediction length O ∈ {96, 192, 336, 720} (For ILI dataset, we set prediction length O ∈
{24, 36, 48, 60}) with input length 60. A lower MSE indicates better performance. All experiments
are repeated 5 times.

Methods SKTformer FEDformer Autoformer S4 Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.192 0.283 0.203 0.287 0.255 0.339 0.705 0.690 0.365 0.453 0.768 0.642 0.658 0.619
192 0.255 0.324 0.269 0.328 0.281 0.340 0.924 0.692 0.533 0.563 0.989 0.757 1.078 0.827
336 0.324 0.364 0.325 0.366 0.339 0.372 1.364 0.877 1.363 0.887 1.334 0.872 1.549 0.972
720 0.431 0.433 0.421 0.415 0.422 0.419 0.877 1.074 3.379 1.338 3.048 1.328 2.631 1.242

E
le

ct
ri

ci
ty 96 0.218 0.332 0.183 0.297 0.201 0.317 0.304 0.405 0.274 0.368 0.258 0.357 0.312 0.402

192 0.259 0.361 0.195 0.308 0.222 0.334 0.313 0.413 0.296 0.386 0.266 0.368 0.348 0.433
336 0.267 0.367 0.212 0.313 0.231 0.338 0.290 0.381 0.300 0.394 0.280 0.380 0.350 0.433
720 0.293 0.385 0.231 0.343 0.254 0.361 0.262 0.344 0.373 0.439 0.283 0.376 0.340 0.420

E
xc

ha
ng

e 96 0.086 0.204 0.139 0.276 0.197 0.323 1.292 0.849 0.847 0.752 0.968 0.812 1.065 0.829
192 0.188 0.292 0.256 0.369 0.300 0.369 1.631 0.968 1.204 0.895 1.040 0.851 1.188 0.906
336 0.356 0.433 0.426 0.464 0.509 0.524 2.225 1.145 1.672 1.036 1.659 1.081 1.357 0.976
720 0.727 0.669 1.090 0.800 1.447 0.941 2.521 1.245 2.478 1.310 1.941 1.127 1.510 1.016

Tr
af

fic

96 0.592 0.352 0.562 0.349 0.613 0.388 0.824 0.514 0.719 0.391 0.684 0.384 0.732 0.423
192 0.583 0.343 0.562 0.346 0.616 0.382 1.106 0.672 0.696 0.379 0.685 0.390 0.733 0.420
336 0.598 0.346 0.570 0.323 0.622 0.337 1.084 0.627 0.777 0.420 0.733 0.408 0.742 0.420
720 0.641 0.397 0.596 0.368 0.660 0.408 1.536 0.845 0.864 0.472 0.717 0.396 0.755 0.423

W
ea

th
er 96 0.182 0.262 0.217 0.296 0.266 0.336 0.406 0.444 0.300 0.384 0.458 0.490 0.689 0.596

192 0.228 0.306 0.276 0.336 0.307 0.367 0.525 0.527 0.598 0.544 0.658 0.589 0.752 0.638
336 0.295 0.355 0.339 0.380 0.359 0.395 0.531 0.539 0.578 0.523 0.797 0.652 0.639 0.596
720 0.383 0.418 0.403 0.428 0.578 0.578 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792

IL
I

24 2.185 0.926 2.203 0.963 3.483 1.287 4.631 1.484 5.764 1.677 4.480 1.444 4.400 1.382
36 2.155 0.937 2.272 0.976 3.103 1.148 4.123 1.348 4.755 1.467 4.799 1.467 4.783 1.448
48 2.333 0.954 2.209 0.981 2.669 1.085 4.066 1.36 4.763 1.469 4.800 1.468 4.832 1.465
60 2.018 0.958 2.545 1.061 2.770 1.125 4.278 1.41 5.264 1.564 5.278 1.560 4.882 1.483

4.3 TRANSFER LEARNING IN GLUE TASKS

We evaluate the transfer learning ability of the proposed model in the pretraining-finetuning paradigm
in NLP tasks. We pretrain vanilla BERT (Devlin et al., 2018), FNet (Lee-Thorp et al., 2021), PoNet
(Tan et al., 2021) and our SKTformer with the same MLM loss in (Devlin et al., 2018) on English
Wikitext-103 and BooksCorpus datasets. All models are uncased and pretrained with the same
configuration with 1 million steps at most. We report the best GLUE results for each model from
multiple hyper-parameters configurations in Table 3, and the detailed training configurations in
Table 15 in Appendix K. Our SKTformer reaches 77.01 average scores (96.0% of the accuracy of
vanilla BERT), which also outperform FNet by 4.6% and PoNet by 0.3% relatively.

Table 3: GLUE validation results. We report the mean of accuracy and F1 for QQP and MRPC,
matthew correlations for CoLA, spearman correlations for STS-B, and accuracy for other tasks. For
MNLI task, we consider the matched test set.

Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

BERT-Base 81.98 89.25 88.22 91.07 48.08 87.98 86.43 69.98 80.37
FNet-Base 73.20 85.83 80.57 88.66 40.67 80.64 80.88 57.41 73.48
PoNet-Base 77.02 87.59 84.37 89.29 45.38 84.66 81.82 64.27 76.80
SKTformer (Ours) 76.86 87.67 84.12 90.14 46.72 84.87 81.84 63.87 77.01

4.4 TRAINING SPEED AND PEAK MEMORY USAGE

We compared the training speed (in terms of steps per second) and peak memory usage with several
baseline models. SKTformer achieves a 4x time speed advantage and 87% memory reduction

8

Under review as a conference paper at ICLR 2023

compared to vanilla transformer models with 3k input setting and has a neck-to-neck performance
compared to the most efficient baseline models as shown in Table 4.

