

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERPRETABLE TIME SERIES ANALYSIS WITH GUM- BEL DYNAMICS

Anonymous authors

Paper under double-blind review

ABSTRACT

Switching dynamical systems can model complicated time series data while maintaining interpretability by inferring a finite set of dynamics primitives and explaining different portions of the observed time series with one of these primitives. However, due to the discrete nature of this set, such models struggle to capture smooth, variable-speed transitions, as well as stochastic mixtures of overlapping states (e.g., non-instantaneous state transitions), and the inferred dynamics often display spurious rapid switching on real-world datasets. Here, we propose the Gumbel Dynamical Model (GDM). First, by introducing a continuous relaxation of discrete states and a different noise model defined on the relaxed-discrete state space via the Gumbel distribution, GDM expands the set of available state dynamics, allowing the model to approximate smoother and non-stationary ground-truth dynamics more faithfully. **Breaking from established literature, this new class directly links states to observations and does not blur latent dynamics with Gaussian noise.** Second, the relaxation makes the model fully differentiable, enabling fast and scalable training with standard gradient descent methods. We validate our approach on standard simulation datasets and highlight its ability to model soft, sticky states and transitions in a stochastic setting. Furthermore, we apply our model to two real-world datasets, demonstrating its ability to infer interpretable states in stochastic time series with multiple dynamics, a setting where traditional methods often fail.

1 INTRODUCTION

Natural behaviors give rise to complex time series data with non-stationary and nonlinear dynamics. Such dynamical phenomena are often well approximated within a temporal neighborhood by a small set of distinct, interpretable motifs (Wiltschko et al., 2015). A family of dynamical system models aim to discover these discrete state transitions in an unsupervised manner. In particular, switching linear dynamical systems (SLDSs) formalize this observation by inferring a decomposition of the complex dynamics into locally linear dynamics primitives (Ackerson & Fu, 1970; Barber, 2006; Linderman et al., 2017; Glaser et al., 2020; Chen et al., 2024). Only one of the dynamics primitives is used to describe the underlying data at any time point, which is defined as the state of the system. The model learns to switch between states to improve accuracy, enabling interpretable explanations of the observations. However, many real-world dynamics display extended, soft, stochastic transitions between states. In such cases, interpretability of SLDS models diminishes. Moreover, switching between discrete states is prone to spurious rapid switching under the influence of complex noise processes across multiple states, a phenomenon commonly observed in real datasets.

More broadly, while desirable for interpretability, discreteness poses challenges in analyzing the physical world. One relevant manifestation is the difficulty of incorporating discrete factors into machine learning models: although gradient descent fuels spectacular successes, obtaining gradient estimates around such discrete factors is inherently problematic. The Gumbel distribution, a member of the extreme value distribution family (Gumbel, 1935; 1941), offers a relaxation to produce “soft discrete” samples, where the approximation is controlled by a temperature parameter (Jang et al., 2016; Maddison et al., 2016). Here, we adopt this approach to propose a dynamical model that approximates switching dynamics, is trained with gradient descent, and offers interpretable characterizations even when the parameter estimates deviate substantially.

054 The Gumbel-soft relaxation of states, the soft transition design of the dynamics, and the efficient
 055 inference algorithms together provide several advantages for analyzing complex time series. First,
 056 the model accommodates systems with mixed states and stochastic transitions. Second, the soft
 057 relaxation reduces spurious rapid switching, leading to more interpretable notions of states. Fi-
 058 nally, the models are fast to train and generalize readily to unseen data. We validate our approach
 059 on benchmark simulations and two real-world datasets; Formula 1 race telemetry data (Schaefer,
 060 2020) and the Caltech Mouse Social Interactions dataset (CalMS21) (Sun et al., 2021). We observe
 061 that our implementation learns faster and produces more interpretable state estimates compared to
 062 competitive benchmarks.

063 1.1 RELATED WORK

064 Our model is related to the family of state-space models, including autoregressive hidden Markov
 065 models (AR-HMMs) and switching linear dynamical systems (SLDSs). AR-HMMs extend standard
 066 HMMs by incorporating autoregressive observations, making them suitable for modeling nonlinear
 067 temporal dependencies in time series (Juang & Rabiner, 1985; Guan et al., 2016). The switching lin-
 068 ear dynamical systems (SLDSs), first proposed by Ackerson & Fu (1970), decompose complex time
 069 series data into sequences of simpler linear dynamics primitives. Linderman et al. (2017) extended
 070 SLDSs to recurrent SLDSs (rSLDSs), allowing discrete state transitions to depend on the continuous
 071 latent state of the system or environment. Glaser et al. (2020) further extended rSLDSs to model
 072 interactions across multiple populations. Dong et al. (2020) studied the recurrent nonlinear SLDS
 073 (rSLNDS) and proposed a collapsed variational inference approach for efficient inference. Ansari
 074 et al. (2021) extended the rSLNDS framework by augmenting the nonlinear continuous dynamics
 075 with explicit-duration variables to model sojourn times for each discrete state. More recently, Hu
 076 et al. (2024) developed a framework that extends rSLDS by introducing a Gaussian Process prior
 077 that allows smooth state switches at the boundaries of linear dynamical regimes.

078 Recent studies have recognized the need for models that preserve interpretability while maintaining a
 079 high level of expressivity. A key idea is decomposing complex time series data into linear dynamical
 080 systems (LDSs). Fraccaro et al. (2017) proposed the Kalman VAE, which combines a variational
 081 auto-encoder with linear Gaussian state-space models and learns a separate dynamics-parameter
 082 network that captures the time-varying weighting of each linear Gaussian state-space model. Mudrik
 083 et al. (2024) decomposed transitions between consecutive time points as a time-varying mixture
 084 of LDSs. Chen et al. (2024) extended this to probabilistic decomposed linear dynamical systems
 085 (p-dLDS), introducing hierarchical random variables that encourage sparse and smooth dynamics
 086 coefficients. While p-dLDS improves dLDS on robustness to noise, it removes the notion of discrete
 087 states and their recurrent relationships with the environment. More recently, TiDHy, a hierarchical
 088 generative model proposed by Abe & Brunton (2025), learns to demix timescales by decomposing
 089 dynamical systems into simultaneous orthogonal LDSs operating at different timescales.

090 The use of the Gumbel-Softmax distribution as a differentiable sampling or reparametrization tool
 091 has been explored to varying degrees by prior works in the literature on switching linear dynamical
 092 systems. Fraccaro et al. (2017) first remarked in its appendix that the dynamics-parameter weights in
 093 KVAE could be approximated as discrete random variables using the Gumbel distribution. Becker-
 094 Ehmk et al. (2019) proposed a differentiable SLDS by replacing the categorical discrete states in
 095 SLDS with a Gumbel-Softmax relaxation to enable gradient flow. Moreover, the Gumbel-Softmax
 096 SNLDS proposed by Dong et al. (2020) as a baseline model uses Gumbel-Softmax relaxation in
 097 the variational posterior as a substitute for marginalizing over discrete states. We discuss a detailed
 098 comparison to these works in Appendix A, and we emphasize that the GDM we propose here is
 099 a dynamical system explicitly driven by Gumbel noise, rather than a soft mixture or an auxiliary
 100 inference trick.

101 GDM is not restricted to the classical SLDS parameterization and can incorporate expressive se-
 102 quence models such as RNNs within its components. Modern architectures—including neural dif-
 103 ferential equations (Chen et al., 2018), S4 (Gu et al., 2021), transformers (Vaswani et al., 2017), and
 104 recurrent deep networks—can achieve remarkable performance in sequence prediction and func-
 105 tion approximation. However, these models are generally not designed to produce switching latent
 106 dynamical primitives and temporal intervals. Combining Gumbel-driven state dynamics with such
 107 architectures, for instance by coupling attention mechanisms or continuous-time models with learn-

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
able state switching structure, offers a promising future direction that could unify the expressiveness of deep sequence models with the interpretability of discrete dynamical structure.

1.2 SUMMARY OF CONTRIBUTIONS

Our contributions can be summarized in the following points.

- We propose a new dynamical system model based on a Gumbel noise model defined over a relaxed-discrete state space. It infers interpretable states from complex time series with non-stationary, nonlinear dynamics.
- We define a differentiable variational posterior directly over states, enabling fast, scalable training with standard gradient descent methods. We optimize with respect to state dynamics end-to-end.
- We design an amortized inference network that parameterizes the variational posterior of the states. Fully amortized variational inference lets the model generalize immediately to unseen examples *without re-optimizing a per-sequence latent trajectory posterior*, in contrast to many existing methods.
- We evaluate performance using metrics that capture both fit and quality of the inferred states. Our model consistently outperforms competitive benchmarks and infers more interpretable state estimates on simulation and complicated real-life datasets.

2 MODEL FORMULATION

2.1 GUMBEL-SOFTMAX TRICK

The Gumbel–Softmax trick Jang et al. (2016); Maddison et al. (2016) provides a continuous relaxation of discrete random variables, enabling gradient-based optimization. Specifically, given logits $\pi \in \mathbb{R}^K$ corresponding to a categorical distribution, the trick proceeds as follows. Let $G(\mu, \beta)$ denote the Gumbel distribution with location μ and scale β Gumbel (1941). We sample Gumbel noises $g_i \sim G(0, 1)$ and form perturbed logits $\pi_i + g_i$. The maximum $\max_i \{\pi_i + g_i\}$ follows a Gumbel distribution with location parameter $\log \sum_j \exp(\pi_j)$ and scale 1, and the index i that maximizes $g_i + \log \pi_i$ follows the categorical distribution. This is known as the Gumbel–Max trick, i.e.,

$$P(i = \arg \max_j (g_j + \pi_j)) = \frac{\exp(\pi_i)}{\sum_j \exp(\pi_j)}$$

Noting that the Gumbel is a member of the extreme-valued distributions family, Gumbel noise amplifies differences among competing logits, effectively sharpening the winner-take-all behavior behind the Gumbel–Max trick. A continuous relaxation replaces the argmax with a tempered softmax, which means that we can reparametrize the original discrete z by a Gumbel–Softmax (GS) distribution, $z \sim \text{softmax}(\frac{\pi+g}{\tau})$, where τ is a temperature controlling the softness of the distribution. As $\tau \rightarrow 0^+$, the softmax converges to the argmax function and the GS distribution converges to the original categorical distribution. Note that the Gumbel–Max trick is invariant to identical shifts in the location parameter μ . On the other hand, the scale parameter β controls the spread of the Gumbel noise added to logits. If we sample Gumbel noises g from $G(0, \beta)$ instead of $G(0, 1)$, the effective softmax becomes $z \sim \text{softmax}(\frac{\pi/\beta+g}{\tau/\beta})$.