Table 4: Benchmark results of all Xformer models with a consistent batch size of 32 across all models
with various of input lengths

Train Speed (Steps per second) Peak Memory Usage (GB)
Model 1 K 2 K 3 K 4 K 1 K 2 K 3 K 4 K
Transformer 23.8 7.8 3.9 OOM 3.7 11.1 22.1 OOM
Linformer 37.0(1.5x) 20.8(2.6x) 14.9(3.7x) 11.9 2.3 3.3 4.3 5.2
Reformer 28.5(1.2x) 15.1(1.9x) 11.9(3.0x) 9.1 2.2 3.2 4.2 4.9
Nystroformer 33.3(1.4x) 22.7(2.9x) 17.2(4.3x) 14.7 1.6 2.2 2.4 2.9
Performer 29.4(1.2x) 16.9(1.9x) 8.7(11.7x) 9.3 2.3 3.1 4.0 4.8
SKTformer 32.2(1.4x) 20.4(2.6x) 15.9(4.0x) 12.3 1.8 2.3 2.8 3.2

4.5 ROBUSTNESS ANALYSIS

We conduct a noise-resistant experiment for SKTformer and Xformers as shown in Table 5. We
use the Image experiment setting in LRA datasets. During generating a sample sequence, we
randomly add noise with uniform distribution U(−a, a) to each position in the sequence. We consider
a ∈ [0, 2, 4, 8] and train every model with 5k steps and 5 replicates. Our model’s performance
remains robust with a high level of noise injection. This supports our theoretical robustness analysis
and shows SKTformer indeed makes an appropriate tradeoff between information preservation and
noise reduction.

4.6 ABLATION STUDY

This subsection provides an ablation test on four components: Fourier Convolution, Convolution
Stem, Column Attention, and Row Attention. We use SKTformer with (r, s1, s2 = 8) as the baseline,
and the detailed settings are in Table 11 in Appendix F. In Table 6 we present the accuracy changes
when removing each component. The performance-decreasing results in Table 6 indicate the four
components used in SKTformer are necessary to reach promising results. The most significant
component is Column Attention which leads 8.28 average accuracy difference. It reflects that a good
summary of the whole sequence is important. Similar observations are also reported in Transformer-
LS (Zhu et al., 2021) and XCiT (Ali et al., 2021), where the spirit of attention over columns is used
in the dynamic project and Cross-Covariance Attention, respectively. The second most effective
part is Fourier Convolution. It reaches a 13.89% accuracy difference in the Retrieval task involving
two 4k sequences. Fourier Convolution also works well on shorter sequence tasks (e.g., Image and
Pathfinder) and brings a 6.12% accuracy difference.

5 CONCLUDING REMARKS

We propose SKTformer, a robust and efficient transformer architecture for modeling long sequences
with a good balance between feature preserving and noise resistance. It aggregates a Fourier
convolutional stem smoothing information among tokens and a Skeleton-decomposition-inspired
efficient self-attention. In particular, our proposed Skeleton Attention directly samples the columns
and rows of the token matrix. Such a design increases the model’s robustness and gives us a positive
near-linear complexity side effect. We conduct a thorough theoretical and experimental analysis of
the proposed model and show its effectiveness. Lastly, extensive experiments show that the proposed
model achieves the best performance on Long Range Arena compared to all transformer-based
baselines and a state-of-art performance in long-term time series forecasting tasks.

Table 5: Average Accuracy on Image task (CIFAR-10 dataset) in Long Range Arena with noise
injections. The relative performance changes are reported in parentheses.

Noise level 0 2 4 8

Transformer 41.39 40.29 (-2.82%) 28.56 (-31.12%) 28.12 (-32.18%)
Linformer 38.43 37.99 (-1.49%) 37.04 (-3.95%) 36.65 (-4.97%)
Reformer 38.04 37.64 (-1.12%) 35.26 (-7.37%) 34.88 (-8.37%)
Nystroformer 41.52 40.89 (-1.66%) 38.39 (-7.67%) 37.84 (-8.99%)
Performer 42.66 41.95 (-1.93%) 39.61 (-7.40%) 38.86 (-9.15%)
SKTformer 57.47 57.06 (-0.82%) 55.32 (-3.84%) 54.70 (-4.92%)

9

Under review as a conference paper at ICLR 2023

Table 6: Ablation experiments. The SKT (r, s1, s2 = 8) is used as baseline. The differences by
removing each component from the baseline model are reported.

Model LisOps Text Retrieval Image Pathfinder Average

Baseline 38.30 69.27 83.26 53.90 75.82 64.11

Fourier Conv. -0.47 -4.04 -13.98 -5.64 -6.59 -6.14
Conv Stem -0.13 -0.55 -1.51 -1.76 -9.47 -0.88
Column Attn. -1.16 -8.00 -9.16 -10.63 -12.45 -8.28
Row Attn. -0.38 -1.92 -1.97 -2.64 -2.56 -1.89

One limitation of the current SKTformer is that we need to use both FFT and IFFT in a sequential
manner, which is potentially slower than the existing Fourier-based Transformers (e.g., (Lee-Thorp
et al., 2021)) that only involve the FFT. As our primary goal using Fourier convolution is to smooth
the token matrix and reduce the incoherent parameter, we can use the Random Fourier Transformation
(Ailon & Chazelle, 2006) to modify SKTformer with only FFT. Another limitation is that the size of
L matrix in the Fourier Convolution part is the same as the input sequence. On a longer sequence,
L will contain more learnable parameters that make the model easier to overfit. We may introduce
low-rankness or use a more sophisticated design, such as (Gu et al., 2021b), to tackle this issue in the
future.

REFERENCES

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pp. 557–563, 2006.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
image transformers. Advances in neural information processing systems, 34, 2021.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

HanQin Cai, Keaton Hamm, Longxiu Huang, and Deanna Needell. Robust CUR decomposition:
Theory and imaging applications. SIAM Journal on Imaging Sciences, 14(4):1472–1503, 2021.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics, 9(6):717–772, 2009.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. Advances in Neural Information Processing Systems, 34, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Jiawei Chiu and Laurent Demanet. Sublinear randomized algorithms for skeleton decompositions.
SIAM Journal on Matrix Analysis and Applications, 34(3):1361–1383, 2013.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

Sankalan Pal Chowdhury, Adamos Solomou, Avinava Dubey, and Mrinmaya Sachan. On learning
the transformer kernel. arXiv preprint arXiv:2110.08323, 2021.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

10

Under review as a conference paper at ICLR 2023

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Relative-error CUR matrix decom-
positions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in Neural Information Processing Systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021b.

Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shi-Min Hu. Visual
attention network. arXiv preprint arXiv:2202.09741, 2022.

Keaton Hamm and Longxiu Huang. Perturbations of CUR decompositions. SIAM Journal on Matrix
Analysis and Applications, 42(1):351–375, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, 2020a.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020b.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pp. 95–104, 2018.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In Advances in Neural Information Processing Systems, volume 32, 2019.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

11

Under review as a conference paper at ICLR 2023

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettle-
moyer. Luna: Linear unified nested attention. Advances in Neural Information Processing Systems,
34, 2021.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts: International conference on learning representations (iclr2014), cbls, april 2014. In 2nd
International Conference on Learning Representations, ICLR 2014, 2014.

Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. Fmmformer: Efficient
and flexible transformer via decomposed near-field and far-field attention. Advances in Neural
Information Processing Systems, 34, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International Conference on Machine Learning, pp. 4055–4064.
PMLR, 2018.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Conference
on Learning Representations, 2021.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Chao-Hong Tan, Qian Chen, Wen Wang, Qinglin Zhang, Siqi Zheng, and Zhen-Hua Ling. Ponet:
Pooling network for efficient token mixing in long sequences. arXiv preprint arXiv:2110.02442,
2021.

Y Tay, D Bahri, D Metzler, D Juan, Z Zhao, and C Zheng. Synthesizer: Rethinking self-attention in
transformer models. arxiv 2020. arXiv preprint arXiv:2005.00743, 2020a.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020b.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020c.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, and Rong Jin.
Scaled relu matters for training vision transformers. arXiv preprint arXiv:2109.03810, 2021.

12

Under review as a conference paper at ICLR 2023

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin, Zihan Liu, and Pascale Fung. Lightweight
and efficient end-to-end speech recognition using low-rank transformer. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6144–
6148. IEEE, 2020.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pp. 101–112, 2021.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 14138–14148, 2021.

Jiehui Xu, Jianmin Wang, Mingsheng Long, et al. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34, 2021.

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for visual
recognition. arXiv preprint arXiv:2106.13112, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115, 2021a.

Jingkai Zhou, Pichao Wang, Fan Wang, Qiong Liu, Hao Li, and Rong Jin. Elsa: Enhanced local
self-attention for vision transformer. arXiv preprint arXiv:2112.12786, 2021b.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting. In 39th International
Conference on Machine Learning (ICML), 2022.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34, 2021.

Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention for
sequences. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3801–3815, 2021.

13

Under review as a conference paper at ICLR 2023

Supplementary Material for
SKTformer: An Efficient Skeleton Transformer

for Long Sequence Data

A ALGORITHMS

Algorithm 1 Skeleton Attention

class Skeleton_Attention(nn.Module):
def __init__(self, num_head = 2, head_dim = 32,seq_len, left_rank = 8,right_rank = 8,

dropout = 0.1):
super(Skeleton_Attention, self).__init__()
self.num_head = num_head
self.head_dim = head_dim
self.seq_len = seq_len
self.left_rank = left_rank
self.right_rank = right_rank

self.ln_1 = nn.LayerNorm(self.num_head * self.head_dim)
self.ln_2 = nn.LayerNorm(self.num_head * self.head_dim)

self.drop_attn = torch.nn.Dropout(p=dropout)

self.index_set_right = torch.randperm(self.head_dim)
self.index_set_right = self.index_set_right[:self.right_rank]

self.index_set_left = torch.randperm(self.seq_len)
self.index_set_left = self.index_set_left[:self.left_rank]

def combine_heads(self, X):
X = X.transpose(1, 2)
X = X.reshape(X.size(0), X.size(1), self.num_head * self.head_dim)
return X

def split_heads(self, X):
X = X.reshape(X.size(0), X.size(1), self.num_head, self.head_dim)
X = X.transpose(1, 2)
return X

def forward(self,Q, K, V):
Row Attention
if self.left_rank <= self.seq_len:

K1 = K[:,:,self.index_set_left,:]
V1 = V[:,:,self.index_set_left,:]

else:
K1 = K
V1 = V

dots = Q @ K1.transpose(-1,-2)
dots = dots / math.sqrt(self.head_dim)
attn = nn.functional.softmax(dots,dim=-1)
attn = self.drop_attn(attn)

Column Attention
Q2 = Q.transpose(-1,-2)
if self.right_rank <= self.head_dim:

K2 = K[:,:,:,self.index_set_right]
V2 = V[:,:,:,self.index_set_right]

else:
K2 = K
V2 = V

dots_r = Q2 @ K2
dots_r = dots_r / math.sqrt(self.seq_len)
attn_r = nn.functional.softmax(dots_r,dim=-1).transpose(-1,-2)
attn_r = self.drop_attn(attn_r)