For simplicity, we fix the scale parameter $\beta = 1$ and denote this reparameterization as $z \sim \text{GS}(\pi, \tau)$. In this way, we have differentiable $q(z|\phi)$ with continuous GS z sampled from fixed, parameter-free Gumbel noises. In practice, we usually set the temperature τ to a moderate value to ensure smooth gradient flow in training. This also explicitly accounts for uncertainty in state transitions. Because of the extreme-value behavior of the Gumbel distribution, the resulting GS samples remain close to one-hot under moderate temperatures, preserving the semantics of discrete states while still enabling smooth optimization. Gumbel dynamical model, to be introduced in the next section, then leverages this heavy-tailed, winner-dominant behavior as a mechanism for modulating stickiness and competition among latent states, thereby preserving interpretable switching dynamics without enforcing hard discreteness. We leave more background details to Appendix B.

162 2.2 GUMBEL DYNAMICAL MODEL
163164 We propose a new dynamic switching model to accommodate continuous Gumbel-Softmax state
165 samples, the Gumbel Dynamical Model (GDM):
166

167
$$z_1 \sim \text{GS}(\pi_1, \tau), \quad z_t | z_{t-1}, y_{t-1} \sim \text{GS}(\pi_t, \tau), \quad \pi_t = f_\theta(z_{t-1}, Fy_{t-1}), \quad t \geq 2, \quad (1)$$

168
$$y_1 | z_1 \sim \mathcal{N}(z_1 \cdot \mu, R), \quad y_t | y_{t-1}, z_t \sim \mathcal{N}\left(\sum_k z_{t,k} (S_k F y_{t-1} + b_k), R_t\right), \quad t \geq 2.$$

169

170 Here, π_1 is a learnable prior over states, μ is an observation prior, $S_k \in \mathbb{R}^{N \times D}$ captures state-
171 dependent dynamics in the projected observation space, $F \in \mathbb{R}^{D \times N}$ projects observations to a
172 low-dimensional latent space, and R_t models the observation covariance. Importantly, f_θ can be
173 any feed-forward network parameterized by θ . As a simple and interpretable case, f_θ can take a
174 linear recurrent form $f_\theta(z_{t-1}, Fy_{t-1}) = RFy_{t-1} + r$, where R is a learnable $K \times D$ transition
175 matrix and r is a bias vector. To explicitly encourage persistence, a sticky variant mixes the logits
176 with the previous soft state: $\pi_t = (1 - \gamma)(RFy_{t-1} + r) + \gamma z_{t-1}$.
177178 The Markov-1 assumption in the GDM can be relaxed to incorporate longer history. In this
179 case, we parametrize the transition logits with an RNN: let h_t be the hidden state updated as
180 $h_t = g(h_{t-1}, Fy_{t-1})$ where g is a recurrent architecture such as GRU. We then define the transi-
181 tion logits as $\pi_t = \text{FNN}(z_{t-1}, h_t)$. While the state dynamics become non-linear, the soft states
182 z_t still correspond to interpretable dynamical motifs, preserving the interpretability of the model.
183 Unless otherwise stated, we refer to the GDM in its linear sticky form.
184185 In GDM, the observation y_t at time step t feeds back into the state dynamics through the projection
186 matrix F , such that Fy_t recovers the low-dimensional latent trajectory. In fact, GDM can be related
187 to the family of switching linear dynamical systems (SLDS) by introducing a latent projected ob-
188 servation $x_t = \mathbb{E}[Fy_t | z_{\leq t}]$ for $t \geq 1$, where the expectation is taken conditional on all past states.
189 Note that this expectation removes the direct dependence of z_t on y_{t-1} for all time step t . Replacing
190 Fy_{t-1} in the GDM with x_{t-1} yields a two-level GDM system, which is equivalent to

191
$$z_1 \sim \text{GS}(\pi_1, \tau), \quad z_t | z_{t-1}, x_{t-1} \sim \text{GS}(\pi_t, \tau), \quad \pi_t = f(z_{t-1}, x_{t-1}), \quad t \geq 2, \quad (2)$$

192
$$x_1 = z_1 \cdot \mu, \quad x_t | x_{t-1}, z_t = \sum_k z_{t,k} (A_k x_{t-1} + c_k), \quad t \geq 2,$$

193
194
$$y_t | x_t \sim \mathcal{N}(Cx_t, Q_t), \quad t \geq 1.$$

195 Here, the continuous latent trajectory x_t at time t is determined by a mixture of dynamics over the
196 soft states z_t . Importantly, x_t is deterministic given z , and is introduced to facilitate interpretation.
197 At each time t , x_t can be viewed as the expected projection of y_t . Uncertainty in the system is
198 thus captured solely by the Gumbel noise on z and the Gaussian noise on y . Figure 1 illustrates
199 the graphical models of both systems, highlighting their relationships and dependencies. A proof of
200 system equivalence is provided in Appendix C.
201202 More generally, one could allow additional noise in the latent trajectory x by introducing state-
203 dependent covariances. This results in a mixture version of the standard recurrent SLDS with Gumbel
204 state dynamics. Although more expressive in principle, the trajectory dynamics x and the state
205 dynamics z compete to explain the data, and inference becomes more expensive as a flexible pos-
206 terior is required to capture their intricate dependencies. For completeness, we discuss variational
207 inference for this 3-level mixture model in Appendix D.
208209 Finally, we note that this 3-level model is non-identifiable. In particular, the latent trajectory x
210 is only recoverable up to an affine transformation. For GDM, while the projection matrix F and
211 dynamic matrices S_k are identifiable only up to an invertible linear transformation, the remaining
212 parameters are identifiable up to permutations (Balsells-Rodas et al., 2023) in the limiting case
213 $\tau \rightarrow 0$. While establishing a full identifiability theory for the non-limiting case is nontrivial, we note
214 that the introduction of Gumbel noise does not create qualitatively new sources of non-identifiability.
215 We provide a more detailed discussion of these points in Appendix E. Importantly, GDM improves
216 state estimation by removing the trade-off between stochasticity in the continuous latent trajectory
217 x and stochasticity in the switching state z , thereby enhancing interpretability in practice.
218

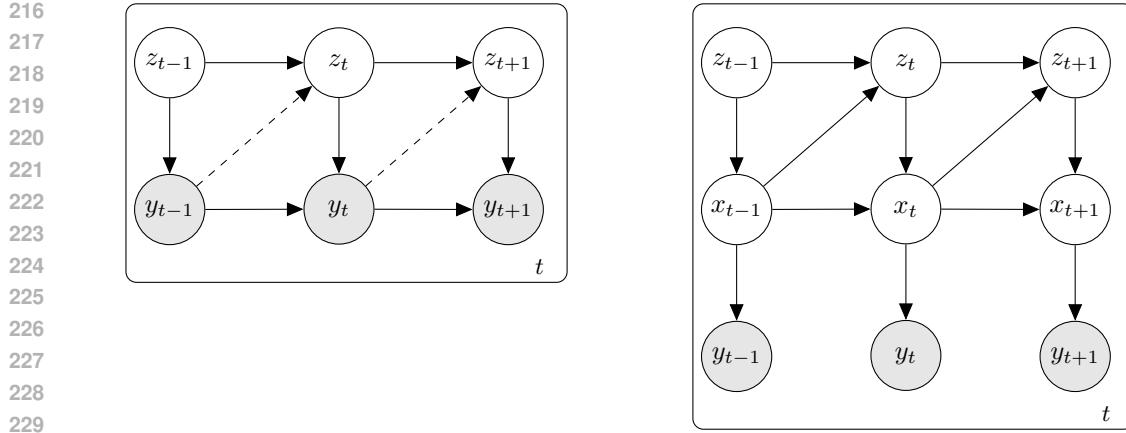


Figure 1: **Graphical model representation of two systems.** Left: 2-level GDM. Right: 3-level Mixture SLDS. Dashed lines denote dependencies that can be removed to make the two systems equivalent.

3 MODEL INFERENCE

Due to the continuous nature of states, GDM can be trained using standard gradient descent. To infer the GDM, we use BBVI (Ranganath et al., 2014) with Gumbel-Softmax samples (GS-BBVI): we define variational distribution $q(z)$, sample soft states z from $q(z)$, and compute unbiased samples of the ELBO gradient.

ELBO. The ELBO for the GDM can be written as follows,

$$\begin{aligned} \log p_\theta(y_{1:T}) &\geq \mathbb{E}_{q(z)} \log(y, z) - \log q(z) \\ &= \mathbb{E}_{q(z)} \left[\sum_{t=1}^T \log p(y_t | y_{t-1}, z_t) + \sum_{t=2}^T \log p(z_t | z_{t-1}) + \log p(z_1) \right] - \mathbb{E}_{q(z)} [\log q(z_{1:T})] \end{aligned}$$

3.1 VARIATIONAL POSTERIORS

We approximate the posterior over latent states with an amortized variational distribution $q_\phi(z_{1:T} | y_{1:T})$, parameterized by a neural network that maps observations to Gumbel-Softmax logits. Specifically,

$$q_\phi(z_{1:T} | y_{1:T}) = \prod_{t=1}^T q_\phi(z_t | y_{1:T}),$$

where each z_t is a continuous Gumbel-Softmax random variable with logits π'_t and temperature τ .