X = self.split_heads(self.ln_1(self.combine_heads(torch.matmul(attn,V1))))/2 + self.
split_heads(self.ln_2(self.combine_heads(torch.matmul(V2,attn_r))))/2

return X

14

Under review as a conference paper at ICLR 2023

Algorithm 2 Smoother component

class Smoother(nn.Module):

def __init__(self, hidden_size, seq_len, dropout = 0.5, num_head = 2,transformer_dim =
64, fold = 1):

super(Smoother, self).__init__()

self.hidden_size = hidden_size
self.seq_len = seq_len
self.dropout = dropout
self.num_head = num_head
self.dim = transformer_dim
self.fold = fold

self.weights_fft = nn.Parameter(torch.empty(self.seq_len//2+1, self.hidden_size,2))
nn.init.kaiming_normal_(self.weights_fft, mode=’fan_in’, nonlinearity=’relu’)

self.tiny_conv_linear = torch.nn.Conv1d(in_channels = self.hidden_size*2 ,
out_channels = self.hidden_size, kernel_size = 3, padding= 1, groups = 1)

self.dropout = torch.nn.Dropout(p=self.dropout)
self.bn_1 = nn.BatchNorm1d(self.seq_len)

def forward(self, x):

Compute Segment Average
B,S,H = x.shape
u = x.reshape(B,S,self.fold,H//self.fold)
u = torch.mean(u,dim = -1)

Fourier Convolution
fft_u = fft.rfft(u, n = self.seq_len, axis = -2)
fft_u = torch.view_as_real(fft_u)
fft_u = fft_u.repeat(1,1,H//self.fold,1)
self.weight_used = self.weights_fft.unsqueeze(0)
temp_real = fft_u[...,0]*self.weight_used[...,0] - fft_u[...,1]*self.weight_used

[...,1]
temp_imag = fft_u[...,0]*self.weight_used[...,1] + fft_u[...,1]*self.weight_used

[...,0]
out_ft = torch.cat([temp_real.unsqueeze(-1),temp_imag.unsqueeze(-1)],dim = -1)
out_ft = torch.view_as_complex(out_ft)
m = fft.irfft(out_ft, n = self.seq_len, axis = -2)

Convolution Stem
input_h = torch.cat((m, x), dim = -1)
h = self.tiny_conv_linear(input_h.permute(0,2,1)).permute(0,2,1)
h = self.dropout(F.relu(self.bn_1(h)))

return h

Algorithm 3 pseudo code for Time-Series Forecasting

def forward(self, x_in):
B1,H1,C1 = x_in.shape
for i in range(len(self.encoder)):

attn_layer = self.encoder[i]
#standardize the input data
if i == 0:

tmp_mean = torch.mean(x_in[:,:,:],dim = 1,keepdim = True)
tmp_std = torch.sqrt(torch.var(x_in[:,:,:],dim = 1,keepdim = True)+1e0)
x_in = (x_in - tmp_mean)/(tmp_std)

enc_out1 = self.enc_embedding(x_in)

enc_out1= attn_layer(enc_out1) + enc_out1

#decoder via Fourier Extrapolation
dec_out = self.fourierExtrapolation(post(enc_out1))
output = (dec_out.reshape(B1,-1,C1))*(tmp_std)+tmp_mean
return output

B PROOF OF PROPOSITION 1

A similar result, under a slightly different setting, can be found in (Cai et al., 2021). For the
completeness of the paper, we provide a proof here. We resolve the sampling strategy. We consider a
clear rank-r matrix X ∈ Rn×d, i.e., no additive noise and the rank is exact. Without loss of generality,
we assume n ≥ d. Provided X is µ-incoherent, by (Chiu & Demanet, 2013, Theorem 1.1), Skeleton

15

Under review as a conference paper at ICLR 2023

Algorithm 4 Fourier Extrapolation

class fourierExtrapolation(nn.Module):
def __init__(self,inputSize,n_harm = 8,n_predict = 96):

super().__init__()
self.n = inputSize
self.n_harm = n_harm
self.f = torch.fft.fftfreq(self.n)
self.indexes = list(range(self.n))

sort indexes by frequency, lower -> higher
self.indexes.sort(key = lambda i: torch.absolute(self.f[i]))
self.indexes = self.indexes[:1 + self.n_harm * 2]

self.n_predict = n_predict

compute init phase
self.t = torch.arange(0, self.n + self.n_predict)
self.t1 = self.t.unsqueeze(0).unsqueeze(-1).float().to(’cuda’)
self.f = self.f.unsqueeze(0).unsqueeze(-1).to(’cuda’)
self.t = self.t.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)to(’cuda’)
self.g = self.f[:,self.indexes,:].permute(0,2,1).unsqueeze(1)
self.phase_init = 2 * 3.1415 * self.g * self.t

def fourierExtrapolation(self,x):

x in frequency domain
x_freqdom = torch.fft.fft(x,dim = -2)
x_freqdom = torch.view_as_real(x_freqdom)
select importance frequencies
x_freqdom = x_freqdom[:,self.indexes ,:,:]
x_freqdom = torch.view_as_complex(x_freqdom)
ampli = torch.absolute(x_freqdom) / self.n # amplitude
phase = torch.angle(x_freqdom) # phase

ampli = ampli.permute(0,2,1).unsqueeze(1)
phase = phase.permute(0,2,1).unsqueeze(1)

self.restored_sig = ampli * torch.cos(self.phase_init + phase)

return torch.sum(self.restored_sig,dim = -1)

approximation recovers X exactly, i.e.,

X = CUR,

with probability at least 1−O(n−2) if we uniformly sample O(µr log n) rows and columns to form
the submatrices C and R.

Thirdly, we resolve the error bound estimation. For the noisy matrix X + E, we directly apply
(Hamm & Huang, 2021, Corollary 4.3). Thus, we have

∥X − ĈÛR̂∥ ≤ O

(√
nd

lC lR

)
∥E∥,

where Ĉ and R̂ are sampled from the noisy matrix, Û is the pseudo-inverse of their intersection, and
lC (resp. lR) is the number of columns (resp. rows) being sampled in Ĉ (resp. R̂).

Note that this error bound assumes good column and row sampling, i.e., the clear submatrices
corresponding to Ĉ and R̂ can recover X exactly. Therefore, by combining the above two results,
we show the claim in Proposition 1.

C PROOF OF PROPOSITION 2

As f(t) is the convolution function of {xt} and {lt}, from the definition of convolution for t =
1, 2, ..., n we have

f(t) =

t∑
i=1

lt+1−ixi

16

Under review as a conference paper at ICLR 2023

and

f(t)− f(t− 1) =

t−1∑
i=1

(li+1 − li)xi︸ ︷︷ ︸
:=(at)

+l1xt. (9)

By Hoffelding inequality, term (a) satisfies the following inequality with ε > 0.

P(|(at)| ≥ ε) = P

(∣∣∣∣∣
t−1∑
i=1

(li+1 − li)xi

∣∣∣∣∣ ≥ ε

)
≤ exp

(
− 2ε2

(t− 1)b2max · 1
n2σ2

)
(10)

Combine (10) with the union bound over t = 1, 2, ..., n and the following (10) holds with probability
at least 1− δ/2:

max
t

|(at)| ≤ bmaxσ

√
1

2n
log

(
2n

δ

)
(11)

Similarly, with probability 1− δ/2, we have

max
t

|l1xt| ≤ amaxσ

√
1

2n2
log

(
2

δ

)
. (12)

Therefore, via (11) and (12), with probability at least 1− δ, we have

max
t

|f(t)− f(t− 1)| ≤ bmaxσ

√
1

2n
log

(
2n

δ

)
+ amaxσ

√
1

2n2
log

(
2

δ

)
(13)

D PROOF OF PROPOSITION 3

The proof contains two parts. In the first part, we view the data sequence as a function of index t and
construct the coefficients and orthogonal polynomials for function approximation. In the second part,
we show such coefficients can be computed with Fourier convolution i.e. (5)).

Function Approximation. We reformulate the matrix XS as follow:

XS = [x̄1e x̄2e · · · x̄re] ,

where e ∈ R1×s is the one vector and x̄i ∈ Rn×1 is the average from (s(i− 1) + 1)-th column to
(si)-th column of X .

Next, we focus on vector x̄j and view its t-th element as the output of a function hj(t) = x̄jt. Via
analysis in (Gu et al., 2020, Appendixes C and D), we can form an approximation on hj(t) as follow:

hj
[x≤t](x) ≈

∑
i=1

cji (t)gi(x), (14)

where {gi} is a sequence of orthogonal polynomial and [cj1(t), c
j
2(t), ..., c

j
s(t)] := cjt ∈ R1×s satisfy

d

dt
c(t)j =

1

t
c(t)jA0 +

1

ts log n
h(t)b0 (15)

where A0 ∈ Rs×s and b0 ∈ R1×s are predefined matrix and vector respectively. Equation (15) is
corresponding to the case with λn = s log n in (Gu et al., 2020).

We then use Forward Euler approach to discretize it:

ĉ(t)j = ĉ(t− 1)j(
1

t
I +

1

t
A0) +

1

ts log n
h(t)b0, . (16)

17

Under review as a conference paper at ICLR 2023

Via standard error analysis of Forward Euler approach, we have

c(t+ 1)j = c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +

d2

dt2
c(t)j |t=ξ

= c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +

1

ξs log n
h(ξ)′b0

= c(t)j +
1

t
c(t)jA0 +

1

ts log n
h(t)b0 +O

(
1

ts log n

)
,

where ξ ∈ [t, t+ 1].

It implies that for t = 1, 2, ..., n,

∥ĉ(t)j − c(t)j∥ ≤ O
(

log t

s log n

)
. (17)

Combine (17) with the similar proof procedure in (Gu et al., 2020, Proposition 6), if hj(x) is quadratic
spline interpolation on {x̄jt}, we obtain

∥x̄jt −
s∑

i=1

ĉi(t)gi(x)∥ ≤ O
(
t log n/

√
s
)
= O

(
t log n

√
r

d

)
. (18)

The desirable result in Proposition 3 is obtained by repeatedly using (18) with j = 1, 2, ..., r.

Coefficients via Fourier Convolution. The remaining task is to show that {ĉ(t)j} can be generated
via Fourier convolution. To simplify the notation, we denote A = 1

t I + 1
tA0 and b = 1

t lognb0 and
(16) becomes

ĉ(t)j = ĉ(t− 1)jA+ h(t)b. (19)

We then repeatedly use (19) from t = 1, 2, ... and one may verify

ĉjt =

t−1∑
i=1

bAt−ih(i) =

t−1∑
i=1

bAt−ix̄ji

⇒ Cj = Āj ∗ (x̄je), (20)

where

Cj =


ĉj1
ĉj2
...
ĉjn

 ∈ Rn×s, and Āj =


b
bA

...
bAn−1

 ∈ Rn×s. (21)

Next we repeatedly use (20) from j = 1, 2, .., r, and one has[
C1 C2 · · · Cr

]︸ ︷︷ ︸
:=Xsmooth

=
[
Ā1 Ā2 · · · Ār

]︸ ︷︷ ︸
:=L0

∗ [x̄1e x̄2e · · · x̄re]︸ ︷︷ ︸
=XS

⇒ Xsmooth = L0 ∗XS

⇒ Xsmooth = F−1 (F(L0) · F(XS))

⇒ Xsmooth = F−1 (L · F(XS)) ,

where we use the fact that L is constructed in frequency domain in Fourier convolution in Eq. (5).