Since z_1, \dots, z_T are continuous Gumbel-Softmax random variables, we cannot directly define a discrete transition matrix as in the categorical case. Instead, we define a function that computes the logits π'_1, \dots, π'_T . Here, the logits $\pi'_{1:T}$ are produced by an inference network $g_\phi(y_{1:T})$ that shares a similar structure to the transition network f_θ in the generative model, i.e., g_ϕ may be a simple feed-forward mapping or a recurrent network. In principle, g_ϕ can be more expressive than f_θ . This flexibility can improve posterior approximation and accelerate training. However, in practice, a highly expressive g_ϕ may compensate for the limitations of f_θ , leading to posteriors that fit the observations well but provide less interpretable dynamics. For this reason, in this paper we keep the structures of g_ϕ and f_θ aligned.

Concretely, if f_θ is linear, g_ϕ can be chosen as a linear map, e.g., $\pi'_t = W y_t + b$. Optionally, a sticky component depending on z_{t-1} can be introduced to encourage persistence, e.g., $\pi'_t = W y_t + B z_{t-1} + b$, with z_1 drawn from a Gumbel-Softmax distribution parameterized by learnable prior

270 logits π'_1 . In this case, the variational posterior admits a Markovian factorization,
 271

$$272 \quad q(z_{1:T} | y_{1:T}) = q(z_1 | y_1) \prod_{t=2}^T q(z_t | z_{t-1}, y_t), \\ 273$$

274 If f_θ is recurrent, we instead parameterize g_ϕ with a bidirectional RNN or a Transformer, so that
 275 π'_t depends on both past and future observations. Temporal dependencies between observations are
 276 captured implicitly by the shared hidden states of the RNN. This yields a more expressive posterior
 277 that leverages temporal context to infer z_t . Concretely, for example, let $e_{1:T} = \text{BiGRU}(y_{1:T})$, and
 278 set $\pi'_t = \text{FNN}(z_{t-1}, e_t)$.
 279

280 Thanks to the Gumbel-Softmax reparameterization trick, we can sample $q(z)$ sequentially in a dif-
 281 ferentiable way. The temperature τ for the Gumbel-Softmax distribution controls the smoothness
 282 of the state transition. Empirically, we find that GDM’s behavior is largely invariant to the Gum-
 283 bel-Softmax temperature over a broad range $\tau \in (0.5, 1)$. (We did not test $\tau \geq 1$. τ was either
 284 constant or followed a non-increasing schedule during training.) This is due to the extreme-valued
 285 nature of the Gumbel distribution as most samples cluster around the corners of the simplex. In
 286 practice, fixing $\tau \approx 1$ typically provides both stable optimization and interpretable state recovery.
 287 Incorporating an annealing schedule that starts at a higher temperature and gradually reducing to the
 288 target value can further improve robustness and flexibility. A relatively high temperature improves
 289 gradient-based optimization but produces less deterministic state boundaries. Therefore, accurate
 290 state recovery ultimately depends on learning the parameters that govern the latent state dynamics
 291 (e.g., the transition logits or their RNN parameterization), rather than relying on a low temperature
 292 alone to sharpen the state assignments.

293 Importantly, amortized variational inference with differentiable $q(z)$ is a key advantage of GDM.
 294 The inference network learns a reusable mapping from observations to state logits, enabling new
 295 data to be processed directly without re-optimization. This contrasts with many existing models,
 296 which typically require re-optimizing a posterior for the latent trajectory on each new dataset.
 297

3.2 SMOOTHING AND PREDICTION

298 Once the variational posterior and model parameters are trained, the inferred system can be used
 299 for smoothing current observations, evaluating quality of fit, predicting future steps, and generating
 300 new observations.
 301

302 Given a time series y_1, \dots, y_T of length T , we first obtain samples z_1, \dots, z_T from the variational
 303 posterior. Smoothed observations $\hat{y}_1, \dots, \hat{y}_T$ are then computed based on the sampled states and
 304 past observations, providing a measure of reconstruction quality.

305 To predict future steps, we apply the learned transition model to generate next-step states $\hat{z}_2, \dots, \hat{z}_T$
 306 from the sampled states z_1, \dots, z_{T-1} and current observations y_1, \dots, y_T . These predicted states are
 307 then used to generate corresponding next-step observations $\hat{y}_2, \dots, \hat{y}_T$. The predicted observations
 308 can be recursively fed back into the transition model, enabling multi-step-ahead predictions. We
 309 note that an analogous procedure applies to the 3-level mixture formulation. Instead of propagating
 310 predicted observations, we propagate the inferred latent trajectory $\hat{x}_2, \dots, \hat{x}_T$, which serves as input
 311 to the state transition function.
 312

313 While this procedure can be extended to arbitrary horizons, uncertainty inevitably accumulates
 314 across steps. A k -step-ahead prediction for a series y_1, \dots, y_T is equivalent to producing k fu-
 315 ture observations at each of the T possible starting points. Because of the injected Gumbel noise in
 316 the latent states z , prediction trajectories may diverge after only a few steps, particularly at higher
 317 temperatures τ . These divergent possibilities form a prediction envelope, whose width increases at
 318 points of greater transition uncertainty. This widening envelope corresponds naturally to the un-
 319 predictability observed in real-world dynamical systems. We will further illustrate this concept via
 320 simulation examples in section 4.

4 EXPERIMENTS

321 We validate the GDM on both simulated data and two real-world datasets. We begin with a stan-
 322 dard, deterministic simulated example, then introduce soft, sticky, and stochastic transitions. We
 323

324 further evaluate the model on two real-world datasets that feature multiple dynamic and highly
 325 unpredictable transitions. The code we use is available at: <https://anonymous.4open.science/r/GDM-CD3A/>.
 326

327 To assess model performance, we use two metrics at different levels. At the observation level, we
 328 compute the coefficient of determination R^2 between the smoothed and true observations, which
 329 quantifies the quality of fit. At the state level, we introduce the following metric that measures the
 330 quality of inferred states.
 331

332 **Inferred State Accuracy.** Let $\{\zeta_t\}_{t=1}^T$, $\zeta_t \in \{1, \dots, K\}$, denote the ground-truth (or expert-
 333 labeled) discrete states, and let $\{z_t\}_{t=1}^T$, with $z_t \in \Delta^{K-1}$, denote the inferred states, where Δ^{K-1}
 334 is the $(K-1)$ -simplex. In particular, discrete inferred states are represented as one-hot vectors
 335 in Δ^{K-1} . We train a k -nearest neighbor (k-NN) classifier $f_{\text{KNN}} : \Delta^{K-1} \rightarrow \{1, \dots, K\}$ on the
 336 training set by mapping inferred states z_t to ground-truth ζ_t . For test data $\mathcal{D}_{\text{test}}$, predictions are
 337 obtained as $\hat{\zeta}_t = f_{\text{KNN}}(z_t)$, $t \in \mathcal{D}_{\text{test}}$. The *Inferred State Accuracy* is then defined as
 338

$$\text{Acc}_{\text{state}} = \frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{t \in \mathcal{D}_{\text{test}}} \mathbf{1}[\hat{\zeta}_t = \zeta_t].$$

341 When the underlying ground truth ζ_t is manually obtained by human annotators, $\text{Acc}_{\text{state}}$ quantifies
 342 interpretability: it is high when it agrees with the human intuition and low otherwise.
 343

344 4.1 FROM DETERMINISTIC TO UNCERTAIN: SYNTHETIC NASCAR DATASET

345 The synthetic NASCAR dataset (Linderman et al., 2017) emulates cars going around a track. It as-
 346 sumes four states in total: two for driving along the straightaways and two for the semicircular turns
 347 at each end of the track. The standard NASCAR setting assumes a nearly deterministic recurrent
 348 relationship between the current state and the previous trajectory. Since the states are determined by
 349 locations on the track, this construction yields a nearly fixed trajectory given the starting point. See
 350 Appendix F for construction details.
 351

352 In this paper, we also consider a more realistic NASCAR trajectory that allows for soft state trans-
 353 itions and noise. This is achieved by replacing the recurrent relationship in Eqn. (8) with its soft
 354 sticky form:

$$z_t | x_{t-1} \sim \text{GS}(\pi_t, \tau), \text{s.t. } \pi_t = c(1 - \gamma)(Sx_{t-1} + s) + \gamma z_{t-1} \quad t \geq 2 \quad (3)$$

355 where c controls transition softness and γ controls transition stickiness. As we decrease the scaling
 356 factor c , increase γ , and raise the temperature parameter τ , GS samples become less deterministic
 357 and more noisy. Figure 2A shows qualitatively different trajectories from the same set of parameters.
 358

359 We benchmark model performance against several models: **SLDS** with sticky transitions, **rSLDS**
 360 with sticky recurrent transitions, **rSLDS** with recurrent only transitions, **p-dLDS**, **KVAE** with **MLP**
 361 encoders, and **SNLDS** with collapsed variational inference. For both the standard and soft sticky
 362 NASCAR cases, we train models with four states (or dynamic operators) on the top trial and test
 363 on the bottom trial. All models achieve nearly perfect train R^2 on both datasets. For the soft-sticky
 364 case, however, all benchmark models **except KVAE and SNLDS** require retraining for variational
 365 posteriors to achieve good test R^2 . Otherwise, the test R^2 is simply 0.8, i.e., the difference between
 366 the top and bottom trials. In contrast, our model achieves near-perfect test R^2 without retraining.
 367 This is because GDM employs amortized variational inference with differentiable variational poste-
 368 rior $q(z | y)$, as discussed in Section 3. We note that **KVAE** and **SNLDS** also generalize to test data
 369 **without re-optimizing their variational parameters**. However, KVAE achieves this by training two
 370 separate networks: a VAE that maps observations into a low-dimensional latent trajectory, and an ad-
 371 dditional dynamics-parameter network that maps this trajectory into time-varying dynamic weights.
 372 SNLDS, which inherits the collapsed variational inference technique, allows more expressive latent
 373 dynamics and uses amortized inference for the continuous latent variable. However, because the dis-
 374 crete switching variables are marginalized out rather than inferred directly, the discrete states must
 375 be recovered post-hoc, which limits their ability to capture interpretable states. For both cases, we
 376 repeated the training/testing procedure 10 times with different seeds.