E MODEL PARAMETERS IMPACT

SKTformer introduces three extra hyperparameters, r, s1 and s2. We test the influence when varying
them and report results in Table 7. We use SKTformer (r, s1, s2 = 8) as the baseline model and other
parameters are reported in Table 10 in Appendix F.

18

Under review as a conference paper at ICLR 2023

Table 7: Experimental results on varying r, s1 and s2. Best result is in boldface and second best is
underlined. And Ablation experiments for each components

(a) Experimental results on varying r parameter in
smoothing component.

r LisOps Text Retrieval Image Pathfinder Average

1 37.30 65.25 78.65 51.36 71.23 60.76
8 38.30 69.27 83.26 53.90 75.82 64.11
16 38.62 70.02 83.21 54.20 76.15 64.44
32 38.19 69.27 82.05 53.73 75.58 63.76
64 37.89 69.73 81.79 51.28 75.52 63.24

(b) Experimental results on varying s1 parameter
in Row Attention.

s1 LisOps Text Retrieval Image Pathfinder Average

8 38.30 69.27 83.26 53.90 75.82 64.11
32 38.44 70.85 83.41 54.92 77.97 65.12
64 37.88 70.53 83.02 51.22 78.02 64.33
128 37.33 69.24 81.58 49.08 78.12 63.07
256 37.02 65.72 79.30 46.24 78.14 61.29

(c) Experimental results on varying s2 param-
eter in Column Attention.

s2 LisOps Text Retrieval Image Pathfinder Average

1 37.32 55.28 57.37 40.97 66.25 51.44
4 37.82 52.05 72.58 46.74 73.17 57.47
8 38.30 69.27 83.26 53.90 75.82 64.11
16 37.77 70.24 83.42 54.11 77.92 64.73
32 37.62 68.32 80.11 51.66 78.18 62.98

(d) The SKT (r, s1, s2 = 8) is used as baseline.
The differences by removing each component from
the baseline model are reported.

Model LisOps Text Retrieval Image Pathfinder Average

Baseline 38.30 69.27 83.26 53.90 75.82 64.11

Fourier Conv. -0.47 -4.04 -13.98 -5.64 -6.59 -6.14
Conv Stem -0.13 -0.55 -1.51 -1.76 -9.47 -0.88
Column Attn. -1.16 -8.00 -9.16 -10.63 -12.45 -8.28
Row Attn. -0.38 -1.92 -1.97 -2.64 -2.56 -1.89

Influence of r in Fourier Convolution. The r parameter is used to determine the number of
segment-averages to compute in (5). The smaller r leads the matrix with more duplicate columns,
and more details information is lost. On the other hand, according to Proposition 3, the larger r
would potently decrease the memorization ability and yield a high approximation error. In Table 7a,
the best performance is observed when r = 8 or r = 16. For the case with r = 1, the token matrix
is smoothed to rank one matrix, and the average accuracy drops 3.55 from the best setting. When
the r value goes larger than 16, the accuracy in all experiments slightly decreases. We believe it is
due to the over-fitting since the smoothed token matrix contains more flexibility and more irrelevant
information training dataset is learned.

Influence of sample number s1 in Row Attention. In Row Attention part, we randomly sample s1
from key and value tokens. Table 7b reports that the optimal sampling amounts are different among
tasks. In Pathfinder task, the optimal result is associated with s1 = 256, while the best performance
of other tasks the reached with s1 = 32. Pathfinder task requires learning extreme long-range
dependence (the connectivity between two circles far away from each other). The lack of enough
tokens leads to inaccurate long-range dependence estimation and damages the final results. For the
tasks like Image or Retrieval, the modest range dependence may already be enough to get promising
performance, and we thus could use fewer token samples.

Influence of sample number s2 in Column Attention. In Column Attention, s2 columns are
selected. The experiment results are shown in Table 7c. When setting s2 = 1, average performance
decreases by 13.24%. Similar behavior is also observed in the first row of Table 7a with r = 1. The
information loss due to lack of rankness limits the final performance. In an average sense, s2 = 16
gives the best result, and further increasing in s2 slightly harms the accuracy in all tasks except
Pathfinder.

F EXPERIMENT CONFIGURATIONS

In this section, we report the configurations for the experiments in Sections 4.1, 4.2, and 4.3.

19

Under review as a conference paper at ICLR 2023

Table 8: Experiment Configuration of SKTformer (r, s1, s2 = 8).

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 5 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,8,8 8,8,8 8,8,8
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 9: Experiment Configuration of SKTformer (best).

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 10 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 1-2 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,32,32 8,16,16 8,128,32
dropout in embedding 0 0.5 0.1 0.5 0.1
dropout in attention 0 0.1 0.1 0.1 0.1
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 10: Experiment Configuration for Model Parameters Impact.

Parameters ListOps Text Retrieval Image Pathfinder

Epoch 5 30 15 60 100
Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

Table 11: Experiment Configuration for Ablation.

Parameters ListOps Text Retrieval Image Pathfinder

Learning Rate 1e-4 1e-4 1e-4 1e-3 1e-4
Weight Decay 0 1e-2 1e-2 1e-2 1e-2
Batch Size 32 32 32 256 256
r, s1, s2 8,8,8 8,8,8 8,8,8 8,8,8 8,8,8
dropout in embedding 0 0.5 0.1 0.1 0
dropout in attention 0 0.1 0.1 0.1 0
dropout in smoother 0 0.5 0.1 0.5 0.5

G ADDITIONAL RESULTS ON LRA

We have already provided the average of 5 runs with different random seeds in Table 1. Here we also
provide the standard deviations for these experiments in Table 12.

H DATASET AND IMPLEMENTATION DETAILS

In this subsection, we summarize the details of the datasets used in this paper as follows:

20

Under review as a conference paper at ICLR 2023

Table 12: Accuracy on Long Range Arena (LRA) with standard errors shown in parenthesis. All
results are averages of 5 runs with different random seeds.

Model LisOps Text Retrieval Image Pathfinder

SKTformer (r, s1, s2 = 8) 38.30 (0.40) 69.27 (0.83) 83.26 (0.45) 53.90 (1.54) 75.82 (0.97)
SKTformer (best) 39.15 (0.48) 71.58 (0.95) 83.73 (0.61) 57.73 (1.83) 78.20 (1.32)

Table 13: Details of time series benchmark datasets.

DATASET LENGTH DIMENSION FREQUENCY

ETTM2 69680 8 15 MIN
EXCHANGE 7588 9 1 DAY
WEATHER 52696 22 10 MIN
ELECTRICITY 26304 322 1H
ILI 966 8 7 DAYS
TRAFFIC 17544 863 1H

LRA datasets: ListOps(2K length mathematical expression task which investigates the parsing
ability); Text (up to 4K byte/character-level document classification task that tests capacity in
character compositionality); Retrieval (byte/character-level document matching task, which exams
the information compression ability with two 4K length sequence); Image (pixel-wise sequence
image classification based on the CIFAR-10 dataset); Pathfinder (long-range spatial dependency
identification task. The input images contain two small points/circles and dash-line paths. The model
needs to identify whether two points/circles are connected);The LRA has several desirable advantages
that made us focus on it as the evaluation benchmark: generality (only requires the encoder part);
simplicity (data augmentation and pretraining are out of scope); challenging long inputs (difficulty
enough and room to improve); diversity aspects (tasks covering math, language, image, and spatial
modeling); and lightweight (run with low resource requirement).

Time series datasets:1) ETT (Zhou et al., 2021a) dataset contains two sub-dataset: ETT1 and ETT2,
collected from two separated counties. Each of them has two versions of sampling resolutions (15min
& 1h). ETT dataset contains multiple time series of electrical loads and one time sequence of oil
temperature. 2) Electricity3 dataset contains the electricity consumption for more than three hundred
clients with each column corresponding to one client. 3) Exchange (Lai et al., 2018) dataset contains
the current exchange of eight countries. 4) Traffic4 dataset contains the occupation rate of freeway
systems in California, USA. 5) Weather5 dataset contains 21 meteorological indicators for a range
of one year in Germany. 6) Illness6 dataset contains the influenza-like illness patients in the United
States. Table 13 summarizes all the features for the six benchmark datasets. They are all split into
the training set, validation set and test set by the ratio of 7:1:2 during modeling.

GLUE datasets: The GLUE benchmark covers various natural language understanding tasks and is
widely used in evaluating transfering ability. The tasks can be devided in to two types, single-sentence
tasks (SST-2 and CoLA), and sentence-pair tasks (MNLI, QQP,QNLI,STS-B,MRPC,RTE). Following
the same settings in (Devlin et al., 2018), we exclude WNLI task.

I EXPERIMENTS ON THE SMOOTHNESS EFFECT OF FOURIER CONVOLUTION

In this section, we verify Fourier convolution component in the Smoother block can reduce the
incoherence value in the early training stage. We use SKTformer with (r, s1, s2 = 8) as the test
model and test on an NLP dataset: Text, and a vision dataset: Pathfinder. We compute the µ-
incoherence value 7 of the token matrix before and after the Fourier convolution (denoted as µX

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
7Incoherence is defined by Definition 1 in Appendix B.

21

Under review as a conference paper at ICLR 2023

and µXsmooth , respectively) for each samples in the validation dataset. Since we do not explicitly
force the token matrix to be low-rank required by Definition 1, we report the incoherence value for
different rankness settings (rank = 16 and rank = 32) approximately, and the mean and standard
deviation of incoherence value can be found in Table 14. The average incoherence value reduced
30% after the Fourier convolution in both datasets. Moreover, We observe that the standard deviation
significantly decreases, which suggests the Fourier convolution may also potentially stabilize the
training procedure.

Table 14: The average incoherence parameters after 100 training steps with standard errors shown in
the parenthesis.

Dataset µX (rank = 32) µXsmooth (rank = 32) µX (rank = 16) µXsmooth (rank = 16)

Text 2.75 (0.027) 2.05 (0.007) 3.98 (0.046) 3.23 (0.038)
Pathfinder 3.83 (0.221) 1.99 (0.001) 4.88 (0.264) 3.48 (0.001)

J ILLUSTRATION ON EFFECT OF THE SMOOTHER AND SKELETON ATTENTION
IN TOKEN MATRIX

In this section, an illustration of the Smoother and Skeleton Attention part is shown in Figure 2. We
smooth the input token matrix to ensure the sampling in rows and columns containing more local
and/or global information. Thus, sampling several rows and columns from the smoothed token matrix
can be more effective than the samples from the original token matrix.

Figure 2: Illustration on effect of the Smoother and Skeleton Attention on Token Matrix.

K TRANSFER LEARNING

Table 15: The training configurations for Pretraining and GLUE tasks

Pre-training GLUE

Max Steps 1000K -
Max Epochs - [4,20]
Learning Rate 1e-4 [5e-5,1e-4]
Batch Size 256 [16,32]
Warm-up Steps 5000 -
Sequence Length 512 128
Learning Rate Decay - Linear
Clip - 1
Dropout - 0.1

22

Under review as a conference paper at ICLR 2023

L EXTRA ALGORITHMS FOR LONGTERM TIMESERIES FORECASTING

Table 16: multivariate long-term series forecasting results on six datasets with input length of
96 and prediction length O ∈ {96, 192, 336, 720} (For ILI dataset, we set prediction length O ∈
{24, 36, 48, 60}) with input length 60. A lower MSE indicates better performance. All experiments
are repeated 5 times.