377 Figure 2B shows the true and **exemplar inferred states or dynamic weights** from **GDM**, **p-dLDS**,
 378 **KVAE** and **SNLDS**. GDM successfully recovers the two dominant states in the soft sticky NASCAR

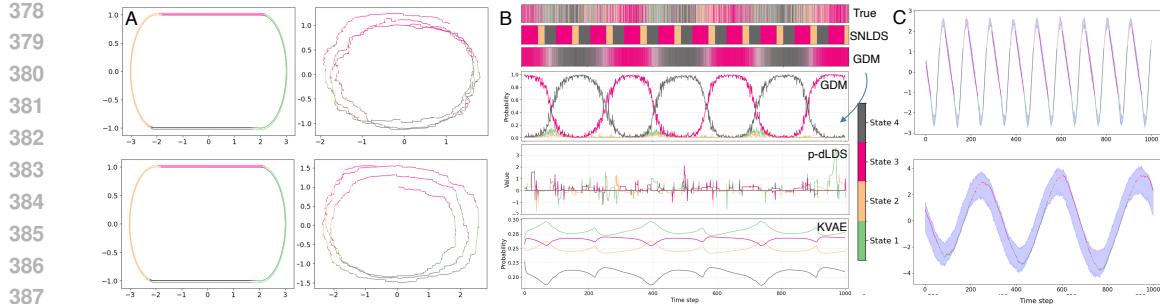


Figure 2: A. Standard and soft sticky NASCAR tracks. Two trials are generated with the same set of parameters ($T = 1000$, and $K = 4$ for both cases, $c = 0.02$ and $\gamma = 0.25$ for soft-sticky case only). Compared to the standard NASCAR, soft sticky NASCAR introduces greater transition uncertainty. B. True states and exemplar inferred states from GDM ($\tau = 0.99$), SNLDS, p-dLDS and KVAE. For each method, the panel shows the inferred state responsibilities over time: probabilities for GDM and KVAE, and scalar-valued dynamic coefficients for p-dLDS. Colored curves correspond to different dynamic primitives. Results shown are representative of 10 random seeds; full variability is reported in Table 1. C. Inferred 1-step-ahead prediction ranges for the first dimension of NASCAR observations. The top panel shows the standard model, and the bottom panel shows the soft sticky model, with a much wider uncertainty range. Shaded regions indicate ± 3 standard deviations around the predicted mean, estimated from 100 Monte Carlo samples per model.

	SLDS (S)	rSLDS (S)	rSLDS (R)	p-dLDS	KVAE (M)	SNLDS (C)	GDM
S	0.82 ± 0.13	0.76 ± 0.10	0.96 ± 0.06	0.74 ± 0.01	0.67 ± 0.16	0.64 ± 0.02	0.88 ± 0.10
SS	0.32 ± 0.02	0.33 ± 0.01	0.43 ± 0.09	0.34 ± 0.02	0.50 ± 0.11	0.45 ± 0.05	0.70 ± 0.03

Table 1: Comparison of inferred state accuracy on the standard (S) and soft-sticky (SS) NASCAR datasets. “S” denotes sticky variants, “R” denote recurrent-only variants, “M” denotes the KVAE with MLP encoders, and ‘C’ denotes the SNLDS with collapsed variational inference. Each model is trained and evaluated 10 times with different random seeds.

data, and approximates the other two states as combinations of dominant and complementary states. In contrast, all baseline models struggle to capture meaningful state structure in this setting. SLDS and rSLDS suffer from state collapse; p-dLDS utilizes all dynamic operators but fails to reproduce the correct oscillatory patterns; KVAE identifies the oscillations but yields noisy mixtures of dynamic weights, with the maximum state proportion at each time step remaining below 0.30; SNLDS also identifies the oscillation patterns but fails to capture the smooth transitions, overlapping states, and differences in the transition dynamics for the two dominant states. These limitations are consistent with known challenges of SDS-style models in regimes that depart from classical hard-switching assumptions, such as the soft-sticky settings we evaluate.

Table 1 reports the average state quality measured by mapping inferred states to hard-thresholded ground-truth states on the test trial. For the standard NASCAR data, rSLDS with recurrent only transitions achieves the top performance, while our model outperforms all the benchmarks in the soft sticky NASCAR case. Our model treats the observations as inherently stochastic, as discussed in section 3. While this uncertainty aspect is not advantageous in the standard NASCAR case, it allows the model to generalize better in the soft-sticky NASCAR case. Indeed, GDM correctly identifies that the soft sticky case exhibits greater uncertainty. This is illustrated by the one-step-ahead prediction envelopes in Figure 2C. While most one-step-ahead observations fall inside the envelopes for both cases, the envelope is clearly wider in the soft sticky case.

4.2 FROM SIMPLE STATES TO MORE STATES: F1 DATASET

The NASCAR dataset described above represents a simple track with four synthetic segments. Next, we consider a more complex and realistic example: the Formula One (F1) World Championship racetracks. A total of 77 circuits have hosted F1 races. Each F1 racetrack is uniquely designed

for its venue and is known for multiple challenging corners. We use the FastF1 package to retrieve telemetry data from past F1 sessions, including trajectory, lap times, and corner counts. In this paper, we study two permanent F1 circuits: the Shanghai International Circuit (China) and the Suzuka Circuit (Japan). For our purposes, we define track segments between consecutive numbered corners as distinct states. As shown in Figure 3A, the Chinese and Japanese Grands Prix have 16 and 18 corners, respectively. This definition of states is likely imperfect, but it is systematic and officially applied across all F1 circuits. We therefore expect that a good state representation should map to these expert-defined states with reasonable accuracy.

Since our model outperforms nearly all baseline methods except certain rSLDS variants in the synthetic NASCAR experiment, we benchmark GDM against rSLDS in this F1 dataset to further explore the model performance. As with NASCAR, we train models on one driver's trajectory and test on another's (Figure 3A). While drivers start from the same point, their speeds vary across laps, leading to trajectories of different lengths. For rSLDS, this requires retraining the variational posterior to infer latent states for a new driver. In this setup, both models achieve good training and testing fit.

However, rSLDS achieves good fit at the expense of state quality, particularly when the number of states K is small. In other words, the optimizer improves likelihood at the cost of less interpretable states. To quantify this, we examine the state quality of both models for varying K (Figure 3B). As shown in the plot, the state quality of the rSLDS is consistently lower than the GDM at all values of state dimension K . While rSLDS improves slowly as K increases, GDM improves rapidly at the beginning steps and then sees a plateau. Although rSLDS may eventually reach reasonable inferred state accuracy for sufficiently large K , we note that smaller values of K are usually preferred for interpretability in practice.

To illustrate interpretability concretely, we compare inferred trajectories for the Shanghai International Circuit at $K = 8$ (Figure 3C). GDM reveals four dominant states and approximates the remaining using combinations of available states. By contrast, rSLDS exhibits more frequent switching, failing to capture corner dynamics well in several cases.

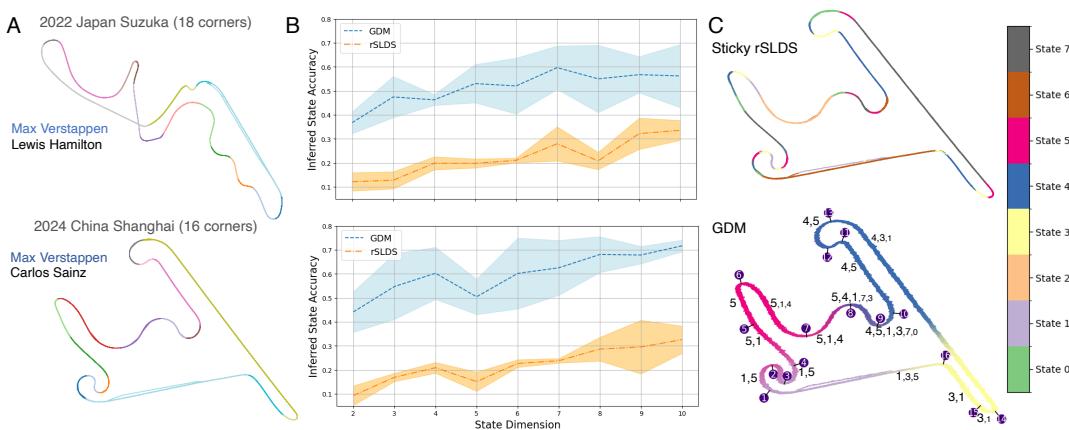


Figure 3: A. F1 Shanghai International Circuit (China) and Suzuka Circuit (Japan). Train trial: 1st-place winner (blue). Test trial: 5th-place finisher (black). B. Comparison of inferred state accuracy between our model and rSLDS across state dimensionalities. Performance is evaluated over 5 train/test splits with different random seeds. The shaded region denotes the standard deviation across seeds. GDM consistently achieves higher inferred state accuracy, particularly at low dimensions. C. Example inferred trajectories for both models on the Shanghai International Circuit. **Results shown are representative of the 5-seed experiments.** For GDM, we annotate each segment with state IDs that exceed 1% weight in at least 20% of the time steps associated with the corresponding expert-labeled segment. Note that the state IDs are ordered by presence ratio, and their marker sizes roughly reflect their weights. See Appendix G for further discussion of state usage.

486
487488 4.3 UNCERTAINTY AND MULTIPLE STATES: CALMS21 DATASET
489490
491
492
493
494

Finally, we apply our method to study mouse social behavior using the first task in the open CalMS21 dataset Sun et al. (2021). The dataset consists of location data for two mice interacting in a cage from multiple trials (89 trials, split into 70 train and 19 test) over 5 years. Each mouse is labeled with 7 keypoints, corresponding to the nose, ears, base of neck, hips, and tail (Figure 4A). As there are 14 keypoints with x, y values per frame, the observation dimension is 28. Importantly, this dataset is expert labeled. All frames in the 89 trials are manually labelled by one expert for four distinct social behaviors (attack, investigation, mount and other).

495
496
497

This dataset is a good candidate for our model, as the mouse behavior is highly unpredictable, and potentially includes multiple intricate states. We train our models on the 70 training trials, and test it on the 19 test trials, fixing the state dimension as $K = 5$.

498
499
500
501
502

Figure 4 summarizes the performance of our models (linear-sticky and RNN-based GDMs) alongside the rSLDS benchmark. Both GDM variants achieve higher training and testing accuracy than rSLDS for nearly all trials in this dataset. Consistent with our findings on the F1 dataset, our models also yield substantially higher inferred-state accuracy across all test trials. We demonstrate this via an exemplar training session, shown in Figure 4.

503
504
505
506
507
508

A key observation emerges when comparing the two GDM variants. The RNN-based GDM model achieves the highest observation-level accuracy for both training and test sets, reflecting the benefit of incorporating nonlinear recurrent functions into both the generative model and the variational posterior. However, its inferred-state accuracy is lower than that of the linear-sticky version. This underlines a key trade-off: adding expressive RNN/ bidirectional RNN components improves predictive accuracy but comes at the cost of decreased interpretability in the latent state dynamics.

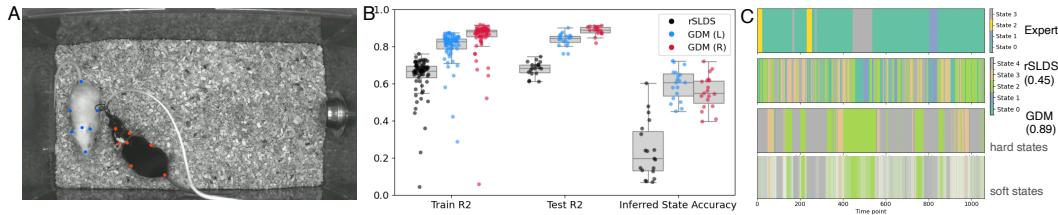
509
510
511
512
513
514
515
516517
518
519
520
521
522
523

Figure 4: A. Example frame from the CalMS21 data. Seven anatomically defined keypoints are labeled on the body of each mouse. Expert annotations refer to behaviors initiated by the black mouse. B. Comparison of train R^2 , test R^2 , and inferred state accuracy between our models and the benchmark model rSLDS. “L” denotes the linear sticky GDM, and “R” denotes the RNN-based GDM. C. Expert-labeled states and inferred states from linear-sticky GDM and rSLDS, for trial 34 (the shortest trial containing all states). Accuracy values in brackets denote the inferred state accuracy with k-NN fitted directly on this trial. For details on state visualization, refer to Appendix G.

524
525
526

5 CONCLUSION

527
528
529
530
531
532
533
534
535
536
537

In this work, we proposed a dynamical system model to decompose complicated dynamics into simpler components that are referred to as states. We achieved this by relaxing the discreteness constraint on the states using the GS machinery. Therefore, our model breaks from previous work by using a latent dynamics noise model that is not Gaussian. The GS relaxation enabled us to model extended and soft transitions between states, identify states that may be implemented by a sparse combination of state primitives, and utilize the speed and ubiquity of standard gradient descent. We observed that this approach significantly improved the alignment of inferred states with available state annotations on complicated, real-world tasks. While GDM will benefit the analysis of dynamical systems on a wide range of topics, we think a better characterization of the impact of the Gumbel parameters on GDM’s performance will be key to future improvements.

538
539

Ethics statement We conceived GDM as a tool to improve analysis of dynamical phenomena. While we hope that it will benefit the society in the longer run by supporting progress across scientific disciplines, we do not think our work carries any immediate societal impact.

540 REFERENCES
541

542 Elliott TT Abe and Bingni W Brunton. Tidhy: Timescale demixing via hypernetworks to learn
543 simultaneous dynamics from mixed observations. *bioRxiv*, 2025.

544 Guy Ackerson and K Fu. On state estimation in switching environments. *IEEE transactions on*
545 *automatic control*, 15(1):10–17, 1970.

546 Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alexan-
547 der J Smola, Bernie Wang, and Tim Januschowski. Deep explicit duration switching models for
548 time series. *Advances in Neural Information Processing Systems*, 34:29949–29961, 2021.

549 Carles Balsells-Rodas, Yixin Wang, and Yingzhen Li. On the identifiability of switching dynamical
550 systems. *arXiv preprint arXiv:2305.15925*, 2023.

551 Carles Balsells-Rodas, Xavier Sumba, Tanmayee Narendra, Ruibo Tu, Gabriele Schweikert, Hed-
552 vig Kjellstrom, and Yingzhen Li. Causal discovery from conditionally stationary time series.
553 In Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan
554 Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.), *Proceedings of the 42nd International Confer-
555 ence on Machine Learning*, volume 267 of *Proceedings of Machine Learning Research*, pp.
556 2715–2741. PMLR, 13–19 Jul 2025. URL <https://proceedings.mlr.press/v267/balsells-rodas25a.html>.

557 David Barber. Expectation correction for smoothed inference in switching linear dynamical systems.
558 *Journal of Machine Learning Research*, 7(11), 2006.

559 Ole Barndorff-Nielsen. Identifiability of mixtures of exponential families. *Journal of Mathematical
560 Analysis and Applications*, 12(1):115–121, 1965.

561 Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics for vari-
562 ational bayes filtering. In *International conference on machine learning*, pp. 553–562. PMLR,
563 2019.

564 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
565 differential equations. *Advances in neural information processing systems*, 31, 2018.

566 Yenho Chen, Noga Mudrik, Kyle A Johnsen, Sankaraleengam Alagapan, Adam S Charles, and
567 Christopher Rozell. Probabilistic decomposed linear dynamical systems for robust discovery of
568 latent neural dynamics. *Advances in Neural Information Processing Systems*, 37:104443–104470,
569 2024.

570 Zhe Dong, Bryan Seybold, Kevin Murphy, and Hung Bui. Collapsed amortized variational inference
571 for switching nonlinear dynamical systems. In *International Conference on Machine Learning*,
572 pp. 2638–2647. PMLR, 2020.

573 Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and
574 nonlinear dynamics model for unsupervised learning. *Advances in neural information processing
575 systems*, 30, 2017.

576 Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Re-
577 current switching dynamical systems models for multiple interacting neural populations. *Ad-
578 vances in neural information processing systems*, 33:14867–14878, 2020.

579 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
580 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

581 Xinze Guan, Raviv Raich, and Weng-Keen Wong. Efficient multi-instance learning for activity
582 recognition from time series data using an auto-regressive hidden markov model. In *International
583 Conference on Machine Learning*, pp. 2330–2339. PMLR, 2016.

584 Emil Julius Gumbel. Les valeurs extrêmes des distributions statistiques. In *Annales de l'institut
585 Henri Poincaré*, volume 5, pp. 115–158, 1935.

594 Emil Julius Gumbel. The return period of flood flows. *The annals of mathematical statistics*, 12(2):
 595 163–190, 1941.
 596

597 Amber Hu, David M. Zoltowski, Aditya Nair, David Anderson, Lea Duncker, and Scott W. Linderman. Modeling latent neural dynamics with gaussian process switching linear dynamical systems. *Advances in Neural Information Processing Systems*, 2024.

600

601 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv preprint arXiv:1611.01144*, 2016.

602

603 Biing-Hwang Juang and Lawrence Rabiner. Mixture autoregressive hidden markov models for
 604 speech signals. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 33(6):1404–
 605 1413, 1985.

606

607 Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
 608 Bayesian learning and inference in recurrent switching linear dynamical systems. In *Artificial
 609 intelligence and statistics*, pp. 914–922. PMLR, 2017.

610

611 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
 612 relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.

613

614 Noga Mudrik, Yenho Chen, Eva Yzerets, Christopher J Rozell, and Adam S Charles. Decomposed
 615 linear dynamical systems (dlds) for learning the latent components of neural dynamics. *Journal
 616 of Machine Learning Research*, 25(59):1–44, 2024.

617

618 Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In *Artificial
 619 intelligence and statistics*, pp. 814–822. PMLR, 2014.

620

621 Philipp Schaefer. FastF1. <https://github.com/theOehrly/Fast-F1>, 2020. Accessed:
 622 2025-09-12.

623

624 Jennifer J Sun, Tomomi Karigo, Dipam Chakraborty, Sharada P Mohanty, Benjamin Wild, Quan
 625 Sun, Chen Chen, David J Anderson, Pietro Perona, Yisong Yue, et al. The multi-agent behavior
 626 dataset: Mouse dyadic social interactions. *Advances in neural information processing systems*,
 2021(DB1):1, 2021.