Methods SKTformer FEDformer Autoformer S4 Informer LogTrans Reformer Performer Nystroformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.192 0.283 0.203 0.287 0.255 0.339 0.705 0.690 0.365 0.453 0.768 0.642 0.658 0.619 2.520 1.220 0.617 0.600
192 0.255 0.324 0.269 0.328 0.281 0.340 0.924 0.692 0.533 0.563 0.989 0.757 1.078 0.827 0.949 0.745 0.856 0.706
336 0.324 0.364 0.325 0.366 0.339 0.372 1.364 0.877 1.363 0.887 1.334 0.872 1.549 0.972 1.701 1.001 1.394 0.887
720 0.431 0.433 0.421 0.415 0.422 0.419 0.877 1.074 3.379 1.338 3.048 1.328 2.631 1.242 2.531 1.228 2.466 1.185

E
le

ct
ri

ci
ty 96 0.218 0.332 0.183 0.297 0.201 0.317 0.304 0.405 0.274 0.368 0.258 0.357 0.312 0.402 0.281 0.375 0.273 0.364

192 0.259 0.361 0.195 0.308 0.222 0.334 0.313 0.413 0.296 0.386 0.266 0.368 0.348 0.433 0.283 0.387 0.282 0.370
336 0.267 0.367 0.212 0.313 0.231 0.338 0.290 0.381 0.300 0.394 0.280 0.380 0.350 0.433 0.301 0.387 0.302 0.387
720 0.293 0.385 0.231 0.343 0.254 0.361 0.262 0.344 0.373 0.439 0.283 0.376 0.340 0.420 0.301 0.387 0.292 0.373

E
xc

ha
ng

e 96 0.086 0.204 0.139 0.276 0.197 0.323 1.292 0.849 0.847 0.752 0.968 0.812 1.065 0.829 0.801 0.729 0.801 0.729
192 0.188 0.292 0.256 0.369 0.300 0.369 1.631 0.968 1.204 0.895 1.040 0.851 1.188 0.906 1.284 0.925 1.284 0.925
336 0.356 0.433 0.426 0.464 0.509 0.524 2.225 1.145 1.672 1.036 1.659 1.081 1.357 0.976 1.408 0.964 1.408 0.964
720 0.727 0.669 1.090 0.800 1.447 0.941 2.521 1.245 2.478 1.310 1.941 1.127 1.510 1.016 1.654 1.017 1.654 1.017

Tr
af

fic

96 0.592 0.352 0.562 0.349 0.613 0.388 0.824 0.514 0.719 0.391 0.684 0.384 0.732 0.423 0.709 0.391 0.709 0.400
192 0.583 0.343 0.562 0.346 0.616 0.382 1.106 0.672 0.696 0.379 0.685 0.390 0.733 0.420 0.681 0.369 1.127 0.611
336 0.598 0.346 0.570 0.323 0.622 0.337 1.084 0.627 0.777 0.420 0.733 0.408 0.742 0.420 0.682 0.366 0.867 0.477
720 0.641 0.397 0.596 0.368 0.660 0.408 1.536 0.845 0.864 0.472 0.717 0.396 0.755 0.423 0.675 0.360 0.686 0.369

W
ea

th
er 96 0.182 0.262 0.217 0.296 0.266 0.336 0.406 0.444 0.300 0.384 0.458 0.490 0.689 0.596 0.597 0.598 0.701 0.612

192 0.228 0.306 0.276 0.336 0.307 0.367 0.525 0.527 0.598 0.544 0.658 0.589 0.752 0.638 0.606 0.587 0.655 0.604
336 0.295 0.355 0.339 0.380 0.359 0.395 0.531 0.539 0.578 0.523 0.797 0.652 0.639 0.596 0.731 0.646 0.746 0.642
720 0.383 0.418 0.403 0.428 0.578 0.578 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.837 0.682 0.961 0.751

IL
I

24 2.185 0.926 2.203 0.963 3.483 1.287 4.631 1.484 5.764 1.677 4.480 1.444 4.400 1.382 3.937 1.298 4.378 1.364
36 2.155 0.937 2.272 0.976 3.103 1.148 4.123 1.348 4.755 1.467 4.799 1.467 4.783 1.448 4.007 1.329 5.332 1.554
48 2.333 0.954 2.209 0.981 2.669 1.085 4.066 1.36 4.763 1.469 4.800 1.468 4.832 1.465 4.575 1.451 5.575 1.614
60 2.018 0.958 2.545 1.061 2.770 1.125 4.278 1.41 5.264 1.564 5.278 1.560 4.882 1.483 4.020 1.366 4.742 1.469

23

	Introduction
	Related Work
	SKTformer
	Skeleton Attention
	Smoother Component
	Fourier Convolution
	Convolution Stem

	Experiments
	Long-Range Arena
	Long-Term Forecasting Tasks for Time Series
	Transfer Learning in GLUE Tasks
	Training Speed and Peak Memory Usage
	Robustness Analysis
	Ablation Study

	Concluding Remarks
	Algorithms
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Model Parameters Impact
	Experiment Configurations
	Additional Results on LRA
	Dataset and Implementation Details
	Experiments on the Smoothness Effect of Fourier Convolution
	Illustration on Effect of the Smoother and Skeleton Attention in Token Matrix
	Transfer Learning
	Extra algorithms for Longterm timeseries forecasting