627

628 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 629 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 630 tion processing systems*, 30, 2017.

631

632 Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon,
 633 Stan L Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping
 634 sub-second structure in mouse behavior. *Neuron*, 88(6):1121–1135, 2015.

635

636 David Zoltowski, Jonathan Pillow, and Scott Linderman. A general recurrent state space framework
 637 for modeling neural dynamics during decision-making. In *International Conference on Machine
 Learning*, pp. 11680–11691. PMLR, 2020.

638

639

640 **A COMPARISON TO GUMBEL-SOFTMAX LINE OF WORK**

641

642 In this section, we provide detailed comparisons to the prior studies using Gumbel-Softmax in the
 643 literature of switching linear dynamical systems in terms of core modeling assumptions, depen-
 644 dependency structure, the role of the Gumbel distribution, and inference compatibility. Notably, all works
 645 use Gumbel noise only as a differentiable sampling or reparameterization tool within the inference
 646 network and rely on specialized structured variational schemes, whereas GDM is a Gumbel-driven
 647 dynamical system whose latent evolution is directly governed by the Gumbel distribution and re-
 mains fully compatible with standard amortized BBVI.

648 **Comparison to KVAE** GDM has a fundamentally different graphical structure from the KVAE
 649 proposed by Fraccaro et al. (2017). As illustrated in Figure 1 of both papers, KVAE combines
 650 a VAE with a linear Gaussian state space model (LGSSM): observations are first mapped into a
 651 low-dimensional latent space by a deep neural network, and those latents are then explained by a
 652 soft mixture of LGSSMs. The dynamics-parameter network in KVAE (Section 3.3) corresponds
 653 conceptually to the dynamic-operator weighting in p-dLDS (Chen et al., 2024), where the model
 654 learns continuous weights over multiple linear dynamical components.

655 Crucially, KVAE imposes no structural prior, sparsity constraint, or regularization on these mixture
 656 weights, so the learned dynamics tend to be dense mixtures, not interpretable switches. This limita-
 657 tion is directly visible in our experiments: using the publicly released KVAE code, we evaluated the
 658 model on the NASCAR benchmark. Table 1 shows consistently low discrete-state inference accu-
 659 racy for KVAE compared to our model. Moreover, the Figure 2B illustrates an exemplar dynamics-
 660 parameter network weighting derived from KVAE, in which the maximum state weights are below
 661 0.30 throughout the time span.

662 The KVAE appendix remarks that these weights could be “approximated as a discrete random vari-
 663 able using the Gumbel distribution,” but this remark is not accompanied by any architectural change,
 664 dependency modification, or implementation. The paper does not specify how a discrete dynamics
 665 variable would interact with the KVAE structure or how such a model would be inferred.

666
 667 **Comparison to relaxed SLDS** Although GDM shares the use of the Gumbel distribution with re-
 668 laxled SLDS proposed by Becker-Ehmck et al. (2019), the resulting generative model is fundamen-
 669 tally different. Becker-Ehmck et al. (2019) use the Gumbel relaxation as a gradient-flow tool for
 670 an otherwise standard SLDS; the Gumbel variables are not part of the generative process, whereas
 671 GDM introduces a Gumbel-driven dynamical system that cannot be interpreted as a relaxation of any
 672 standard SDS model. Importantly, GDM directly links states to observations and does not blur latent
 673 dynamics with Gaussian noises. In contrast, as the authors explicitly note below model formulation,
 674 “We do not condition the likelihood for the current observation directly on the switching variables”,
 675 meaning the discrete variable only selects a transition dynamic for the continuous latent space. We
 676 further show that removing the important observation-to-state dependency makes GDM equivalent
 677 to a three-level mixture SLDS with a deterministic intermediate layer, which is introduced purely
 678 for interpretability. Comparing the graphical representations in Figure 1 of both papers highlights
 679 these structural differences.

680 We note that the Becker-Ehmck et al model is conceptually similar to the prototype we discussed
 681 in Appendix D . We explicitly analyzed its weaknesses, mainly, the continuous and discrete dy-
 682 namics compete to explain the data; and proposed a BBVI-based solution for completeness. We
 683 also implemented this variant early in development but found it unsatisfactory — performing worse
 684 than GDM in both accuracy and speed, and scaling poorly to long, high-dimensional time series.
 685 Moreover, their inference procedure requires structured splitting and alternating updates, whereas
 686 our approach supports joint sampling and avoids customized inference machinery.

687 Finally, the modeling goals differ: in relaxed SLDS, the Gumbel variables are auxiliary and not
 688 evaluated for interpretability. Indeed, Section 5 reports that the Gaussian version performs compa-
 689 rably or better. Importantly, the authors did not report at all on the accuracy or interpretability of
 690 the inferred states. In contrast, we treat the Gumbel distribution as the driving noise of the dynam-
 691 ical system itself. GDM turns its heavy-tailed, extreme-value behavior into a way to modulate the
 692 stickiness and competition among states, leading to improved interpretability rather than only higher
 693 prediction accuracy.

694 **Comparison to GS-SNLDS** The Gumbel–Softmax SNLDS of Dong et al. (2020) is technically
 695 conceptually and technically distinct from our work, despite superficial similarity. In their method,
 696 the Gumbel–Softmax relaxation appears only in the variational posterior as a stand-in for marginal-
 697 izing discrete states. It does not define the switching dynamics, and the generative model remains
 698 a standard SNLDS. This makes their use of Gumbel comparable to Becker-Ehmck et al. (2019):
 699 the relaxation replaces the argmax inside the inference network only, not in the model. In contrast,
 700 GDM is a Gumbel-driven dynamical system in which Gumbel noise drives the switching process
 701 and determines the latent evolution. Moreover, while amortized inference is standard, the generative
 702 strucutre of GDM makes such amortization fundamentally simpler. In GDM, there is no need to

702 approximate $q(x)$ and no latent-to-latent stochasticity that gradients must pass through. Because
 703 observations depend directly on z , gradients propagate cleanly through the transition logits, making
 704 the model fully compatible with unmodified off-the-shelf amortized inference.

705 Additionally, we note that the GS-SNLDS variational posterior is structurally mismatched to its own
 706 generative model. It is mean-factorized so that the continuous latent posterior does not depend on
 707 the discrete state, even though in SNLDS the discrete state selects the transition dynamics. This
 708 breaks a core dependency in the model. This issue is reflected in their experimental results (Table
 709 1): GS-SNLDS performs substantially worse than all other baselines including linear SLDS variants,
 710 despite SNLDS being strictly more expressive, empirically demonstrating that the proposed GDM
 711 is different in key aspects.

713 B BACKGROUND

715 **SLDS** The standard SLDS model generates the observation y from the continuous latent trajectory
 716 x and the discrete latent state z . The discrete states $z \in \mathbb{R}^K$ can depend on the latent trajectory x ,

$$718 \quad z_t \sim \text{Cat}(\pi_t), \quad \pi_t = f(z_{t-1}, x_{t-1})$$

719 where f can be linear or nonlinear. If the discrete state at time t only depends on the latent trajectory
 720 at time $t-1$, the model is called recurrent only.

722 The continuous latent state $x_t \in \mathbb{R}^D$ follows conditionally linear dynamics determined by state z_t ,

$$723 \quad x_t \sim \mathcal{N}(A_{z_t} x_{t-1} + b_{z_t}, Q_{z_t})$$

725 where $A \in \mathbb{R}^{K \times D \times D}$ are the dynamics matrices, $b \in \mathbb{R}^{K \times D}$ are the shifts, and $Q \in \mathbb{R}^{K \times D \times D}$ are
 726 the covariance matrices. K denotes the number of unique discrete states.

727 Finally, a linear Gaussian observation $y_t \in \mathbb{R}^N$ is generated from the corresponding latent state
 728 $x_t \in \mathbb{R}^D$,

$$729 \quad y_t \sim \mathcal{N}(Cx_t + d, \sigma)$$

730 where $C \in \mathbb{R}^{N \times D}$ is the emission matrix. General stochastic optimization-based variational inference
 731 methods cannot be applied directly to SLDS due to the discreteness of the latent state z .

733 While the variational Laplace expectation-maximization (vLEM) algorithm is a popular choice for
 734 inference (Glaser et al., 2020; Zoltowski et al., 2020), it does not guarantee improvement in the
 735 evidence lower bound (ELBO) in the E-step because it relies on a second-order Taylor approximation
 736 around the mode of the posterior, which can be poor in high-dimensional or multimodal settings. On
 737 the other hand, general stochastic optimization-based variational inference methods like Black-Box
 738 Variational Inference (BBVI) cannot be applied directly to SLDS due to the discreteness of the latent
 739 state z .

740 **BBVI** BBVI uses Monte Carlo gradients to optimize the ELBO. For an SLDS with latent variables
 741 z, x and observation y ,

$$743 \quad \text{ELBO} = \mathbb{E}_{q(z)} (\log p(x, z) - \log q_\phi(z)) \leq \log p_\theta(x)$$

744 To optimize the ELBO with stochastic optimization, consider the gradient of the ELBO as expectation
 745 with respect to the variational distribution,

$$747 \quad \nabla_\phi \text{ELBO} = \mathbb{E}_{q(z, x)} [\nabla_\phi \log q(z, x | \phi) (\log p(y, x, z) - \log q(z, x | \phi))]$$

748 Noisy unbiased samples of the ELBO gradient can be computed using Monte Carlo samples from
 749 $q(z, x)$.

$$751 \quad \nabla_\phi \text{ELBO} \approx \frac{1}{S} \sum_{s=1}^S \nabla_\phi \log q(x_s, z_s | \phi) (\log p(y, x_s, z_s) - \log q(x_s, z_s | \phi))$$

754 Note that the score function and sampling algorithms depend only on the variational distribution,
 755 not the underlying model. With samples from the variational distribution, the only requirement is
 the computation of the log joint $\log p(y, x_s, z_s)$.

756 **C PROOF OF SYSTEM EQUIVALENCE**
 757

758 In this section, we derive the equivalence relationship between the mixture model and the 2-level
 759 GDM. Recall we defined the dependency-removed 2-level GDM as follows,
 760

$$761 z_1 \sim \text{GS}(\pi_1, \tau), \quad z_t | z_{t-1} \sim \text{GS}(\pi_t, \tau), \text{ s.t. } \pi_t = f(z_{t-1}, \mathbb{E}(Fy_{t-1}|z_{t-1} \leq)), \quad t \geq 2 \quad (4)$$

$$762 y_1 | z_1 \sim \mathcal{N}(\sum_k z_{1,k} \mu_k, R_t), \quad y_t | y_{t-1}, z_t \sim \mathcal{N}(\sum_k z_{t,k} (S_k F y_{t-1} + b_k), R_t), \quad t \geq 2$$

765 And we defined the 3-level mixture model as follows (see eqn. (2)),
 766

$$767 z_1 \sim \text{GS}(\pi_1, \tau), \quad z_t | z_{t-1}, x_{t-1} \sim \text{GS}(\pi_t, \tau), \text{ s.t. } \pi_t = f(z_{t-1}, x_{t-1}), \quad t \geq 2 \quad (5)$$

$$768 x_1 = \sum_k z_{1,k} \mu_k, \quad x_t | x_{t-1}, z_t = \sum_k z_{t,k} (A_k x_{t-1} + c_k), \quad t \geq 2 \quad (6)$$

$$770 y_t | x_t \sim \mathcal{N}(Cx_t, Q_t), \quad t \geq 1 \quad (7)$$

772 Firstly, we derive the 3-level mixture model (2) from system 4. The state transition equation of
 773 model (2) follows from a straightforward substitution. To obtain eqn.(6), we consider
 774

$$775 \mathbb{E}_{y_t|z_{t \leq}}(Fy_t|z_{t \leq}) = F\mathbb{E}_{y_{t-1}|z_{t \leq}}[\mathbb{E}_{y_t|y_{t-1}}(y_t|y_{t-1}, z_{t \leq})]$$

776 Splitting time steps before t into time steps before $t-1$ and time step t we have,
 777

$$778 \mathbb{E}_{y_t|z_{t-1 \leq}, z_t}(Fy_t|z_{t-1}, z_t) = \mathbb{E}_{y_{t-1}|z_{t-1 \leq}, z_t} \sum_k z_{t,k} F(S_k(Fy_{t-1}) + b_k) \\ 779 = \sum_k z_{t,k} \mathbb{E}_{y_{t-1}|z_{t-1 \leq}, z_t}(FS_k(Fy_{t-1}) + Fb_k) \\ 780 = \sum_k z_{t,k} (FS_k x_{t-1} + Fb_k)$$

785 The last line is derived from the definition $x_{t-1} = \mathbb{E}(Fy_{t-1}|z_{t-1 \leq})$ and the fact that y_{t-1} and z_t
 786 are conditionally independent given z_{t-1} . Conditioning on x_{t-1} and z_t , $x_t = \mathbb{E}_{y_t|z_{t \leq}}(Fy_t|z_{t \leq})$ is
 787 equivalent to the LHS of eqn.(6), as x_{t-1} is fully determined by states before time step $t-1$. The
 788 RHS of the equation above can be put into RHS of eqn.(6) by setting $A_k = FS_k$, and $c_k = Fb_k$.
 789 Finally, to obtain eqn.(7), we consider the mean and variance of y_t . If we set $C = F^\dagger$, we have
 790 $\mathbb{E}(y_t|x_t) = Cx_t$. To obtain the variance, we consider

$$791 Q_t = \text{Var}(y_t|x_t) = \mathbb{E}\text{Var}(y_t|y_{t-1}, x_t, z_t) + \text{Var}\mathbb{E}(y_t|y_{t-1}, x_t, z_t) \\ 792 = R_t + \text{Var}(\sum_k z_{t,k} (S_k F y_{t-1} + b_k))$$

795 We can remove the dependency on x_t in both summation terms, since x_t is fixed given z_t and z_{t-1} ,
 796 and y_t is independent of z_{t-1} given z_t . In practice, we can assume a diagonal covariance structure
 797 $R_t = \sigma I$.

798 Next, we show the reverse derivation from the mixture model to the GDM.
 799

800 To obtain the Gumbel dynamics equation for the GDM, we consider

$$801 \mathbb{E}_{y_t|z_{t \leq}}(Fy_t|z_{t \leq}) = \mathbb{E}_{x_t|z_{t \leq}} \mathbb{E}_{y_t|x_t, z_{t \leq}}(Fy_t|x_t, z_{t \leq}) = \mathbb{E}_{y_t|x_t}(Fy_t|x_t)$$

803 The inner expectation reduces to $\mathbb{E}_{y_t|x_t}(Fy_t|x_t)$ as y_t is independent of z_t given x_t . The outer
 804 expectation can be removed as x_t is fully determined by states before time step t .

805 By eqn. (7), we know that
 806

$$807 x_t = \mathbb{E}_{y_t|x_t}(Fy_t|x_t) = \mathbb{E}_{y_t|z_{t \leq}}(Fy_t|z_{t \leq})$$

809 where $F = C^\dagger$. This gives the Gumbel dynamics equation for the GDM by substituting
 $\mathbb{E}(Fy_{t-1}|z_{t-1 \leq})$ in eqn. (5).

To derive the observation level for the GDM, we substitute eqn. (6) into eqn. (7). Specifically, we write $y_t = Cx_t + \epsilon$ where $\epsilon \sim N(0, Q)$. Then we have,

$$\begin{aligned} y_t &= C \sum_k z_{t,k} (A_k x_{t-1} + c_k) + \epsilon \\ &= C \sum_k z_{t,k} (A_k (Fy_{t-1} - \tilde{\epsilon}) + c_k) + \epsilon \\ &= \sum_k z_{t,k} (CA_k Fy_{t-1} + Cc_k) + \epsilon - \sum_k z_{t,k} CA_k \tilde{\epsilon} \end{aligned}$$

where $\tilde{\epsilon} \sim N(0, FQF^\top)$ is another Gaussian noise term. The second line comes from eqn. (7), as we have $Fy_{t-1} = x_{t-1} + \tilde{\epsilon}$ where $\tilde{\epsilon} \sim N(0, FQF^\top)$. Therefore, if we set $S_k = CA_k$, $b_k = Cc_k$ and $R_t = Q + \sum_k z_{t,k} CA_k FQF^\top A_k^\top C^\top$, we recover the observation dynamics in GDM. Note that in the case that Q is diagonal, R is still a dense covariance matrix.

D VARIATIONAL INFERENCE FOR 3-LEVEL MIXTURE MDOEL

As discussed in the main text, inference for the general 3-level mixture model is more challenging as we need to define variational distributions for both the latent variables x and z . We can define a flexible variational distribution $q(x, z)$ that allows dependency between x and z . For z , we define the same form of variational posterior as above, with dependency on x instead of y , i.e., $q(z_{1:T}) = q(z_1) \prod_{t=2}^T q(z_t | z_{t-1}, x_{t-1})$. For x , we introduce dependencies that span multiple time steps by assuming a Gaussian with block tri-diagonal precision for $x_{1:T}$.

$$q(x_{1:T}) = N(x_{1:T} | \mu, \Sigma) = N(x_{1:T} | J, h)$$

where J is the precision matrix J and h is the linear potential, $\mu = J^{-1}h$ is the mean, $\Sigma = J^{-1}$ is the inverse precision (covariance) matrix. It can be written as the following pairwise linear Gaussian dynamics,

$$q(x_{1:T}) = \left[\prod_{t=1}^{T-1} N(x_{t+1} | A_t x_t + b_t, Q_t) \right] \cdot \left[\prod_{t=1}^T N(x_t | m_t, R_t) \right]$$

Note that it is easier to work with the pairwise LDS structure as the precision matrix J can be efficiently inverted and sampled from. We assume that the transition parameters A_t , Q_t , and b_t are state-dependent, $A_t = A_{zt}$, $b_t = b_{zt}$, and $Q_t = Q_{zt}$.

Sampling mechanism Note that sequential sampling is feasible for z but not for x . Recall the standard way of sampling from $N(\mu, \Sigma)$ as follows. If Σ has Cholesky decomposition $\Sigma = LL^\top$, then we can generate samples using $x = \mu + L\eta$ where $\eta \sim N(0, I)$. In our case, we need z_t for all time steps t to compute linear potential h and inverse precision matrix J . To sample from J , we solve two equations: $J\mu = h$ and $U^\top \tilde{x} = \eta$ where U is the Cholesky decomposition of J s.t. $J = UU^\top$. The final sample of x is the sum of μ and \tilde{x} .

To sample from $q(x, z)$, we first initialize the samples for x using observation y . Then we sample from $q(z)$ sequentially as follows: 1) Sample z_1 from the GS distribution with ϕ_1 2) Compute logits ϕ_t using the learnable transition function and sample z_t using the GS trick, for all $t \geq 2$. Based on samples for z , we continue sampling from $q(x)$ as described above.

Complete ELBO The ELBO for the 3-level mixture model is:

$$\begin{aligned} \log p_\theta(y_{1:T}) &\geq \mathbb{E}_{q(x,z)} \log(y, x, z) - \log q(x, z) \\ &= \mathbb{E}_{q(x,z)} \left[\sum_{t=1}^T \log p(y_t | x_t) + \sum_{t=1}^T \log p(x_t | x_{t-1}, z_t) + \log p(z_1) + \sum_{t=2}^T \log p(z_t | z_{t-1}) \right] \\ &\quad - \mathbb{E}_{q(x,z)} \left[\log q(x_{1:T} | z_{1:T}) + \log q(z_1) + \sum_{t=2}^T \log q(z_t | z_{t-1}, x_{t-1}) \right] \end{aligned}$$

864 **E IDENTIFIABILITY CONSIDERATIONS FOR GDM**
 865

866 In the limiting case $\tau \rightarrow 0$, the GDM has an equivalent formulation as a finite mixture model
 867 analogous to an AR-HMM. Following the same notations in Balsells-Rodas et al. (2023), for finite
 868 horizon T , one can define a bijective path indexing function ψ that maps each $i \in \{1, \dots, K^T\}$ to a
 869 set of states $z_{1:T}$. Then, the family of GDMs can be seen as a finite mixture over all possible discrete
 870 state paths.

871 Let $M_k = S_k F$ denote the product of the dynamic matrix S_k and projection matrix F . At the
 872 observation level, GDM then satisfies the *unique-indexing assumption* on Gaussian means and initial
 873 states used in Balsells-Rodas et al. (2023). By Theorem 3.2 in their paper, under these conditions,
 874 the family of GDMs is identifiable up to permutations. Importantly, this identifiability result does
 875 not require restricting the form of the state transitions, and arbitrary recurrence from the switches is
 876 allowed Balsells-Rodas et al. (2025). In the case that transition logits π_t depend only on the previous
 877 discrete state z_{t-1} , one can uniquely recover the transition matrix.

878 For $\tau > 0$, identifiability becomes more subtle. The continuous GS relaxation means that latent
 879 state z_t at each time step t takes values on the simplex Δ^{K-1} , so GDM is no longer a finite mixture
 880 but rather behaves like an infinite mixture over continuous paths. The considerations above rely
 881 heavily on the use of finite mixture modeling techniques, and characterizing identifiability in the
 882 non-limiting regime remains an open problem. Nevertheless, we note that the introduction of Gumbel
 883 noise does not create qualitatively new sources of non-identifiability relative to the Gaussian
 884 noise injected into continuous latents in SDS models: the fundamental issues arise from symmetry
 885 classes and model over-specification, not from the specific choice of noise distribution. This
 886 provides intuition for how identifiability theory may extend to the non-limiting regime.

887 Developing a full identifiability theory for the non-limiting case will require new mathematical state-
 888 ments. A potential route toward a formal proof may draw on the ideas in Barndorff-Nielsen (1965).

890 **F MORE DISCUSSIONS ON THE NASCAR DATASET**
 891

892 The full generative model used to simulate the NASCAR dataset is described as follows,

$$z_1 \sim \text{GS}(\pi_1, \tau), \quad z_t | x_{t-1} \sim \text{GS}(T x_{t-1} + t, \tau) \quad t \geq 2 \quad (8)$$

$$x_1 = \sum_{k=1}^4 z_{1,k} \mu_k, \quad x_t | x_{t-1}, z_t = \sum_{k=1}^4 z_{t,k} (A_k x_{t-1} + c_k) \quad t \geq 2 \quad (9)$$

$$y_t | x_t \sim \mathcal{N}(Cx_t, \sigma I), \quad t \geq 1 \quad (10)$$

893 This can be achieved by setting extreme Gumbel-Softmax logits in eqn. (8). As an example, the
 894 transition matrix T and the bias t can be defined as

$$T = \begin{bmatrix} 10 & 0 \\ -10 & 0 \\ 0 & 10 \\ 0 & -10 \end{bmatrix} \quad t = \begin{bmatrix} -20 \\ -20 \\ -10 \\ -10 \end{bmatrix}$$

901 Eqn. (8) can be viewed as a classifier that divides the space into four regions such that the logit of
 902 each region k is computed as $T_k \cdot x + t_k$ where $x \in \mathbb{R}$ denotes the point on the 2D trajectory. For
 903 example, if $x_1 > 2$ and $-1 < x_2 < 1$, the first logit will be greater than 0 while other logits will be
 904 smaller than 0, so the point is highly likely to be classified in state $k = 1$.

905 Eqn. (9) specifies how the system moves in each state. For the standard NASCAR, the ground truth
 906 dynamics matrices are defined as,

$$A_1 = A_2 = \text{expm} \left(\begin{bmatrix} 0 & \frac{\pi}{24} \\ -\frac{\pi}{24} & 0 \end{bmatrix} \right), \quad A_3 = A_4 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

907 where the first two states correspond to the semicircular turns of 7.5° at the end of the straight track.
 908 The ground-truth offsets are defined as,

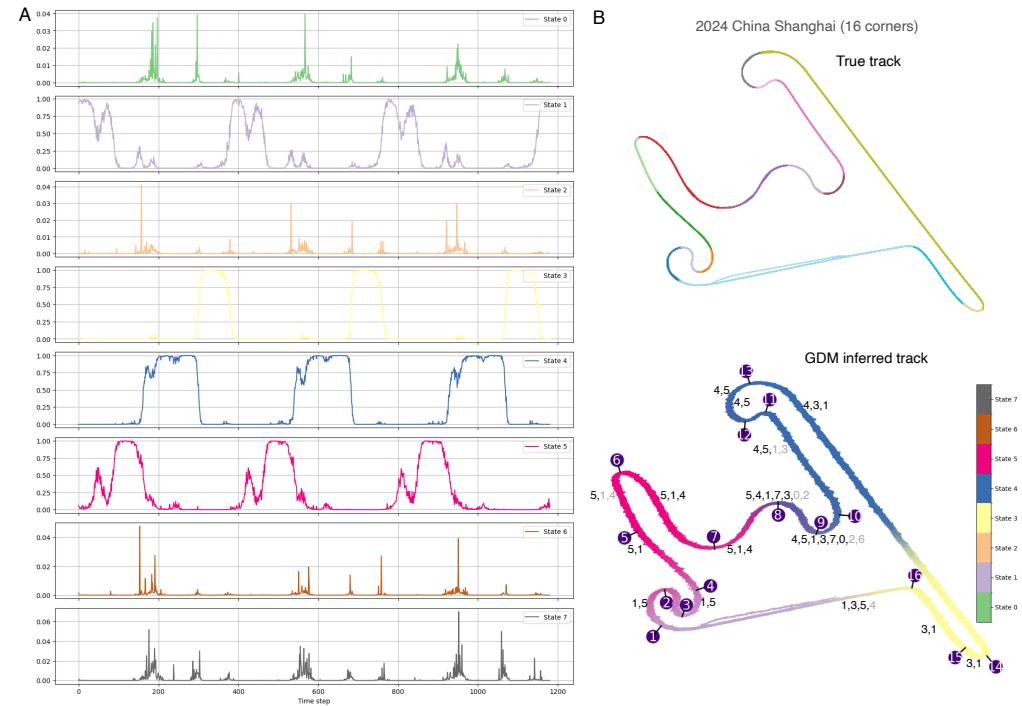
$$c_k = \begin{cases} -(A_1 - I) \cdot \text{FP}_1, & k = 1 \\ -(A_2 - I) \cdot \text{FP}_2, & k = 2 \\ [0.1 \ 0], & k = 3 \\ [-0.25 \ 0], & k = 4 \end{cases}$$

918 where b_1 and b_2 specify rotations around $\text{FP}_1 = (2, 0)$ and $\text{FP}_2 = (-2, 0)$ at the semicircular turns,
 919 while b_3 and b_4 specify the constant speed along the straight track.
 920

921 To model variable-speed transitions, we may introduce another parameter s that denotes a varied
 922 speed for the dynamics equation (9) such that $\tilde{c}_k = sc_k$ where $s \in [s_{min}, 1]$ is uniformly sampled
 923 between a minimum low speed s_{min} and full speed and is applied throughout each segment of the
 924 track. The observation is generated in the same way as before. Given the previous location in
 925 the trajectory x_{t-1} and the current state z_t , we can generate the next trajectory point using eqn.
 926 (9). The trajectory is then mapped to the observations. Note that the shape of the trajectory will
 927 not be changed fundamentally by varying speed as the movement direction of each state remains
 928 unchanged.
 929

G STATE USAGE AND VISUALIZATION

931 As mentioned in the main text, GDM utilizes all states, but not equally. In Figure 5A, we show the
 932 complete state usage of GDM for the trial illustrated in Figure 3C. For demonstration purposes, we
 933 display the first three laps around the track. As seen in the plot, while all states capture the three
 934 laps as three clear peaks in probability, States 1, 3, 4, and 5 are more dominant than the other four
 935 states. This is also reflected in the state annotations in Figure 3C. Here, we provide a more detailed
 936 version of Figure 3C by lowering the presence threshold to 5% of all time steps associated with the
 937 expert-labeled state. The complementary states for each segment are greyed out.
 938



964 Figure 5: A. Complete state usages for Figure 3 B. Example inferred trajectory for GDM, with
 965 complementary states annotated in grey.
 966

967 The unequal usage of states helps explain the observation that the inferred state accuracy of GDM
 968 improves rapidly in the initial steps and then plateaus. GDM allocates additional states to less
 969 dominant roles, so the marginal gain of increasing the number of states decreases after the first few.
 970

971 For practical visualization, we put an emphasis on the dominant states. Specifically, we set trans-
 972 parency to the maximum value of state proportions at each time step and mix colors according to

972 the proportions of active states. This yields a gradual change in color across transitions and more
973 transparent segments where mixtures of overlapping states occur.
974

975 **H LLM USAGE**
976

977 Large Language Models (LLMs) were used to assist with writing and polishing the manuscript and
978 to improve the clarity and organization of the accompanying code repository.
979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025